Show simple item record

dc.contributor.advisorBalaban, Mehmet Erdal
dc.contributor.advisorBozdoğan, Hamparsun
dc.contributor.authorAkbilgiç, Oğuz
dc.date.accessioned2020-12-08T11:03:21Z
dc.date.available2020-12-08T11:03:21Z
dc.date.submitted2011
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/181136
dc.description.abstractRadyal Tabanlı Fonksiyon Ağları, kullandıkları özel bir tür aktivasyon fonksiyonu nedeniyle yapay sinir ağlarının özel bir biçimi olarak değerlendirilmektedir. Radyal tabanlı fonksiyonlar olarak adlandırılan bu özel fonksiyonlar, modelin girdi uzayının farklı bölgelerinde saklı olan farklı yapıların modellenmesine imkan vermektedir. Diğer taraftan radyal tabanlı fonksiyon ağları modelinde, gizli katman nöron sayısının deneme yanılma yolu ile belirlenmesi, merkez ve yayılım parametrelerinin uzun zaman alabilen iteratif yöntemlerle belirlenmesi ve tasarım matrisinin tekilliği gibi sorunlar ortaya çıkmaktadır. Bağımsız değişkenlerinin hangilerinin bağımlı değişken ile ilişkili olduğunun belirlenememesi ise radyal tabanlı fonksiyon ağlarının eksikliklerinden biridir. Bu çalışmada radyal tabanlı fonksiyon ağları sözü edilen sorun ve eksikliklere çözüm getirecek şekilde uygun istatistik yöntemlerle entegre edilerek, Hibrit Radyal Tabanlı Fonksiyon Ağları modeli oluşturulmuştur. Oluşturulan Hibrit Radyal Tabanlı Fonksiyon Ağının performansı ve geçerliliği, İMKB Ulusal 100 endeksinin yönünün belirlenmesi üzerine bir çalışma ile test edilmiştir.
dc.description.abstractRadial Basis Function Networks are one of the sub division of artificial neural networks with their special activation functions called radial basis functions. These functions allow us to model the patterns hidden in the different locations of input space. On the other hand, defining the number of neuron in hidden layer by method of trial and error, finding the center and radius parameters using iterative learning methods, and the singularity of design matrix are are common problems in radial basis function networks modeling. However, not to being able to define which variables are correlated with dependent variable is another problem with radial basis function networks. In this study, we constructed a Hybrid Radial Basis Function Network model to handle the problems mentioned. The performance of Hybrid Radial Basis Function Network model is tested by a case study on forecasting the direction of movement of Istanbul Stock Exchange National 100 index.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectİşletmetr_TR
dc.subjectBusiness Administrationen_US
dc.titleHibrit radyal tabanlı fonksiyon ağları ile değişken seçimi ve modelleme: Menkul kıymet yatırım kararlarına ilişkin bir uygulama
dc.title.alternativeVariable selection and prediction using hybrid radial basis function neural networks
dc.typedoctoralThesis
dc.date.updated2018-08-06
dc.contributor.departmentİşletme Anabilim Dalı
dc.subject.ytmRadial basis function neural networks
dc.subject.ytmInvestments
dc.subject.ytmInvestment decisions
dc.subject.ytmSecurities
dc.subject.ytmStocks
dc.subject.ytmİstanbul Stock Exchange
dc.subject.ytmPerformance analysis
dc.subject.ytmArtificial neural networks
dc.subject.ytmRidge regression
dc.subject.ytmRegression analysis
dc.identifier.yokid407687
dc.publisher.instituteSosyal Bilimler Enstitüsü
dc.publisher.universityİSTANBUL ÜNİVERSİTESİ
dc.identifier.thesisid287680
dc.description.pages165
dc.publisher.disciplineSayısal Yöntemler Bilim Dalı


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess