Show simple item record

dc.contributor.advisorZakharyuta, Vyacheslav
dc.contributor.authorKariksiz, Can Deha
dc.date.accessioned2020-12-10T07:38:21Z
dc.date.available2020-12-10T07:38:21Z
dc.date.submitted2007
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/217727
dc.description.abstract
dc.description.abstractIn this thesis, we discuss results on isomorphisms of spaces of analytic functions of several complex variables in terms of pluripotential theoretic considerations. More specifically, we present the following result:Theorem 1 Let ? be a Stein manifold of dimension n. Then,A(?) ~ A(Un)if and only if ? is pluriregular and consists of at most finite number of connected components.The problem of isomorphic classification of spaces of analytic functions is also closely related to the problem of existence and construction of bases in such spaces. The essential tools we use in our approach are Hilbert methods and the interpolation properties of spaces of analytic functions which give us estimates of dual norms and help us to obtain extendable bases for pluriregular pairs.Keywords: Duality, Interpolation Estimates, Pluripotential Theory, Pluriregularity, Spaces of Analytic Functions, Stein Manifoldsen_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleOn isomorphisms of spaces of analytic functions of several complex variables
dc.title.alternativeÇoklu karmaşık değişkenli analitik fonksiyon uzaylarında eşbiçimlilik üzerine
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentMatematik Anabilim Dalı
dc.identifier.yokid9008795
dc.publisher.instituteMühendislik ve Fen Bilimleri Enstitüsü
dc.publisher.universitySABANCI ÜNİVERSİTESİ
dc.identifier.thesisid178718
dc.description.pages38
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess