Show simple item record

dc.contributor.advisorTiryaki, Volkan Müjdat
dc.contributor.advisorAbdulazez, Adnan Mohsın
dc.contributor.authorHassan, Omer Mohammed Salih
dc.date.accessioned2020-12-06T15:31:10Z
dc.date.available2020-12-06T15:31:10Z
dc.date.submitted2018
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/105152
dc.description.abstractGünümüzde video verilerinin artışı ile birlikte yürüyüş tanıma sistemleri ile ilgili araştırmalar yaygınlaşmaya başlamıştır. Yürüyüş verilerinden makine öğrenmesi yöntemleri kullanılarak insan cinsiyet tahmini yapılabilmektedir. Bu çalışmada CASIA-B Yürüyüş Veritabanı ve OU-ISIR Yürüyüş Veritabanı Geniş Popülasyon Veri Setinin bir kısmı kullanılarak bir cinsiyet tahmin sistemi tasarlanmıştır. Yürüme videolarından elde edilmiş silüetlerden gerekli olan öznitelikler dalgacık 5/3 kaldırma yöntemi ile çıkarılmış, C4.5 karar ağacı algoritması ile sınıflandırılmış, ve cinsiyet tahmininde kullanılarak sistem performansı ölçülmüştür. Elde edilen sonuçlara göre, yürüyüş video kayıtlarında bulunan bilginin önerilen yöntem ile insan cinsiyetini tahmin etmede %97 oranında başarılı olduğu görülmüştür. Bu çalışma yürüyüş paternleri içindeki bilginin doğru öznitelik çıkarımı ve sınıflandırma ile insan cinsiyetinin tahmininde başarı ile kullanılabileceğini göstermiştir.
dc.description.abstractResearches about gait recognition systems have begun to spread with the increase of the amount of video data. Human gender can be estimated by using machine learning methods from gait data. In the present study, a human gender classification system is designed by using CASIA - B gait database and OU-ISIR Gait Database Large Dataset. The silhouettes were extracted from the gait videos, the features were extracted using 5/3 lifting scheme, the feature vectors were then classified using C4.5 decision tree classifier, the genders were obtained, and the system performance was evaluated. Results showed that by using the proposed method, human gender were classified with an accuracy of 97.98% on CASIA - B gait databases and 97.5% recognition rate on OU-ISIR Walk Database large Dataset. This study demonstrates that using gait data followed by proposed feature extraction methods, human gender can be successfully estimated.en_US
dc.languageEnglish
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.titleGait-based human gender classification using 5/3 lifting based wavelet filters and principal component analysis
dc.title.alternative5/3 dalgacık kaldırma filtresi ve temel bileşen analizi yöntemleri ile yürüyüşe dayalı insan cinsiyet sınıflandırması
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentElektrik-Elektronik Mühendisliği Anabilim Dalı
dc.subject.ytmHuman gait
dc.subject.ytmPattern classification
dc.identifier.yokid10193806
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universitySİİRT ÜNİVERSİTESİ
dc.identifier.thesisid507214
dc.description.pages54
dc.publisher.disciplineBilgisayar Mühendisliği Bilim Dalı


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess