Show simple item record

dc.contributor.advisorOğul, Hasan
dc.contributor.authorErdaş, Çağatay Berke
dc.date.accessioned2020-12-04T08:39:04Z
dc.date.available2020-12-04T08:39:04Z
dc.date.submitted2017
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/66786
dc.description.abstractİnsan fiziksel aktivitelerinin ve ilgili aktiviteyi yapan kişinin uzaktan tespiti, çeşitli alanlarda ihtiyaç duyulan önemli bir konudur. Bu amaçla giyilebilir hareket sensörlerinin kullanımı son yıllarda yaygınlaşmıştır. Bu tezde ivmeölçer, jiroskop ve manyetometre vasıtası ile hareket ve kişi tanıma üzerine çalışılmıştır. Sensörlerden elde edilen veriler üzerinden çıkarılan zaman, frekans ve dalgacık uzayı öznitelikleri ile Random Forest, J48, Adaboost ve Desicion Stump ikilisi, Support Vector Machine ve k-NN gibi öğrenme algoritmaları sınıflandırma amaçlı kullanılmıştır. Buna ek olarak, elde edilen sınıflandırma performansını geliştirmek için; filtreleme, öznitelik seçimi, sensör füzyonu gibi yöntemler denenmiştir. Bahsi geçen yöntemler, hem erişime açık veri kümelerinde hem de bu çalışma kapsamında toplanan el aktivitesi verileri üzerinde denenmiş ve sonuçları raporlanmıştır.
dc.description.abstractRemotely detecting an activity and the person who performs this activity is an important issue that is needed in various fields. For this purpose, the usage of wearable motion sensors has been widespread in recent years. In this thesis, motion and person recognition were studied by means of accelerometer, gyroscope and magnetometer. The time, frequency and wavelet features were extracted from the data obtained from the sensors and learning algorithms such as Random Forest, J48, Adaboost and Desicion Stump, Support Vector Machine and k-NN were used for classification purposes. In addition, in order to improve the classification performance obtained; filtering, feature selection, fusion of sensors have been tried. The methods mentioned have been tried on both the open access data sets and hand activity data collected within the scope of this study, and the results have been reported.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.titleTaşınabilir sensörlerden aktivite ve kişi tanıma
dc.title.alternativeActivity and identitiy recognition from wearable sensors
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentBilgisayar Mühendisliği Anabilim Dalı
dc.identifier.yokid10162233
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityBAŞKENT ÜNİVERSİTESİ
dc.identifier.thesisid479239
dc.description.pages72
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess