Show simple item record

dc.contributor.advisorTong, Hakan
dc.contributor.authorDeveci, Fatih Süleyman
dc.date.accessioned2021-05-08T07:53:07Z
dc.date.available2021-05-08T07:53:07Z
dc.date.submitted2017
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/635991
dc.description.abstractRastlantısallık doğada ve dolayısıyla insan yaşamında sıklıkla karşılaşılan olan bir olgudur. Evrende ve onun bir parçası olan doğada kendiliğinden var olan oluşumlar incelendiğinde, çoğu zaman bunların belirli oranlarda rastlantısallık içerdikleri düşünülmektedir. Ancak rastlantısal olduğu düşünülen bu oluşumlar incelendiğinde, aslında bunların gerçekten rastlantısal olmadıkları, arkasında bir hesap ve kurallar bütünlüğü içeren sistemli rastlantısallıklar oldukları fark edilmektedir. Bu sistem ve kurallar ise, doğadaki rastlantısal işleyişin temel parçalarını oluşturmaktadır.Rastlantısallık, özünde bir belirsizlik ve tahmin edilemezlik içermektedir. Bu durum, rastlantısallığı çözümlenemez ve ölçümlenemez kılmaktadır. Rastlantısallığı çözmeye ve sistematize ederek kontrol etmeye çalışmak, rastlantısallığın doğasını ve doğallığını bozmaktadır. Bu da rastlantısallığın doğal/gerçek ve dolaylı/yapay olarak ikiye ayırılmasına sebep olmaktadır.Gerçek rastlantısallık, görsel sanatlarda, müzikte ve mimarlıkta, yüzyıllardır farklı biçimlerde kullanılmaktadır. Bu, bazen bir ressamın tablosuna rastgele boyalar dökmesiyle, bazen de bir müzisyenin nota kağıtlarını rastgele karıştırmasıyla olmaktadır. Bilişim sektörünün gelişmesiyle yükselişe geçen hesaplamalı tasarım, birçok sanat dalının ve mimarlığın yaratıcı üretim süreçleri için yeni bir yol açmıştır. Tasarımcılar tarafından belirli kurallar dahilinde hazırlanan algoritmalar, başlangıçta tanımlanan parametrelere göre sonuçlar üretmektedir. Bu algoritmalarda aynı girdiler, daima aynı sonucu vermektedir. Bu da, hesaplamalı tasarım süreçlerini, sonu belli ve monoton bir hale getirmektedir. Ancak bu olumsuz durum, algoritmalara rastlantısal parametreler tanımlanarak, tersine çevrilebilmektedir. Rastlantısallığın belirsiz ve ön görülemez yapısı, hesaplamalı tasarım süreçleri için önemli bir yaratıcı potansiyel oluşturmaktadır. Diğer taraftan rastlantısallığın, belirli kurallar ve sınırlar ile kontrol altına alınarak kullanılması gerekmektedir. Aksi durumda tasarımda bir kaos sonucu doğabilmektedir. Hesaplamalı tasarım süreçlerinde rastlantısallık, her zaman bir ressamın tablosuna rastgele boyalar dökmesi gibi doğal şekilde kullanılamamaktadır. Burada rastlantısallığı kullanabilmek için, önceden hazırlanmış, hızlı ve kolay kullanılabilen rastlantısal sonuçlara ihtiyaç duyulmaktadır. Genellikle çeşitli fiziksel durumlarla ve matematik hesaplarıyla oluşturulan bu hazır rastlantısal listeler, her ne kadar yapay bir rastlantısallık oluştursa da, kullanım kolaylığı açısından tercih edilmektedir. Bu yapay rastlantısallık, gerçek rastlantısallıkta olduğu gibi görsel sanatlarda, müzikte, mimarlıkta ve daha pek çok sanat dalında kullanılmaktadır.Mimarlıkta rastlantısallığın kullanımıyla ilgili önemli bir örnek, Moshe Safdie'nin Habitat 67 projesidir. Projede tasarlanan tek tip modüller, rastlantısal şekilde birbirlerinin üzerlerine adeta serpiştirilmiş görünmektedir. Safdie'nin izlediği geleneksel mimari tasarım sürecinde olduğu gibi, hesaplamalı tasarım ile de rastlantısal modüler projelerin yapılması mümkündür. Burada rastlantısallığın kullanımı, oldukça dinamik, belirsiz, değişken ve yaratıcı tasarım alternatifleri üretilmesini sağlamaktadır. Aynı zamanda hesaplamalı tasarım süreçleri, bu alternatiflerin çok hızlı ve kolay şekilde, yüzlerce farklı biçimde üretilebilmesine imkan tanımaktadır.Bunların sonucunda çalışmada, hesaplamalı tasarım ile L modül tabanlı yapılar için rastlantısal üretimler yapan bir model önerisi geliştirilmiştir. Hazırlanan model, tek tip olarak oluşturulan L modülleri, tanımlanan arazi ve yapı özelliklerini gözeterek, tamamen rastlantısal şekilde yerleştirmekte, fazlasıyla dinamik ve yaratıcı sonuçlar üretmektedir. Çalışma, modelin sunduğu potansiyel ile olumlu ve olumsuz yanları değerlendirilerek tamamlanmıştır.
dc.description.abstractRandomness frequently exists in nature and therefore in human life. When the self-existing formations in the universe and the nature is examined, it can be seen that they contain randomness at different ratios. However, when these kinds of formations thought to be random are examined, in fact they are not random in the known sense, it is recognized that there are systematic randomness that include mathematical calculations and an unity of rules behind of this system. These calculations and rules constitute the essential parts of the process of randomness in nature.Randomness has inherent uncertainty and unpredictability in itself. This makes randomness unresolvable and unmeasurable. Trying to control by resolving and systematizing randomness, disrupts the nature and naturalness of randomness. This leads to the separation of randomness into natural/real and indirect/pseudo.Real randomness has been used in visual arts, in music and architecture, in different forms for centuries. Sometimes this happens with an artist randomly dripping paint onto a canvas, sometimes with a musician randomly blending the notes. The computational design, which has risen with the development of the informatics and information industry, has opened a new path for creative production processes of many arts and architecture. The algorithms generated by the designers within certain rules produce results according to the parameters defined at the beginning. The same inputs in these algorithms always give the same result. This makes randomness design processes, end-known and monotonous. However, this adverse situation can be reversed by defining random parameters to the algorithm. The ambiguous and unpredictable nature of cointegration constitutes an important creative potential for computational design processes. On the other hand, randomness must be controlled by certain rules and boundaries. Otherwise there can be a chaotic result in the design.Randomness in computational design processes is not always possible to use naturally, such as randomly dripping paint onto a canvas. In order to use randomness, pre-prepared, quick and easy-to-use random results are needed. These ready-made random lists, which are usually created with various physical situations and mathematical calculations, are preferred in terms of ease of use even though they create a pseudo randomness. This pseudo randomness is used in visual arts, music, architecture and many other arts as it is in real randomness.An important example of the use of randomness in architecture is Moshe Safdie's Habitat 67 project. The architect has produced a uniform module here and multiplied it in a random way. The result seems to have arisen by randomly interspersing the determined uniform module. When considering the traditional architectural design process that Safdie pursues for this project, it can be quite difficult to locate hundreds of modules coincidentally to match certain rules. However, the fact that the architect randomly places the modules into a new coincidental order, again dice them, means that all the modules are placed from the beginning. In such cases, randomized modular projects may be preferred with computational design.Computational design offers different possibilities for creative design processes. However, the use of algorithms that do not involve chance and chance does make the design processes monotonous and final. This situation is incompatible with the logic of creative design. On the other hand, the same inputs defined in these algorithms always output the same outputs. It is not possible to obtain different result alternatives with the same parameters. These drawbacks are not just for modular architectural projects, but for all areas where computational design is used.The aim of the work is to make the computational design more unlimited, dynamic, creative and endless by incorporating the concept of randomness into certain computational design processes. On the other hand, it is ensured that hundreds of different alternative designs with the same parameters can be produced quickly. As a result of these, a model proposal has been developed which makes randomized productions for L module based structures with computational design. In the model, horizontal and vertical L shaped modules are used. In this preference, the advantages of the L modules have been influential. L modules can be rotated horizontally and vertically in different directions to create different spatial solutions. L modules that are rotated at different angles and orientations can also be grouped into two, three, or more, to form a single combined space. Thus, using a single L module, a large number of different new block types can be produced. These blocks can be used both to meet user needs and to create variety and alternative in design. The model incorporates uniform L modules as completely randomly, taking into consideration the designer and the terrain and building characteristics. Thus, creative, dynamic and unpredictable results are achieved.The prepared model is defined under 4 main headings. These are the identification of land features, identification of the grid system and circulation axes, making structural decisions, random production of L-shaped modules and checking. Following these steps, the process ends with the coloring of L-shaped modules, cleaning of the carrier system and construction of architectural solutions.The prepared model produces highly dynamic, creative, unpredictable results as targeted at the beginning of the work. Controlling randomness with modal rules in modular building designs creates exciting potentials. When the final products are examined, it is seen that the model offers a dynamic architecture not only in the exterior but also in the interior where occupancy and spaces are intertwined. It is thought that the open areas scattered within the building blocks will be a big plus for the users of the designed structures. Horizontal circulation is provided by wide open spaces such as streets instead of closed corridors. The gaps created within building blocks create private terrace areas for many housing units. However, terraces and gardens are also open to the common use of all residential units. Unlike today's mass housing architecture, which consists of residential units stacked upside-down and side by side, the model transforms the user into a much more active and convenient living center, rather than an ordinaryized uniform center for users.In the model, it is proposed that the L modules be a carrier system in the form of a three-dimensional grid so that they can be flexibly placed. If the results produced by the model are to be applied in practice, it is recommended that the bearing system be made of steel and the L modules be produced as one-piece prefabricated modules. In this way, the prefabricated modules can also be placed in their pre-determined positions, while the building system is constructed upwards from the floor of the system. The carrier system and the prefabricated modules need to rise in a coordinated manner. With this technique, it is possible to easily dismantle any carrier modules that do not carry any modules, ie idle. Depending on the needs that may arise in the future, new housing modules may be produced and added to the steel carrier system to be included in the project. Thus, a dynamic and variable project will be achieved not only by architectural appearance, but also by plug-and-drop modules. The model provides an important alternative not only to the apartment type modern housing dictation but also to modular housing dormancy.The prepared model has many positive aspects not only in the result but also in the design process. The use of randomness in this way creates specifi- cations in design by producing highly variable and creative results that designers can not anticipate. However, changing only the seed value in the L module generating algorithm allows for the rapid generation of hundreds of different alternatives with the same terrain features and structural decisions. In this way, designers can easily produce hundreds of result alternatives and compare them by seeing them together. This is a major advantage not found in traditional architectural design processes.The model presented in the study showed that; Incorporating randomness into computational design processes ensures that extremely dynamic and creative results are produced and specifications are formed. At the same time, with this usage, designers are able to quickly access hundreds of alternative designs with the same parameters. The model that offers a coincidental modular building proposal is also an important alternative to modern mass housing architecture, with advantages and positive aspects.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMimarlıktr_TR
dc.subjectArchitectureen_US
dc.titleL modül tabanlı yapılarda rastlantısal üretim için bir model önerisi
dc.title.alternativeA model proposal for random production in L module based structures
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentBilişim Ana Bilim Dalı
dc.subject.ytmComputer aided design
dc.subject.ytmArchitectural softwares
dc.identifier.yokid10177076
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityİSTANBUL TEKNİK ÜNİVERSİTESİ
dc.identifier.thesisid496391
dc.description.pages123
dc.publisher.disciplineMimari Tasarımda Bilişim Bilim Dalı


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess