Show simple item record

dc.contributor.advisorSüer, Meral
dc.contributor.authorÇelik, Özkan
dc.date.accessioned2020-12-04T08:55:38Z
dc.date.available2020-12-04T08:55:38Z
dc.date.submitted2019
dc.date.issued2019-09-19
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/68157
dc.description.abstractBu çalışmada ilk olarak sayısal yarıgruplarla ilgili temel kavramlar, indirgenemez sayısal yarıgruplar, simetrik ve pseudo-simetrik sayısal yarıgruplardan bahsedilmiştir. Daha sonra gömme boyutu ve katılılığı 3 olan S=<3,3+s,3+2s> formundaki ve pseudo-simetrik sayısal yarıgrup ailesinin Delta Kümesi, Betti sayıları, katener derecesi, çizgeleri ve minimal sunumu ifade eden bağıntı ve formüller elde edilmiştir.
dc.description.abstractIn this study, first of all the main concepts related to numerical semigroups, the irreducible numerical semigroups, symmetric and pseudo-symmetric numerical semigroups are mentioned. After that, the formulas and the connections representing the Delta set, Betti numbers, catenary degree, graphs and minimal presentation of the private pseudo-symmetric numerical semigroup family in the form of S=<3,3+s,3+2s> with the embedding dimension and multiplicity three were obtained.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleSayısal monoidlerin delta kümeleri
dc.title.alternativeDelta sets of numerical
dc.typemasterThesis
dc.date.updated2019-09-19
dc.contributor.departmentMatematik Anabilim Dalı
dc.identifier.yokid10271108
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityBATMAN ÜNİVERSİTESİ
dc.identifier.thesisid560480
dc.description.pages57
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess