Show simple item record

dc.contributor.advisorUyar Özkaya, Aslı
dc.contributor.advisorŞengül, Ayşe Yasemin
dc.contributor.authorKoç, Emel
dc.date.accessioned2021-05-08T10:26:45Z
dc.date.available2021-05-08T10:26:45Z
dc.date.submitted2013
dc.date.issued2018-08-06
dc.identifier.urihttps://acikbilim.yok.gov.tr/handle/20.500.12812/672488
dc.description.abstractBu tezde yapılan çalışmanın temel amacı Hastane Bilgi Yönetim Sistemlerine (HBYS) entegre olarak kullanılmakta olan Klinik Karar Destek Sistemlerinin (KKDS) yöntemsel açıdan incelenmesi ve temel sınıflandırma algoritmaları kullanarak KKDS performansının analiz edilmesidir. KKDS?ler; sağlık personeline alacağı kararlarda destek sağlayan, hekimlere, hastalara ait özel klinik bilgileri dikkate alarak karar verebilmeleri için yardım eden bilgisayar programlarıdır. Literatürdeki çalışmalar KKDS?lerin; sağlık bakım hizmetlerinin kalitesinin arttırılması, hastalıkların daha erken teşhis edilebilmesi, medikal hataların önlenmesi, hastalara uygun tedavi verilmesi ve maliyetlerin azaltılması konularında büyük faydalar sağladığını göstermektedir. Bu bağlamda, Türkiye?deki en büyük hastane zincirlerinden birisi olan Acıbadem Hastanesi Bilgi Yönetim Sistemi ve içerisinde yer alan KKDS?ler incelenmiştir. Bunun yanında örnek uygulama olarak UCI (University of California at Irvine) veritabanından elde edilen dermatoloji veri kümesi üzerinde k-En Yakın Komşu (K-nn), Naïve Bayes, Karar Ağacı ve Çok Katmanlı Algılayıcı (Multi Layer Perception - MLP) sınıflandırma algoritmalarının başarım oranları test edilmiştir. Sonuçlar; doğruluk, doğru pozitif (DP), yanlış pozitif (YP) ve alıcı işlem karakteristikleri (ROC) alanı kriterlerine göre değerlendirildiğinde Naïve Bayes algoritmasının daha iyi sonuç verdiği belirlenmiştir.
dc.description.abstractThe main objective of this study is to examine Clinical Decision Support Systems (CDSS) integrated in Hospital Information Systems (HIS). The study also includes an implementation, for performance evaluation of classification algorithms applied in real world data set in the medical domain of dermatology. CDSS are computer programs that provide support for health professionals in taking decision using patients? clinical data. CDSS studies in the literature indicate substantial benefits such as improving the quality of health care services, the early diagnosis of diseases, medical errors prevention, appropriate treatment given to patients, and offers great benefits on reducing costs. In this context, Acıbadem HIS and CDSS used within the hospital was investigated. The implementation on dermatology data set obtained from UCI (University of California at Irvine) repository includes performance rates for k-Nearest Neighbor (K-nn), Naïve Bayes, Decision Tree and Multi Layer Perception (MLP) classification algorithms. The results were evaluated according to accuracy rate, true positive (TP), false positive (FP) and Receiver Operating Characteristics (ROC) area values. Consequently, Naïve Bayes algorithm results showed better performance results according to other competing classification algorithms.en_US
dc.languageTurkish
dc.language.isotr
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 United Statestr_TR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontroltr_TR
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.titleYöntem ve uygulama açısından klinik karar destek sistemleri
dc.title.alternativeClinical decision support systems: Methods and applications
dc.typemasterThesis
dc.date.updated2018-08-06
dc.contributor.departmentDiğer
dc.identifier.yokid10019653
dc.publisher.instituteFen Bilimleri Enstitüsü
dc.publisher.universityOKAN ÜNİVERSİTESİ
dc.identifier.thesisid355740
dc.description.pages94
dc.publisher.disciplineDiğer


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess