Taşınabilir sensörlerden aktivite ve kişi tanıma
dc.contributor.advisor | Oğul, Hasan | |
dc.contributor.author | Erdaş, Çağatay Berke | |
dc.date.accessioned | 2020-12-04T08:39:04Z | |
dc.date.available | 2020-12-04T08:39:04Z | |
dc.date.submitted | 2017 | |
dc.date.issued | 2018-08-06 | |
dc.identifier.uri | https://acikbilim.yok.gov.tr/handle/20.500.12812/66786 | |
dc.description.abstract | İnsan fiziksel aktivitelerinin ve ilgili aktiviteyi yapan kişinin uzaktan tespiti, çeşitli alanlarda ihtiyaç duyulan önemli bir konudur. Bu amaçla giyilebilir hareket sensörlerinin kullanımı son yıllarda yaygınlaşmıştır. Bu tezde ivmeölçer, jiroskop ve manyetometre vasıtası ile hareket ve kişi tanıma üzerine çalışılmıştır. Sensörlerden elde edilen veriler üzerinden çıkarılan zaman, frekans ve dalgacık uzayı öznitelikleri ile Random Forest, J48, Adaboost ve Desicion Stump ikilisi, Support Vector Machine ve k-NN gibi öğrenme algoritmaları sınıflandırma amaçlı kullanılmıştır. Buna ek olarak, elde edilen sınıflandırma performansını geliştirmek için; filtreleme, öznitelik seçimi, sensör füzyonu gibi yöntemler denenmiştir. Bahsi geçen yöntemler, hem erişime açık veri kümelerinde hem de bu çalışma kapsamında toplanan el aktivitesi verileri üzerinde denenmiş ve sonuçları raporlanmıştır. | |
dc.description.abstract | Remotely detecting an activity and the person who performs this activity is an important issue that is needed in various fields. For this purpose, the usage of wearable motion sensors has been widespread in recent years. In this thesis, motion and person recognition were studied by means of accelerometer, gyroscope and magnetometer. The time, frequency and wavelet features were extracted from the data obtained from the sensors and learning algorithms such as Random Forest, J48, Adaboost and Desicion Stump, Support Vector Machine and k-NN were used for classification purposes. In addition, in order to improve the classification performance obtained; filtering, feature selection, fusion of sensors have been tried. The methods mentioned have been tried on both the open access data sets and hand activity data collected within the scope of this study, and the results have been reported. | en_US |
dc.language | Turkish | |
dc.language.iso | tr | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution 4.0 United States | tr_TR |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol | tr_TR |
dc.subject | Computer Engineering and Computer Science and Control | en_US |
dc.title | Taşınabilir sensörlerden aktivite ve kişi tanıma | |
dc.title.alternative | Activity and identitiy recognition from wearable sensors | |
dc.type | masterThesis | |
dc.date.updated | 2018-08-06 | |
dc.contributor.department | Bilgisayar Mühendisliği Anabilim Dalı | |
dc.identifier.yokid | 10162233 | |
dc.publisher.institute | Fen Bilimleri Enstitüsü | |
dc.publisher.university | BAŞKENT ÜNİVERSİTESİ | |
dc.identifier.thesisid | 479239 | |
dc.description.pages | 72 | |
dc.publisher.discipline | Diğer |