Show simple item record

dc.contributor.advisorMısırlıoğlu, Remzi Tunç
dc.contributor.authorÇalişkan, Begüm
dc.date.accessioned2021-05-08T07:11:04Z
dc.date.available2021-05-08T07:11:04Z
dc.date.submitted2013
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/628907
dc.description.abstractBu tez çalışması üç bölümden oluşmaktadır. İlk bölümde bir giriş yapılmış, ikinci bölümde, Banach uzayları, Banach örgüleri ve pozitif operatörler ile ilgili temel tanım ve teoremler ve ayrıca sınırlı lineer operatörlerin spektrum ve esaslı spektrum kavramları verilmiştir. Son bölüm, yani üçüncü bölüm, özellikleriyle birlikte birtakım kompakt-olmama ölçülerini içermektedir. Bu bölüme ait ilk kısımda, iyi bilinen Kuratowski ve Hausdorff kompakt-olmama ölçüleri detaylı bir şekilde çalışılmıştır. Sonraki kısımda, Banach örgülerinde yarı kompakt-olmama ölçüleri, operatörlerin esaslı spektrumlara uygulamaları ile birlikte çalışılmıştır. Sonraki iki kısımda ise, sırasıyla, ayrıklığı koruyan operatörlerin kompakt-olmama ölçüleri incelenmiş ve d-yakınsaklık ile kompakt-olmama ölçüsü arasındaki ilişki tartışılmıştır. Son kısımda ise, zayıf topoloji ile verilen zayıf kompakt-olmama ölçüsü çalışılmıştır.
dc.description.abstractThe thesis consists of three chapters. By giving an introduction in the first chapter, in Chapter 2, we give Banach space fundamentals, Banach lattices and positive operators, and also some basic concepts of spectrum and essential spectrum of a bounded and linear operator. The last chapter, Chapter 3, includes several types of measures of non-compactness with their properties. In Section 3.1, we study in detail on the well-known Kuratowski and Hausdorff measures of non-compactness with their properties. In Section 3.2, we study on measures of non-semicompactness in Banach lattices wih their applications to the essential spectrum of operators. In the following two sections, we investigate the measures of non-compactness of disjointness preserving operators and discuss the relationship between d-convergence and the measure of non-compactness, respectively.In the last section, Section 3.5, the measure of non-compactness in the weak topology, called the measure of weak non-compactness, is studied.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleBanach örgüleri için operatörlerin kompakt olmama ölçüleri
dc.title.alternativeMeasures of non-compactness of operators for banach lattices
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Bilgisayar Ana Bilim Dalı
dc.identifier.yokid10006332
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityİSTANBUL KÜLTÜR ÜNİVERSİTESİ
dc.identifier.thesisid332153
dc.description.pages64
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess