Show simple item record

dc.contributor.advisorSezgin, Tevfik Metin
dc.contributor.authorYanik, Erelcan
dc.date.accessioned2020-12-08T07:50:11Z
dc.date.available2020-12-08T07:50:11Z
dc.date.submitted2013
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/168879
dc.description.abstractÇizim, fikirlerin ifade edilmesi ve paylaşılması için doğal ve etkili bir araçtır.Bu nitelikler çizimin kalem tabanlı sistemler için yeni bir etkileşim kipi olmasınısağlıyor. Çizim tabanlı arayüzlerin kullanılabilirliği başarı çizim tanıma sistemlerininvarlığına dayanır ki bu da çok sayıda etiketlenmiş verinin model eğitimi içinkullanılmasını gerektirir. Ne yazık ki, çizim verisini etiketlemek zaman alıcı ve masraflıdır. Çünkü etiketleme için insanların katılımı gereklidir. Bu çalışmada, hedeflenentanıma başarısı için gerekli manuel etiketleme yükünün azaltılmasında
dc.description.abstractSketching is a natural and effective means for expressing and sharing ideas. Thesequalities have made sketching an emerging interaction modality in pen-based systems.Sketch-based interfaces rely on the availability of accurate sketch recognition engines,which in turn require large amounts of labeled data for training. Unfortunately, labelingsketch data is time consuming and expensive, because it requires the involvementof human annotators. We demonstrate the utility of the active learning technologyin reducing the amount of manual annotation required to achieve target recognitionaccuracy.The first part of our work presents the first comprehensive study on the use ofactive learning for isolated sketch recognition. We present results from an extensiveanalysis which shows that the utility of active learning depends on a number of practicalfactors that require careful consideration. These factors include the choices ofbatch selection strategies, informativeness measures, seed set size, and domain-specificfactors such as feature representation and the choice of database. Since active learningcommunity lacks such factor based analysis, our empirical analysis is examplary.Our results imply that the Margin-based informativeness measure consistently outperformsother measures. We also show that the use of active learning brings definitiveadvantages in challenging databases when accompanied with powerful feature representations.The second part of our work deals with active learning on sketches containing morethan one object, the so-called /scenesen_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.subjectBilim ve Teknolojitr_TR
dc.subjectScience and Technologyen_US
dc.titleActive learning for sketch recognition and active scene learning
dc.title.alternativeÇizim tanıma için aktif öğrenme ve aktif sahne öğrenimi
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentBilgisayar Bilimleri ve Mühendisliği Anabilim Dalı
dc.identifier.yokid10014413
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityKOÇ ÜNİVERSİTESİ
dc.identifier.thesisid332222
dc.description.pages78
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess