Show simple item record

dc.contributor.advisorYolcu Okur, Yeliz
dc.contributor.authorSavaş, Mehmet Can
dc.date.accessioned2020-12-10T09:05:41Z
dc.date.available2020-12-10T09:05:41Z
dc.date.submitted2017
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/223590
dc.description.abstractAlgoritmik ticaretin önemi modern finans dünyasında gün geçtikçe artmaktadır. Her yıl, algoritmik ticaretin ticaret hacmindeki payı artmakta ve modern ticaretin önemli bir parçası haline gelmektedir. Bu çalışmada dinamik mod ayrışımı kullanan bir algoritmik ticaret stratejisi geliştireceğiz. Dinamik mod ayrışımı, dinamik sistemleri zaman dinamiği bilenen daha küçük kerteli yapılara ayırarak karakterize eden, denklemsiz bir veri analiz metodudur. Metot bu yapılar sayesinde finansal tahmin yapmamıza imkan vermektedir. Metodun tahmin yeteneğini geliştirmek için genetik algoritma ile optimize edilmis¸ tamamlayıcı bir finansal teknik analiz stratejisi kullanılmıştır. Bu sayede dinamik mod ayrışımı kullanan algoritmik ticaret stratejileri geliştirilmiştir. Sonuç olarak, dinamik mod ayrışımı hisse senedi piyasalarını analiz edebilecek uygun bir metottur.
dc.description.abstractAlgorithmic trading schemes are growing of importance in modern financial world. Each year, increasing proportion of the total trading volume is handled by algorithmic trading systems and they have become a fundamental element of modern day trading. We demonstrate the application of an algorithmic trading strategy using dynamic mode decomposition and genetic algorithm. The dynamic mode decomposition is a data analysis tool which is capable of characterizing the dynamical systems in an equation free manner by decomposing the system into low-rank structures, dynamic modes, whose temporal evolution is known. The method enables financial market prediction using dynamic modes. In order to improve the prediction success of the method, we use a complementary technical analysis tool which is optimized with genetic algorithm. We are able to build algorithmic trading strategies using dynamic mode decomposition and test them in Turkish stock market. We conclude that dynamic mode decomposition is a capable method to analyze stock markets.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMaliyetr_TR
dc.subjectFinanceen_US
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleAlgorithmic trading strategies using dynamic mode decomposition: Applied to Turkish stock market
dc.title.alternativeDinamik mod ayrışımı kullanarak algoritmik ticaret stratejileri: Türk hisse senedi piyasasına uygulaması
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentFinansal Matematik Anabilim Dalı
dc.identifier.yokid10158097
dc.publisher.instituteUygulamalı Matematik Enstitüsü
dc.publisher.universityORTA DOĞU TEKNİK ÜNİVERSİTESİ
dc.identifier.thesisid464971
dc.description.pages72
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess