Show simple item record

dc.contributor.advisorAydın, Dursun
dc.contributor.authorMetin, Hüseyin Mustafa
dc.date.accessioned2020-12-29T13:18:22Z
dc.date.available2020-12-29T13:18:22Z
dc.date.submitted2012
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/423211
dc.description.abstractBu tezde, ileri beslemeli bir sinir ağının eğitiminde kullanılan geri-yayılmalı öğrenme algoritmasındaki ağırlık parametreleri genetik algoritmalar kullanılarak belirlenmiştir. Ağırlık parametreleri katmanlar arasındaki bağlantı katsayıları olarak bilinmektedir. Ağırlık parametreleri ağın öğrenme hızının arttırılması, öğrenme esnasında oluşabilecek hataların en aza indirgenmesi ve lokal minimumlardan kaçınılması gibi özellikleri belirlemektedirler. Dolayısıyla bu parametrelerin uygun biçimde seçilmesi ağın daha etkin olarak eğitilmesinde oldukça önemlidir. Tezin amacı; en uygun kromozomun seçilmesidir. Bu bilgiler doğrultusunda genetik algoritmaların diğer yöntemler kadar etkin çözümlere ulaşabileceği iki veya daha fazla parametreli bir modelde parametre tahminleri yapılarak gösterilmiştir. Sonuçlar genetik algoritmaların yapay sinir ağlarını eğiterek modellemede, parametre tahmini için kullanılabilir olduğunu göstermektedir.
dc.description.abstractIn this thesis, the weight parameters in backpropagation learning algorithm which is used for training of a feedforward neural network are determined by using genetic algorithms. Weight parameters are known as coefficients of hidden layers. The weigth parameters identify the features such as improving of the learning speed, eliminating the errors and avoiding from the local minimum points during learning of the neural network. Therefore, a selection of these parameters is very important for training of the network more efficiently. The aim of this thesis is to choose the ideal chromosome. In light of this information, genetic algorithm is denoted that can be come up with effective solutions compared to the other methods by making parameter estimation in two or more parameter model. The results have indicated that genetic algorithms without auxiliary knowledge can be used for the parameter estimation of neural networks weights.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectİstatistiktr_TR
dc.subjectStatisticsen_US
dc.titleGenetik algoritmaları kullanarak bir sinir ağının eğitilmesi ve doğrusal olmayan modellerle uygulanması
dc.title.alternativeTraining of neural networks using genetic algorithms and its applications on nonlinear modeling
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentİstatistik Anabilim Dalı
dc.identifier.yokid437126
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityMUĞLA ÜNİVERSİTESİ
dc.identifier.thesisid318286
dc.description.pages82
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess