Show simple item record

dc.contributor.advisorGülçür, Halil Özcan
dc.contributor.authorMadani, Masoud
dc.date.accessioned2020-12-23T10:41:41Z
dc.date.available2020-12-23T10:41:41Z
dc.date.submitted1992
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/327542
dc.description.abstractIn this thesis, a new parametric model for Evoked Potential (EP)estimation has been developed and implemented. It is assumed that prestimulusEEG data can be modeled by an implicit nonlinear autoregres~;ive(NAR) model. The N.AR model has been realized USing a multilayered neuralnetwork having a single hidden later and a single output neuron. Theconventional backpropagation learning law has been applied to estimate t.heparameters of the network.The mode I obtained using pre-stimulus data has been used toforecast post-stimulus signals. The forecast errors have been interpreted astrle EPs. The EP:3 tfiUS obtained have been compared favorat>1y /;vitrl UK,iSeobtained USing conventional averaging methods WhlCh requJre considerablymore trials.To test the validity of the model Hle autocorrelation of thepredlction error was computed. This error should be white if the rnodel isadequate.The software implementing the proposed method is developed onIBM PC/MS DOS environment USing` Turbo C 2.0` programming language.Keywords: Evoked Potential, Neural Networks, Backpropagation.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBiyomühendisliktr_TR
dc.subjectBioengineeringen_US
dc.subjectTıbbi Biyolojitr_TR
dc.subjectMedical Biologyen_US
dc.titleEEG modelling using neural network and enchament averaging of brain evoked potentials
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentBiyomedikal Mühendisliği Anabilim Dalı
dc.identifier.yokid10052514
dc.publisher.instituteBiyo-Medikal Mühendislik Enstitüsü
dc.publisher.universityBOĞAZİÇİ ÜNİVERSİTESİ
dc.identifier.thesisid364447
dc.description.pages104
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/embargoedAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/embargoedAccess