dc.description.abstract | Endüstriyel büyüme su gereksinimini arttırmakta ve ortaya çıkan atık suların uygun niteliklere getirildikten sonra çevreye verilmesini gerektirmektedir. Çevre kirlenmesine neden olan atık sular içerisinde organik ve inorganik esaslı kirleticiler bulunmaktadır. İnorganik kirleticilerden ağır metaller, ortamda az miktarda bulunsalar dahi canlılar üzerinde olumsuz etkilere yol açarlar. Birçok endüstriyel alanda ve madencilik çalışmaları esnasında çeşitli karakterlerde katı ve sıvı atıklar ortaya çıkmaktadır. Bu atıklar üretildiği prosese ve işletilen ana cevhere göre değişkenlik göstermektedir. Adsorpsiyon atık suların temizlenmesinde veya çözeltiden metal kazanımında kullanılan en yaygın yöntemlerden biridir. Çeşitli atıklarla selektif veya kollektif adsorpsiyon yapılması, bilinen ticari ürünlerin yerine mineral kökenli atıkların kullanılması, atık suların yine atıklarla temizlenmesi günümüzün önemli çevre problemlerine çözüm getirmeleri nedeniyle dikkat çeken konulardır. Bu çalışmanın amacı atık suların mineral kökenli atıklar ve bunlardan geliştirilen adsorbentlerle iyileştirilmesidir. Bu doktora tezinde, kırmızı çamur, uçucu kül, kömür yıkama atığı, bor zenginleştirme atığı, mermer tozu atığı, atık pirit ve pirit külleri olmak üzere yedi farklı madencilik prosesi atığı kullanılmıştır. Adsorbat olarak, kurşun, çinko, bakır, kadmiyum, arsenik(V) ve krom(VI) iyonları ile incelemeler hem laboratuvarda üretilen sentetik hem de çeşitli faaliyetler sonucu çıkan gerçek atık sular ile yürütülmüştür. Gerçek atık su olarak, yüksek oranda ağır metal içeren asit maden drenaj suyu, arsenik ve bor içeren bor konsantratör tesisinden alınan proses suyu, krom(VI) içeren krom işleme suyu kullanılmıştır. Adsorpsiyon deneyleri laboratuvarda karıştırmalı ve kolon deney düzenekleri ile yapılmıştır. İlk olarak adsorbent olarak kullanılan maden atıklarının kimyasal, boyut, nem, XRD, FT-IR, SEM, EDX ve BET analizleri yapılarak kimyasal ve fiziksel özellikleri ortaya konmuştur. Karakterize edici liç testleri yapılmış, bu kapsamda Toksisite liç testi (Toxicity Characteristic Leaching Procedure, TCLP), Sentetik çöktürme liçi (Synthetic Precipitation Leaching Procedure, SPLP) ve Avrupa standart liç testi (EN 12457-2) prosedürleri uygulanmıştır. Bu testler sonucunda, çalışmada kullanılan atıkların yüz yıl içerisinde normal ve asidik çevre şartlarında zararlı bir etkisi olmadığı anlaşılmıştır. Laboratuvarda sentetik çözeltilerle yapılan ilk adsorpsiyon deneylerinde metallerin pH'ya bağlı çökmeleri de dikkate alınarak adsorpiyon deneyleri ile karşılaştırılarak incelenmiştir. Elde edilen sonuçlar genelleştirildiğinde, pH 3-5 aralığında adsorpsiyonun, pH 5-7 arasında adsorpsiyon ve çöktürmenin, pH 7'nin üzerinde çoğunlukla çöktürmenin metallerin uzaklaştırılmasında etkin mekanizmalar olduğu ortaya konmuştur. Metallerin asidik pH'da adsorpsiyonu iyon değişimi veya elektrostatik çekim sayesinde gerçekleşmektedir. Metallerin gideriminde etkili olan bir diğer mekanizma ise metal-karbonat bileşiklerinin oluşmasıdır. Özellikle asidik pH'larda mermer ve bor zenginleştirme atıklarının yapılarında bulunan karbonatların çözünmesiyle metal-karbonat bileşiklerinin meydana geldiği anlaşılmaktadır. Anyonlar (arsenik ve krom) asidik pH'larda aralarında elektrostatik veya kimyasal etkileşim sayesinde adsorbe olmaktadır. Genellikle asidik pH'larda anyonlar daha iyi adsorplanırken, pH yükseldikçe adsorpsiyon da düşmektedir. Ortamda yabancı iyonların bulunması durumunda istisnai durumlar ortaya çıkabilir. Sonraki deneylerde adsorpsiyonda süre, sıcaklık ve iyon derişimi parametrelerinin etkisi incelenmiştir. Elde edilen sonuçlara göre metal iyonlarının hızlı, anyonların ise daha yavaş adsorbe olduğu bulunmuştur. Adsorbentler arasında en yüksek kurşun adsorplama kapasitesine sahip olan kırmızı çamur (98.99 mg/g), en az ise pirit külüdür (18.40 mg/g). Arsenik en iyi kırmızı çamura adsorplanırken (40.52 mg/g), krom da pirit külüne (10.22 mg/g) adsorplanmaktadır. Kullanılan atıklar arasında mermer tozu ve bor zenginleştirme atıklarının sadece metalleri adsorpladığı bulunmuştur. Anyon ve katyonların ortamda birlikte bulunmaları bir sinerji oluşturarak giderme verimlerini arttırmıştır. Sıcaklığın etkisinin incelendiği deneylerde; sıcaklık arttıkça anyonların adsorpsiyonunun azaldığı, katyonların adsorpsiyonunun ise arttığı görülmüştür. Desorpsiyon çalışmalarında kırmızı çamurun arseniği adsorpsiyonundan sonra beş döngü sonucunda adsorpsiyon kapasitesinin yaklaşık olarak %50 oranında düştüğü bulunmuştur.Arsenik ve kurşun iyonlarının adsorpsiyon izotermleri incelendiğinde, bu iyonların adsorpsiyonlarının Freundlich izotermine uyum sağladığı görülmüştür. İyonların genellikle ikinci dereceden kinetik modele uyum gösterdiği bulunmuştur. Yapılan termodinamik hesaplamalar, As ve Pb'nin kırmızı çamura adsorpsiyonunun kendiliğinden gelişen kimyasal adsorpsiyon olduğunu göstermiştir.Atıklardan yeni adsorbent geliştirilmesi amacıyla önceki çalışmalarda en iyi adsorpsiyon sonuçları veren atıklar çeşitli sıcaklıklarda aktive edilerek adsorpsiyon kapasiteleri arttırılmaya çalışılmıştır. Yapılan deneylerde atık adsorbentlerin hepsinde 400°C'ye kadar adsorpsiyon kapasitesi artışı gözlenirken, artan sıcaklıkla birlikte kapasiteler yeniden düşmüştür. Atık adsorbentler karıştırılarak yüksek sıcaklık fırınında ısıl işleme sokulduklarında bir sinerji oluşturdukları ve tek başlarına ve ısıl işlem görmemiş durumları ile kıyaslandığında daha fazla adsorpsiyon kapasitesine ulaşabildikleri saptanmıştır. Özellikle kırmızı çamur-atık pirit-kömür yıkama atığı ve kırmızı çamur-uçucu kül karışımlarının orjinallerine kıyasla daha iyi sonuçlar verdiği ortaya konmuştur. Bu sonuçlardan yola çıkılarak; iki veya üç atık adsorbent karıştırılarak hibrit adsorbentler üretilmiştir. Kırmızı çamur, atık pirit ve kömür yıkama atığı (KÇ-AP-KA) hibrit adsorbentinin su ilavesi ve 400°C'de ısıl işleme tabi tutulması sonucunda adsorpsiyon kapasitesi artmıştır. Kırmızı çamur ve uçucu kül (KÇ-UK) hibrit adsorbenti NaOH ilave edilerek 400°C'de ısıl işlem uygulandığında zeolitik yapı meydana geldiği XRD analizleri ile belirlenmiştir. Yeni üretilen hibrit adsorbentlerin incelenen atıklar içerisinde Pb ve As giderimi için en yüksek kapasiteli adsorbentler olduğu tespit edilmiştir. Ayrıca bu çalışma kapsamında atıklardan nano boyutlu manyetik özellikte adsorbentler geliştirilmiştir. Çalışmanın bu kısmında pirit külleri, mermer atıkları ve pil atıkları kullanılarak manganez ferrit ve kalsiyum ferrit nanoadsorbentleri üretilmiştir. Bu adsorbentlerin yapıtaşı olan nanopartiküller hidrotermal yöntemle, organik madde ve ultrasonik titreşim eşliğinde çöktürme yapılarak sentezlenmiştir. Üretilen nanopartiküllerin arsenik ve bakır adsorpsiyonuna iyi cevap veren, aynı zamanda da antibakteriyel ve canlı yaşamına zararsız adsorbentler olduğu ortaya konmuştur.Gerçek sularla yapılan çalışmalarda Balıkesir Balya bölgesinden alınmış olan asit maden drenaj suyu, ETİ Bor Hisarcık konsantratöründe kullanılan arsenik ve bor içeren proses suyu, krom kaplama yapılan banyodan krom atık suyu olmak üzere üç farklı kompozisyona sahip su kullanılmıştır. Asit maden drenaj suyunda yüksek miktarda 1352 ppm Fe, 1423 ppm Zn ve 173.7 ppm Mn bulunmaktadır. Karıştırmalı adsorpsiyon deneylerinde, asit maden drenaj suyu için en iyi sonuçlar mermer atıkları ile elde edilmiştir (0.17 ppm Fe, 639.1 ppm Zn, 158.8 ppm Mn). Asit maden drenaj suyunun iyileştirilmesi için yapılan kolon adsorpsiyonu deneylerinde KÇ-UK hibrit adsorbenti kullanılarak iyi sonuçlar elde edilmiştir. Bor konsantratöründen alınan proses suyunun içeriğinde 81.66 ppm arsenik ve 550 ppm bor tespit edilmiştir. Karıştırmalı adsorpsiyon deneylerinde, arsenik ve bor gideriminde KÇ-UK hibrit adsorbentinin diğer atık adsorbentlerden daha etkili olduğu görülmüştür (0.32 ppm). Kolon adsorpsiyonu deneylerinde aktifleştirilmiş kırmızı çamur ve KÇ-UK hibrit adsorbenti kullanılmıştır. Yapılan deneylerde küçük boyutlu kırmızı çamur peletlerinin adsorpsiyonda daha iyi cevap verdiği ortaya konmuştur. KÇ-UK hibrit adsorbentleri küçük boyutlu kırmızı çamur peletleri ile yakın sonuç vermiştir. Krom banyosu atık suyunda 58.92 ppm toplam Cr (36.44 ppm Cr+6, 22.48 ppm Cr+3) bulunmaktadır ve iyileştirilmesi için çeşitli adsorbentler kullanılmıştır. Bu kapsamda yapılan karıştırmalı adsorpsiyon ve kolon deneylerinde en iyi krom giderme kapasitesine pirit külü ile ulaşılmıştır (0.068 ppm). Madencilik faaliyetleri sonucu ortaya çıkan atıklar ile yapılan bu çalışmaların amacı, geri kazanımının arttırılarak doğal kaynakların korunması, atık içerisinde yer alan yeniden kullanılabilecek maddelerin kurtarılmasıdır. Böylece çevreye dolayısıyla da insana zararlı olan maddeler ortadan kaldırılır veya daha zararsız hale getirilebilir. Bu tez kapsamında da akışkan ortamda kolay mobilize olan zararlı iyonların daha kararlı olan katı ortama taşınması adsorpsiyon çalışmaları ile sağlanmaya çalışılmıştır. Hem sentetik çözeltiler hem de gerçek atık sular ile yürütülen deneylerde, mineral kaynaklı adsorbentler kullanılarak başarılı sonuçlar elde edilmiştir. Böylece özellikle madencilik sektörü kendi üretimi sonucu açığa çıkan tanıdık katı malzemelerini kullanarak atık su iyileştirilmesine çözüm üretebilecektir. Yapılan bu doktora tezi, günümüzde ve gelecekte maden işletmelerinin önemli problemlerinden olan hem atık suların iyileştirilmesi hem de mineral kökenli atıkların ticari adsorbentler haline dönüştürülmesi konusunda yeni bir bakış açısı sunmaktadır. | |
dc.description.abstract | As the industrial and domestic wastewaters are increasing, the need for water resources in the world is increasing day by day. Some pollutants in water transform into harmless material in a reasonable time while others cannot or take long time for mineralization. Heavy metals which do not turn into harmless materials, can reach to human body by different food chains and may cause toxicity and cancer disease. Some industrial waste waters contain cadmium, chromium(VI), mercury, lead, which have detrimental effect on fauna and flora. Iron, copper, nickel and zinc have medium effect on environmental health. Therefore, if wastewaters containing such heavy metals arenot treated before discharging in to water streams such as lakes, rivers, sewage etc. is dangerous and contains life-threatening hazards for the environment.Recovery and recycling are the best environmental solution to save raw materials and to reduce the amount of industrial waste materials, and consequently the environmental pollution. Therefore, the development of innovative, environmentally friendly technologies are extremely important. The produced alternative product from waste material represents an alternative recovery option, which could be interesting for green material synthesis. Minimizing waste generation and using wastes to produce useful by products while maintaining economic viability must be a goal for new technologies. For instance, the processing of metallurgical wastes and recovery of valuable components and in some cases converting them into useful compounds not only reduces pressure on ponds and landfills but also offsets the cost of environmental protection. However, wastes generated from mineral processing plants may include some toxic heavy metals that could be transferred to soil and water resources and cause harmful environmental impacts. Nowadays, there are numerous studies about recycle of waste or byproducts and insertion them into an alternative product.The aim of this study is remediation of wastewaters with mineral-based wastes or, adsorbents developed from mining wastes. On this base, seven different waste samples such as red mud, fly ashes, coal washery wastes, boron concentration wastes, marble dusts, waste pyrites and pyrite ashes are used in this study. Artificial and real waste water samples containing lead, zinc, copper, cadmium, arsenic and chromate ions were employed as target ions to remove from solutions by adsorption method. High concentration heavy metal containing acid mine drainage water, boron and arsenic containing water and chromate bearing electroplating waters were the real wastewater samples that are used as real waste water samples.Firstly, mineral based adsorbents are characterized with chemical, particle size, moisture, XRD, FT-IR, BET, TG-DTA-DTG, SEM and EDX analyses. Some leaching procedures are applied such as Toxicity Characteristic Leaching Procedure, (TCLP), Synthetic Precipitation Leaching Procedure, (SPLP) and European leaching test (EN 12457-2). According to these procedures, these waste adsorbents found to be non-hazardous to environment by means of metal release in 100 years at normal and acidic environmental conditions. Before adsorption, precipitation test was applied to identify whether metal removal was accomplished by adsorption or precipitation. The adsorption of the metal ions Pb, Cd, Zn, Cu removal were increased with pH rising. Above pH 7, 90% of the metals removed from solution. Arsenic adsorption on red mud found 99% at pH 5.5 and decreased apart from this pH. Chromate adsorption was increased with the decrease of pH but the highest removal was found lower than 20%, which was found as very low. Cu and Cd removal was found as 95% above pH 7 and Zn-Pb removal was found as 85% above pH 7 with fly ash adsorbent. The optimum pH was chosen as 5 for the metal removal, which was provided 85% metal removal. Chromate adsorption was not achieved with fly ash; arsenic removal was found 70% at pH 4. Increasing pH caused negative effect on arsenic adsorption however above pH 8, the arsenic removal increased again.The metal ions were adsorbed on waste pyrite 90% above pH 7 and adsorption efficiency increased with increasing pH. The chromate adsorption efficiency was increased as the pH decreased and found 27% at pH 3. Arsenic adsorption was got highest value at pH 5, and decreased at other pH's with waste pyrite. Pb adsorption found as 99% above pH 4 and other metal ions adsorptions were found as 99% above pH 7 except Cd with pyrite ash. The Cd ion adsorption found highest above pH 9. Chromate adsorption was increased with the decrease of pH and found 30% at pH 3. Arsenic adsorption made a peak at pH 5 as 70% and decreased at other pH values. Waste pyrite and pyrite ash showed similar adsorption behavior towards to metal ions and anions. The adsorption efficiencies were lower with waste pyrite, thus oxidizing sulfide iron mineral to iron oxides, increased the adsorption efficiencies despite low surface area of pyrite ash. Pb adsorption on marble dust was found above 80% at pH 3 and increased with increasing pH. The removal of Cu and Cd ions were found 99% at pH 7. Zn adsorption on marble dust got highest at pH 9. The chromate and arsenic adsorption on marble dust was very low even not adsorbed. Pb adsorption on coal waste was found above 95% at pH 4 and decreased with increasing pH. The adsorption efficiency of other metals got highest value at pH 7. The chromate and arsenic ions were not adsorbed on coal waste. The effect of pH for adsorption of ions on boron enrichment waste was investigated. At pH 5 Cu and Pb ions were adsorbed as 99% on boron enrichment waste and at pH 7, Zn and Cd ions were adsorbed as 99% efficiency. The arsenic and chromate anions were not adsorbed onto boron enrichment waste.As a general result, it is found that metal removal was provided by adsorption between pH 3-5, both adsorption and precipitation between pH 5-7 and precipitation above pH 7. The adsorption of metal ions was provided by electrostatic attraction or ion exchange mechanism. Si-O-Si bond of adsorbents causes electrostatic attraction. The other metal removal mechanism was provided by forming metal-carbonate compounds. Especially in acidic pH values, dissolving of carbonates from marble dusts and boron processing tailings causes metal removal by metal-carbonates. Meanwhile, anion adsorption is accomplished by electrostatic or chemical attraction in acidic pH. Anion removal was very low due to -2 valance state or never provided because of chemical reactions. After testing pH effect, mixing time, temperature and adsorbate concentration parameters were investigated. Pb adsorption on to mineral wastes was investigated in different mixing times. pyrite ash, marble dust and red mud were provided 99% removal with increasing stirring time and 92% adsorption efficiency were achieved with boron enrichment waste and fly ash at 24 hours. The adsorption efficiency of Pb with coal waste was increased from 38% to 82% at 24 hours. The interesting result were obtained with waste pyrite, Pb adsorption was increased in 120 min and decreased at further stirring time and found 55% at 24 hours. The As adsorption on to mineral wastes was investigated in different mixing times. As adsorption onto red mud was investigated at pH 5.5, the adsorption efficiency was found as 97.8% at 5 min and 99.95% at 24 hours. Fly as was used for another waste mineral for arsenic adsorption at pH 4, the efficiency was found as 64% at 5 min and 98.5% at 24 hours. As adsorption experiments were conducted at pH 5 with calcined and waste pyrite and efficiencies were found as 55% and 79% respectively. Boron enrichment waste was used another adsorbent at pH 6 and efficiency was increased from 1% to 15% in 24 hours. Coal waste was not found as an effective adsorbent for arsenic removal, even 24 hours.Chromate adsorption onto mineral wastes was investigated at different mixing times. Red mud, pyrite ash, waste pyrite and coal waste showed chromate adsorbing capability. The highest adsorption efficiency were obtained with waste pyrite as 99.5% at the end of 24 hours. Pyrite ash and waste pyrite showed similar tendency for chromate adsorption, and 93.8% efficiency were obtained at 24 hours. 20% and 37% adsorption efficiencies were obtained with red mud and waste coal. Other adsorbents such as, marble dust, boron enrichment waste, fly ashes were not efficient for chromate adsorption. The reason for this difference induced from the reductive properties of these adsorbents. As a result metals were found to adsorb in shorter time than anions. The presence of anions and metals together, increased the adsorption. Metal adsorption was increased and arsenic adsorption was decreased while temperature was increased. The adsorption capacity of the mineral adsorbents were determined with increasing ion concentrations at fixed experimental conditions. As a result it is found that, red mud has the highest Pb adsorption capacity (98.99 mg/g) and pyrite ash has the lowest one (18.40 mg/g). The highest arsenic adsorption is obtained with red mud (40.52 mg/g) while the highest chromate adsorption is found with pyrite ash (20.22 mg/g).In desorption experiments, arsenic desorption was provided with alkali solution from red mud and 13% capacity is lost after re-cycled red mud was used for adsorption. It is found that the red mud adsorbents could be used for after desorption, and as a result 50% of capacity was lost after 5 cycle of adsorption-desorption-adsorption tests. Adsorption isotherms and kinetic models were applied for arsenic and lead adsorption onto red mud. Freundlich isotherm was found to explain adsorption mechanism of arsenic and lead better than Langmuir isotherm; which means adsorption not occurs by single layer but it is a heterogen system. Adsorbates found to have second order kinetic model According to thermodynamic calculations, arsenic and lead adsorption occurs spontaneously and their adsorption type as found as chemisorption.For development of new adsorbents from waste adsorbents, red mud, fly ash, waste pyrite and coal washery wastes were chosen due to their high adsorption capacities. Their adsorption capacities were increased by activation with thermal applications at various temperatures. Adsorption capacities increased up to 400°C due to increase of surface area. Above 400°C, the adsorption capacities decreased due to increasing of oxidation rate and changing adsorbents crystal structure from amorphous to vitreous. Higher adsorption capacities obtained by application of thermal treatment waste adsorbents together. Especially red mud-waste pyrite mixture and red mud- fly ash mixtures gave better results than their individual use. According to these results hybrid adsorbents were produced by two or three different waste adsorbents were mixed and activated by thermal treatment. First hybrid adsorbent KÇ-AP-KA, was produced by mixing red mud- waste pyrite and coal washery waste together. The adsorption capacity was increased by adding water in thermal activation. Other hybrid adsorbent KÇ-UK produced from red mud-fly ash mixture by adding NaOH. Zeolitic structures were detected by XRD analyses and this adsorbent was found to have highest adsorption capacity in this study (117.97 mg/g As, 199.39 mg/g Pb).Lastly, nano adsorbents which were adsorptive and magnetic, were developed from waste adsorbents. Within this scope, manganese ferrite nanoparticles and calcium ferrite nanoparticles were produced from pyrite ash, marble dust and Li-ion batteries wastes. Nanoparticles were synthesized upon the method of ultrasonic wave and surfactant assisted hydrothermal synthesis. It is found that, microwave treatment provides better magnetic feature than autoclave treatment and sintering. The synthesizing method of microwave and autoclave was found to be ineffective in case of adsorbing capability of the materials, but effective in magnetic character. It was clear that increasing sintering temperature decreased the adsorbing capability, while increasing magnetism of nanopartiles. In addition the amount of organic solvent and oxidizing agent are found to be effective in structure of nanoparticles. The adsorption capacities of calcium nanoparticles were investigated to remove arsenic from solutions, the highest arsenic removal capacity is obtained by microwave treated calcium ferrite nanoparticles. The adsorption capacity of manganese ferrite nanoparticles were determined as 55.55 mg/g As and 78.31 mg/g Cu. After adsorption, antibacterial study has been done. It is found that nano adsorbents have been found to be antibacterial and non-hazardous to living life. Three different composition of real wastewater samples were used in this study. Acid mine drainage water from Balıkesir Balya old waste region, process water which contains arsenic and boron, from Eti Boron Hisarcık Boron concentrator plant, lastly chromate containing electroplating waste water were used as water samples. Acid mine drainage (AMD) water had high concentration of metals such as 1352 ppm Fe, 1423 ppm Zn and 173.7 ppm Mn. Activated red mud, waste pyrite, coal washery waste, fly ash, boron enrichment waste, marble dust, KÇ-UK and KÇ-AP-KA hybrid adsorbents were used for treatment of acid mine drainage water. The best results as 0.17 ppm Fe, 639.1 ppm Zn, 158.8 ppm Mn were obtained with marble dusts in batch adsorption experiments. KÇ-UK hybrid adsorbent was pelletized after used in column adsorption. It is found that Zn and Mn capacities of column were filled up in a short time. Iron removal was obtained firstly precipitation due to alkali character of pellets, and after adsorption.The process water contains 81.66 ppm arsenic and 550 ppm boron, activated red mud, waste pyrite, coal washery waste, fly ash, KÇ-UK and KÇ-AP-KA adsorbents were employed for the treatment. It is found that KÇ-UK hybrid adsorbent was more effective than others for removing of arsenic and boron in batch adsorption experiments, and the residual concentrations were analyzed as 0.32 ppm As and 482 ppm B. Activated red mud and KÇ-UK adsorbents were shaped as pellets, and were used in column adsorption experiments. It is found that small sized pellet red mud adsorbents more efficient than bigger ones, and both adsorbents (KÇ-UK and red mud) gave similar results. Pyrite ashes, activated red mud, waste pyrite, coal washery waste, KÇ-UK and KÇ-AP-KA adsorbents were employed as adsorbents in batch and column adsorption for treataing of chromite containing electroplating wastewater. This wastewater contains 58.92 ppm total Cr (36.44 ppm Cr+6, 22.48 ppm Cr+3). The minimum metal concentration (0.068 ppm) was obtained with pyrite ash.According to findings of this PhD study, the remediation of both artificial and real wastewaters show successful results in the remediatwas successfully accomplished by using mineral derived adsorbents. The aim of the studies conducted with wastes of mining processes will lead to protection of natural sources by increasing recycling, recovering the metals, removing the harmful substances from aquatic phase (which is more mobile) and making them more harmless. Therefore, the mining industry will be able to produce solutions for waste water treatment using familiar solid materials, which are the result of their own production processes. This doctoral thesis presents a new perspective on the remediation of wastewater, which is one of the major problems of mining industry in the future and today, and production of commercial adsorbents from well known or not studied mineral wastes. | en_US |