dc.description.abstract | IV ÖZET Bamford W.R. ve Stevens T. S. tarafından gerçekleştiri len ve Bamford-Stevens reaksiyonları olarak isimlendirilen aril ve alkil tosilhidrazonların (p-toluensulfonil hidrazon) anyonlarının kuvvetli bazik ortanda termik veya fotolitik olarak ayrıştırılması reaksiyonları, diğer yollardan elde edilmesi güç olan alkenlerin elde edilmesinde önemli bir yer tutmaktadır. Söz konusu bu reaksiyonlar çözücü olarak ya protik veya aprotik ortamlarda yürütülmektedir. Ayrıştırma reaksiyonları aprotik ortamda yapıldığında teşekkül eden karbenlere uyan bir mekanizma takip edilir; oysa protik çö zücülerle ayrıştırma, katyonik bir mekanizmadan teşekkül eden ürünlere sebep olur. Her iki durumda da ara ürün bir diazo komponentidir. Çalışmamızda bazı mono ve di siklikketonların tosilhid- razonlarının hem protik nemde aprotik şartlarda ve değişik ısıtma sürelerinde termik olarak ayrıştırılması gerçekleşti rilmiştir. Reaksiyonlar sırasında özellikle hidrojen göçün den türemiş ürünler, intramoleküler insertion ürünleri, kar bon iskeletinin değişimi ile meydana gelmiş ürünler, ayrıca yan ürün olarak dimerik ürünler, daha yüksek molekül ağırlık lı poliıaerler, halka açılması veya halka küçühuesi ürünleri meydana gelebilir. Ele geçen ürünler, daha önce başka yollar dan elde edilmiş ürünlerdir. Bu maddelerden temin edilebilen lerini standart madde olarak kullanmak suretiyle, gaz kroma- tografında alıkonma zamarılari saptanmış ve diğer enstrumental ve kimyasal metodlarm da yardımıyla reaksiyon karışımınınV bileşimi saptanmıştır. Standart bileşiği temin edilemeyen lerin yapısının açıklanması ise, TLC'den zon kazınma ve ka zınan tabakadaki maddenin enstrumental ve kimyasal metodlar- la yapılmıştır. Çalıştığımız ketonlardan 1,3- ve 1,4-sıkloheksandion mono ve fenil siklopropil ketonun mono tosilhidrazonları kolaylıkla elde edilmiştir. l,3~Sikloheksandion di tosilhid- razon elde edilememiştir. 1,4-Sİkloheksandion di tosilhidra- zon elde edilememişse de; saf sizlik olarak çok az da olsa mono tosilhidrazon ihtiva etmiştir. 1,3- ve Ij'l-Sikloheksandionların mono tosilhidrazonla- rının aprotik ortamda oluşan karben ara ürününden proton göçmesiyle, aynı tosilhidrazonlaruı protik ortamda ayrıştı- rılmasuıda ise oluşan karbonyum iyonundan bir protonun eli- minasyonu sonucu 2-sikloheksen-l-on ve 3-sikloheksen-l-on vermesi olasılığından hareket edilmiştir. Bu tosilhidrazon- lardan kavvetli bazik aprotik ortamda düşük dönüşüm verimiy- le beklenen ürünler ele geçmiştir (sırasıyla % 2.25 ve % 4.5). Fakat kuvvetli bazik protik ortamda, yapılarının aydınlatıl masına başvurulmayan koyu kıvamlı bir yağ vermişlerdir. Bu tosilhidrazonlar, ham (I) ve saf (II) tosilhidrazon kulla nılarak zayıf bazik protik ortamda da ayrıştırıımışlardır. 1,3-Sikloheksandion mono tosilhidrazon I1 de % 81 ve II' de % 67 verimle 2-sikloheksen-l-on vermiştir. Dönüşüm yüzdele ri kuvvetli bazik ortamdan daha yüksektir (I' de % 15 ve II' de % 16). Hem ham nemde saf 1,4-sikloheksandion mono tosilhid- I razonun ayrıştırılmasından 1,3-intramoleküler insertion ile bisiklo (3.1.0. )-heksan-2-on meydana gelmiştir (Ifde % 65.6,VI II* de % 68.95). Her iki tösilhidrazonun zayıf bazik ortamda ayrış tırılmasmda teşekkül eden `sikloheksanon ile halka küçülmesi ürünleri olan 2 -metil siklopentanon ve siklopenta- non`un saf tosilhidrazon ile yapılan reaksiyonlarda miktar ca arttığı belirlenmiştir. 1,4- Sikloheksandion di tosilhidrazon ise, kuvvetli bazik aprotik, kuvvetli bazik protik ve zayıf bazik protik ortamlarda ayrıştırıldığında beklenen ürünleri vermemiş, ele geçen koyu kıvamlı yağdan çok düşük verimle mono tosilhidra- zondan meydana gelebilecek ürünler ele geçirilmiştir. Fenil siklopropil tosilhidrazon kuvvetli bazik ortam da ayrıştırıldığında, aprotik koşullarda karbon iskeletinin değişimi ile ana ürün olarak ( % 81) 1-fenil siklobuten elde edilmiş; protik koşullarda ise fenil siklopropil karbonyum iyonunun intramoleküler insertion' ı ile ana ürün olarak 2-fenil bisiklo( 1.1.0.) bütan (% 89) elde edilmiştir. Ayrış tırma reaksiyonlarında ısıtma süresinin uzaması ile aprotik koşullarda 1-fenil siklobuten' in 3 -fenil siklobuten ' e dönüş tüğü, protik koşullarda ise 2-fenil bisikloC 1.1.0.) bütan 'in veriminin düştüğü ve her iki koşulda da oluşan ürünlerin dimıerleştiği, daha yüksek molekül ağırlıklı polimerlerin oluştuğu, halka küçülmesi ürünlerinin meydana geldiği belir lenmiştir. | |
dc.description.abstract | VII SUMMARY Aldehydes and ketones can be converted into corres ponding alkenes by treating their tosylhydrazone derivatives with strong base. This method has considerably been used in recent years and given rather good results. These reactions are called Bamford-Stevens (B.S.) reactions. In this method, p-toluene sulfonyl hydrazones (tosyl- hydrazones) of the ketones or aldehydes are first obtained, then the diazo compound is formed by elimination of p-toluenesulf inate anion from tosylhydrazone in a strong basic medium at high temperatures (160-180 C) or by photolytic reaction of tosylhydrazone. As seen in the scheme shown below, if the decomposition is carried out in aprotic r / / ! W/ -rwOH Na /=/ CHPH H 3 V*.. a v/`5N / A, -T;Na 'XH ohoh ' > «. N, M>V>VIII solvents, the reaction proceeds through a carbene interma- diates. Whereas the decomposition under protic conditions leads to the formation of the products via diazonium and/or carbonium ion intermadiates. Aprotic B.S. reactions have better potential for the synthesis of alkenes, but protic B.S. reactions are not more advantagous than the other alkene synthesis, although bicyclo ( n. 1. 0. ) ring systems may be produced via these reactions. The concentration and the nature of the base as well as proton-donating ability of the solvent are effective in these reactions. Increasing sodium metoxide base concentra tion and decreasing solvent polarity give rise to an increasing yield of carbenic products. In contrast, the base containing aluminum or boron ion gives high proportion of cationic product, regardless of the concentration and solvent polarity, whereas lithium ion behaves in the same manner but only in higher concentration. Base containing silver behaves like sodium base. Depending on the reaction conditions, alkenes are formed by either hydrogen migration from carbenic interma- diate or hydrogen elimination from carbonium ion with or without rearrangement. Bicyclo products may also fprm with intramolecular insertion reaction of carbonium ions. In this work, thermal decomposition of some cyclic mono- and di- ketones has been studied in the presence of a base in aprotic and protic solvents. Diethylene glycol dimethyl ether (diglyme), N-methyl pyrrolidone andIX N,N-dimethyl formamide have been used as aprotic, and ethylene glycol as protic solvent. NaOCtL has been preffered as aprotic base, since it has not a trivalent effect and there is a neccessity of easy and fast removal of methanol which is present and formed during the reaction. In addition, base concentration has always been kept in excess. Protic base has been obtained by dissolving meatlic sodium in ethylene glycol. Thus, exact aprotic and protic conditions have been established by changing the type and concentration of the base, solvent and the reaction conditions. After decomposition, remaining unreacted tosylhydrazone has always been checked if it is present prolonged reaction time is employed. The yield of a reaction has been calculated from the initial ketone or tosylhydrazone. Identification of the reaction products have been achieved by using GLCCgas liquid chromatography), TLC (thin- layer chroma tography), IR (infrared spectroscopy), NMR (nuclear magnetic resonans), UV (ultraviole spectroscopy). Tosylhydrazones are readily obtained from simple ketones. However, it is rather difficult to prepare di tosylhydrazone of ketones. Indeed, mono tosylhydrazones of 1,3- and 1,4- cyclohexandion and mono tosylhydrazone of phenyl cyclopropyl ketone, have been obtained readily from the ketones. On the other hand, di tosylhydrazone of 1,3 -cyclohexandion has not been obtained. Di tosylhydrazone of 1,4-cyclohexandion has been obtained containing a little amount of mono tosylhydrazone derivative.X Decomposition products of tosylhydrazone of 1,3- and 1,4- cyclohexandion under aprotic conditions have been summarized below. and ; o o Yield! 0 sa6<y^ After vigorous nitrogen evalution has been ceased the reaction mixture have been heated 1.5 hours further otherwise about 66 % of tosylhydrazone would remain unreac- ted and should be recovered from reaction media. 1,3-Cyclohexandion mono tosylhydrazone has given 3-cyclohexen-l-on, but yield is insignificant. In addition, the product, cyclohexen-1-on has undergone condensation under strong basic reaction condition and give rise fibrous polymeric product which is oxidized at 260 C while keeping its fibrous shape. 1,4 -Cyclohexandion mono tosylhydrazone has also given olefinic ketone, owing to the âprotic solvents, the yield was about 50 %. D ienic.product from 1,4 -Cyclo hexandion di tosylhydrazone have not been obtained, but 3-Cyclohexen-l-on has been occured from decomposition of mono tosylhydrazone present in di tosylhydrazone.XI Under protic conditions, mono tosylhydrazone of 1,3- and 1,4- cyclohexandion and di tosylhydrazone of 1,4-cyclo- hexandion have given viscous oil. 1,3- and 1,4- cyclohexandion mono and 1,4- cyclo hexandion di tosylhydrazone which have acidic a-proton have not given the expected products in strong basic medium. Thus, the reactions have been carried out in a weak base. Decomposition of crude(I) and purified (II) hydrazones of 1,3- and 1,4-cyclohexandiones has been carried out in a weak basic media, such as aqueous potassium carbonate solution. The results are summarized in below : Weak Base, Protic Medium. Yield (%) 0 0 o and ^^ 0 0 0 1, 3 -Cyclohexandion mono Tosylhydrazone Pure 1! 0 497 0.564 81.2 12.56 Crude 16 12.8 5 6. 33 67.0 4. S 1, 3 -Cyclohexandion di Tosylhydrazone Crude 1.437 29.4 32.4 17.8 1, 4 -Cyclohexandion mono Tosylhydrazone Pure 38 0.38 5.0 4.33 Crude 53 17.6 4.2 6.4ı 65.6 68.95 1, 4-Cyclohexandion di Tosylhydrazone Fure 6.7 35-9 27.-67 11.7 As seen from the table 2-Cyclohexen-l-on has formed from 1,3 -Cyclohexandion mono tosylhydrazone, by hydrogen migration. Purifiying the crude tosylhydrazone of 1, 3 -Cyclohexandion have been resulted in on increase inXII the amount of 2-Methyl cyclopentanone, cyclopentanone and cyclohexanone and a decrease in the amount of cyclohexenone. Decomposition of mono tosyhhydrazone of 1,4-cyclohexandion has mainly produced bicyclo(3.1.0.)hexan-l-on which is the result of 1,3 -intramolecular insertion reaction. Di tosyl- hydrazone of 1,3- and 1,4- cyclohexandion produces products which are also formed from mono tosylhydrazone derivatives. The results of decomposition of phenyl cyclopropyl tosylhydrazone in aprotic and protic solvents and different heating times have been summarized in below : Under aprotic conditions 1-Phenyl cyclobutene is thus a good example of extensive carbon- skeleton rearren- gement in a simple carbenoid systemCthe yield: 81%).2-Phenyl bicycloC 1.1.0.) butane was obtained in a very small amount (2 %). However, under protic condition, 2 -phenyl bicyclo- (1.1.0.) butane which is the result of intramolecular insertion of phenyl cyclopropylcarbonium ion is a main product (89 %). In aprotic solvents, conversion of phenylXIII cyclopropyl tosylhydrazone to 2-phenyl bicycloC 1.1.0.) butane may occur in environment with increasing proton activity possibly derived from methanol, parent tosylhydrazone, or incompletely neutralized solvent. Phenyl acetylene is occured as the result of carbon- skeleton fragmentation. Under both aprotic and protic conditions, increasing heating time give rise to a higher amount of 3-cyclobutene and dimer products of bicyclo compounds together with some polymeric products. | en_US |