Show simple item record

dc.contributor.advisorDağ, Hasan
dc.contributor.authorSekban, Judi
dc.date.accessioned2020-12-29T08:52:19Z
dc.date.available2020-12-29T08:52:19Z
dc.date.submitted2019
dc.date.issued2019-12-04
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/372925
dc.description.abstractMakine öğrenimi bir çok endüstride üzerinde yoğun çalışmalar yapılan bir konu olmuştur, ve neyse ki şirketler kendi problemlerini çözebilecek çeşitli machine learning yaklaşımları hakkında günden güne daha fazla bilgi sahibi oluyorlar. Fakat, farklı makine öğreniminin modellerinden en iyi şekilde sonuç almak ve verimli sonuçlara ulaşabilmek için, modellerin uygulanış biçimlerini ve verinin doğasını iyi anlamak gerekir. Bu tez, belli bir tahmin görevi için, uygulanan farklı makine öğreniminin algoritmalarını ne kadar iyi sonuç verdiklerini araştırır. Bu amaçla tez, 4 faklı algoritma, bir istifleme topluluğu tekniği ve modeli geliştirmek için belirli bir özelllik seçme yaklaşımı sunar ve uygular. Farklı konfigürasyonlar uygulayarak sonuçlar birbiriyle test edilir. Bütün bu işlemler, gerekli veri önislemeleri ve özellik mühendisliği adımları tamamlandıktan sonra yapılır.
dc.description.abstractMachine learning has been a subject undergoing intense study across many different industries and fortunately, companies are becoming gradually more aware of the various machine learning approaches to solve their problems. However, in or- der to to fully harvest the potential of different machine learning models and to achieve efficient results, one needs to have a good understanding of the application of the models and of the nature of data. This thesis aims to investigate different approaches to obtain good results of the machine learning algorithms applied for a given prediction task. To this end the thesis proposes and implements a four different algorithms, a stacking ensemble technique, and a specific approach to feature selection to develop models. Using different configurations, the results are compared one against another. All of these are done after applying the necessary data prepossessing and feature engineering steps.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.titleApplying machine learning algorithms in sales prediction
dc.title.alternativeSatış tahmı̇nı̇ konusunda makı̇ne öğrenı̇mı̇ ugulama
dc.typemasterThesis
dc.date.updated2019-12-04
dc.contributor.departmentBilgisayar Mühendisliği Anabilim Dalı
dc.identifier.yokid10303411
dc.publisher.instituteLisansüstü Eğitim Enstitüsü
dc.publisher.universityKADİR HAS ÜNİVERSİTESİ
dc.identifier.thesisid587924
dc.description.pages58
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess