Show simple item record

dc.contributor.advisorArslan, Musa Hakan
dc.contributor.authorÇiper, Gökhan
dc.date.accessioned2020-12-09T12:56:38Z
dc.date.available2020-12-09T12:56:38Z
dc.date.submitted2019
dc.date.issued2019-12-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/213056
dc.description.abstractBu çalışmada, 50 adet köprülü kavşak projesi incelenmiştir. Alt geçit yapı uzunluğu (m), kapalı kesit alanı (m2), fore kazık (m3), sanat yapıları (m3), prekast cephe paneli (m), ön germeli prefabrik kiriş (m3) ve birim fiyat esaslı yaklaşık maliyetler hesap edilmiş, veri tabloları oluşturulmuş ve Orange programına girdi-çıktı verisi olarak tanımlanmıştır. Köprülü kavşak projelerinin betonarme inşaat maliyetlerini tahmin etmek amacıyla yapay zekanın bir parçası olan makine öğrenmesi algoritmalarından karar ağaçları (tree), destek vektörü makineleri (SVM), olasılıksal dereceli azalma (SGD), rastgele orman (RF) ve yapay sinir ağlarından (YSA) yararlanılarak öğrenme ve test işlemleri gerçekleştirilmiştir. Girdi parametrelerinin köprülü kavşak betonarme inşaat maliyetine etkisi irdelenmiş ve maliyet tahminlemesi yapılmıştır. Bahse konu algoritmalar ile elde edilen sonuçlar birbiri ile kıyaslanmış ve yapay sinir ağları yönteminin performansı ortaya konulmuştur.
dc.description.abstractIn this study, 50 bridged intersection projects were examined. Length of underpass structure (m), closed section area (m2), bored pile (m3), engineering structures (m3), precast facade panel (m), pre-tensioned prefabricated beam (m3) and approximate costs based on unit price were calculated, data tables were created and defined as input-output data to Orange program. Decision trees (Tree), support vector machines (SVM), stochastic gradient descent (SGD), random forest (RF) and neural network (YSA) from machine learning algorithms, which are part of artificial intelligence, in order to estimate the concrete construction costs of bridge junction projects and learning and test procedures. The effect of input parameters on the cost of bridged intersection reinforced concrete construction is examined and cost estimation is performed. The results of these algorithms were compared with each other and the performance of artificial neural network method was demonstrated.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectİnşaat Mühendisliğitr_TR
dc.subjectCivil Engineeringen_US
dc.titleKöprülü kavşaklarda betonarme inşaat maliyeti ve etkin yapısal parametrelerin akıllı bir sistem ile tahmin edilmesi
dc.title.alternativeEstimation of reinforced concrete construction costs and effective structural parameters with a smart system at bridge interchange
dc.typemasterThesis
dc.date.updated2019-12-06
dc.contributor.departmentİnşaat Mühendisliği Anabilim Dalı
dc.identifier.yokid10291715
dc.publisher.instituteLisansüstü Eğitim Enstitüsü
dc.publisher.universityKONYA TEKNİK ÜNİVERSİTESİ
dc.identifier.thesisid589590
dc.description.pages105
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess