Show simple item record

dc.contributor.advisorGenç, Burkay
dc.contributor.authorÇakmak, Bilgehan
dc.date.accessioned2020-12-29T13:43:13Z
dc.date.available2020-12-29T13:43:13Z
dc.date.submitted2017
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/431750
dc.description.abstractVeri görselleştirme görselleştirilecek verilerin boyutunun sürekli artması nedeniyle gün geçtikçe zorlaşıyor. Özellikle akıllı telefonların hemen hemen herkesin konum verisi üremesi sağladığı düşünülürse büyük coğrafi verileri bir istisna değildir. Bununla birlikte, bu tür büyük verilerin görselleştirilmesi düşük zum sevilerinde kalabalık, dağınık ve okunamaya bir haritada yapılmasını gerektirir. Zum seviyesini arttırırsak, daha fazla ayrıntı görüntüleyebiliriz, ancak görselin bütünlüğünü kaybederiz. Bu çalışmada, harita üzerinde ikili bir özelliğin görüntülenmesi durumunu değerlendiriyoruz. Verilerdeki özellik kümelerini tanımaya yönelik üç farklı yaklaşım uyguluyoruz. Daha sonra her küme iki özellik değerinden birini taşıyan bir coğrafi bölgeye denk getirilmektedir. Bu tip bir görselleştirme daha az bilgi kaybına neden olur. Kayıpları bilgi entropisi açısından ölçerek bu üç yöntemi entropi kazanımı, hafıza ve hız açısından karşılaştırıyoruz. Ayrıca, farklı görselleştirme senaryoları altında, ayrıntılı numaralandırılmış sonuçlar sağlıyoruz.
dc.description.abstractData visualization is becoming more challenging by the day due to a continuous increase in the size of data to be visualized. Geographical data is no exception, especially considering that smart phones enable almost anybody to produce location data. However, visualization of such large data has to be done on a map, which be- comes crowded, cluttered and unreadable at lower zoom levels. If we increase the zoom level, we can display more details, but we lose the completeness of visuals. In this study, we consider a binary feature to be visualized on a map. We apply three different approaches to recognize feature clusters within the data. Each cluster then corresponds to a geographical region and one of the two feature values. The visualization done like this results in a minor amount of information loss. We compare these three methods with respect to entropy gain, memory and speed by measuring this loss in terms of information entropy. Also, we provide detailed enumerative results under different visualization scenarios.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.titleComplexity management in visualization of very large spatial data
dc.title.alternativeÇok büyük konumsal verinin görselleştirilmesinde karmaşıklık yönetimi
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentBilgisayar Grafiği Anabilim Dalı
dc.identifier.yokid10174412
dc.publisher.instituteBilişim Enstitüsü
dc.publisher.universityHACETTEPE ÜNİVERSİTESİ
dc.identifier.thesisid490260
dc.description.pages105
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess