Cofinitely amply weakly supplemented modules
dc.contributor.advisor | Alizade, Refail | |
dc.contributor.author | Menemen, Filiz | |
dc.date.accessioned | 2021-05-08T08:07:21Z | |
dc.date.available | 2021-05-08T08:07:21Z | |
dc.date.submitted | 2005 | |
dc.date.issued | 2018-08-06 | |
dc.identifier.uri | https://acikbilim.yok.gov.tr/handle/20.500.12812/642408 | |
dc.description.abstract | Adı-Soyadı: Filiz MENEMENOkul: zmir Yüksek Teknoloji EnstitüsüAnabilim Dalı: MATEMAT KProgramı: MATEMAT K (Yüksek Lisans)Tez Ba lı ı: Dual Sonlu Bol Zayıf Tümleyen ModüllerÖZETBu tezde bol zayıf tümleyen ve dual sonlu bol zayıf tümleyen modüllerincelenmi tir. ( Dual sonlu) Bol zayıf tümleyen modüllerin her faktör modülü,homomorf görüntüsünün ve tümlenen alt modüllerinin de (Dual sonlu) bol zayıftümleyen oldu u kanıtlanmı tır. | |
dc.description.abstract | Name: Filiz MENEMENSchool: Izmir Institute of TecnologyDepartment: MathematicsMajor: Mathematics( Master)Title of Thesis: Cofinitely Amply Weakly Supplemented ModulesABSTRACTWe study amply weak supplemented modules and cofinitely amply weaklysupplemented modules in this thesis. We prove that every factor module,homomorphic image, supplemented submodule of an amply (cofinitely) weaksupplemented module is amply (cofinitely) weak supplemented. | en_US |
dc.language | English | |
dc.language.iso | en | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution 4.0 United States | tr_TR |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Matematik | tr_TR |
dc.subject | Mathematics | en_US |
dc.title | Cofinitely amply weakly supplemented modules | |
dc.title.alternative | Dual sonlu bol zayıf tümleyen modüller | |
dc.type | masterThesis | |
dc.date.updated | 2018-08-06 | |
dc.contributor.department | Matematik Ana Bilim Dalı | |
dc.identifier.yokid | 195535 | |
dc.publisher.institute | Mühendislik ve Fen Bilimleri Enstitüsü | |
dc.publisher.university | İZMİR YÜKSEK TEKNOLOJİ ENSTİTÜSÜ | |
dc.identifier.thesisid | 197774 | |
dc.description.pages | 29 | |
dc.publisher.discipline | Diğer |