Show simple item record

dc.contributor.advisorMağden, Abdullah
dc.contributor.authorAras, Melek
dc.date.accessioned2020-12-03T13:48:59Z
dc.date.available2020-12-03T13:48:59Z
dc.date.submitted2001
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/51459
dc.description.abstractÖZET Bu tezde, bir Riemannian manifoldunun tanjant demetinde çeşitli metrikler incelenmiştir. II metriğinin TCB Christoffel sembolleri T(Mn) de indirgenmiş koordinatlara göre hesaplandı ve K eğrilik tensörünün KDCB bileşenkri bulundu. I + 11 metriği tanımlanarak II ve / + II metriklerinin Levi-Civita konneksiyonunun aynı olduğu gösterildi. V metrik konneksiyonu tanımlanarak, V -A metrik konneksiyonun Rqcb eğrilik tensörünün bileşenleri hesaplandı. Ayrıca, bir Riemannian manifoldunun tanjant demetinde I -f III metriği tammlandı ve / + III metriğinin bileşenleri incelendi. Adapte olmuş çatı kavramı verilerek I + III metriği adapte olmuş çatıda gözönüne alınmışdı. Son olarak, tanjant demette I + III metriğine göre almost Kahler yapılar ve geodeziklerin diferensiyel denklemi incelenmiştir.
dc.description.abstract11 SUMMARY In this thesis, same metrics in the tangent bundle of a Riemannian manifold were investigated. Christoffel symbols FCB of the metric II were obtained with respect to ~ A ~ the induced coordinates in T{Mn) and the components KDCB of curvature tensor K were found. I + II metric was defined and it was shown that the Levi-Civita connection of the metric II and the metric I + II coincide. The metric connection V -A - - is defined and the components Rjjbc of curvature tensor R of the V were calculated. In addition, the metric I + III in the Tangent Bundle of a Riemannian manifold was defined and its components were investigated with respect to the induced coordinates in T(Mn). The concept of the adapted frame was defined and the metric I + III was considered with respect to the adapted frame. Finally, we considered the almost Kahler structure and the differential equations of the geodezics of the tangent bundle T(Mn) with respect to the metric / + III.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleMetriklerin genişletilmesi
dc.title.alternativeExtension of metrics
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Anabilim Dalı
dc.subject.ytmMetric
dc.subject.ytmRiemann manifold
dc.subject.ytmTangent bundles
dc.identifier.yokid110512
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityATATÜRK ÜNİVERSİTESİ
dc.identifier.thesisid105308
dc.description.pages78
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess