Show simple item record

dc.contributor.advisorÖzcan Semerci, Neyir
dc.contributor.authorBariş, Samet
dc.date.accessioned2020-12-10T10:51:19Z
dc.date.available2020-12-10T10:51:19Z
dc.date.submitted2019
dc.date.issued2019-06-12
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/251914
dc.description.abstractBu tez çalışmasında, çoklu zaman gecikmeli Takagi-Sugeno tipi bulanık tabanlı Cohen-Grossberg yapay sinir ağlarının global asimtotik kararlılık özellikleri incelenmiştir. Bu analizde kararlık koşullarının gecikmeden bağımsız olmasını sağlayan uygun Lyapunov fonksiyonelleri kullanılmıştır. Nöron aktivasyon fonksiyonu olarak Lipschitz fonksiyonları seçilmiştir. Cohen-Grossberg tipi yapay sinir ağlarının dinamik modelinde yer alan davranış ve kuvvetlendirici fonksiyonları için de bazı varsayımlarda bulunulmuştur. Lyapunov'un doğrudan yaklaşımı kullanılarak yapılan kararlılık analizi sonucunda, denge noktasını global asimtotik kararlı yapan gecikme parametresinden bağımsız yeni yeterli bir kararlılık koşulu sunulmuştur. Elde edilen koşul sadece sinir ağının sistem parametrelerine bağlı olarak ifade edilmiştir. Bu nedenle, bu tez çalışmasında kullanılan yapay sinir ağı modelinin denge ve kararlılık özellikleri, bazı özel matris sınıflarının temel özellikleri kullanarak kolaylıkla doğrulanabilir. Tez çalışmasının son kısmında ise sayısal bir örnek verilerek elde edilen sonuçların uygulanabilirliğini gösterilmiştir.
dc.description.abstractThis thesis investigates the problem of the global asymptotic stability of the class of Takagi-Sugeno Fuzzy Cohen-Grossberg neural networks with multiple time delays. By constructing a suitable fuzzy Lyapunov functional, a new delay-independent sufficient condition for the global asymptotic stability of the equilibrium point for delayed Takagi-Sugeno Fuzzy Cohen-Grossberg neural networks with respect to the Lipschitz activation functions is presented. The obtained condition only relies on the network parameters of the neural system. Therefore, the equilibrium and stability properties of the neural network model considered in this paper can be easily verified by exploiting some basic properties of some certain classes of matrices. A constructive numerical example is also given to show the applicability of the proposed stability results at the end of the thesis.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectElektrik ve Elektronik Mühendisliğitr_TR
dc.subjectElectrical and Electronics Engineeringen_US
dc.titleZaman gecikmeli takagi-sugeno bulanık Cohen-Grossberg yapay sinir ağlarının kararlılık analizi
dc.title.alternativeStability analysis of takagi-sugeno fuzzy Cohen-Grossberg neural networks with time delays
dc.typemasterThesis
dc.date.updated2019-06-12
dc.contributor.departmentElektronik Mühendisliği Anabilim Dalı
dc.identifier.yokid10237858
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityBURSA ULUDAĞ ÜNİVERSİTESİ
dc.identifier.thesisid544355
dc.description.pages76
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess