Show simple item record

dc.contributor.advisorGüntürk, Bahadır Kürşat
dc.contributor.authorGul, Muhammad Shahzeb Khan
dc.date.accessioned2020-12-06T17:24:29Z
dc.date.available2020-12-06T17:24:29Z
dc.date.submitted2018
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/107705
dc.description.abstractIşık alan görüntüleme, ışığın hem uzamsal hem de açısal dağılımını kaydederek, kayıt sonrası odaklama, kayıt sonrası diyafram kontrolü ve tek bir çekimden derinlik kestirimi gibi geleneksel görüntülemeden daha öte yetenekler sağlar. Mikro-lens dizisi (MLD) tabanlı ışık alan kameraları ışık alanını kaydetmede uygun maliyetli bir yaklaşım sunar. MLD tabanlı ışık alan kameralarının temel sorunu tek bir görüntü sensörünün uzamsal ve açısal bilgiyi kaydetmesi için paylaşılmasından dolayı ortaya çıkan düşük uzamsal çözünürlüktür. Bu tezde, öğrenme temelli ışık alan iyileştirme yaklaşımı sunulmaktadır. Evrişimsel sinir ağları ile kaydedilmiş ışık alanının hem uzamsal hem de çözünürlüğü arttırılmaktadır. Önerilen metod Lytro ışık alan kamerasıyla çekilmiş gerçek ışık alan verisiyle test edilmiş, uzamsal ve açısal iyileştirme açık bir şekilde gösterilmiştir.
dc.description.abstractLight field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this thesis, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectElektrik ve Elektronik Mühendisliğitr_TR
dc.subjectElectrical and Electronics Engineeringen_US
dc.titleSuper resolution of light fields using convolutional neural network
dc.title.alternativeEvrişimsel sinir ağları ile ışık alanlarının süper çözünürlüğü
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentDiğer
dc.subject.ytmDigital image processing
dc.subject.ytmDeep learning
dc.identifier.yokid10190771
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityİSTANBUL MEDİPOL ÜNİVERSİTESİ
dc.identifier.thesisid506324
dc.description.pages67
dc.publisher.disciplineElektrik Elektronik Mühendisliği ve Siber Sistemler Bilim Dalı


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess