Show simple item record

dc.contributor.advisorAlizade, Refail
dc.contributor.authorDemirci, Yilmaz Mehmet
dc.date.accessioned2021-05-08T08:06:37Z
dc.date.available2021-05-08T08:06:37Z
dc.date.submitted2008
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/642022
dc.description.abstractBu tezde, $/Im /alpha/,$' n{/i}n $B$'de bir t/`{u}mleyeni, yani $/{V/subseteq BV+/Im/alpha=B/}$ k/`{u}mesinin minimum eleman{/i} bulunacak /c{s}ekilde t/`{u}m $/ensuremath{/xymatrix{0 & A /ar[r]^{/alpha} & B /ar[r] & C /ar[r] & 0}}$ k{/i}sa tam dizilerinin$/ensuremath/mathcal{S}$ s{/i}n{/i}f{/i}n{/i} in/-ce/-li/-yo/-ruz. $/Ext_{R}(C,A)$' n{/i}n bu dizilere kar/c{s}{/i}l{/i}k gelen elemanlar{/i}na $/kappa$-elemanlar denir. Genelde $/kappa$-elemanlar bir /`{o}z s{/i}n{/i}f olu/c{s}turmayabilir, fakat $R$ Dedekind b/`{o}lgesi /`{u}zerindeki burulma mod/`{u}llerinin $/mathcal{T}_{R}$ kategorisinde $/ensuremath/mathcal{S}$ bir /`{o}z s{/i}n{/i}ft{/i}r; s{/i}f{/i}rdan farkl{/i} $/ensuremath/mathcal{S}$-projektif mod/`{u}ller bulunmaz, $/ensuremath/mathcal{S}$-injektif mod/`{u}ller sadece injektif mod/`{u}llerdir. Tezde $/mathcal{T}_{R}$ kategorisinde $/ensuremath/mathcal{S}$-e/c{s}injektif mod/`{u}llerin yap{/i}s{/i}n{/i} da verdik. Ayr{/i}ca $/Im /alpha$'n{/i}n $B$'de $V$ diye bir t/`{u}mleyeninin bulundu/v{g}u ve $V/cap /Im /alpha/,$' n{/i}n s{/i}n{/i}rl{/i} oldu/v{g}u $/ensuremath{/xymatrix{0 & A /ar[r]^{/alpha} & B /ar[r] & C /ar[r] & 0}}$ k{/i}sa tam dizilerinin $/ensuremath{/mathcal{SB}}$ s{/i}n{/i}f{/i}n{/i} tan{/i}mlad{/i}k. $/Ext_{R}(C,A)$' n{/i}n bu dizilere kar/c{s}{/i}l{/i}k gelen elemanlar{/i}na $/beta$-elemanlar denir. Krull boyutu 1 olan Noether taml{/i}k b/`{o}lgesi /`{u}zerinde $/ensuremath{/mathcal{SB}}$' nin bir /`{o}z s{/i}n{/i}f olu/c{s}turdu/v{g}unu g/`{o}sterdik. $R$ Dedekind b/`{o}lgesi /`{u}zerinde burulma mod/`{u}llerinin $/mathcal{T}_{R}$ kategorisinde $/ensuremath{/mathcal{SB}}$ bir /`{o}z s{/i}n{/i}ft{/i}r; s{/i}f{/i}rdan farkl{/i} $/ensuremath{/mathcal{SB}}$-projektif mod/`{u}ller bulunmaz, $/ensuremath{/mathcal{SB}}$-injektif mod/`{u}ller sadece injektif mod/`{u}llerdir. $/mathcal{T}_{R}$kategorisinde indirgenmi/c{s} $/ensuremath{/mathcal{SB}}$-e/c{s}injektif mod/`{u}ller tam olarak s{/i}n{/i}rl{/i} mod/`{u}llerdir.
dc.description.abstractIn this thesis, we study the class $/ensuremath/mathcal{S}$ of all short exact sequences $/ensuremath{/xymatrix{0 & A /ar[r]^{/alpha} & B /ar[r] & C /ar[r] & 0}}$ where $/Im /alpha$ has a supplement in $B$, i.e. a minimal element in the set $/{V/subseteq B/mid V + /Im /alpha = B/}$. The corresponding elements of $/Ext_{R}(C,A)$ are called $/kappa$-elements. In general $/kappa$-elements need not form a subgroup in $/Ext_{R}(C,A)$, but in the category $/mathcal{T}_{R}$ of torsion $R$-modules over aDedekind domain $R$, $/ensuremath/mathcal{S}$ is a proper class; there are no nonzero $/ensuremath/mathcal{S}$-projective modules and the only $/ensuremath/mathcal{S}$-injective modules are injective $R$-modules in $/mathcal{T}_{R}$. In this thesis we also give the structure of $/ensuremath/mathcal{S}$-coinjective $R$-modules in $/mathcal{T}_{R}$. Moreover, we define the class $/ensuremath{/mathcal{SB}}$ of all short exact sequences $/ensuremath{/xymatrix{0 & A /ar[r]^{/alpha} & B /ar[r] & C /ar[r] & 0}}$ where $/Im /alpha$ has a supplement $V$ in $B$ and $V/cap /Im /alpha$ is bounded. The corresponding elements of $/Ext_{R}(C,A)$ are called $/beta$-elements. Over a noetherian integral domain of Krull dimension 1, $/beta$ elements form a proper class. In the category $/mathcal{T}_{R}$ over a Dedekind domain $R$, $/ensuremath{/mathcal{SB}}$ is a proper class; there are no nonzero $/ensuremath{/mathcal{SB}}$-projective $R$-modules and $/ensuremath{/mathcal{SB}}$-injective $R$-modules are only the injective $R$-modules. In the category $/mathcal{T}_{R}$, reduced $/ensuremath{/mathcal{SB}}$-coinjective $R$-modules are bounded $R$-modules.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleProper class generated by submodules that have supplements
dc.title.alternativeTümleyeni olan altmodüllerin ürettiği öz sınıf
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.subject.ytmModule theory
dc.subject.ytmHomological algebra
dc.identifier.yokid313344
dc.publisher.instituteMühendislik ve Fen Bilimleri Enstitüsü
dc.publisher.universityİZMİR YÜKSEK TEKNOLOJİ ENSTİTÜSÜ
dc.identifier.thesisid232889
dc.description.pages49
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess