Show simple item record

dc.contributor.advisorAyvaz, Serkan
dc.contributor.authorArslan, Onur
dc.date.accessioned2020-12-03T16:57:30Z
dc.date.available2020-12-03T16:57:30Z
dc.date.submitted2020
dc.date.issued2020-04-20
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/59568
dc.description.abstractBu çalışmada, zamana bağlı elektrik tüketimindeki değişimi içeren bir veri seti ile derin öğrenme yöntemleri kullanılarak bir günlük elektrik tüketimi tahmin edilmeye çalışılmıştır. Zaman serisi bileşenleri ve makine öğrenimi kavramları açıklandıktan sonra, elektrik tüketimi tahmini ile ilgili daha önceki çalışmalar hakkında genel bilgiler verilmiştir. Kullanılan veri kümesi bir zaman serisi olduğundan, zaman serisi özellikleri ayrıntılı olarak vurgulanmış ve modellemeye geçmeden önce yeniden örnekleme ve yeniden şekillendirme gibi gerekli işlemler gerçekleştirilmiştir. Modelleme aşamasında kullanılan algoritmaların performansını önemli ölçüde etkileyen hiperparametreler üzerinde çeşitli ayarlamalar yapılarak her yöntem için en uygun parametreler araştırılmıştır. Daha sonra en iyi sonuçları veren modeller birbirleriyle karşılaştırılmış ve en düşük hata oranına sahip yöntem belirlenmiştir.
dc.description.abstractIn this study, it is tried to estimate one-day electricity consumption by using deep learning methods with a dataset that includes the change in time-dependent electricity consumption. After explaining the time series components and machine learning concepts, general information about previous studies on electricity consumption estimation is given. Since the dataset used is a time series, all the features are emphasized in detail and necessary operations like resample and reshape are performed before proceeding to the modeling. Tuning was applied to hyperparameters which significantly affect the performance of the algorithms used in the modeling stage and the most suitable parameters were searched for each method. Then the best results were compared with each other and the method with the lowest error rate was determined.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.subjectBilim ve Teknolojitr_TR
dc.subjectScience and Technologyen_US
dc.subjectEnerjitr_TR
dc.subjectEnergyen_US
dc.titleForecasting electricity consumption using deep learning methods with hyperparameter tuning
dc.title.alternativeHiperparametre ayarlı derin öğrenme yöntemleri ile elektrik tüketiminin tahmini
dc.typemasterThesis
dc.date.updated2020-04-20
dc.contributor.departmentBüyük Veri Analitiği ve Yönetimi Anabilim Dalı
dc.subject.ytmBig data
dc.subject.ytmElectric consumption
dc.subject.ytmEnergy
dc.subject.ytmMachine learning
dc.identifier.yokid10325433
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityBAHÇEŞEHİR ÜNİVERSİTESİ
dc.identifier.thesisid619589
dc.description.pages66
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess