Show simple item record

dc.contributor.advisorÇelik, Basri
dc.contributor.authorDoğan, Bilal
dc.date.accessioned2020-12-10T10:49:59Z
dc.date.available2020-12-10T10:49:59Z
dc.date.submitted2019
dc.date.issued2019-12-16
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/251543
dc.description.abstractBu tezde, Öklidyen olmayan düzlemlerden önemli biri olan, hiperbolik düzlem kavramına ait temel bilgiler, bazı hiperbolik düzlem modelleri hakkında literatürde yer alan bilgiler ile bunlardan esinlenilerek elde edilen Hiperbolik-Klingenberg düzlemleri ile ilgili yapılan bazı çalışmalar özet olarak sunulmuştur.Öklid düzleminden elde edilen hiperbolik düzlem modelleri olan Poincaré modelleri, Sandler'in hiperbolik düzlem modeli ve Sandler'in modelinin genişletilmişi olan model için bir bölüm ayrılmış ve bu modellerin kuruluşu detaylarıyla verilmiştir. Ayrıca, projektif altdüzlemler ve hiperbolik düzlemler üzerine yapılan bazı çalışmalar incelenmiş olup sonlu bir projektif düzlemden Baer alt düzlemi olmayan bir projektif alt düzlemin tüm doğrularının üzerindeki noktalarla birlikte atılmasıyla elde edilen yapı tanıtılmış ve bu yapının hangi şartlar altında bir hiperbolik düzlem belirteceği verilmiştir. Son olarak bir Projektif-Klingenberg düzlemden m adet özel doğru sınıfının üzerindeki noktalarla birlikte atılması sonucu elde edilen yapının Hiperbolik-Klingenberg düzlem belirtme şartlarının tespit edildiği ve bu yapının bazı sayısal özelliklerinin ortaya konulduğu bir çalışmada elde edilen sonuçlar tanıtılmıştır.
dc.description.abstractIn this thesis, basic information about hyperbolic planes which are one of the important non-Euclidean planes, some information about hyperbolic plane models and some studies about Hyperbolic-Klingenberg planes which are constructed as a generalization of hyperbolic planes are presented briefly.Poincaré models which are the hyperbolic plane models obtained from the Euclidean plane, hyperbolic plane models of Sandler, the extension of the Sandler's model and the constructions of these models are given in detail in one chapter. In addition, some studies on projective subplanes and hyperbolic planes have been examined and the structure obtained by deleting all lines together with their points of projective non- Baer subplane from a finite projective plane has been introduced and the conditions under which remaining structure will indicate a hyperbolic plane have been given. Finally, results of Hyperbolic-Klingenberg models constructed by deleting a certain number m of equivalence classes of lines with their points from a finite Projective-Klingenberg plane are given.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleBazı hiperbolik düzlem modelleri ve hiperbolik Klingenberg düzlem sınıfları
dc.title.alternativeSome hyperbolic plane models and hyperbolic Klingenberg plane classes
dc.typemasterThesis
dc.date.updated2019-12-16
dc.contributor.departmentMatematik Anabilim Dalı
dc.identifier.yokid10289549
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityBURSA ULUDAĞ ÜNİVERSİTESİ
dc.identifier.thesisid594807
dc.description.pages65
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess