Show simple item record

dc.contributor.advisorİşgör, Sultan Belgin
dc.contributor.advisorŞengül, Gökhan
dc.contributor.authorÖzkan, Akin
dc.date.accessioned2020-12-03T16:32:53Z
dc.date.available2020-12-03T16:32:53Z
dc.date.submitted2017
dc.date.issued2020-08-04
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/58470
dc.description.abstractHücre biyolojisi deneylerinin hemen hemen hepsi, hücre çoğalmasını ve yaşayabilirliğini izlemek için düzenli olarak hücrelerin sayımını içerir. Hücrenin miktarı ve kalitesinin bilgisi, deneysel standardizasyon ve toksisite etkisi tahmini için önemli parametrelerdir. Hücreleri saymak için hemositometre tabanlı elle sayma ve otomatik hücre sayacının kullanımı gibi iki farklı yaklaşım vardır. Yöntemlerden her ikisinin de avantajları ve dezavantajları vardır. Yüksek yatırım ve operasyonel maliyet otomatik hücre sayaçlarının geniş kullanımını sınırlar. Öte yandan, hemositometreye dayalı manuel hücre sayımı, hücre sayımının güvenilirliğinin, operatörün deneyimine ve yorgunluğuna büyük ölçüde bağlı olduğu gerçeği ile çeşitli sınırlamaları vardır. . Uzun zaman gereksinimi ve insan işgücü elle işleme sürecinin iki dezavantajı olarak sayılabilir. Bu tez, görüntü işleme ve makine öğrenmeyi esas alan dönüştürme metodolojisini tanımlayarak hücre sayımı için en gelişmiş alternatif metodu (çerçeve iskeleti) önermektedir. Önerilen yöntemin temelini, eksikliklerini azaltmak için ara katman karar yazılımı ekleyerek elle sayım yöntemine hemocytomer tabanlı otomatik saymanın uyarlanmasıdır. Buna ek olarak, önerilen yöntemimizi hücre sayımı (boyasız) ve hücre yaşayabilirliği analizi (boyalı) açısından test etmek için iki yeni veri seti toplanmıştır. Bu veri kümeleri, `biyokimyasal.atilim.edu.tr/datasets/` adresinden kâr amacı gütmeyen herkesin kullanımına sunulmaktadır ve bu da bu araştırma alanındaki gelecek çalışmalara temel teşkil edecektir. Her iki veri kümesi, iki farklı türde kanser hücresi görüntüsü, yani, beyaz renkli promiyelositik lösemi (HL60) ve kronik miyelojenik lösemi (K562) içerir. Deneysel sonuçlarımızdan yola çıkarak, yöntemimiz HL60 ve K562 kanser hücreleri için sırasıyla geri çağırma skorları açısından % 92 ve % 74'e kadar ulaşmaktadır. Deney sonuçları, önerilen yöntemin mevcut hücre sayımı yaklaşımlarına güçlü bir alternatif olabileceğini de doğrular.
dc.description.abstractAlmost all of the cell biology experiments involve counting of cells regularly to monitor cell proliferation and viability. Knowledge of the cell quantity and quality are important parameters for the experimental standardization and toxicity impact estimation. There are two different approaches to count the cells, such as, hemocytometer-based manual counting, and usage of an automated cell counter. Either of the methods have their advantages and disadvantages. High investment and operational cost limit the wide range usage of automated cell counters. On the other hand, manual cell counting based on hemocytometer has various limitations by the fact that reliability of cell counting highly depends on operator's experience. Moreover, high estimation time requirement and human labor are two more drawbacks of the manual process. This thesis proposes state-of-the-art alternative method (i.e. framework) for the cell counting by defining computer vision and machine learning based conversion methodology. The basis of the proposed method is the adaptation of hemocytomer-based manual counting to automated procedure by adding middleware decision software to reduce its shortcomings. In addition, two novel data sets are collected to test our proposed method in terms of cell counting (i.e non-stained) and cell viability analysis (i.e. stained). The datasets are available for non-profit public usage from `biochem.atilim.edu.tr/datasets/` which will be baseline to future studies on this research domain. Both datasets contain two different types of cancer cell images, namely, caucasian promyelocytic leukemia (HL60), and chronic myelogenous leukemia (K562). From our experimental results, our method reaches up to 92% and 74% in terms of recall scores for HL60 and K562 cancer cells, respectively, with the high precision. The experimental results also validate that the proposed method can be a powerful alternative to the current cell counting approaches.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.subjectBiyomühendisliktr_TR
dc.subjectBioengineeringen_US
dc.subjectBiyoteknolojitr_TR
dc.subjectBiotechnologyen_US
dc.titleComputer vision and machine learning based adaptable conversion method for any light microscope to automated cell counter by trypan blue dye-exclusion
dc.title.alternativeBilgisayarlı görme ve makine öğrenme'ye dayalı olarak trapan mavisi boya dışlama tabanlı ışık mikroskoplarının otomatize hücre sayarına uyarlanabilir dönüşüm yöntemi
dc.typedoctoralThesis
dc.date.updated2020-08-04
dc.contributor.departmentYazılım Mühendisliği Anabilim Dalı
dc.subject.ytmPattern classification
dc.subject.ytmArtificial intelligence
dc.subject.ytmDigital image processing
dc.subject.ytmImage classification
dc.identifier.yokid10159249
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityATILIM ÜNİVERSİTESİ
dc.identifier.thesisid490289
dc.description.pages97
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess