Nearest neighbor discriminant analysis based face recognition using ensembled gabor features
dc.contributor.advisor | Gökmen, Muhittin | |
dc.contributor.author | Dolu, Onur | |
dc.date.accessioned | 2020-12-29T08:49:01Z | |
dc.date.available | 2020-12-29T08:49:01Z | |
dc.date.submitted | 2009 | |
dc.date.issued | 2018-08-06 | |
dc.identifier.uri | https://acikbilim.yok.gov.tr/handle/20.500.12812/371864 | |
dc.description.abstract | Son yıllarda, ışık varyasyonlarına ve yüz ifade değişikliklerine karşı gürbüz olduğu üzere yüz tanıma alanında Gabor öznitelikleri tabanlı yüz temsil etme çok umut vaad edici sonuç vermiştir. Seçilen uzamsal frekans, uzamsal lokalizasyon ve yönelime göre yerel yapıyı hesaplaması, elle işaretlendirmeye ihtiyaç duymaması Gabor özniteliklerini efektif yapan özellikleridir.Bu tez çalışmasındaki katkı, Gabor süzgeçleri ve En Yakın Komşu Ayrışım Analizi'nin (EYKAA) güçlerini birleştirerek önemli ayrışım öznitelikleri ortaya çıkaran Gabor En Yakın Komşu Sınıflandırıcısı (GEYKS) genişletip Parçalı Gabor En Yakın Komşu Sınıflandırıcısı (PGEYKS) metodunu ortaya koymaktır. PGEYKS; alçaltılmış gabor öznitelikleri barındıran farklı segmanları kullanarak, her biri ayrı dizayn edilen birçok EYKAA tabanlı bileşen sınıflandırıcılarını bir araya getiren grup sınıflandırıcısıdır. Tüm gabor özniteliklerinin alçaltılmış boyutu tek bir EYKAA bileşeninden çıkarıldığı gibi, PGEYKS; ayrışım bilgi kaybını minimum yapıp 3S (yetersiz örnek miktarı) problemini önleyerek alçaltılmış gabor öznitelikleri içindeki ayrıştırabilirliği daha iyi kullanır. PGEYKS yönteminin tanıma başarımı karşılaştırmalı performans çalışması ile gösterilmiştir. Farklı ışıklandırma ve yüz ifadesi deişiklikleri barındıran 200 sınıflık FERET veritabanı alt kümesinde, 65 öznitelik için PGEYKS %100 başarım elde ederek atası olan GEYKS'nın aldığı %98 başarısını ve diğer GFS (Gabor Fisher Sınıflandırıcı) ve GTS (Gabor Temel Sınıflandırıcı) gibi standard methodlardan daha iyi sonuçlar vermiştir. Ayrıca YALE veritabanı üzerindeki testlerde PGEYKS her türlü (k, alpha) çiftleri için GEYKS'ten daha başarılıdır ve 14 öznitelik için step size = 5, k = 5, alpha = 3 parametlerinde %96 tanıma başarısına ulaşmıştır. | |
dc.description.abstract | In last decades, Gabor features based face representation performed very promising results in face recognition area as its robust to variations due to illumination and facial expression changes. The properties of Gabor are, which makes it effective, it computes the local structure corresponding to spatial frequency (scale), spatial localization, and orientation selectivity and no need for manual annotations.The contribution of this thesis, an Ensemble based Gabor Nearest Neighbor Classifier (EGNNC) method is proposed extending Gabor Nearest Neighbor Classifier (GNNC) where GNNC extracts important discriminant features both utilizing the power of Gabor filters and Nearest Neighbor Discriminant Analysis (NNDA). EGNNC is an ensemble classifier combining multiple NNDA based component classifiers designed respectively using different segments of the reduced Gabor feature. Since reduced dimension of the entire Gabor feature is extracted by one component NNDA classifier, EGNNC has better use of the discriminability implied in reduced Gabor features by the avoiding 3S (small sample size) problem as making minimum loss of discriminative information. The accuracy of the EGNNC is shown by comparative performance work. Using a 200 class subset of FERET database covering illumination and expression variations, EGNNC achieved 100% recognition rate, outperforming its ancestor GNNC perform 98 percent as well as standard methods such GFC and GPC for 65 features. Also for the YALE database, EGNNC outperformed GNNC on all (k, alpha) tuples and EGNNC reaches 96 percent accuracy in 14 feature dimension, along with parameters step size = 5, k = 5, alpha = 3. | en_US |
dc.language | English | |
dc.language.iso | en | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution 4.0 United States | tr_TR |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol | tr_TR |
dc.subject | Computer Engineering and Computer Science and Control | en_US |
dc.title | Nearest neighbor discriminant analysis based face recognition using ensembled gabor features | |
dc.title.alternative | Parçalı gabor öznitelikleri kullanarak en yakın komşu ayrışım analizi tabanlı yüz tanıma | |
dc.type | masterThesis | |
dc.date.updated | 2018-08-06 | |
dc.contributor.department | İleri Teknolojiler Anabilim Dalı | |
dc.subject.ytm | Gabor wavelets | |
dc.subject.ytm | Image processing | |
dc.subject.ytm | Image processing methods | |
dc.subject.ytm | Image recognition | |
dc.subject.ytm | Pattern recognition | |
dc.subject.ytm | Face recognition | |
dc.subject.ytm | Image processing algorithms | |
dc.subject.ytm | Pattern classification | |
dc.identifier.yokid | 342325 | |
dc.publisher.institute | Bilişim Enstitüsü | |
dc.publisher.university | İSTANBUL TEKNİK ÜNİVERSİTESİ | |
dc.identifier.thesisid | 371544 | |
dc.description.pages | 77 | |
dc.publisher.discipline | Diğer |