Show simple item record

dc.contributor.advisorMaden, Selahattin
dc.contributor.advisorAltınışık, Nihat
dc.contributor.authorDemirel, Ayşe Kübra
dc.date.accessioned2020-12-06T13:18:49Z
dc.date.available2020-12-06T13:18:49Z
dc.date.submitted2019
dc.date.issued2019-06-25
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/102193
dc.description.abstractEşitsizlik teorisi, matematiksel analizin merkezi alanlarından biri olarak kabul edilmiş ve birçok bilimsel alanda giderek artan uygulamalarla hızla büyüyen bir disiplin haline gelmiştir. Son yıllarda bu konu birçok matematikçiden büyük ilgi görmüş ve literatürde çok sayıda yeni sonuç araştırılmıştır. Bu tez çalışmasında da, konveks fonksiyonların önemli bir sınıfı olan farklı türden güçlü konveks fonksiyonlar için bazı integral eşitsizlikleri verildi. Çalışmanın ilk bölümü girişniteliğinde olup, konveks fonksiyonlar ile eşitsizlikler teorisinin tarihi gelişimine ve literatürde yer alan çalışmalara değinildi. İkinci bölümde, literatürde yer alan bazı konveks ve güçlü konveks fonksiyon tanımları verilip, literatürde yer alan ortalamalara ve özel fonksiyonlara değinildi. Üçüncü bölümde, farklı türden konveks ve güçlü konveks fonksiyonlar için Hermite-Hadamard tipli ve Ostrowski tipli integral eşitsizlikleri ve tezin bulgular kısmında yararlanılacak lemmalar verildi.Dördüncü bölümde ise, güçlü M_φA-konveks, güçlü geometrik-aritmetik (GA) konveks, güçlü harmonik ve güçlü p-konveks fonksiyonlar için yeni lemmalar ve bu lemmalar kullanılarak Hermite-Hadamard tipli ve Ostrowski tipli integral eşitsizlikleri ile bazı sonuçlar verildi. Çalışmanın beşinci bölümünde tartışma ve sonuç, altıncı bölümünde ise tezde kullanılan kaynaklar verildi.
dc.description.abstractThe theory of inequality has been recognized as one of the central areas of mathematical analysis and has become a rapidly growing discipline with increasing applications in many scientific fields. In recent years, this topic has attracted great attention from many mathematicians and many new results have been researched in the literature. In this thesis, some integral inequalities for the different types of strongly convex functions, which are an important class of convex functions, aregiven. The first part of the thesis is an introduction that includes the historical development of the theory of inequalities and convex functions and the studies in the literature are mentioned. In the second part, some convex and strongly convex function definitions placed in the literature are given and some averages and some special functions placed in the literature are mentioned. In the third part, Hermite-Hadamard type and Ostrowski type integral inequalities are given for different kind of convex and strongly convex functions. In the fourth part, the new lemmas for strongly M_φA-convex, strongly geometric-arithmetic (GA)-convex, strongly p-convex and strongly harmonic convex functions are given. Furthermore using these lemmas, Hermite-Hadamard type and Ostrowski type integral inequalities and some results are given. In the fifth part of the thesis, the discussion and conclusion and in sixth part, it is given references which are used in the thesis.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMatematiktr_TR
dc.subjectMathematicsen_US
dc.titleÇeşitli güçlü konveks fonksiyonlar için integral eşitsizlikleri
dc.title.alternativeIntegral inequalities for several strongly convex functions
dc.typedoctoralThesis
dc.date.updated2019-06-25
dc.contributor.departmentMatematik Anabilim Dalı
dc.identifier.yokid10240909
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityORDU ÜNİVERSİTESİ
dc.identifier.thesisid545958
dc.description.pages109
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess