Show simple item record

dc.contributor.advisorDikmen, Seyyit Ümit
dc.contributor.authorSaraç, Erhan
dc.date.accessioned2021-05-08T07:11:09Z
dc.date.available2021-05-08T07:11:09Z
dc.date.submitted2012
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/628947
dc.description.abstractGayrimenkul, dünya ekonomisinin en önemli yapı taşlarından birisidir. Gayrimenkullerin doğru olarak değerlendirilmesi düzgün bir ekonomik yapı için önemlidir. Günümüzde gayrimenkul değerlemesi için ağırlıklı olarak emsal karşılaştırma, gelir yöntemi ve maliyet yöntemleri kullanılmaktadır. Bu çalışmadakonutların değerlemesi için bir yapay sinir ağları modeli geliştirilmiştir. Modelin geliştirilmesi aşamasında Sermaye Piyasası Kurulu (SPK) ve Bankacılık Düzenleme ve Denetleme Kurumu (BDDK) lisanslı bir gayrimenkul değerleme firmasının İstanbul ilinin farklı ilçelerinde konumlu toplam 400 değerleme raporu analiz edilmiştir. Raporlardan gayrimenkulün değerini etkileyen 12 parametre seçilerek sayısallaştırılmıştır. Sayısallaştırılan veriler ile yapay sinir ağı oluşturulup 28 farklı model denenmiştir. Modellerin başarı oranları değişken olup Çok Katmanlı Algılayıcı (MLP) modeli yaklaşık %94 korelasyon ve %87 doğruluk payı ile değereulaşmıştır.
dc.description.abstractReal Estate is one of the most important building blocks of the world's economy. Accurate assessment of real estate is important for a proper economic structure. Nowadays, precedent comparison, income method and cost method are mainly used for the valuation of real estate. In this thesis an artificial neural network model was developed for real estate appraisal. 400 reports which are from different district of İstanbul were analyzed from Capital Markets Board (CMB) and Banking Regulation and Supervision Agency (BRSA) licensed real estate appraisal firm during the development of the model. Reports are digitized by selecting of 12 parameters which affected the value of property. Artificial neural network which is created using digitized data were tested with 28 different models. Success rate of the all models are different each other, Multilayer Perceptron (MLP) has reached approximately 94%correlation and 87% accuracy of value.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectİnşaat Mühendisliğitr_TR
dc.subjectCivil Engineeringen_US
dc.titleYapay sinir ağları metodu ile gayrimenkul değerleme
dc.title.alternativeReal estate appraisal with artificial neural networks method
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı
dc.subject.ytmArtificial neural networks
dc.identifier.yokid430509
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityİSTANBUL KÜLTÜR ÜNİVERSİTESİ
dc.identifier.thesisid312251
dc.description.pages84
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess