Show simple item record

dc.contributor.advisorKlyachko, Alexander
dc.contributor.authorSakar, Serkan
dc.date.accessioned2020-12-29T08:01:36Z
dc.date.available2020-12-29T08:01:36Z
dc.date.submitted2012
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/353222
dc.description.abstract$/nu$ bir Young diyagram{/i} olsun ve $/mathcal{H}^{/nu}$ {/`o}zel uniter grubun $/nu$'ye kar/c{s}{/i}l{/i}k gelenindirgenemez temsilini g{/`o}stersin. Ayr{/i}ca, $/mathfrak{g} = /su(n)$ de $/SU(n)$'nin Lie cebrini g{/`o}stersin.G{/`osterilebilir ki} $/mathcal{H}^{/nu}$'nin $/mathfrak{g}$'nin simetrik cebri $/operatorname{S}^*/mathfrak{g}$'dag{/`o}r{/`u}nmesi i/c{c}in gerek ve yeter bir ko/c{s}ul $n$'nin $/nu$'n{/`u}n boyutunu b{/`o}lmesidir. Kostant'{/i}nproblemi, $/mathcal{H}^{/nu}$'in $/operatorname{S}^N/mathfrak{g}$'de g{/`o}r{/`u}ld{/`u}$/check{/operatorname{g}}${/`u} en k{/`u}/c{c}{/`u}k $N$ de$/check{/operatorname{g}}$erinin ne oldu$/check{/operatorname{g}}$unusorar. E/c{s}lenik temsilin moment politopu, $/mathcal{H}^{/nu}$'n{/`u}n $/operatorname{S}^*/mathfrak{g}$'deg{/`o}r{/`u}ld{/`u}$/check{/operatorname{g}}${/`u} $/nu$'lerin normalize edilmi/c{s} halleriyle gerilir. Momentpolitopu, Kostant'{/i}n probleminde bahsedilen $N$ say{/i}s{/i} i/c{c}in bir alt s{/i}n{/i}r koymaya yard{/i}mc{/i}olur. Bu tezde klasik spektral probleminin ve $/nu$-temsil edilebilirlik problemi ad{/i}yla bilinen bir di$/check{/operatorname{g}}$er spektral problemin/c{c}{/`o}z{/`u}mlerini kullanarak $n /leq 9$ i/c{c}in moment politoplar{/i}n{/i} hesapl{/i}yoruz.
dc.description.abstractLet $/mathcal{H}^{/nu}$ denote the irreducible representation of the special unitary group$/SU(n)$ corresponding to Young diagram $/nu$ and let $/mathfrak{g} = /su(n)$ denote the Lie algebra of $/SU(n)$.One can show that $/mathcal{H}^{/nu}$ appears in the symmetric algebra $/operatorname{S}^*/mathfrak{g}$ if and onlyif $n$ divides the size of the Young diagram $/nu$. Kostant's problem asks what is the least number $N$ such that$/mathcal{H}^{/nu}$ appear in $/operatorname{S}^N/mathfrak{g}$. The /textit{moment polytope} of the adjointrepresentation is the polytope generated by the normalized weights $/tilde{/nu}$ such that $/mathcal{H}^{/nu}$appears in $/operatorname{S}^*/mathfrak{g}$ and it helps to put lower bounds on number $N$ in the Kostant's problem.In this thesis, we compute the moment polytope of the adjoint representation of $/SU(n)$ for $n /leq 9$ using the solutions of the classical spectral problem and so-called $/nu$-representability problem.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleSchubert calculus, adjoint representation and moment polytopes
dc.title.alternativeSchubert kalkülüsü, eşlenik temsil ve moment politoplari
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Anabilim Dalı
dc.subject.ytmCohomology
dc.subject.ytmLie algebras
dc.subject.ytmRepresentation
dc.identifier.yokid434760
dc.publisher.instituteMühendislik ve Fen Bilimleri Enstitüsü
dc.publisher.universityİHSAN DOĞRAMACI BİLKENT ÜNİVERSİTESİ
dc.identifier.thesisid309841
dc.description.pages64
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess