Show simple item record

dc.contributor.advisorDoğdu, Erdoğan
dc.contributor.authorYücesan, Mehmet Mert
dc.date.accessioned2021-05-08T11:21:30Z
dc.date.available2021-05-08T11:21:30Z
dc.date.submitted2016
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/682970
dc.description.abstractMetin veya doküman öbeklendirilmesi, aynı konuyla ilgili olan metin belgelerinin belirlenerek gruplandırılması işlemidir. Bu işlem, metin belgelerinin sayısının artmaya devam ettiği sürekli büyüyen Web için özellikle önemlidir. Haber öbeklendirilmesi bu alanda, haber belgelerinin konu bazında sınıflandırılmasının hedeflendiği özel bir konudur. Bu probleme ilişkin daha önce geliştirilmiş çözümler, belgelerin içlerinde geçen kelimelerle ve bu kelimelerin sıklıklarıyla temsil edildiği ``sözcük çantası'' yaklaşımını kullanmıştır ve öbeklendirme işlemi belgelerin bu gösterimi kullanılarak ölçülen benzerlikler kullanılarak yapılmıştır. Bununla birlikte, bu yaklaşım sözcüklerin anlamını veya önemini dikkate almaz ve sözcüklerdeki muğlaklık çözümlenmez. Bu çalışmada doküman veya haber öbeklendirilmesi konusunda ``bağlı veri'' kullanan yeni bir yaklaşım geliştirilmiştir. Bu yaklaşımda haber belgelerindeki sözcükler ve cümleler, DBpedia gibi bağlı veri bilgi tabanlarındaki gerçek dünya karşılıklarına eşlenir ve belgeler sahip oldukları bağlı veri varlıklarıyla temsil edilmektedir. Daha sonra haberler bu varlıklar ve bu varlıkların kategori hiyerarşisi benzerlikleri kullanılarak öbeklendirilmektedir. Değerlendirme sonuçları, geliştirilen yaklaşımın kelime çantasına göre daha iyi sonuç verdiğini göstermektedir.
dc.description.abstractText clustering or document clustering is the task of identifying and grouping text documents that are about the same topic. This is especially important for the ever growing Web where the number of free-text documents just keep increasing. News clustering is a special task in this domain in which the goal is to classify news documents by topic. Earlier solutions on this problem utilized ``bag of words'' approach in which documents are represented with words and their frequencies in documents, and the clustering task measures the similarity of documents using this representation. However, this approach does not take into consideration the meaning or the importance of words and ambiguity in words is not resolved. We present a new approach to document or news clustering, we utilize ``linked data''. We map words or phrases in news documents to their real-world counterparts in ``linked data'' knowledge bases such as DBpedia and represent documents with linked data entities they have. Then we cluster documents using these entities and their category hierarchy similarities. Evaluation results show that our approach performs better than the bag of words approach.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.titleBağlı veri kaynakları ve ilişkileri kullanılarak haberlerin öbeklendirilmesi
dc.title.alternativeNews clustering using linked data resources and their relationships
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentBilgisayar Mühendisliği Ana Bilim Dalı
dc.subject.ytmData mining
dc.subject.ytmMachine learning methods
dc.subject.ytmCluster analysis
dc.identifier.yokid10134553
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityTOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ
dc.identifier.thesisid450647
dc.description.pages65
dc.publisher.disciplineBilgisayar Mühendisliği Bilim Dalı


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess