Show simple item record

dc.contributor.advisorBabaoğlu, İsmail
dc.contributor.authorKahveci, Semih
dc.date.accessioned2020-12-09T12:47:05Z
dc.date.available2020-12-09T12:47:05Z
dc.date.submitted2020
dc.date.issued2019-11-13
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/212790
dc.description.abstractGünümüzde sivil savunma operasyonları, maden arama çalışmaları, tarımsal üretim ve coğrafi bilgi sistemleri gibi birçok alan için uydu görüntülerinden elde edilen bilgiler kullanılmaktadır. Görüntülerin çözünürlüğü ve bulundurduğu bileşenlerin detay seviyeleri elde edilen bilgilerin doğruluğunda ve kullanılabilirliğinde önemli etkendir. Bu nedenle görüntülerin çözünürlüğü ve kalitesini arttırmak için literatürde birçok görüntü zenginleştirme algoritması geliştirilmiştir. Görüntü zenginleştirme algoritmaları düşük çözünürlüklü görüntüyü belli işlemlerden geçirerek içerdiği bileşenlerin seviyesini ve görüntünün çözünürlüğünü arttırma işlemi olup günümüzde daha çok süper çözünürlük olarak bilinmektedir. Son zamanlarda popüler olarak çalışılan alanlardan biri olan derin öğrenme, süper çözünürlük problemlerinde de yüksek performans göstermektedir. Bu sebeple, derin öğrenme tabanlı süper çözünürlük algoritmaları son zamanlarda en çok araştırılan alan olmuştur. Bu tez çalışmasında derin öğrenme tabanlı süper çözünürlük algoritmaları kullanılarak düşük çözünürlüklü uydu görüntülerinden yüksek çözünürlüklü görüntüler elde edilmiştir. Ayrıca süper çözünürlük için yeni bir derin öğrenme tabanlı algoritma önerilmiştir. Önerilen algoritma, diğer algoritmalarla referanslı görüntü kalite ölçüm metrikleri ile kıyaslanmış olup elde edilen sonuçlar değerlendirilmiştir.
dc.description.abstractToday, the information obtained by satellite images is used inmany areas such as civil defense operations, mineral exploration, agricultural production and geographical information systems. The accuracy and usability of the information obtained from the images are related to the resolution of the image and the detail levels of the components. For this reason, many image enhancement algorithms have been developed in literature to increase the resolution and quality of the images. Image enhancement algorithms are the process of increasing the level of components and resolution of the image by processing low resolution image, and today it is more known as super resolution. Deep learning, one of the most popular areas of study recently, also shows high performance in super resolution problems. For this reason, deep learning based super resolution algorithms have been the most researched area recently. In this thesis, high resolution satellite images were obtained by using deep learning based super resolution algorithms developed to increase the quality and resolution of satellite images obtained using existing imaging equipment. In addition, a new deep learning based algorithm has been proposed for super resolution. The proposed algorithm was compared with image quality measurement metrics referenced with other algorithms and the results obtained were evaluated.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.subjectBilim ve Teknolojitr_TR
dc.subjectScience and Technologyen_US
dc.subjectMühendislik Bilimleritr_TR
dc.subjectEngineering Sciencesen_US
dc.titleDerin öğrenme algoritmaları kullanarak uydu görüntüleri zenginleştirme
dc.title.alternativeEnhancement of Satellite Images Using Deep Learning Algorithms
dc.typemasterThesis
dc.date.updated2019-11-13
dc.contributor.departmentBilgisayar Mühendisliği Anabilim Dalı
dc.identifier.yokid10308284
dc.publisher.instituteLisansüstü Eğitim Enstitüsü
dc.publisher.universityKONYA TEKNİK ÜNİVERSİTESİ
dc.description.pages65
dc.publisher.disciplineBilgisayar Mühendisliği Bilim Dalı


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess