Show simple item record

dc.contributor.advisorÖztoprak, Kasım
dc.contributor.advisorAltun, Hüseyin Oktay
dc.contributor.authorMutlu İpek, Büşra
dc.date.accessioned2021-05-08T08:56:37Z
dc.date.available2021-05-08T08:56:37Z
dc.date.submitted2018
dc.date.issued2019-01-23
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/659730
dc.description.abstractEpilepsi, uzmanların teşhis aşamasında verileri titizlikle incelemesini ve değerlendirmesini gerektiren bir nörolojik bozukluktur. Uzmanlara teşhis koymada yardımcı olabilmek için EEG sinyallerinin otomatik olarak sınıflandırılabilmesi önemlidir. Bu çalışmada, literatürde EEG ile öğrenme temsillerinin yapıldığı bir çalışmada uygulanan derin öğrenme mimarisinin bazı katmanları DVM ile değiştirilerek, literatürde şu ana kadar bir EEG sinyal bankası kullanılarak yapılan çalışmalar içinde en yüksek performans elde edilmiştir. Bu çalışmaya temel olan literatürdeki çalışmada da olduğu gibi, EEG sinyali önce normalize edilerek frekans uzayında ifade edilmiş ve akabinde iki boyutlu görüntü dizisi haline getirilmiştir. EEG ölçümü sırasında kafatasına yerleştirilen elektrotlardan elde edilen değerlerin bu resim üzerinde gösterimi ve bu resim üzerindeki eksik noktalarda sinyal gücünün tahmini için Clough-Tocher interpolasyon tekniğinden faydalanılmıştır. Literatürde temel aldığımız çalışmanın derin öğrenme mimarisindeki tam bağlantılı katmanı DVM ile değiştirildikten sonra, parametreler eğitim verileri üzerinde optimize edilmiş ve tekniğin EEG sinyalleri üzerinden epilepsi anlarını sınıflandırma performansının neredeyse kusursuz olduğu görülmüştür. Çalışma, EEG sinyallerinin öğrenme temsillerindeki kullanımı için geliştirilen bir metodun, KSA-DVM sentez modeline çevrilince, epilepsi sınıflandırılmasında çok başarılı bir performans göstermesi açısından literatürde önemli bir boşluğu doldurmaktadır.
dc.description.abstractEpilepsy is a neurological disorder requiring specialists to scrutinize and evaluate medical data at diagnostic stage. It is crucial that EEG signals can be automatically classified in order to help the experts diagnose the disorder correctly. In this study, deep learning technique applied in a study (in which learning representations were obtained on EEG signals in the literature) was modified with replacing some layers of CNN architecture via SVM, and the highest known performance was obtained on a benchmark EEG signal database. Similar to a previous study in the literature, EEG signals were first normalized, converted to frequency space by fast Fourier transform and then transformed into a two-dimensional image sequence. Clough-Tocher technique was used for interpolation of the values obtained from the electrodes placed in the skull during the EEG measurement on the image and for estimating the signal strength in the missing places over the picture. After the parameters in the deep learning architecture were optimized on the training data, it was observed that the technique's performance of classifying epilepsy moments over EEG signals was almost perfect. This study completes a gap in the literature in terms of demonstrating a successful performance in the classification of epilepsy by a method developed for learning representations through EEG signals, with modification of some CNN layers via SVM classification techniques.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.titleEEG sinyallerinin epileptik rahatsızlıkların teşhisi için konvolüsyonel sinir ağları ve destek vektör makineleri ile tasnif edilmesi
dc.title.alternativeClassification of EEG signals with convolutional neural networks and support vector machines for diagnosis of epileptic disorders
dc.typemasterThesis
dc.date.updated2019-01-23
dc.contributor.departmentElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
dc.identifier.yokid10215726
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityKTO KARATAY ÜNİVERSİTESİ
dc.identifier.thesisid527824
dc.description.pages71
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess