Show simple item record

dc.contributor.advisorÇetin, Yasemin Yardımcı
dc.contributor.advisorTemizel, Alptekin
dc.contributor.authorAtaş, Musa
dc.date.accessioned2020-12-10T09:14:48Z
dc.date.available2020-12-10T09:14:48Z
dc.date.submitted2011
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/225647
dc.description.abstractBu doktora çalışmasının temel amacı hiperspektral görüntüleme ve makine öğrenmesi ile aflatoksinli pul biberleri temiz biberlerden, hızlı ve tahribatsız bir şekilde ayırabilecek bir bilgisayarla görü sistemi geliştirmektir. Türkiye'nin değişik bölgelerinden toplanmış değişik biberlerin halojen ve UV altındaki hiperspektral görüntüleri elde edilmiştir. Nicemlenmiş ardışık bantların piksel farklarının mutlak değeri temelli yeni bir öznitelik kümesi önerilmiştir. Spektral bant enerjisi ve ardışık bantların piksel farklarının mutlak değeri kullanılarak elde edilen öznitelikler ile Teager enerji işlemi ve iki boyutlu dalgacık dönüşümü Yerel Ayırtaç Tabanları (YAT) temelli öznitelikler karşılaştırılmıştır. Öznitelik seçimi için Fisher ayrımsallık gücü, bilgi teorisi yaklaşımı en küçük fazlalık en büyük ilişki (KFBİ) ve önerilen çok katmanlı algılayıcı (ÇKA) tabanlı teknikler kullanılmıştır.Son olarak, Doğrusal Ayrımsallık Sınıflandırıcısı (DAS), Destek Vektör Makineleri (DVM) ve Yapay Sinir Ağları (YSA) modelleri sınıflandırıcı olarak kullanılmıştır. Ortalama doğruluk başarım ölçütüne göre ÇKA`ların daha iyi sonuçlar verdiği gözlemlenmiştir. Önerdiğimiz yöntemlerin başarımı ve gürbüzlüğü, değişik veri kümeleri üzerinde gösterilmiştir. Yüksek sınıflandırma başarımı ve gürbüz sınıflandırıcı elde etmek için, halojen ışıklandırma ile birlikte ardışık spektral bantların mutlak değer fark özniteliklerinden meydana gelen bilgisayarla görü sisteminin kullanılması tavsiye edilmektedir.
dc.description.abstractIn this thesis the main objective is to design a machine vision system that classifies aflatoxin contaminated chili peppers from uncontaminated ones in a rapid and non-destructive manner via hyperspectral imaging and machine learning techniques. Hyperspectral image series of chili pepper samples collected from different regions of Turkey have been acquired under halogen and UV illuminations. A novel feature set based on quantized absolute difference of consecutive spectral band features is proposed. Spectral band energies along with absolute difference energies of the consecutive spectral bands are utilized as features and compared with other feature extraction methods such as Teager energy operator and 2D wavelet Linear Discriminant Bases (2D-LDB). For feature selection, Fisher discrimination power, information theoretic Minimum Redundancy Maximum Relevance (mRMR) method and proposed Multi Layer Perceptron (MLP) based feature selection schemes are utilized.Finally, Linear Discriminant Classifier (LDC), Support Vector Machines (SVM) and MLP are used as classifiers. It is observed that MLP outperforms other learning models in terms of predictor performance. We verified the performance and robustness of our proposed methods on different real world datasets. It is suggested that to achieve high classification accuracy and predictor robustness, a machine vision system with halogen excitation and quantized absolute difference of consecutive spectral band features should be utilized.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.titleHyperspectral imaging and machine learning of texture foods for classification
dc.title.alternativeDokulu gıdaların sınıflandırılmasında hiperspektral görüntüleme ve makine öğrenmesi
dc.typedoctoralThesis
dc.date.updated2018-08-06
dc.contributor.departmentDiğer
dc.subject.ytmFood safety
dc.subject.ytmFeature extraction
dc.subject.ytmArtificial neural networks
dc.identifier.yokid416920
dc.publisher.instituteEnformatik Enstitüsü
dc.publisher.universityORTA DOĞU TEKNİK ÜNİVERSİTESİ
dc.identifier.thesisid309640
dc.description.pages158
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess