Show simple item record

dc.contributor.advisorGündüzalp, Yavuz
dc.contributor.authorUzun, Süleyman
dc.date.accessioned2020-12-30T07:26:42Z
dc.date.available2020-12-30T07:26:42Z
dc.date.submitted1993
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/487225
dc.description.abstractÖZET ilk olarak 1965'de L.A.Zadeh tarafından verilen `Fuzzy Kümesi` kavramı gertel vektör uzayların bir çok özelliğini fuzzy altvektör uzay olarak adlandırılacak olan uzaylara genelleştirmek için bir yapı oluşturmuştur. Fuzzy altvektör uzayı tanımı ilk olarak 1977' de A.K.Katsaras ve D.B.Liu tarafından verilmiştir. Ancak bu tanım, 1986' da Sudarsan Nanda tarafından verilen `bir fuzzy altcisimi üzerinde fuzzy altvektör uzayı` tanımının özel bir halidir. Üç bölüm halinde düzenlenen bu çalışmanın birinci bölümümünde örgüler ile fuzzy altkümelerinin tanımı ve başlıca özellikleri verilmiştir. ikinci bölümde Rajesh Kumar' m I. çalışması esas alınarak fuzzy altcisimi ve Crisp cisim üzerinde fuzzy altvektör uzayı tanımı ve özellikleri verildi. Bir fuzzy altvektör uzayı ile seviye altvektör uzayları arasındaki ilişkiler incelendi. üçüncü bölüm P. Lubczonok ve Rajesh Kumar 'in II. çalışmalarına ayrılmıştır. Fuzzy lineer bağımsızlık, fuzzy tabanı ve bir fuzzy altvektör uzayın boyutu kavramları incelenerek fuzzy altvektör uzaylarda izomorf olma tanımı ve özellikleri verilmiştir. II
dc.description.abstractSUMMARY The concept of `Fuzzy Sets` introduced by L.A. Zadeh in 1965 has constituted a framework for generalizing many of the properties of general vector spaces to the spaces which are called as fuzzy vector subspaces. Definition of `Fuzzy Vector Subspaces` was given by A. K. Katsaras and D.B. Liu in 1977. But this definition is a special case of the definition of `Fuzzy Vector Subspaces over a Fuzzy Subfield` given by S. Nanda in 1986. This study of three chapters. Definitions and some basic properties of Lattices and Fuzzy Subsets have been given in the first chapter. The second chapter mainly consists of a study of the 1st. paper of R. Kumar. Here, definition and some properties of fuzzy subfields and fuzzy vector subspaces over Crisp fields have been given. The relations between a fuzzy vector subspaces and level vector subspaces have been studied. The third chapter has been devoted to the 2nd. paper of R. Kumar and a paper of P. Lubczonok. By studying some concepts such as fuzzy linear independence, fuzzy base and dimension of a fuzzy vector subspaces, definition and some properties of izomorphism in fuzzy vector subspaces have been given and discussed. Illen_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleFuzzy altvektör uzayları
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Anabilim Dalı
dc.subject.ytmVector spaces
dc.subject.ytmFuzzy sets
dc.identifier.yokid28432
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityKARADENİZ TEKNİK ÜNİVERSİTESİ
dc.identifier.thesisid28432
dc.description.pages60
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess