MOLİBDAT TEMELLİ YENİ IŞILDAR MADDELERİN SENTEZİ VE LUMİNESANS ÖZELLİKLERİNİN ARAŞTIRILMASI

Murat EBİÇ

Yüksek Lisans Tezi İleri Teknolojiler Anabilim Dalı Metalurji ve Malzeme Mühendisliği Programı Yrd. Doç. Dr. Esra ÖZTÜRK Mayıs–2016

T.C KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MOLİBDAT TEMELLİ YENİ IŞILDAR MADDELERİN SENTEZİ VE LUMİNESANS ÖZELLİKLERİNİN ARAŞTIRILMASI

YÜKSEK LİSANS TEZİ Murat EBİÇ

Anabilim Dalı: İleri Teknolojiler Programı: Metalurji ve Malzeme Mühendisliği

Tez Danışmanı: Yrd. Doç. Dr. Esra ÖZTÜRK

KARAMAN-2016

TEZ ONAYI

Murat EBİÇ tarafından hazırlanan "**Molibdat Temelli Yeni Işıldar Maddelerin Sentezi ve Luminesans Özelliklerinin Araştırılması**" adlı tez çalışması aşağıdaki jüri tarafından oy birliği ile Karamanoğlu Mehmetbey Üniversitesi Fen Bilimleri Enstitüsü İleri Teknolojiler Anabilim Dalı'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Danışman: Yrd. Doç. Dr. Esra ÖZTÜRK

Jüri Üyeleri

Prof. Dr. Nilgün ÖZPOZAN (Erciyes Üniversitesi Fen Fakültesi Kimya Bölümü)

Doç. Dr. Savaş SÖNMEZOĞLU (Karamanoğlu Mehmetbey Üniversitesi Mühendislik Fakültesi Metalurji ve Malzeme Mühendisliği)

Yrd. Doç. Dr. Esra ÖZTÜRK (Karamanoğlu Mehmetbey Üniversitesi Mühendislik Fakültesi Metalurji ve Malzeme Mühendisliği)

İmza

Tez Savunma Tarihi: 9.4/9.5/2016

Yukarıdaki sonucu anaylıyorum

Doç. Dr. Ahmet İPEK Enstitü Müdürü

TEZ BİLDİRİMİ

Yazım kurallarına uygun olarak hazırlanan bu tezin yazılmasında bilimsel ahlak kurallarına uyulduğunu, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta bulunulduğunu, tezin içerdiği yenilik ve sonuçların başka bir yerden alınmadığını, kullanılan verilerde herhangi bir tahrifat yapılmadığını, tezin herhangi bir kısmının bu üniversite veya başka bir üniversitedeki başka bir tez çalışması olarak sunulmadığını beyan ederim.

ÖZET

Yüksek Lisans Tezi

MOLİBDAT TEMELLİ YENİ IŞILDAR MADDELERİN SENTEZİ VE LUMİNESANS ÖZELLİKLERİNİN ARAŞTIRILMASI

Murat EBİÇ

Karamanoğlu Mehmetbey Üniversitesi Fen Bilimleri Enstitüsü İleri Teknolojiler Anabilim Dalı

Danışman: Yrd. Doç. Dr. Esra ÖZTÜRK

Mayıs, 2016, 123 sayfa

Bu çalışmada molibdat temelli 20 yeni ışıldar madde sentezlendi. M(II)M(III)₂(MoO₄)₄ konut kristallerine [M(II): Ca²⁺, Ba²⁺, Sr²⁺, M(III): La³⁺, Gd³⁺, Y³⁺] lantanit grubu elementlerinden Eu³⁺, Dy³⁺ iyonları farklı oranlarda katkılandı. Elde edilen maddelerin sentez sartlarını belirlemek için (TG/DTA) ile 1200 °C sıcaklığa kadar çalışıldı ve optimum koşullar belirlendi. 850 °C ve 860 °C sıcaklıklarda 8, 10 ve 12 saat süre ile açık atmosferde porselen kavıkcıklar icerisinde hazırlanan maddeler kül firininda ısıl islem uvgulanarak katı hal tepkimeleri gerçekleştirildi. Tepkimeleri gerçekleşen maddelerin kristal difraksiyon sistemleri x-1\$1111 toz (XRD) yöntemi ile araştırıldı. $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$ sistemlerinin monoklinik, $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$ ve Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄ ve Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄ sistemlerinin tetragonal yapıda olduğu bulundu ve birim hücre parametreleri belirlendi. Lantanit katkılı sentezlenen maddelerin ışıma özellikleri ve ışıma süreleri fotoluminesans spektrofotometresi ile analiz edildi. Işıldar sistemlerin 290 nm'de Eu³⁺ iyonlarının yük transferinden kaynaklanan ve Eu³⁺ iyonlarının 389 nm'de ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ geçişinden kaynaklanan iki adet uyarma bandı tespit edildi. Bu uyarmalar neticesinde Eu³⁺ iyonlarının karakteristik ${}^{5}D_{0} \rightarrow {}^{7}F_{i}$ (J=2, 3 ve 4) geçişlerinden kaynaklanan 619 nm'de turuncu, 652 nm'de kırmızı ve 706 nm dalga boyunda spektrumun baskın kırmızı bölgesine karşılık gelen üç adet ışıma bandı gözlendi. Işıldar sistemlerin yüzey incelemeleri ve elementel analizleri (SEM-EDX) taramalı elektron mikroskobu ile yapılarak mikro yapıları tespit edildi.

Anahtar Kelimeler: Molibdat, Luminesans, Katı hal yöntemi, İnorganik ışıldarlar.

ABSTRACT

Master Thesis

SYNTHESIS AND INVESTIGATION OF LUMINESCENCE PROPERTIES OF MOLYBDATES-BASED NOVEL PHOSPHOR MATERIALS

Murat EBİÇ

Karamanoglu Mehmetbey University Graduate School of Natural and Applied Science Department of Advanced Technologies

Supervisor: Assist. Prof. Dr. Esra ÖZTÜRK

May, 2016, 123 pages

In this study, molybdates based 20 new phosphor materials were synhesized. $M(II)M(III)_2(MoO_4)_4$ [M(II): Ca²⁺, Ba²⁺, Sr²⁺, M(III): La³⁺, Gd³⁺, Y³⁺] host crystals were doped Eu³⁺, Dy³⁺ lanthanide group ions in different ratios. The optimization of synthesis conditions were determinated until 1200 °C working by (DTA/TG) methods. The mixtures to achieved a solid state reaction were heated in porcelein crucibles at different temperatures as 850 °C and 860 °C, for 8, 10, 12 hours in an open atmosphere. The powders's crystal systems were characterized by x-ray powder diffraction method (XRD). Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄ and Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄ crystal systems were obtained as monoclinic crystal structure. $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$ and $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$ crystal systems were obtained as tetragonal crystal structure and unit cell parameters of crystals were determinated. Ln³⁺ doped samples were analyzed by using photoluminescence spectrophotometer instrument for the observation of the excitation-emission spectras and decay times. Two excitation bands of the phosphor systems were obtained charge transfer transition at 290 nm and the ${}^{7}F_{0}$ to ${}^{5}L_{6}$ transition of Eu³⁺ ions at 389 nm. Under these excitation bands, the characteristic emission bands of Eu³⁺ ions were observed at 619 nm was assigned ${}^{5}D_{0}$ to ${}^{7}F_{2}$ transition in the orange region and at 652 nm was assigned the ${}^{5}D_{0}$ to ${}^{7}F_{3}$ transition in the red region and at 706 nm was assigned the ${}^{5}D_{0}$ to ${}^{7}F_{4}$ transition in the dominant red region. The phosphor systems surface investigations and EDX analysis were characterized by Scanning Electron Microscope (SEM) and their microstructures were identified.

Key Words: Molybdates, Luminescence, Solid state method, Inorganic phosphors.

ÖN SÖZ

Tez çalışmam boyunca esnasında deneyimleri ile çalışmalarımı yönlendiren, yüksek lisans eğitimim boyunca göstermiş olduğu iyi niyet, sabır ve anlayış ile yardımını esirgemeyen ve bu tezin başarılı bir şekilde sonuçlandırılmasında en büyük pay sahibi olan değerli hocam Sayın Yrd. Doç. Dr. Esra ÖZTÜRK'e şükranlarımı sunuyorum.

Laboratuvar ortamındaki çalışmalarımda zamanını ve birikimini benden esirgemeyen, iyi niyetli ve sabırlı bir şekilde göstermiş olduğu bütün katkılarından dolayı Arş. Gör. Erkul KARACAOĞLU'na teşekkür ederim.

Bu çalışmayı 03 YL 15 kodlu proje ile destekleyen Karamanoğlu Mehmetbey Üniversitesi Bilimsel Araştırma Projeleri birimine teşekkür ederim.

Yüksek lisans derslerine ve laboratuvar çalışmalarına katılmalarımda hiçbir zorluk çıkarmayan, anlayış gösteren, maddi ve manevi desteklerini esirgemeyen Yüksekokul Sekreterimiz Sayın Süleyman TUNÇEL'e teşekkürü bir borç bilirim.

Ayrıca yüksek lisans eğitimine başlamamda beni yüreklendiren manevi desteğini hiç bir zaman eksik etmeyen sevgili eşim Songül EBİÇ'e ve henüz farkına varmasa da zamanından çaldığım sevgili kızım Ceren Neva EBİÇ'e teşekkür ederim.

> MURAT EBİÇ Mayıs, 2016

İÇİNDEKİLER

ÖZET i
ABSTRACT ii
ÖNSÖZ iii
İÇİNDEKİLERiv
ÇİZELGELER DİZİNİix
ŞEKİLLER DİZİNİx
SİMGELER VE KISALTMALAR DİZİNİxvi
1.GİRİŞ1
2. KURAMSAL TEMELLER VE KAYNAK ARAŞTIRMASI
2.1. Luminesans ve Çeşitleri
2.1.1. Uyarma Kaynağına Göre Luminesans
2.1.2. Gecikme Süresine Göre Luminesans
2.1.2.1. Floresans ve Fosforesans
2.1.2.2. Singlet/Triplet Uyarılmış Haller
2.2. Enerji-Band Işıma Modeli
2.3. Terim Sembolleri
2.3.1. Temel Hal Terim Sembolleri ve Terimlerin Enerjileri11
2.3.2. Seçicilik Kuralı
2.4. Aktivatörler
2.5. Luminesans Malzemelerin Kullanım Alanları15
2.5.1. Aydınlatmalar İçin Fosforlar16
2.5.2. Yüksek Basınçlı Civa Lambaları16
2.5.3. Işık Saçan Diyotlar17

2.5.4. Katot Işınlı Tüp	18
2.5.5. Optoelektronik Görüntü Dönüştürücü	18
2.5.6. Ürün Kodlama	19
2.5.7. Güvenlik ve Kaza Önleme	19
2.5.8. Diş Hekimliği	20
2.6. Şelit Yapıdaki MLn ₂ (MoO ₄) ₄ Kristali	20
3. MATERYAL VE METOD	22
3.1.Materyal	22
3.1.1. Baryum karbonat (BaCO ₃)	22
3.1.2. Kalsiyum karbonat (CaCO ₃)	22
3.1.3. Stronsiyum karbonat (SrCO ₃)	22
3.1.4. Lantan (III) oksit (La ₂ O ₃)	22
3.1.5. Gadolinyum (III) oksit (Gd ₂ O ₃)	23
3.1.6. Europium (III) oksit (Eu ₂ O ₃)	23
3.1.7. Disporsiyum (III) oksit (Dy ₂ O ₃)	23
3.1.8. Yitriyum (III) oksit (Y ₂ O ₃)	23
3.1.9. Samaryum (III) oksit (Sm ₂ O ₃)	23
3.1.10. Erbiyum (III) oksit (Dy ₂ O ₃)	24
3.1.11. Molibdenyum (III) oksit (MoO ₃)	24
3.2. Kullanılan Cihazlar	24
3.2.1. Fırın	24
3.2.2. X-Işını Toz Difraktometresi (XRD)	25
3.2.3. Diferansiyel Termal Analiz (DTA) ve Termal Gravimetri (TG)	25

3.2.4. Fotoluminesans Spektrofotometresi (PL)
3.2.5. Analitik Terazi
3.2.6. Taramalı Elektron Mikroskop (SEM)27
3.3. Metot
3.3.1. Takip Edilen Sistematik
4. BULGULAR
4.1. Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ : Eu ³⁺ , Dy ³⁺ Işıldar Sistemlerinin İncelenmesi32
4.2. Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ : Eu ³⁺ , Dy ³⁺ Işıldar Sistemlerinin İncelenmesi45
4.3. Sr _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ : Eu ³⁺ , Dy ³⁺ Işıldar Sistemlerinin İncelenmesi59
4.4. $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: Eu^{3+} , Dy^{3+} Işıldar Sistemlerinin İncelenmesi
5. TARTIŞMA VE SONUÇ
6. KAYNAKLAR
7. EKLER
EK 1. MoO ₃ 'ün DTA/TG/DTG Termogramı96
EK 2. BaCO ₃ 'ın DTA/TG/DTG Termogramı97
EK 3. CaCO ₃ 'ın DTA/TG/DTG Termogramı98
EK 4. SrCO ₃ 'ın DTA/TG/DTG Termogramı99
EK 5. 850 °C' de 1s1l işlem uygulanan Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ :0.01 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar
sisteminin x-ışını toz difraksiyon verileri100
EK 6. 850 °C' de 1s1l işlem uygulanan Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ :0.03 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar
sisteminin x-ışını toz difraksiyon verileri101
EK 7. 850 °C' de 1s1l işlem uygulanan Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ :0.05 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar
sisteminin x-ışını toz difraksiyon verileri102

EK 8. 850 °C' de 1s1l işlem uygulanan Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ :0.1 Eu ³⁺ , 0.01 Dy ³⁺ ış1ldar
sisteminin x-ışını toz difraksiyon verileri104
EK 9. 850 °C' de 1s1l işlem uygulanan Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ :0.1 Eu ³⁺ ış1ldar sisteminin
x-ışını toz difraksiyon verileri106
EK 10. 850 °C' de 10 saat 1s1l işlem uygulanan $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.01 Eu^{3+}$, 0.01
Dy ³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri108
EK 11. 850 °C' de 10 saat 1s1l işlem uygulanan $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.03 Eu^{3+}$, 0.01
Dy ³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri109
EK 12. 850 °C' de 10 saat 1s1l işlem uygulanan $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.05 Eu^{3+}$, 0.01
Dy ³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri110
EK 13. 850 °C' de 10 saat 1s1l işlem uygulanan $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.1 Eu^{3+}$, 0.01
Dy ³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri111
EK 14. 850 °C'de 10 saat ısıl işlem uygulanan $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.01 Eu^{3+}$ ışıldar
sisteminin x-ışını toz difraksiyon verileri112
EK 15. 860 °C' de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.01 \text{ Eu}^{3+}$, 0.01 Dy ³⁺
ışıldar sisteminin x-ışını toz difraksiyon verileri113
EK 16. 860 °C' de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.03 \text{ Eu}^{3+}$, 0.01 Dy ³⁺
ışıldar sisteminin x-ışını toz difraksiyon verileri114
EK 17. 860 °C' de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.05 \text{ Eu}^{3+}$, 0.01 Dy ³⁺
ışıldar sisteminin x-ışını toz difraksiyon verileri115
EK 18. 860 °C' de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.1 \text{ Eu}^{3+}$, 0.01 Dy ³⁺ 1ş1ldar
sisteminin x-ışını toz difraksiyon verileri116

EK 19. 860 °C' de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 Eu³⁺ ışıldar

sisteminin x-ışını toz difraksiyon verileri117
EK 20. 850 °C'de ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.01 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar
sisteminin x-ışını toz difraksiyon verileri118
EK 21. 850 °C'de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4:0.03 \text{ Eu}^{3+}$, 0.01 Dy ³⁺ ışıldar
sisteminin x-ışını toz difraksiyon verileri119
EK 22. 850 °C'de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.05 Eu ³⁺ , 0.01 Dy ³⁺ 1ş1ldar
sisteminin x-ışını toz difraksiyon verileri
EK 23. 850 °C'de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.1 Eu ³⁺ , 0.01 Dy ³⁺ 1ş1ldar
sisteminin x-ışını toz difraksiyon verileri
EK 24. 850 °C'de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.01 Eu ³⁺ ışıldar sisteminin
x-ışını toz difraksiyon verileri
8. ÖZGEÇMİŞ

ÇİZELGELER DİZİNİ

<u>Cizelge</u> <u>Sayfa</u>
Çizelge 2.1: Üç değerlikli nadir toprak elementi iyonlarının taban ve birinci uyarılmış
durumların temel karakteristikleri15
Çizelge 3.1: Katı karışımlardaki başlangıç maddelerinin miktarları
Çizelge 4.1: Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ ışıldar sistemlerin termal analiz verileri35
Çizelge 4.2: Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ :Eu ³ +,Dy ³ + ışıldar sistemlerinin EDX analiz verileri
Çizelge 4.3: Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄):Eu ³⁺ , Dy ³⁺ ışıldar sistemlerinin ışıma süreleri43
Çizelge 4.4: Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ ışıldar sistemlerin termal analiz verileri49
Çizelge 4.5: Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :Eu ³⁺ ,Dy ³⁺ ışıldar sistemlerinin EDX analiz verileri
Çizelge 4.6: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu^{3^+} , Dy^{3^+} ışıldar sistemlerinin ışıma süreleri
Çizelge 4.7: Sr _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ ışıldar sistemlerin termal analiz verileri62
Çizelge 4.8: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu^{3^+} , Dy^{3^+} sistemlerinin EDX analiz verileri
Çizelge 4.9: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu^{3^+} , Dy^{3^+} sistemlerinin ışıma süreleri70
Çizelge 4.10: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: Eu^{3^+} , Dy^{3^+} ışıldar sistemlerinin termal analiz verileri
$\label{eq:constraint} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
Çizelge 4.12: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: Eu^{3^+} , Dy^{3^+} ışıldar sistemlerinin ışıma süreleri83
Çizelge 5.1: Işıldarların kristal sitemleri ve birim hücre parametreleri
Çizelge 5.2: Işıldar sistemlerin uyarma, ışıma şiddetleri ve dalga boyları
Çizelge 5.3: Işıldar sistemlerin ışıma süreleri90

ŞEKİLLER DİZİNİ

<u>Sekil</u> <u>Sayfa</u>
Şekil 2.1: Molekül içerisinde spinlerin olası konumları
Şekil 2.2: Enerji band modeli (Jablonski diyagramı)
Şekil.2.3: Dieke diyagramı
Şekil 2.4: Floresan tüpü iç yapısı 16
Şekil 2.5: Yüksek basınçlı civa lambası 17
Şekil 2.6: Katot ışınlı tüp 18
Şekil 2.7: CaLa ₂ (MoO ₄) ₄ :Yb ³⁺ /Ho ³⁺ kristalinin şematik gösterimi
Şekil 4.1: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$:0.01 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA-DTG termogramı
Şekil 4.2: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4:0.03 Eu^{3+}$, 0.01 Dy ³⁺ ışıldar sistemi için başlangıç
maddelerinin TG-DTA-DTG termogramı
Şekil 4.3: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4:0.05 Eu^{3+}$, 0.01 Dy ³⁺ ışıldar sistemi için başlangıç
maddelerinin TG-DTA-DTG termogramı
Şekil 4.4: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4:0.1 Eu^{3+}$, 0.01 Dy ³⁺ ışıldar sistemi için başlangıç
maddelerinin TG-DTA-DTG termogramı
Şekil 4.5: Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ :0.1 Eu ³⁺ ışıldar sistemi için başlangıç maddelerinin
TG-DTA-DTG termogramı
Şekil 4.6: 850 °C'de 12 saat ısıl işlem uygulanan $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$: Eu^{3+} , Dy^{3+}
ışıldar sistemlerinin x-ışını toz difraksiyon desenleri
Şekil 4.7: Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄):0.01 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü

<u>Şekil</u>

Şekil 4.8: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4):0.03 Eu^{3+}$, 0.01 Dy ³⁺ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü
Şekil 4.9: Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄):0.05 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü38
Şekil 4.10: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4): 0.1 Eu^{3+}, 0.01 Dy^{3+}$ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü
Şekil 4.11: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4):0.1 Eu^{3+}$ ışıldar sisteminin 20.000 kat büyütülmüş
SEM görüntüsü 39
Şekil 4.12: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)$:0.01 Eu^{3+} , 0.01 Dy^{3+} ışıldar sisteminin EDX analizi.40
Şekil 4.13: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)$:0.03 Eu^{3^+} , 0.01 Dy^{3^+} ışıldar sisteminin EDX analizi.40
Şekil 4.14: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)$: 0.05 Eu^{3+} , 0.01 Dy^{3+} ışıldar sisteminin EDX analizi.41
Şekil 4.15: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)$: 0.1 Eu^{3+} , 0.01 Dy^{3+} ışıldar sisteminin EDX analizi41
Şekil 4.16: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4):0.01 Eu^{3^+}$ ışıldar sisteminin EDX analizi42
Şekil 4.17: $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)$: Eu^{3+} , Dy^{3+} ışıldar sistemlerin uyarma ve ışıma
spektrumları44
Şekil 4.18: Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄):Eu ³⁺ , Dy ³⁺ ışıldar sistemlerin ışıma süreleri44
Şekil 4.19: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA termogramı45
Şekil 4.20: La ₂ O ₃ 'in TG-DTA termogramı
Şekil 4.21: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.03 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA termogramı
Şekil 4.22: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.05 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA termogramı

Şekil 4.23: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.1 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA termogramı
Şekil 4.24: Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :0.01 Eu ³⁺ ışıldar sistemi için başlangıç maddelerinin
TG-DTA termogramı
Şekil 4.25: 850 °C'de 10 saat ısıl işlem uygulanan Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :Eu ³⁺ , Dy ³⁺
ışıldar sistemlerinin x-ışını toz difraksiyon desenleri
Şekil 4.26: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 Eu^{3^+} , 0.01 Dy^{3^+} ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü51
Şekil 4.27: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.03 Eu^{3+} , 0.01 Dy^{3+} ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü51
Şekil 4.28: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.05 Eu^{3+} , 0.01 Dy^{3+} ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü52
Şekil 4.29: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.1 Eu^{3+}, 0.01 Dy^{3+}$ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü52
Şekil 4.30: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.01 Eu^{3+}$ ışıldar sisteminin 20.000 kat büyütülmüş
SEM görüntüsü53
Şekil 4.31: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 Eu^{3+} ,0.01 Dy^{3+} ışıldar sisteminin EDX analizi 53
Şekil 4.32: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.03 Eu^{3+} ,0.01 Dy^{3+} ışıldar sisteminin EDX analizi 54
Şekil 4.33: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.05 Eu^{3+} ,0.01 Dy^{3+} ışıldar sisteminin EDX analizi 54
Şekil 4.34: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$: 0.1 Eu^{3+} , 0.01 Dy^{3+} ışıldar sisteminin EDX analizi55
Şekil 4.35: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 Eu^{3^+} ışıldar sisteminin EDX analizi
Şekil 4.36: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu^{3^+} , Dy^{3^+} ışıldar sistemlerinin uyarma ve ışıma
spektrumları

Şekil 4.37: $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu^{3+} , Dy^{3+} ışıldar sistemlerinin ışıma süreleri
Şekil 4.38: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA termogramı
Şekil 4.39: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.03 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA termogramı60
Şekil 4.40: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.05 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA termogramı61
Şekil 4.41: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.1 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA termogramı61
Şekil 4.42: Sr _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :0.01 Eu ³⁺ ışıldar sistemi için başlangıç maddelerinin
TG-DTA termogramı
Şekil 4.43: 860 °C'de 8 saat ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu ³⁺ , Dy ³⁺ ışıldar
sistemlerinin x-ışını toz difraksiyon desenleri63
Şekil 4.44: Sr _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :0.01 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü64
Şekil 4.45: Sr _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :0.03 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü65
Şekil 4.46: Sr _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :0.05 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü65
Şekil 4.47: Sr _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :0.1 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü66
Şekil 4.48: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 Eu ³⁺ ışıldar sisteminin 20.000 kat büyütülmüş
SEM görüntüsü

Şekil 4.49: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 Eu^{3+} , 0.01 Dy^{3+} ışıldar sisteminin EDX analizi.67
Şekil 4.50: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.03 Eu^{3+}, 0.01 Dy^{3+}$ ışıldar sisteminin EDX analizi.67
Şekil 4.51: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.05 Eu^{3^+} , 0.01 Dy^{3^+} ışıldar sisteminin EDX analizi.68
Şekil 4.52: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.1 \text{ Eu}^{3+}$, 0.01 Dy ³⁺ ışıldar sisteminin EDX analizi68
Şekil 4.53: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.01 Eu^{3+}$ ışıldar sisteminin EDX analizi
Şekil 4.54: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu^{3^+} , Dy^{3^+} ışıldar sistemlerinin uyarma ve ışıma
spektrumları71
Şekil 4.55: $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu^{3+} , Dy^{3+} ışıldar sistemlerinin ışıma süreleri71
Şekil 4.56: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.01 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA-DTG termogramı
Şekil 4.57: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.03 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA-DTG termogramı
Şekil 4.58: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.05 Eu^{3+} , 0.01 Dy^{3+} ışıldar sistemi için başlangıç
maddelerinin TG-DTA-DTG termogramı74
Şekil 4.59: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.1 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar sistemi için başlangıç
maddelerinin TG-DTA-DTG termogramı74
Şekil 4.60: Sr _{0.5} Ca _{0.5} Y ₂ (MoO ₄) ₄ :0.01 Eu ³⁺ ışıldar sistemi için başlangıç maddelerinin
TG-DTA-DTG termogramı75
Şekil 4.61: 850 °C'de 10 saat ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:Eu ³⁺ , Dy ³⁺
ışıldar sistemlerinin x-ışını toz difraksiyon desenleri76
Şekil 4.62: Sr _{0.5} Ca _{0.5} Y ₂ (MoO ₄) ₄ :0.01 Eu ³⁺ , 0.01 Dy ³⁺ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü77

<u>Şekil</u>

Şekil 4.63: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: 0.03 Eu^{3+} , 0.01 Dy^{3+} 1şıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü78
Şekil 4.64: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4:0.05 Eu^{3+}$, 0.01 Dy ³⁺ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü78
Şekil 4.65: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4:0.1 \text{ Eu}^{3+}$, 0.01 Dy ³⁺ ışıldar sisteminin 20.000 kat
büyütülmüş SEM görüntüsü79
Şekil 4.66: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.01 Eu ³⁺ ışıldar sisteminin 20.000 kat büyütülmüş
SEM görüntüsü
Şekil 4.67: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.01 Eu ³⁺ ,0.01 Dy ³⁺ ışıldar sisteminin EDX analizi80
Şekil 4.68: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: 0.03 Eu^{3+} , 0.01 Dy^{3+} ışıldar sisteminin EDX analizi80
Şekil 4.69: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4:0.05 Eu^{3+},0.01 Dy^{3+}$ ışıldar sisteminin EDX analizi81
Şekil 4.70: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4:0.1 Eu^{3+},0.01 Dy^{3+}$ ışıldar sisteminin EDX analizi81
Şekil 4.71: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.01 Eu ³⁺ ışıldar sisteminin EDX analizi82
Şekil 4.72: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: Eu^{3+} , Dy^{3+} ışıldar sistemlerinin uyarma ve ışıma
spektrumları
Şekil 4.73: $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: Eu^{3^+} , Dy^{3^+} ışıldar sistemlerinin ışıma süreleri

SİMGELER VE KISALTMALAR DİZİNİ

Simgeler	<u>Açıklama</u>		
a,b,c	Birim hücre boyutları		
α	b ve c eksenleri arasındaki açı		
β	a ve c eksenleri arasındaki açı		
γ	a ve b eksenleri arasındaki açı		
CuKa	X–ışınları bakır tüpüne ait spektral K α hattı		
Pm	Pikometre		
D	Kristal düzlemler arasındaki mesafe		
h,k,l	Miller indisleri		
I	Yansımaların şiddeti		
λ	Dalga boyu		
kV	Kilovolt		
mA	Miliamper		
θ	Bragg yansıma açısı		
A°	Angström		
°C	Santigrat derece		
V	Birim hücre hacmi		
keV	Kilo elektronvolt		
ns	Nano saniye		
μs	Mikro saniye		
ms	Milisaniye		

SİMGELER VE KISALTMALAR DİZİNİ

Simgeler	<u>Açıklama</u>		
G	Gram		
$ au_c$	Sönüm süresi		
n	Elektron sayısı		
μm	Mikrometre		
nm	Nanometre		
К	Kelvin		
Hz	Hertz		
°C	Celcius		
J	Joule		
<u>Kısaltmalar</u>	<u>Açıklama</u>		
TGA	Termogravimetrik Analiz		
DTA	Diferansiyel Termal Analiz		
DTG	Diferansiyel Termal Gravimetri		
XRD	X-ışınları Difraksiyonu		
SEM	Taramalı Elektron Mikroskopu		
PL	Fotoluminesans Spektrofotometresi		
UV	Morötesi		
IR	Kızılötesi		
LED	Işık Saçan Diyotlar		
ICDD	Uluslararası Kırınım Veri Merkezi		
EDX	Enerji Dağılımlı X-Işını		
VUV	Vakum Altında Motorötesi		

1.GİRİŞ

Işıkla aydınlatma, insan hayatını gündüzden geceye taşırken, odun ateşinden başlayarak meşalelere, mumlara, gaz lambalarına, akkor lambalara ve son olarak da fotoluminesans malzemelerin gelişimiyle birlikte floresan lambalara ve LED'lere kadar gelişim göstermiştir. Bu teknolojilerin ilerlemesiyle insanların yaşam standartlarında büyük bir gelişme olmuş ve günlük yaşam süreleri uzamıştır (Ozawa, 2007).

Aristo'nun ateş böcekleri, ışık yayan ağaçlar, mantarlar ve ölü balıkları doğada görmesi ve bunları De Anima (M.Ö. 384–322) adlı kitabında toplaması ile ışıma olarak adlandırılan luminesans üzerine düşünsel olarak ilk çalışmalar başlamıştır (Harvey, 1957).

Fosfor kelimesi ilk olarak 17. yüzyılın ilk başlarında İtalya'da Bologna'lı bir kimyacı olan Vincentinus Casciarolo'nun bir volkanın eteklerinde ağır, parlak bir taş (BaSO₄) bulması ile ortaya çıkmıştır. Casciarolo bulduğu taşı altına dönüştürmek düşüncesiyle bir kömür fırınında ısıtması ve altın yerine, gün ışığı ile uyarıldıktan sonra karanlıkta kırmızı ışıma yapan sinterlenmiş bir taş elde etmesi ile günümüze kadar gelmiştir. Bu keşiften sonra Avrupa'da birçok yerde benzerleri de bulunmuş ve ışıma yapan bu taşlara "fosforlar" adı verilmiştir. (Yen ve ark., 2006). Fortino Licetti 1640 yılında Cascariolo'nun bulduğu maddeleri "litheophosphorus" adı altında toplamıştır. Fosfor, parlak ışık anlamına gelmektedir. Bundan 30 yıl sonra da fosfor elementi bulunmuş ve oksitlendiğinde ışık verdiği için luminesans maddesi olarak sınıflandırılıp fosfor adı verilmiştir. Robert Boyle 1663'te bir elmas parçasının karanlıkta ışıldadığını gözlemiştir. İnorganik ışıldar maddelerle ilgili sistematik bilimsel incelemeler 1800'lerde Becquerel, Verneul, Lenard ve Stoke ile başlamıştır. 1852 yılında İngiliz fizikçi G. C. Stoke bir maddeye belli bir dalga boyunda ışık tutulduğunda maddenin daha uzun dalga boyunda ışık yaydığını ve ışık kaynağı kaldırıldığında yayınımın durduğunu göstermiştir. Sentezlenmiş ilk ışıldar havada hızla bozunarak hidrojen sülfür veren düşük luminesans etkinliğe sahip, saf olmayan baryum sülfürdür. Daha kararlı sülfür bazlı ışıldar 1866'da hidrojen sülfür buharında çinko oksitin ısıtılmasıyla üretilmiştir. 1887'de tanınmış hale gelen bu sülfürler katkısız halde ışıma yapmayan fakat küçük miktarda safsızlık katkılandığında ışıma yapan bileşiklerdir (Emen, 2009).

1888 yılında Alman fizikçi E. Wiedmann farklı maddelerin soğurdukları enerjiyi ısı üretmeksizin ışık olarak yaymasını latince ışık anlamına gelen lumen kelimesinden türeterek "luminesans" olarak tanımlamış, floresans ve fosforesans olaylarını luminesans terimi içinde birleştirmiştir (Yen ve ark., 2006).

Günümüzde fosforesans maddeler olarak bilinen ve nadir toprak elementi olarak adlandırdığımız lântanitlerle, hazırlanan uzun ışımalı ileri teknoloji malzemeleri; aydınlatma, reklam ışıklandırma tüpleri, x-ışını görüntüleyicileri, x-ışını sensörleri, katot ışını tüpleri, lazerler, optik hafizalar, ürün kodlama, güvenlik, kaza önleme, diş hekimliği, plazma, alan emisyon, projeksiyon panelleri gibi yaygın bir kullanım alanına sahiptir. (Nag ve ark., 2005; Katsumata ve ark., 2005).

İnorganik ışıldar maddeler genelde oksit, oksisülfür, sülfür, selenür, borat, fosfat, gallat, germanat, vanadat, sülfat, molibdat, aluminat, silikat ve aluminasilikat türü bileşiklerdir (Nakazawa ve ark., 1997). Bu ışıldar malzemeler arasında molibdat esaslı ışıldar malzemeler ise uzun süreli yayınımları, yüksek kuantum verimlilikleri, kolay imal edilebilirlikleri ve düşük maliyetleri nedeniyle diğer malzemelerden daha ön plana çıkmışlardır. Bu yüzden bu tür malzemelerin özelliklerinin iyileştirilmesi ve geliştirilmesi için yapılan çalışmalarda son zamanlarda ciddi artışlar olmuştur.

Bu çalışmada ise, katı hal yöntemi kullanılarak lantanit grubu elementlerden farklı oranlarda Eu³⁺, Dy³⁺ iyonları katkılanarak Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄, Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄, Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄ ve Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄ temelli yirmi adet yeni ışıldar madde sentezlendi. Katı hal reaksiyonları sonucunda oluşan maddelerin x-ışını toz kırınım (XRD) desenleri yardımı ile kristal sistemleri tanımlandı. Termal davranışları Diferansiyel termal analiz/Termogravimetri (DTA/TG/DTG) sistemi ile, yüzey incelemeleri ve EDX analizleri taramalı elektron mikroskop (SEM) ile, ışıma karakteristikleri fotoluminesans spektrofotometre ile incelendi.

2. KURAMSAL TEMELLER VE KAYNAK ARAŞTIRMASI

2.1. Luminesans ve Çeşitleri

Bir maddenin atom veya molekülleri, o maddenin enerji soğurmasıyla uyarılır ve kararsız hale geçer. Uyarılan atom ve moleküller kazandıkları bu fazla enerjiyi atarak temel hale geçmeyi isterler. Temel enerji seviyesine dönerken de fazla enerjinin tümünü veya bir kısmını ışık şeklinde dışarıya verirler. Işık yayılımı şeklinde gerçekleşen bu olay luminesans olarak adlandırılır. Luminesans yayınımı, elektromanyetik spektrumun genellikle UV (mor ötesi), görünür ve IR (kızıl ötesi) bölgesini kapsar. Bu tür malzemelere örnek olarak bazı mineraller, yalıtkan ya da yarı iletken malzemeler, kimyasal cevherler, hayvansal ve bitkisel kökenli biyomalzemeler ve laboratuar ortamında üretilen sentetik kristaller sayılabilir.

Luminesansın anlaşılabilmesi için öncelikle band modeli hakkında bilgi sahibi olunması gerekir. Bohr atom modeline göre, çekirdek etrafında dönen bir elektronun yalnız belli enerji seviyelerinde bulunma olasılığı vardır. Bu izinli enerji seviyeleri arasındaki enerji değerleri, atomdaki elektron için yasaklanmıştır. Kristallerde de bulunan bu bantlar, değerlik ve iletim bandı olarak adlandırılır. Elektronlar için izinli enerji durumları olarak bilinen bu iki band, yasaklanmış enerji aralığının araya girmesiyle ikiye ayrılır. Değerlik bandı izin verilen durumların en düşük enerjili halidir. Elektronlar mümkün en düşük enerji durumunu doldurma eğiliminde olduğunda değerlik bandı elektronlarla doludur. İletim bandı izin verilen durumların en yüksek enerjili halidir. Bir kristalde iletim bandındaki elektronlar herhangi bir dış elektriksel alan etkisi altında kristal içerisinde serbestçe hareket ederler.

Eğer iletim ve değerlik bantları arasındaki mesafe mevcut değilse ya da ihmal edilebilir seviyedeyse malzeme iletken olarak sınıflandırılır. İletken olarak nitelendirilen bu tarz malzemelerde elektronlar çok çabuk serbest hale geçer ve luminesans olayı gözlenmez. Bu nedenle luminesans; yasak enerji bant aralığının dar olduğu iletkenlerde değil, bantların birbirinden uzak olduğu yalıtkan veya yarı iletkenlerde gerçekleşir. Yalıtkan veya yarı iletkenlerdeki elektron geçişleri elektronlarca dolu değerlik bandı ile

elektronların kararsız halde bulunduğu iletkenlik bandı arasında gerçekleşir. İyonlaştırıcı radyasyon madde ile etkileştiği zaman, bir elektron değerlik bandından iletim bandına geçiş yapmak için yeterli enerjiyi soğurur. Böylece maddede enerji depolanmış olur. Elektron değerlik bandından iletim bandına geçtiğinde değerlik bandında bir boşluk oluşur. Değerlik bandındaki elektronlar, uyarılan elektron tarafından boşaltılan yere hareket edebilir. Böylece değerlik bandından iletim bandına bir elektron uyarıldığında bir elektron boşluk çifti yaratılır. Uyarılmış elektron değerlik bandına geri dönmeden ve uyarım enerjisini kaybetmeden önce iletim bandında sadece ≤ 10 ns (ortalama ömrü) kalır.

Işık yayınımının gerçekleştiği birleşme merkezlerine luminesans merkezleri denir. Birleşme ışık yayınımı olmadan da gerçekleşir ancak bu durum luminesans olmadığı için ölü bölgedir ve fazla enerji ısı şeklinde (ışımasız yeniden birleşme) açığa çıkar. Ancak gerçek kristaller mükemmel olmayıp atomların dizilişinde bölgesel olarak düzensizlikler ve çeşitli tipte kusurlar vardır. Bunlardan en yaygın olanı kristal içindeki bazı atomların hatalı konumda bulunmalarından kaynaklanan ve nokta hatası olarak adlandırılan kusur tipidir. Gerçek bir kristal örgü temel olarak üç tip kusura sahiptir: Bunlar sırası ile içsel kusurlar, safsızlık kusurları ve örgü içindeki kristal atomlarının yüksek hızlı elektron, nötron veya protonun çarpması sonucunda yer değiştirmeleri veya örgü içindeki bulundukları noktalardan koparak bu noktalarda meydana getirdiği kusurlardır. Kusurların var olması yasak bant aralıklarında izinli enerji seviyelerinin oluşmasını sağlar. Kristal uyarıldığında serbest hale geçen elektronlar bu izinli enerji seviyelerini kullanarak veya doğrudan bantlar arası geçişlerde bulunurlar (Albani, 2007).

2.1.1 Uyarma Kaynağına Göre Luminesans

Luminesans uyarıcı kaynaklarına göre; fotoluminesans, elektroluminesans, katodoluminesans, sonuluminesans, radyoluminesans, termoluminesans, triboluminesans şeklinde sınıflandırılır (Paulose, 2002).

Fotoluminesans: Mor ötesi ışınımla uyarılan maddede oluşan luminesans türüdür.

<u>Elektroluminesans</u>: Maddeye elektrik alanı uygulanması ile meydana gelen luminesans türüdür.

Katodoluminesans: Elektronların kristallere çarpmasıyla olusan luminesans türüdür.

Sonuluminesans: Yüksek frekanslı ses dalgaları veya fononlarla meydana gelen bir luminesans türüdür.

<u>Radyoluminesans</u>: Hızlandırıcılardan, kozmik ışınlardan, radyoaktif maddelerden veya diğer kaynaklardan elde edilen yüksek enerjili parçacıkların etkisi ile meydana gelen luminesans türüdür.

<u>Termoluminesans:</u> Bazı kristaller soğurdukları enerjiyi düşük sıcaklıklarda değil, ısıtıldıkları zaman görünür ışık halinde yayarlar. Bu olaya termoluminesans denir.

<u>Triboluminesans</u>: Kristallerin soğurmuş oldukları enerjiyi ögütülme, çizilme, sürtünme, dövülme gibi mekanik etki sırasında görünür bölgede ışık yayması olayına denir (Yüksel, 2008).

2.1.2 Gecikme Süresine Göre Luminesans

Luminesansı uyarma kaynaklarına göre sınıflandırmak mümkün olduğu gibi gecikme süresine (τ_c) göre de sınıflandırmak mümkündür. Gecikme süresi $\tau_c < 10^{-8}$ s ise ışıma floresans ve $\tau_c > 10^{-8}$ s ise fosforesans olarak tanımlanır. Fosforesans ise kısa ($\tau_c < 10^{-4}$ s) ve uzun ($\tau_c > 10^{-4}$ s) süreli olmak üzere kendi arasında ikiye ayrılır. Bazen de ışıma sürelerine göre çok kısa süreli ($\tau_c < 10^{-3}$ s), kısa süreli ($\tau_c = 10$ saat) ışıldarlar ve süper ışıldarlar ($\tau_c > 10$ saat) olarak sınıflandırılırlar (Paulose, 2002).

2.1.2.1 Floresans ve Fosforesans

Luminesans kavramı, genellikle fosforesans ve floresan terimleri ile birlikte kullanılmaktadır. Bu sınıflandırma uyarılmaya verilen tepki olan ışımanın zamanla olan ilişkisi ile alakalıdır (Kasap ve ark., 2007). Bazı malzemelerde uyarılma sonucu oluşan ışıma uyarıcı kaynak kapatıldığında durmaktadır. Bu durumda normal enerji seviyelerinde bulunan elektronlar uyarma sonucu uyarılmış seviyelere gelerek, buradan normal enerji seviyelerine geri dönerken sahip oldukları fazladan enerjiyi ışıma olarak

saçarlar. Bu olaya "floresans" denir. Bundan farklı olarak bazı malzemelerde ise, uyarılma sonucu oluşan ışıma uyarıcı kaynak kapatıldıktan sonra devam etmektedir (birkaç saniyeden birkaç saate kadar olabilir). Bu durumda normal enerji seviyelerinde bulunan elektronlar uyarılma sonucu uyarılmış seviyelere geldikten sonra "yasak bölge" adı verilen başka bir enerji seviyesine geçerler ve bu durum elektronun normal enerji seviyesine dönmesi için gereken süreyi uzatır. Bu olaya ise "fosforesans" denir (Yoshihiko ve ark., 1994).

2.1.2.2 Singlet/Triplet Uyarılmış Haller

Bütün elektron spinlerinin eşleşmiş olduğu bir moleküler elektronik hal; bir singlet hal olarak adlandırılır ve molekül bir manyetik alana maruz bırakıldığında elektronik enerji seviyelerinde hiçbir yarılma meydana gelmez. Diğer taraftan, bir serbest radikal için temel hal bir dublet halidir. Bir molekülün bir çift elektronundan biri daha yüksek bir enerji seviyesine uyarılırsa ya bir singlet ya da bir triplet hal meydana gelir. Şekil 2.1' de görüldüğü gibi, uyarılmış singlet halde, uyarılmış elektronun spini hala temel haldeki elektron ile eşleşmiş durumdadır, bununla beraber triplet halde, iki elektronun spinleri eşleşmemiş halde, yani paralel durumdadır.

Uyarılmış triplet haldeki bir molekülün özellikleri, uyarılmış singlet haldekinden önemli derecede farklıdır. Örneğin; bir molekül triplet halde paramanyetik iken manyetik alan tarafından çekilirken, singlet hal diamanyetiktir ve manyetik alan tarafından ne çekilir ne de itilirler. Uyarılmış triplet halin ortalama ömrü 10⁻⁴ saniyeden birkaç saniyeye kadar uzayabilir. Bir uyarılmış singlet halin ortalama ömrü ise 10⁻⁵-10⁻⁸ saniye kadardır. Ayrıca, temel haldeki bir molekülün ışınla bir uyarılmış triplet hale uyarılması düşük olasılığa sahiptir ve bu işlem sonucu oluşan uyarma piklerinin şiddeti singlet-singlet geçişine karşı gelenlerinkinden oldukça düşüktür. Bazı moleküllerin, bir uyarılmış singlet haline geçebilmesiyle fosforesans oluşur (Uluç, 2008).

Şekil 2.1. Molekül içerisinde spinlerin olası konumları (Uluç, 2008).

2.2. Enerji-Band Işıma Modeli

Bir ışıldar maddede gözlenen uyarma ve ışıma olayları sadece bir merkez ya da atomda meydana gelmediği için ışıma mekanizması oldukça karışıktır. Işıma mekanizmasının açıklamasını basitleştirebilmek için modeller kullanılmıştır ve bu modellerden bir tanesi de "Enerji Band Modeli" olarak bilinen *Jablonski diyagramı* 'dır. Jablonski diyagramında; S₀ singlet temel hali, S₁ uyarılmış 1. Singlet elektronik enerji seviyesini, S₂ ikinci singlet uyarılmış hali ve T₁ ise uyarılmış triplet hali temsil etmektedir. Temel ve uyarılmış hallerde 0, 1, 2, 3,... ile tanımlanan çizgiler titreşim kuantum sayılarını ve enerji seviyelerini göstermektedir. Bu diyagrama göre; soğurma olayı sırasında, singlet temel halden (1S₀) singlet herhangi bir uyarılmış hale ((1S₁*) veya (1S₂*)) 10⁻¹⁵ saniye kadar kısa bir süre içerisinde elektronik bir geçiş meydana gelmektedir. Meydana gelen bu singlet→singlet geçişi spektroskopik olarak izinli bir geçiştir. Singlet → triplet geçişi ise yasaklı bir geçiştir. Sistemin triplet uyarılmış hale geçiş yapabilmesi için ancak singlet uyarılmış halden geçiş yapması gerekmektedir.

Şekil 2.2. Enerji band modeli (Jablonski diyagramı) (Toprak, 2006).

<u>İç Dönüşüm:</u> İç dönüşüm prosesi ışımasız bir şekilde gerçekleşmektedir. Bu işlem uyarılmış enerji seviyeleri ile titreşim enerji seviyeleri arasında olabileceği gibi, sistem uyarılmış halden temel hale geçerken de gerçekleşebilir. Sistem almış olduğu uyarma enerjisini dışarıya ısı enerjisi şeklinde verdiği için sistemin sıcaklığı yerine sadece moleküllerin kinetik enerjilerinde bir artış gözlenir. Çünkü bu uyarma enerjisi sistemin sıcaklığını arttırabilecek kadar fazla değildir. İç dönüşüm olayı yaklaşık 10⁻¹² s'lik bir zamanda meydana gelir. Bu olaya izomerleşme özelliği olan veya rezonans halleri bulunan bileşikler de rastlanır.

<u>Titreşimsel Durulma:</u> Elektronik enerji seviyeleri titreşim enerji seviyelerine, bunlar da dönme enerji seviyelerine yarılmıştır. Sistem uyarıldığı zaman molekül uyarılmış enerji seviyesindeki herhangi bir titreşimsel enerji seviyesine çıkar. Temel hale dönmek için uyarılmış enerji seviyesindeki en düşük titreşim enerji seviyesine gelmek zorundadır.

Bu olay ışımasız meydana gelmekte olup sistem enerjisini etrafındaki diğer moleküllerle veya çözücü molekülleriyle çarpışarak harcar.

<u>Sistemler Arası Geçiş:</u> Singlet uyarılmış halden triplet uyarılmış hale ya da triplet uyarılmış halden singlet uyarılmış hale geçiş olayıdır. Bu olayın olabilmesi için her iki halin titreşim enerji seviyelerinin çakışması gerekmektedir.

<u>Gecikmiş Floresans:</u> Gecikmiş floresans normal floresansa göre daha uzun zamanda meydana gelir ve oluşum sekline göre kendi arasında ikiye ayrılır.

E-Türü Gecikmiş Floresans: Temel halden singlet uyarılmış hale çıkan molekül, sistemler arası geçişle triplet uyarılmış hale geçer. Ancak sistemin sıcaklığı arttırıldığında triplet uyarılmış haldeki molekül tekrar singlet uyarılmış hale geri döner. Bu durumun gözlenebilmesi için sadece sıcaklığın arttırılması değil aynı zamanda uyarılmış singlet ve triplet hallerinin titreşim enerji seviyelerinin de çakışmış olması gerekir. Bu geri dönüşümle singlet uyarılmış haldeki molekül tekrar singlet uyarılmış hale döner ve bu dönüşüm ışımalı olarak gerçekleşir. Bu olaya E-türü gecikmiş floresans denir.

P-Türü Gecikmiş Floresans: Bu tür floresansta molekül singlet uyarılmış halden sistemler arası geçişle triplet uyarılmış hale geçer. Bu geçişten sonra triplet uyarılmış haldeki moleküllerin birbirinden etkilenmesiyle enerjilerini birbirlerine aktarırlar ve triplet uyarılmış haldeki moleküllerin bazıları singlet uyarılmış hale ışımasız olarak geri dönerler. Singlet uyarılmış haldeki moleküller ise ışımalı bir biçimde temel hale dönerler. Bu olaya P-Türü gecikmiş floresans denilmektedir (Toprak, 2006).

2.3. Terim Sembolleri

Tek elektronlu atomlarda elektron orbitallere artan enerji sırasına göre yerleşir. Temel halde en düşük enerji orbitalde bulunan elektron uyarıldığında daha yüksek enerjili orbitallere geçer. Dolayısıyla tek elektronlu atomlarda atomun enerji düzeyleri orbital enerji düzeyleri ile aynıdır. Çok elektronlu atomlarda ise elektron-elektron etkileşmesinden dolayı atomun elektronik enerji düzeyi elektronların orbitallerdeki düzenlenmesine bağlıdır. Çok elektronlu atomlarda belirli bir elektron dizilişi için elektronlar orbitallerde birden fazla şekilde düzenlenebilir ve her bir düzenleme belirli enerji düzeyine karşı gelebilir. Elektronların orbitallerdeki her bir düzenlenmesi mikrohal olarak bilinir. Örneğin 1s²2s²2p¹ dizilişinde 2p alt kabuğundaki tek elektronun üç "p" orbitalinden birine yukarı veya aşağı spinli olarak yerleşmesinden kaynaklanan altı adet mikrohal vardır. 1s²2s²2p² dizilişinde ise 2p alt kabuğundaki iki elektron için onbeş düzenleme olasılığı, yani on beş adet mikrohal vardır. Çok elektronlu atomlarda elektronların farklı düzenlenmesinden kaynaklanan mikrohallerin enerjilerine göre sınıflandırılması gerekmektedir. Bazı mikrohaller eş enerjili olabilir. Mikrohallerin enerjilerine göre sınıflandırılması, elektronun orbital ve spin açısal momentumlarının etkileşimi incelenerek yapılır. Orbital ve spin açısal momentumlarının düzenlemenin enerjisini tanımlar.

Toplam açısal momentum hesaplanırken, orbital ve spin açısal momentum vektörleri kendi aralarında ayrı ayrı toplanır ve sonra bulunan toplam orbital momentum ile toplam spin momentum vektörleri birleştirilir. Açısal momentum vektörlerinin birleştirilmesinde, bu vektörleri belirleyen kuantum sayıları toplanır. Orbital açısal momentum kuvantum sayıları birleştirilerek toplam orbital açısal momentum kuvantum sayılarının alabileceği değerler (L), spin açısal momentum kuvantum sayıları birleştirilerek de toplam spin açısal momentum kuvantum sayılarının alabileceği değerler (S) bulunur. Orbital manyetik kuvantum sayısı -l, -(l-1), ..., 0, ..., +(l-1), +ldeğerlerini, spin manyetik kuvantum sayısı ise +1/2 veya -1/2 değerlerini alabilmektedir. Çok elektronlu bir atom için toplam orbital açısal momentum kuvantum sayısı, L= (l_{1+} $(l_{1+} l_{2+} l_{3+\dots} 2), \dots$ değerlerini, örneğin iki elektronlu bir $l_{2+} l_{3+\dots}$), $(l_{1+} l_{2+} l_{3+\dots} 1)$, sistem için, L= ($l_{1+} l_2$), ($l_{1+} l_2$ -1), ($l_{1+} l_2$ -2), ..., [$l_1 l_2$] değerlerini alabilir. Toplam spin açısal momentumunu veren S kuvantum sayısı ise, S= ($s_{1+} s_{2+} s_{3+\dots}$), ($s_{1+} s_{2+} s_{3+\dots}$ -1), $(s_{1+} s_{2+} s_{3+....}2), \ldots$ değerlerini alabilir. Elektron sayısının tek olması halinde "S" nin en küçük değeri ¹/₂, zıt spinli çift olması halinde de "0"dır. Toplam açısal momentum sayısı "J" ise, L ve S nin birleştirilmesi ile elde edilir. Toplam açısal momentum kuvantum sayısı, J= (L+S), (L+S-1), (L+S-2),[L-S] değerlerini alabilir.

Bulunan toplam momentumlar, elektron dizilişine ait mikrohallerin oluşturduğu atomik enerji düzeylerini tanımlar. Bu enerji düzeylerinin gösterilmesinde kullanılan simgelere "terim sembolleri" denir. Atomik enerji hallerini tanımlayan terim sembolü L, S ve J büyüklükleri cinsinden $^{2S+1}L_J$ şeklinde verilir. Terim sembolü için L= 0,1,2,3,4,.... Değerlerinin karşılığı olan S, P, D, F, G, ...harflerinden biri kullanılır. Bu harflerin küçük karşılıkları s, p, d, f, ... harfleri, bilindiği gibi atom orbitallerinin belirtilmesinde kullanılır. Terim sembolünün sol üst kısmına yazılan 2S+1 ifadesine spin çokluğu denir. Çokluk bir haldeki eş enerjili düzeylerin sayısını gösterir. Semboldeki öntakı "J" ise toplam momentum kuvantum sayısıdır. L>S olduğunda "J" için olası değerlerin sayısı 2S+1 kadardır (Tunalı ve Özkar, 2005).

2.3.1. Temel Hal Terim Sembolleri ve Terimlerin Enerjileri

Pauli ilkesine göre bir orbitalde en fazla iki elektron bulunabilir ve bu elektronların spinleri de birbirine zıt olmalıdır. Elektronların orbitallere dağılımı yapılırken Pauli ilkesine aykırı olan olasılıklar ayıklanmalıdır. Elektronların orbitallere dağılımını veren olası düzenlemelerin her birine "mikrohal" denir. Belirli bir elektron dizilişi için, mikrohallerin sayısı N!/e!(N-e)! formülü ile bulunur. Bu formülde "e" elektronların sayısını, N ise elektron için olası konumların sayısını gösterir. Bir orbitalde en fazla iki elektron olabileceğine göre, N orbital sayısının iki katına eşittir.

Bir elektron dizilişinde terim sembolleri enerji düzeylerini tanımlar. Ancak terim sembolleri enerjilerin mutlak değerini vermez; yalnızca düzeylerin enerjilerine göre bağıl sıralamasını belirtir. Bu bağıl sıralama şu kurallara göre yapılır:

- 1- Çokluğu en yüksek olan terimin enerjisi en düşüktür.
- Çokluğu aynı olan terimler arasında büyük "L" değerine sahip olan düşük enerjilidir.
- 3- Elektron dizilişinde alt kabuktaki elektronların sayısı yarı doludan fazla ise, büyük "J" değerine sahip olan terim sembolünün enerjisi düşüktür. Alt kabuktaki elektron sayısının yarı doludan az olması halinde ise küçük "J" değeri düşük enerjiyi gösterir.

Yalıtılmış serbest atom ve iyonların temel hal terim sembolleri, uzun hesaplamalara gerek kalmaksızın aşağıdaki yöntemle kolaylıkla bulunabilir.

- 1- Kısmen dolu alt kabuğun elektron dizilişi yazılır.
- 2- Bu alt kabuğun orbitalleri m_l değerleri soldan sağa azalacak şekilde sıralanır. Örneğin "d" alt kabuğu şu şekilde gösterilir: $m_{l=}$ +2 +1 0 -1 -2
- 3- Hund kuralına göre elektronlar, yüksek m_l değerinden başlanarak orbitallere yerleştirilir.
- 4- Elde edilen dizilişte çiftlenmemiş elektronların m_l değerleri toplanarak M_L ve dolayısıyla L bulunur.
- 5- Çiftlenmemiş elektronların toplam sayısı ¹/₂ ile çarpılarak, S değeri bulunur ve çokluk 2S+1 ile hesaplanır.
- 6- Alt kabuk yarıdan fazla dolu ise J=L+S, yarı doludan az ise J=L-S bağıntısı kullanılarak temel halin toplam açısal momentum sayısı bulunur. Alt kabuğun yarı dolu olması halinde L=0 olduğundan J=S dir (Tunalı ve Özkar, 2005).

2.3.2. Seçicilik Kuralları

Terim sembollerinin tanımladığı enerji düzeylerinin birinden diğerine elektron geçişi olabilir. Elektron düşük enerjili halden yüksek enerjili hale yükselirken enerji soğurulur, yüksek enerjili halden düşük enerjili hale düşerken de enerji yayılır. Soğurma ve ışınım spektrumlarında gözlenen piklerin nedeni bu geçişlerdir. Geçişlerden bazıları yasaklanmıştır. Hangi geçişlerin yasaklı, hangilerinin izinli olduğunu belirlemek için aşağıdaki seçicilik kuralları uygulanır;

- Bütün başkuvantum sayıları arasında elektronik geçişler izinlidir. (Δn= n₂-n₁=0, 1, 2, 3,...)
- 2- Toplam spinleri (S) veya spin çoklukları (2S+1) aynı olan düzeyler arasında geçişler izinlidir. (Δs=0) Çokluğu farklı olan düzeyler arasında geçişler yasaklıdır.
- 3- Toplam orbital momentum kuvantum sayıları (L) arasındaki farkın bire eşit olduğu düzeyler arasında geçiş izinlidir. ($\Delta L = \pm 1$) Farkın birden büyük veya sıfır olduğu düzeyler arasındaki geçişler yasaklıdır.

- 4- Toplam momentum kuvantum sayıları (J) aynı veya bir farklı olan düzeyler arasında geçiş izinlidir ($\Delta J=0, \pm 1$). $\Delta J=0$ olmasına rağmen J=0 düzeyleri arasındaki geçişler yasaklıdır.
- 5- Simetri merkezi olan iyon ve moleküllerde g-g ve u-u geçişleri yasaklı, g-u ve ug geçişleri izinlidir. Bu kural Laporte denklik kuralı olarak bilinir. Düzgün dörtyüzlü yapıda olduğu gibi simetri merkezi bulunmayan iyon ve moleküllerde bu kural uygulanmaz (Tunalı ve Özkar, 2005).

Şekil 2.3.'de Dieke Diyagramından nadir toprak elementlerinin izinli ve yasaklı enerji geçişleri görülmektedir.

Atom Numarası ve Sembolü

Şekil 2.3. Dieke diyagramı (Ogiegło ve ark., 2012).

2.4. Aktivatörler

Bir kristale katkılanan aktivatör atomları katkılandığı kristalde ışıma ve kusur merkezleri oluşturmasından dolayı bir takım farklılıklara sebep olur. Kısmen dolu 4fⁿ elektron kabukları arasındaki geçişler (1<n<14) sayesinde oldukça çok sayıda enerji durumunda bulunarak ışımaya neden olurlar. Nadir toprak elementleri, tamamıyla dolu 5s²5p⁶ elektron kabuklarının zırhlama (perdeleme) etkisi ile (bu etki, dış elektrik ve manyetik alanların 4f elektronları üzerine etkisini zayıflatır) eşsiz bir kombinasyona sahip elementlerdir. Aktivatörler ile katkılanmış ışıldarların ışıma kuantum verimleri, konut kristal hücresi ile etkileşimlerinin düşük olması sebebiyle yüksektir ve diğer ışıldarlarla karşılaştırıldıklarında sönüm yalnızca yüksek sıcaklıklarda veya daha yüksek derişimlerde gerçekleşir. Bu nedenle birçok uygulama için nadir toprak iyonları, yoğun bir biçimde lüminesans çalışmalarının içinde yer almaktadır. Ayrıca duyarlılığı artırıcı yardımcı aktivatör (co-activatör) olarak da kullanılmaktadır. Nadir toprak elementi iyonlarının birlikte kullanılması ile bir diğerine etkili bir enerji transferi sağlamakta mümkündür (Gschneidner ve ark., 2007).

Nadir toprak elementi iyonlarının ek kayda değer özelliği, 4f kabuklarının kısmi dolu olmasıdır. Kapalı elektron kabuğu, ksenon dağılımına 5s²5p⁶ karşılık gelir ki bu durum La³⁺ ya da Ce⁴⁺ iyonlarının spektroskopik taban seviyesidir. Devam eden iyonların elektronlarının 4f kabuğuna eklenmeleri ile Yb²⁺ ve Lu³⁺ da 14 elektron eklenmesi sonucu 4f kabuğu dolar. UV ya da VUV uyartım nadir toprak elementi iyonlarının 4f elektronlarından birini, elektronik konfigürasyonunu 4fⁿ den 4fⁿ-5d¹ durumuna değiştirerek 5d yörüngesine çıkmasını sağlayabilir. Çizelge 2.1.'de Ln³⁺ iyonlarının temel ve birinci uyarılmış elektron konfigürasyonları hakkında bilgi verilmiştir. Özellikle nadir toprak elementi serisinin orta bölümünde yer alan iyonların geniş bir spektral aralıkta ışıma sergileyebildikleri görülmektedir (Gschneidner, ve ark., 2007).

Atom No	İyon	Taban konfigürasyonu	Taban Durumu ^{2S +1} LJ	Taban konfigürasyonunda bulunan durum sayısı	Uyarılmış Konfigürasyon	Uyarılmış Konfigürasyonda bulunan durum sayısı
57	La ³⁺	4f°	${}^{1}S_{0}$	1	-	-
58	Ce ³⁺	4f ¹	² F _{5/2}	14	$5d^1$	10
59	Pr ³⁺	4f ²	³ Н4	91	$4f^1 5d^1$	231
60	Nd ³⁺	4f³	⁴ I _{9/2}	364	$4f^2 5d^1$	1274
61	Pm ³⁺	4f 4	⁵ I ₄	1001	$4f^3 5d^1$	4641
62	Sm ³⁺	4f ⁵	⁶ H _{5/2}	2002	$4f^4 5d^1$	12012
63	Eu ³⁺	4f ⁶	⁷ Fo	3003	$4f^5 5d^1$	23023
64	Gd ³⁺	4f7	⁸ S _{7/2}	3432	$4f^6 5d^1$	33462
65	Tb ³⁺	4f ⁸	${}^{7}F_{6}$	3003	$4f^7 5d^1$	37323
66	Dy ³⁺	4f 9	⁶ H _{15/2}	2002	$4f^8 5d^1$	32032
67	Ho ³⁺	4f ¹⁰	⁵ I ₈	1001	$4f^9 5d^1$	21021
68	Er ³⁺	4f11	${}^{4}I_{15/2}$	364	$4f^{10} 5d^{1}$	10374
69	Tm ³⁺	4f ¹²	${}^{3}\text{H}_{6}$	91	$4f^{11} 5d^{11}$	3731
70	Yb ³⁺	4f ¹³	${}^{2}F_{7/2}$	14	$4f^{12} 5d^1$	924
71	Lu ³⁺	4f ¹⁴	${}^{1}S_{0}$	1	$4f^{13} 5d^{1}$	141

Çizelge 2.1. Üç değerlikli nadir toprak elementi iyonlarının taban ve birinci uyarılmış durumların temel karakteristikleri (Gschneidner ve ark., 2007).

2.5. Luminesans Malzemelerin Kullanım Alanları

Fosforlar, floresan lambalarda ışık kaynağı, yüksek basınçlı civa lambaları, LED, katot ışını tüplerinde görüntüleme cihazı, ürün kodlama, güvenlik ve kaza önleme, diş hekimliği ve uzun süreli ışıldama özellikleri ile boyalarda kullanım alanı bulurlar.
2.5.1. Aydınlatmalar İçin Fosforlar

Floresan lamba elektriği kullanarak civa buharını tetikler ve ışık elde eder. Akkor lambalara kıyasla enerji verimliliği oldukça yüksektir. İç duvarı fosforesans malzeme ile kaplanmış bir cam tüp ve iki uca yerleştirilmiş elektrottan oluşmaktadır ve ilk kullanımları 1939 yılında üreticisi "General Electric" tarafından olmuştur. Lambanın elektrotlarından yayılan elektronlar, tüp içerisindeki civa ile çarpışır ve civa atomunun elektronlarını uyarır. Uyarılmış seviyelerden taban durumuna dönen civa elektronları UV ışınım yaparlar. Floresan lambanın iç yüzeyindeki fosforesans malzeme tarafından UV ışık, görünür ışığa dönüştürülür (Yen ve ark., 2006).

Şekil 2.4. Floresan tüpü iç yapısı (Yen ve ark., 2006).

2.5.2 Yüksek Basınçlı Civa Lambaları

Işığı, dolaylı ya da dolaysız olarak en çok cıva buharının ışınımı ile oluşmuş olan, yanma durumunda kısmi buhar basıncı 100.000 Pa üzerinde bulunan lamba türü yüksek basınçlı civa buharlı lambalar olarak tanımlanır. Civa lambalarında deşarj tüpü, elektrotlar, deşarj tüpünün içinde damıtılmış civa ve az miktarda asal gaz bulunmaktadır. Ayrıca ampulün içinde oluşabilecek parlamaları ve oksitlenmeyi önlemek için argon ya da argon-azot karışımı gaz bulunur. Lambanın çalıştırılmasıyla birlikte ana ve yardımcı elektrotlar arasındaki gaz iyonize olmaya başlar ve tüp içindeki

gazın direncinin düşmesiyle deşarj başlar. Lambanın dış çeperini oluşturan koruyucu dış ampul soda-kireç ya da bor-silikat camdan imal edilir. Ayrıca yüksek basınçlı civa buharlı lambanın ışık tayfı belli dalga boylarında yoğunlaşmış (sarı, yeşil, mavi ve mor) ve kırmızı ışığın üretilmediği bir yapıdadır. Bu yüzden lambanın renksel geri verimini düşürmek için dış ampulün iç kısmı fosfor tabakasıyla kaplanır (Yen ve ark., 2006).

Şekil 2.5. Yüksek basınçlı civa lambası (Yen ve ark., 2006).

2.5.3 Işık Saçan Diyotlar

Light emitting diode kısaca LED olarak tanınan yarı iletken teknolojisine dayalı ışık saçan elektronik malzemelerdir. Doğru yönde ve istenen voltaj uygulandığında p/n ekleminde elektronların boşluklara doğru hareketiyle açığa çıkan enerjinin kimyasallar etkisiyle foton adı verilen ışık kaynağına dönüşmesi söz konusudur. LED'ler görünür bölgede dar aralıkta ışık üretir. Beyaz LED aydınlatmalar, floresans ve fosforesans malzemeler birlikte kullanılarak elde edilir.

LED'lerin yaydığı ışık, LED çipi içerisindeki yarı iletken katkı maddeleri ile ilgilidir. LED'in hangi renkte ışık yayması isteniyorsa galyum, arsenit, alüminyum, fosfat, indiyum, nitrit gibi kimyasal malzemelerden uygun oranda yarı iletken malzemeye katkı yapılır (GaAIAs, GaAs, GaAsP, GaP, InGaAIP, SiC, GaN) (Yen ve ark., 2006).

2.5.4 Katot Işınlı Tüp

Katot ışını tüpü, elektronik devre sistemleriyle görüntü veren bir aygıttır ve televizyon alıcıları, radar ekranları ve osiloskop gibi aletlerde kullanılır. Katot ışını tüpü, havası boşaltılmış iki cam tüpten oluşmaktadır. Cam tüpün bir yüzüne, ekran görevi yapmasını sağlayacak bir biçim verilmiştir ve iç tarafı fosforesans özelliği olan malzeme ile kaplanmıştır. Tüpün diğer ucunda elektron tabancası bulunmaktadır. Elektron demeti, elektron tabancası sayesinde odaklanır. Ekrandaki fosforesans malzemeye çarpan elektronlar bu maddedeki atomları uyararak, ışıldamaya sebep olur. Ekrandaki parıldamalar sayesinde görüntü oluşur (Yen ve ark., 2006).

Şekil 2.6. Katot ışınlı tüp (Yen ve ark., 2006).

2.5.5. Optoelektronik Görüntü Dönüştürücü

Görüntü dönüştürücü, ilk olarak bir elektronun görüntüsünü insan gözünün görebileceği görüntüye dönüştürür. Görüntü dönüştürücü mor ötesi, kızıl ötesi ve x-ışını bölgelerinde insanın görmesine yardımcı olur (Takayuki ve ark., 2002). Bir nesneden yayılan ışık fotokatottan elektron koparır. Açığa çıkan elektronlar elektron-optik bir sistemde hızlandırılır ve ışıldar ekrana odaklanırlar. Burada elde edilen görüntü göz, kamera veya film ile incelenebilir. Sistemin kalitesi, kullanılan ışıldar maddeye bağlıdır. 6–20 keV

elektronlarla uyarılan ışıldar madde, yüksek kuantum verimine sahiptir ve fotokatotun üretimi esnasında oluşan alkali buharına ve bombardımanına karşı dayanıklıdır. Görüntü dönüştürücülerde kullanılan önemli ışıldar maddeler (Zn, Cd)S:Ag⁺, ZnS:Cu⁺, ZnSiO₄:Mn²⁺, GdO₂S:Tb³⁺ ve ZnS:Ag⁺, dır.

2.5.6. Ürün Kodlama

Işıldar maddeler büyük ölçekte üretilmiş ürünlerin veya market değeri olan ürünlerin kodlanması için yoğun olarak kullanılmaktadır. Büyük ölçekte üretilmiş ürünler için, belirli türleri ayırmak veya daha sonra kontrol etmek amacıyla kullanılır ve markalı ürünlerin kodlanmasıyla korsan üretilmiş taklitlerin hızlı bir şekilde tanınmasına olanak sağlar.

Şirket amblemlerinin sayıların oluşumunda ışıldar maddeler şeffaf mürekkep kullanılarak uygulanır. Paketleme kağıdı veya floresans etiketler için kullanılan floresans fiberler kodlamanın daha ileri bir şeklidir. Uzun dalga boylu UV ışığı altında kolayca tanımlanabilen ve dar band ışıması yapan ışıldarlar tercih edilirler. Beyaz renkli bileşikler olan çinko sülfür, çinko kadmiyum sülfür ve toprak alkali bileşikleri kullanılır.

Kağıt hamuruna eklenmiş veya yüzeye ince film olarak kaplanmış (1–2 g/m²) ışıldarlar kolaylıkla tespit edilebilen güçlü sinyaller verir. Çekler, çek kartları, pasaportlar, kimlik kartları, hediye kartları, piyango biletleri, sezon biletleri, paralar, görünmez güvenlik işaretlerinde ışıldar maddelerle kodlama yaygın olarak kullanılır. Bu tip kodlama ile kopyalamaya karşı pasif bir koruma sağlanır (Emen, 2009).

2.5.7. Güvenlik ve Kaza Önleme

Uzun süreli ışıma yapan inorganik ışıldar maddeler, tehlikeli alanlar, acil çıkış yolları ve elektrik şalterlerinde mutlaka bulunmak zorundadır. Bakır katkılanmış çinko sülfürler güvenlik amacıyla en çok kullanılan ışıldar maddelerdir. Gün ışığı ve yapay ışık ile uyarılabilen bileşiklerin spektrumları gözün spektral duyarlılığına uygundur ve

uyarmadan sonra 30 saat kadar daha ışımaya devam eder. Bu pigmentler ışıma yapan boyalarda, plastiklerde, seramiklerde kullanılmaktadır.(Emen, 2009).

2.5.8. Diş Hekimliği

Uzun dalga boylu UV ışığı altında doğal dişler mavi-beyaz ışıma yapar. Bu ışıldama kollajen içerisindeki bazı bileşenlerin doğal yapısından dolayı meydana gelmektedir. Yapay dişler hazırlanırken seramik hamuru içerisine ışıldar maddeler de ilave edilerek daha doğal bir görünüm sağlanır. Başlangıçta uranil tuzları kullanılırken bu tuzların radyoaktif etkisinden dolayı daha sonraları eser element (Cu, Fe, Cr, Mg, Zn, Sn, Ni, Mo, Co, Si) tuzlarının aktivatör olarak kullanıldığı ışıldar maddelerle çalışılmaya başlanmıştır. Seramik prosesinde, seramik hamuru ısıtılarak hazırlandığı için ışıldamanın şiddeti ve spektrumu kontrol edilememiştir. Daha sonra seramik hamurunda kullanılan yöntem geliştirilmiş ve uzun dalga boylu mavi-beyaz ışıma yapan yapay dişler elde edilmiştir. En iyi sonuçları seryum, terbiyum ve mangan katkılanmış ytriyum silikat bileşikleri vermiştir [(Y_{0.937}Ce_{0.021}Tb_{0.033}Mn_{0.009})SiO₅] (Emen, 2009).

2.6. Şelit Yapıdaki MLn₂(MoO₄)₄ Kristali

 $MLn_2(MoO_4)_4$, $(M:M^{2+})$ tipindeki kristal yapılara ilk örnek $CaEu_2(MoO_4)_4$ kristalidir. Bu gibi kristal yapılar, uzayda tetragonal birimlerin (3+2) boyutlu olarak modellenebildiği kristallerdir. Bu yapı MoO₄ tetrahedronları ve (A)O₈ kare antiprizmalarından meydana gelmiştir. Burada A:Ca²⁺, Eu³⁺, Yb³⁺, Ho³⁺ iyonları ya da boşluk olabilmektedir. MoO₄ tetrahedronunda molibden atomu merkezde olmak üzere 4 oksijen ile çevrelenirken, (A)O₈ kare antiprizmada merkezde Ca²⁺, Eu³⁺, Yb³⁺, Ho³⁺ gibi bir atom bulunurken onu çevreleyen 8 oksijen atomu bulunmaktadır. Yapıya yerleşebilecek lantanit grubu iyonların yarıçaplarının benzerliği sayesinde bu iyonlar kristal kafes içerisine etkin bir şekilde katkılanabilirler (Abakumov ve ark., 2014).

Şekil 2.7. CaLa₂(MoO₄)₄:Yb³⁺/Ho³⁺ kristalinin şematik gösterimi

3. MATERYAL VE METOD

3.1.Materyal

3.1.1. Baryum karbonat (BaCO₃)

% 99,00 saflıkta ve beyaz renkte bulunan katı haldeki kristal, Merck firmasının ürünü olup, molekül ağırlığı 197,3359 g/mol, erime noktası 811 °C, kaynama noktası 1450 °C, yoğunluğu 4,286 g/cm³ dür.

3.1.2. Kalsiyum karbonat (CaCO₃)

% 99,90 saflıkta ve beyaz renkte bulunan katı haldeki kristal Merck firmasının ürünü olup, molekül ağırlığı 100,0869 g/mol, erime noktası 1339 °C, yoğunluğu 2,75 g/cm³ dür.

3.1.3. Stronsiyum karbonat (SrCO₃)

% 99,00 saflıkta ve beyaz renkte bulunan katı haldeki kristal Merck firmasının ürünü olup, molekül ağırlığı 147,6289 g/mol, erime noktası 1494 °C, yoğunluğu 3,74 g/cm³ dür.

3.1.4. Lantan (III) oksit (La₂O₃)

% 99,99 saflıkta ve beyaz renkte bulunan katı haldeki kristal Merck firmasının ürünü olup, molekül ağırlığı 325,809 g/mol, erime noktası 2315 °C, kaynama noktası 4200 °C yoğunluğu 6,51 g/cm³ dür.

3.1.5. Gadolinyum (III) oksit (Gd₂O₃)

% 99,99 saflıkta ve beyaz renkte bulunan katı haldeki kristal Merck firmasının ürünü olup, molekül ağırlığı 362,498 g/mol, erime noktası 2420 °C, yoğunluğu 7,407 g/cm³ dür.

3.1.6. Europium (III) oksit (Eu₂O₃)

% 99,99 saflıkta ve beyaz renkte bulunan katı haldeki kristal Merck firmasının ürünü olup, molekül ağırlığı 351,926 g/mol, erime noktası 2350 °C, yoğunluğu 7,40 g/cm³ dür.

3.1.7. Disporsiyum (III) oksit (Dy₂O₃)

% 99,99 saflıkta ve beyaz renkte bulunan katı haldeki kristal Merck firmasının ürünü olup, molekül ağırlığı 372,998 g/mol, erime noktası 2408 °C, yoğunluğu 7,80 g/cm³ dür.

3.1.8. Yitriyum (III) oksit (Y₂O₃)

% 99,99 saflıkta ve beyaz renkte bulunan katı haldeki kristal Merck firmasının ürünü olup, molekül ağırlığı 225,81 g/mol, erime noktası 2690 °C, kaynama noktası 4300 °C yoğunluğu 5,03 g/cm³ dür.

3.1.9. Samaryum (III) oksit (Sm₂O₃)

% 99,99 saflıkta ve soluk sarı renkte bulunan katı haldeki kristal Merck firmasının ürünü olup, molekül ağırlığı 348,718 g/mol, erime noktası 2335 °C, yoğunluğu 7,60 g/cm³ dür.

3.1.10. Erbiyum (III) oksit (Er₂O₃)

% 99,99 saflıkta ve pembe renkte bulunan katı haldeki kristal Merck firmasının ürünü olup, molekül ağırlığı 382,518 g/mol, erime noktası 2418 °C, yoğunluğu 8,64 g/cm³ dür.

3.1.11. Molibdenyum (III) oksit (MoO₃)

% 99,90 saflıkta ve soluk yeşil renkte bulunan katı haldeki kristal Merck firmasının ürünü olup, molekül ağırlığı 143,938 g/mol, erime noktası 801 °C, kaynama noktası 1155 °C yoğunluğu 4,70 g/cm³ dür.

3.2. Kullanılan Cihazlar

3.2.1. Fırın

Katı hal reaksiyonlarını gerçekleştirmek amacıyla KMÜ Mühendislik Fakültesi Metalurji ve Malzeme Mühendisliği Bölümünde yer alan 1800 °C sıcaklığa kadar ulaşabilen Protherm Furnaces Marka ve 1500 °C sıcaklığa kadar ulaşabilen Protherm Furnaces Marka kül fırınları kullanıldı. Kül fırınlarının sıcaklık sapması ± 1 °C'dir.

3.2.2. X-Işını Toz Difraktometresi (XRD)

Kristal sistemi ve birim hücre parametrelerini belirlemek amacıyla KMÜ Merkezi Araştırma Laboratuvarında yer alan BRUKER marka AXD D8 ADVANCE model XRD cihazı kullanıldı. CuK α tüpü içeren cihaz 2 θ = 10°-90° ve 0,002°C/s tarama adımında çalışmaktadır.

3.2.3. Diferansiyel Termal Analiz (DTA) ve Termal Gravimetri (TG)

Işıldar maddelerin termal davranışlarının ve sentez şartlarının belirlenebilmesi amacıyla KMÜ Merkezi Araştırma Laboratuvarında yer alan S II EXSTAR 630 marka 12 A, 100 V, 50 HZ özelliklerinde bulunan TG/DTA/DTG cihazı kullanılmıştır. Ölçümler azot gazı atmosferi altında, dakikada 10 °C ısıtma hızıyla gerçekleştirilmiştir.

3.2.4. Fotoluminesans Spektrofotometresi (PL)

Işıldar maddelerin uyarma ve ışıma özellikleri ve ışıma sürelerinin belirlenebilmesi amacıyla KMÜ Mühendislik Fakültesi Metalurji ve Malzeme Mühendisliği Bölümünde yer alan PTI (Photon Technology International) Quanta Master 30 Phosphorescence/Fluorescence Spectrofluorometer Marka fotoluminesans spektrofotometresi kullanılmıştır. Ksenon kaynaklı cihaz 200-900 nm aralığında ölçüm yapabilmektedir.

3.2.5. Analitik Terazi

Maddelerin stokiyometrik olarak hazırlanabilmesi amacıyla KMÜ Mühendislik Fakültesi Metalurji ve Malzeme Mühendisliği Bölümünde yer alan Precisa Marka XB 220 A model, maksimum 220 g, minimum 0,01 gr tartım yapılabilen, \pm 0,0001 g hassasiyete sahip terazi kullanılmıştır.

3.2.6. Taramalı Elektron Mikroskop (SEM)

Sentezlenen kristal sistemlerin yüzey incelemeleri ve EDX analizleri Erciyes Üniversitesi Teknoloji Araştırma ve Geliştirme Merkezinde bulunan LEO marka LEO 440 model cihazla yapıldı. Cihaz 5x-300.000x arası büyütme kapasitesine, (X= 100 mm, Y= 120 mm, Z= 60 mm, Tilt= 0-90°, Dönme= 360°) ile çalışmaktadır.

3.3. Metot

Bu çalışmada malzemeler klasik katı hal sentez yöntemi ile sentezlenmiştir.

3.3.1. Takip Edilen Sistematik

0.01 mol Eu³⁺ ve 0.01 mol Dy³⁺ katkılı Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄ sisteminin oluşumu için; 0.5 mol BaCO₃, 0.5 mol CaCO₃, 1 mol Gd₂O₃, 4 mol MoO₃, 0.005 mol Eu₂O₃ ve 0.005 Dy₂O₃ bileşiklerinin tozlarından uygun stokiyometrik oranlarda hassas terazide tartılarak karıştırılan 5 gram ışıldar madde karışımı agat havanda yaklaşık 2 saat öğütüldü. Öğütülen karışım katı hal yöntemi ile aşağıda belirtilen tepkime gerçekleştirilerek Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄: 0.01 Eu³⁺, 0.01 Dy³⁺ bileşiği sentezlenmiştir.

$$\frac{1}{2}$$
 CaCO₃ + $\frac{1}{2}$ BaCO₃ + Gd₂O₃ + 4MoO₃ $\xrightarrow{\Delta}$ Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄ + CO₂

Diğer karışımlar ise Çizelge 3.1.'de verilen miktarlarda başlangıç maddeleri alınarak yukarıdaki şekilde hazırlanmış olup ilgili katı hal tepkimesi ise yukarıdaki tepkimeye uygun yürümektedir.

Işıldar Sistem	BaCO ₃ (gram)	CaCO ₃ (gram)	MoO ₃ (gram)	Gd ₂ O ₃ (gram)		Aktivatör Eu ₂ O ₃ (gram)	Yardımcı Aktivatör Dy ₂ O ₃ (gram)
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4:$ 0.01 mol Eu ³⁺ 0.01 mol Dy ³⁺	0.4562	0.2293	2.6383	1.6596		0.0081	0.0085
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4: \\ 0.03 \text{ mol Eu}^{3+}0.01 \text{ mol Dy}^{3+}$	0.4548	0.2286	2.6298	1.6543		0.0241	0.0085
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$: 0.05 mol Eu ³⁺ 0.01 mol Dy ³⁺	0.4533	0.2278	2.6214	1.649		0.04	0.0085
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4:$ 0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	0.4497	0.226	2.6006	1.6359		0.0794	0.0084
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$: 0.1 mol Eu ³⁺	0.4505	0.2264	2.6049	1.6386		0.0795	
Işıldar Sistem	BaCO ₃ (gram)	CaCO ₃ (gram)	MoO ₃ (gram)		La ₂ O ₃ (gram)	Aktivatör Eu ₂ O ₃ (gram)	Yardımcı Aktivatör Dy ₂ O ₃ (gram)
$Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:$ 0.01 mol Eu ³⁺ 0.01 mol Dy ³⁺	0.4721	0.2373	2.73		1.5435	0.0083	0.0088
$Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:$ 0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺	0.4705	0.2365	2.7209		1.5383	0.0249	0.0088
$Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:$ 0.05 mol Eu ³⁺ 0.01 mol Dy ³⁺	0.469	0.2357	2.7119		1.5332	0.0414	0.0088
$Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:$ 0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	0.4651	0.2338	2.6896		1.5206	0.0821	0.0087
Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ : 0.01 mol Eu ³⁺	0.4729	0.2377	2.7348		1.5462	0.0084	

Çizelge 3.1. Katı karışımlardaki başlangıç maddelerinin miktarları

Işıldar Sistem	CaCO ₃ (gram)	SrCO ₃ (gram)	MoO ₃ (gram)		La ₂ O ₃ (gram)	Aktivatör Eu ₂ O ₃ (gram)	Yardımcı Aktivatör Dy ₂ O ₃ (gram)
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4: \\ 0.01 \text{ mol } Eu^{3+}0.01 \text{ mol } Dy^{3+}$	0.2431	0.3618	2.7965		1.5811	0.0085	0.0091
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4: \\ 0.03 \text{ mol } Eu^{3+}0.01 \text{ mol } Dy^{3+}$	0.2422	0.3606	2.787		1.5757	0.0255	0.009
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4: \\ 0.05 \text{ mol } Eu^{3+}0.01 \text{ mol } Dy^{3+}$	0.2414	0.3593	2.7775		1.5703	0.0424	0.009
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: 0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	0.2394	0.3563	2.7542		1.5571	0.0841	0.0089
Sr _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ : 0.01 mol Eu ³⁺	0.2435	0.3624	2.8016		1.5839	0.0086	
Isıldar Sistem	CaCO ₃	SrCO ₂	MoO ₃	Y ₂ O ₃		Aktivatör Eu ₂ O ₃	Yardımcı Aktivatör
	(gram)	(gram)	(gram)	(gram)		(gram)	Dy ₂ O ₃ (gram)
$Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: 0.01 mol Eu ³⁺ 0.01 mol Dy ³⁺	(gram) 0.2692	(gram)	(gram) 3.0971	(gram)		(gram) 0.0095	Dy ₂ O ₃ (gram) 0.0100
$\frac{Sr_{0.5}Ca_{0.5}Y_{2}(MoO_{4})_{4}:}{0.01 \text{ mol }Eu^{3+}0.01 \text{ mol }Dy^{3+}}$ $\frac{Sr_{0.5}Ca_{0.5}Y_{2}(MoO_{4})_{4}:}{0.03 \text{ mol }Eu^{3+}0.01 \text{ mol }Dy^{3+}}$	(gram) 0.2692 0.2682	(gram) 0.4007 0.3992	(gram) 3.0971 3.0854	(gram) 1.2136 1.2090		(gram) 0.0095 0.0283	Dy ₂ O ₃ (gram) 0.0100 0.0100
$Sr_{0.5}Ca_{0.5}Y_{2}(MoO_{4})_{4}:$ 0.01 mol Eu ³⁺ 0.01 mol Dy ³⁺ $Sr_{0.5}Ca_{0.5}Y_{2}(MoO_{4})_{4}:$ 0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺ $Sr_{0.5}Ca_{0.5}Y_{2}(MoO_{4})_{4}:$ 0.05 mol Eu ³⁺ 0.01 mol Dy ³⁺	(gram) 0.2692 0.2682 0.2672	(gram) 0.4007 0.3992 0.3977	(gram) 3.0971 3.0854 3.0738	(gram) 1.2136 1.2090 1.2045		(gram) 0.0095 0.0283 0.0469	Dy ₂ O ₃ (gram) 0.0100 0.0100 0.0099
$Sr_{0.5}Ca_{0.5}Y_{2}(MoO_{4})_{4}:$ 0.01 mol Eu ³⁺ 0.01 mol Dy ³⁺ $Sr_{0.5}Ca_{0.5}Y_{2}(MoO_{4})_{4}:$ 0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺ $Sr_{0.5}Ca_{0.5}Y_{2}(MoO_{4})_{4}:$ 0.05 mol Eu ³⁺ 0.01 mol Dy ³⁺ $Sr_{0.5}Ca_{0.5}Y_{2}(MoO_{4})_{4}:$ 0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	(gram) 0.2692 0.2682 0.2672 0.2647	(gram) 0.4007 0.3992 0.3977 0.3940	(gram) 3.0971 3.0854 3.0738 3.0452	(gram) 1.2136 1.2090 1.2045 1.1933		(gram) 0.0095 0.0283 0.0469 0.0930	Dy ₂ O ₃ (gram) 0.0100 0.0100 0.0099 0.0099

Çizelge 3.1(Devam).Katı karışımlardaki başlangıç maddelerinin miktarları

Hazırlanan katı karışımların, DTA/TG/DTG sistemi ile oda sıcaklığından 1100°C ve 1200°C' ye kadar 200 ml/dak akış hızındaki azot gazı atmosferinde ve 10 °C / dak ısıtma hızı ile termal davranışları incelendi.

Hazırlanan katı karışımlardan, Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄ ışıldar sistemlerine önceden sabit tartıma getirilen porselen kayıklar içerisinde, açık atmosfere sahip kül fırınında 700 °C sıcaklıkta 8 saat, Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄ ışıldar sistemlerine 650 °C' de 10 saat, Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄ ışıldar sistemlerine 700 °C' de 6 saat, Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄ ışıldar sistemlerine 700 °C' de 6 saat ön ısıl işlem uygulanmıştır.

Ön ısıl işlemden sonra agat havanda tekrar öğütülen karışımlardan 850 °C sistemlerine sıcaklıkta $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$ ışıldar 12 saat, Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄ ışıldar sistemlerine 850 °C sıcaklıkta 10 saat ısıl işlem uygulandı. sistemlerine 860 °C sıcaklıkta 8 $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$ ışıldar saat ve Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄ ışıldar sistemlerine 850 °C sıcaklıkta 10 saat kül fırınında ısıl işlem uygulandı. Her bir ısıl işlem öncesinde ve sonrasında kütle değişimini kontrol etmek amacı ile tartım yapıldı.

Her bir ısıl işlem sonrasında agat havanda öğütülen karışımların $2\theta = 10^{\circ} - 90^{\circ}$ tarama açısı ve 0.002 adım aralığında XRD toz desenleri kaydedildi. XRD Evaluation paket programıyla maddelere ait her bir toz deseni incelendi ve kristal sistemi, birim hücre parametreleri (a, b, c, α , β , γ , V), Miller indisleri (h, k, l) ve düzlemler arası uzaklık (d) değerleri belirlendi.

Tüm sistemlerin taramalı elektron mikroskop ile yüzey incelemeleri ve elementel analizleri, luminesans spektrofotometresi ile de ışıma özellikleri araştırıldı.

4. BULGULAR

4.1. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄: Eu³⁺, Dy³⁺ Işıldar Sistemlerinin İncelenmesi

 $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$:0.01 mol Eu^{3+} , 0.01 mol Dy^{3+} ışıldar maddesinin sentezinde kullanılan $BaCO_3$, $CaCO_3$, Gd_2O_3 , MoO_3 , Eu_2O_3 ve Dy_2O_3 başlangıç maddelerinden oluşan toz karışımın yapılan termal analiz sonucu Şekil 4.1.'de termogramda görülmektedir.

Şekil 4.1. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.01 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA-DTG termogramı

Termogramda, TG eğrisinden görüleceği üzere toplamda % 4.0 oranında kütle kaybı gerçekleştiği görülmektedir. İlk kütle kaybının TG eğrisinde 372-569 °C sıcaklık aralığında kütlece % 2.0 oranında gerçekleştiği, DTG eğrisinden 491 °C' de maksimum hıza ulaştığı görülmektedir. Bu kütle kaybı, CaCO₃'ın CaO ve CO₂'e bozunmasına ilişkin (1) numaralı tepkime sonucunda açığa çıkan CO₂ gazı çıkışı nedeniyle meydana gelmektedir. Teorik olarak yapılan hesaplamalar sonucunda da CO₂ gazı çıkışı nedeniyle kütlece % 2.016 civarında bir kütle kaybının meydana gelmesi gerektiği tespit edilmiş olup, bu hesaplamalar deneysel olarak bulunan kütle kaybı ile uyumludur.

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$
 (1)

TG eğrisinde ikinci kütle kaybının 569-665 °C sıcaklık aralığında % 2.0 oranında gerçekleştiği, DTG eğrisinden 629 °C' de maksimum hıza ulaştığı görülmektedir. Bu kütle kaybının, BaCO₃'ın bozunmasına ilişkin (2) numaralı tepkime gereği açığa çıkan CO₂ gazı çıkışı nedeniyle meydana geldiği anlaşılmaktadır. Teorik olarak yapılan hesaplamalar sonucunda da CO₂ gazı çıkışı nedeniyle kütlece % 2.034 civarında bir kütle kaybının meydana gelmesi gerektiği tespit edilmiş olup, bu değer deneysel bulgular ile uyum içerisindedir. DTA eğrisinden, 1064 °C' de elde edilen endotermik bir pik ile numune erimektedir. Erime esnasında köpürmeden meydana gelen dengesizlikden ötürü TG eğrisinde düzensiz kütle artışı ve azalışı görülmektedir.

$$BaCO_3 \xrightarrow{\Delta} BaO + CO_2$$
 (2)

Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:Eu³⁺, Dy³⁺ sistemlerine ait DTA/TG/DTG termal analiz verileri Çizelge 4.1. ve Şekil 4.1-4.5.'deki termogramlarda verilmiştir. Görüleceği üzere, 1. kütle kaybının CaCO₃'ın bozunmasına ilişkin (1) numaralı tepkime sonucunda 2. kütle kaybının BaCO₃'ın bozunmasına ilişkin (2) numaralı tepkime sonucunda meydana geldiği ve Şekil 4.1. ile benzerlik gösterdiği görülmektedir.

Şekil 4.2. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.03 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA-DTG termogramı

Şekil 4.3. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.05 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA-DTG termogramı

Şekil 4.4. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.1 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA-DTG termogramı

Şekil 4.5. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.1 mol Eu³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA-DTG termogramı

Çizelge 4.1. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄ ışıldar sistemlerin termal analiz verileri

Işıldar Sistemler	Toplam Kütle Kaybı (%)	1. Kütle Kaybı (%)	2. Kütle Kaybı (%)	Erime Sıcaklığı (°C)
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$ 0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺	4	% 2 (367 ° C - 561 °C) (Max. Hız: 493 °C)	% 2 (561 ° C - 665 °C) (Max. Hız:627 °C)	1061
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4 \\ 0.05 \ mol \ Eu^{3+} \ 0.01 \ mol \ Dy^{3+}$	4	% 2 (357 ° C - 562 °C) (Max. Hız: 495 °C)	% 2 (562 ° C - 656 °C) (Max. Hız:626 °C)	1063
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4 \\ 0.1 \text{ mol } Eu^{3+} 0.01 \text{ mol } Dy^{3+}$	4	% 2 (372 ° C - 551 °C) (Max. Hız: 495 °C)	% 2 (551 ° C - 675 °C) (Max. Hız:625 °C)	1066
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$ 0.1 mol Eu ³⁺	4	% 2 (353 ° C - 571 °C) (Max. Hız: 490 °C)	% 2 (571 ° C - 676 °C) (Max. Hız:623 °C)	1064

DTA/TG/DTG eğrilerinden elde edilen bilgilere göre ışıldar sistemlerde 675 °C'den sonra herhangi bir kütle değişimi gözlenmemiş bu nedenle CaCO₃ ve BaCO₃ bileşiklerinin oksitlerine bozunması amacıyla 700 °C'de 8 saat ön ısıl işlem uygulanmasının daha uygun olacağı tespit edilmiştir. Ön ısıl işlem öncesi ve sonrası tartımı yapılan ışıldar maddelerin kütlece % 4.0 oranında bir kayba uğradığı tespit edilmiş, bu durumun Şekil 4.1-4.5.'de verilen DTA/TG/DTG analizleri ile uyumlu olduğu görülmüştür.

Ön ısıl işlem uygulanan ışıldar sistemlere 2 saat mekanik ögütme uygulandıktan sonra katı hal tepkimelerini gerçekleştirmek amacıyla kül fırında 850 °C' de 12 saat ısıl işlem uygulanmıştır. Işıl işlem öncesi ve sonrası tartım yapılan ışıldar maddeler de kütlece herhangi bir kayıp görülmemiş olup, kristal yapılarının ve birim hücre parametrelerinin belirlenebilmesi amacıyla agat havanda 2 saat öğütülen malzemenin X-Işını Toz Difraktometresi (XRD) analizi yapılmıştır.

850 °C'de 12 saat ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄: ışıldar sistemlerinin toz desenleri Şekil 4.6.'da verilmiştir.

Şekil 4.6. 850 °C' de 12 saat ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄: Eu³⁺, Dy³⁺ ışıldar sistemlerinin x-ışını toz difraksiyon desenleri

Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄ kristallerinin toz deseni JCPDS: 00-036-0192 kart numarası ile uyumlu olup tek fazlıdır. Konut kristal malzeme temel alınarak, XRD verileri yardımıyla kristal yapı parametreleri hesaplanmıştır. Monoklinik yapıdaki ışıldar sistemler için hesaplanan birim hücre parametreleri a=526.3 pm, b=1939.0 pm, c=1267.7 pm, α =90°, β =90°, γ =91.399°, V=1293.30x10⁶ pm³ olarak bulunmuştur. Kristal sistemlere ait x-ışını toz difraksiyon verileri Ek 5-9'da verilmiştir.

Uygulanan 850 °C'de 12 saat ısıl işlem sonucunda, $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$ ışıldar sistemlerinin SEM ile yüzey analizleri yapıldı ve sistemleri oluşturan taneciklerin 20.000 kat büyütülmüş görüntüsü kaydedildi. $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4:Eu^{3+},Dy^{3+}$ sistemlerinin 20.000 büyütülmüş görüntüsü Şekil 4.7.-4.11.'de, EDX analizleri ise Şekil 4.12.-4.16.'da görülmektedir. $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4:Eu^{3+},Dy^{3+}$ sistemlerinin EDX analizi verileri Çizelge 4.2.'de verilmektedir. EDX analizine göre yapıda safsızlık elementlerinin bulunmadığı görülmektedir. SEM görüntülerine göre tanecik boyutlarının 0.1-4 µm civarında olduğu, taneciklerin homojen olarak dağıldığı görülmektedir.

Şekil 4.7. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.01 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.8. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.03 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.9. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.05 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.10. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.1 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.11. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.1 mol Eu³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.15. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.1 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin EDX analizi

Şekil 4.16. Ba $_{0.5}$ Ca $_{0.5}$ Gd $_2$ (MoO $_4$) $_4$:0.1 mol Eu³⁺ ışıldar sisteminin EDX analizi

		Ba	Ca	Gd	Мо	0	Eu	Dy
Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ :	Teorik %	6.56	1.92	30.06	36.68	24.47	0.15	0.16
$0.01 \text{ mol } Eu^{3^+} 0.01 \text{ mol } Dy^{3^+}$	Deneysel %	9.24	0.56	32.50	30.98	26.51	0.05	0.16
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$:	Teorik %	6.54	1.91	29.98	36.58	24.40	0.43	0.16
$0.03 \text{ mol Eu}^{3^+} 0.01 \text{ mol Dy}^{3^+}$	Deneysel %	8.22	1.98	32.91	31.71	24.62	0.40	0.16
Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ :	Teorik %	6.53	1.90	29.90	36.47	24.33	0.72	0.15
$0.05 \text{ mol Eu}^{3^+} 0.01 \text{ mol Dy}^{3^+}$	Deneysel %	8.43	0.93	35.67	30.61	24.06	0.25	0.05
Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄ :	Teorik %	6.48	1.89	29.68	36.21	24.16	1.43	0.15
$0.1 \text{ mol Eu}^{3^+} 0.01 \text{ mol Dy}^{3^+}$	Deneysel %	8.43	1.18	39.15	26.40	22.76	1.68	0.40
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$:	Teorik %	6.49	1.89	29.72	36.27	24.19	1.44	*
0.1 mol Eu ³⁺	Deneysel %	11.22	0.80	40.55	25.96	20.30	1.17	*

 $\label{eq:cizelge 4.2.} \ Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4: Eu^{3^+}, Dy^{3^+} \\ i \\ sitemlerinin EDX \ analiz \ verilerinin EDX \$

*Yardımcı aktivatör olarak Dy³⁺ iyonları katkılanmamıştır.

Eu³⁺ ve Dy³⁺ iyonları katkılı Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄ ışıldar sistemlerinin ışıma özellikleri ve ışıma süreleri, 200 nm ile 900 nm arasında değişen dalga boyu aralığındaki fotoluminesans spektrofotometresi ile analiz edilmiştir. Işıldar sistemlerin 290 nm'de Eu³⁺ iyonlarının yük transferinden kaynaklanan ve Eu³⁺ iyonlarının 389 nm'de ⁷F₀→⁵L₆ geçişinden kaynaklanan iki adet uyarma bandı tespit edilmiştir. Bu uyarmalar neticesinde Eu³⁺ iyonlarının karakteristik ⁵D₀→⁷F_j (J=2, 3 ve 4) geçişlerinden kaynaklanan 619 nm'de turuncu, 652 nm'de kırmızı ve 706 nm dalga boyunda spektrumun baskın kırmızı bölgesine karşılık gelen üç adet ışıma bandı gözlenmiştir (Jinsheng ve ark., 2013). Yardımcı aktivatör olarak katkılanan Dy³⁺ iyonunun karakteristik ışıma bandlarına rastlanmamıştır. Farklı oranlarda katkılanan Eu³⁺ iyonlarının ışıldar sistemlerin uyarma ve ışıma şiddetlerine olan etkisi Şekil 4.17.'de ışıma sürelerine olan etkisi ise Şekil 4.18.'de görülmektedir. Işıldar sistemlerin ışıma süreleri, Eşitlik 4.1. kullanılarak hesaplanmış ve Çizelge 4.3.'da verilmiştir.

 $I = A_1 exp(-t/\tau_1) + C$

(4.1.)

I:1șıma șiddeti, A₁, C: sabit, t: zaman ve τ_1 : 1sıma süresidir.

Cizelge 4.3. $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$: Eu^{3+} , Dy^{3+} ışıldar sistemlerinin ışıma süreleri

Işıldar Sistem	Aktivatör Madde ve Katkı Oranı	Yardımcı Aktivatör Madde ve Katkı Oranı	Işıma Süreleri
	0.01 mol Eu ³⁺	0.01 mol Dy ³⁺	125.8 μs
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$	0.03 mol Eu ³⁺	0.01 mol Dy ³⁺	459.6 μs
	0.05 mol Eu ³⁺	0.01 mol Dy ³⁺	4.722 μs
	0.1 mol Eu ³⁺	0.01 mol Dy ³⁺	533.7 μs
	0.1 mol Eu ³⁺		4.359 μs

Şekil 4.17. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin uyarma ve ışıma spektrumları

Şekil 4.18. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin ışıma süreleri

4.2. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄: Eu³⁺, Dy³⁺ Işıldar Sistemlerinin İncelenmesi

 $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 mol Eu^{3^+} , 0.01 mol Dy^{3^+} ışıldar maddesinin sentezinde kullanılan $BaCO_3$, $CaCO_3$, La_2O_3 , MoO_3 , Eu_2O_3 ve Dy_2O_3 başlangıç maddelerinden oluşan toz karışımın yapılan termal analiz sonucu Şekil 4.19.'da termogramda görülmektedir.

Şekil 4.19. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA termogramı

Şekil 4.20. La₂O₃'in TG-DTA termogramı (Çırçır, 2011).

Şekil 4.19.'da Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin termogramı görülmektedir. TG eğrisine göre toplam % 5.0 oranında kütle kaybının dört bölgede gerçekleştiği görülmektedir. İlk kütle kaybının TG eğrisinde 260-354 °C sıcaklık aralığında kütlece % 0.5 oranında gerçekleştiği, DTG eğrisinden 313 °C' de maksimum hıza ulaştığı görülmektedir. Bu kütle kaybı Şekil 4.20.'de görüldüğü gibi saf La₂O₃'in 250-350 °C sıcaklık aralığına aittir.

TG eğrisinde ikinci kütle kaybının 354-558 °C sıcaklık aralığında kütlece % 2.3 oranında gerçekleştiği, teorik kütle kaybı ile uyumlu olduğu ve DTG eğrisinden 471 °C' de maksimum hıza ulaştığı görülmektedir. Bu kütle kaybının, CaCO₃'ın CaO ve CO₂'e bozunmasına ilişkin (1) numaralı tepkime sonucunda açığa çıkan CO₂ gazı çıkışı ile beraber Şekil 4.20.'de görüldüğü gibi saf La₂O₃'in 350-500 °C sıcaklık aralığında meydana gelen kütle kaybına karşılık geldiği görülmektedir.

TG eğrisinde üçüncü ve dördüncü kütle kayıplarının 558-769 °C sıcaklık aralığında % 2.2 oranında gerçekleştiği, teorik kütle kaybı ile uyumlu olduğu DTG eğrisinden 611 ve 701 °C' de maksimum hıza ulaştığı görülmektedir. Bu kütle kaybının BaCO₃'ın bozunmasına ilişkin (2) numaralı tepkime gereği açığa çıkan CO₂ gazı çıkışı ile beraber Şekil 4.20.'de görüldüğü gibi saf La₂O₃'in 500-800 °C sıcaklık aralığında meydana gelen kütle kaybına karşılık geldiği görülmektedir.

 $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:Eu^{3+}$, Dy^{3+} sistemlerine ait DTA/TG/DTG termal analiz verileri Çizelge 4.4. ve Şekil 4.21-4.24.'deki termogramlarda verilmiştir. Görüleceği üzere 1. kütle kaybının La_2O_3 'in birinci kütle kaybı sonucu meydana geldiği, 2. kütle kaybının CaCO₃'ın bozunmasına ilişkin (1) numaralı tepkime ve La_2O_3 'in ikinci kütle kaybı sonucunda meydana geldiği görülmektedir. 3. ve 4. kütle kayıplarının ise $BaCO_3$ 'ın bozunmasına ilişkin (2) numaralı tepkime ve La_2O_3 'in üçüncü kütle kaybı sonucunda meydana geldiği ve Şekil 4.19. ile benzerlik gösterdiği görülmektedir.

Şekil 4.21. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.03 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA termogramı

Şekil 4.22. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.05 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA termogramı

Şekil 4.23. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.1 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA termogramı

Şekil 4.24. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 mol Eu³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA termogramı

	Toplam			
Işıldar Sistem	Kütle	1. Kütle	2. Kütle	3. ve 4. Kütle
	Kaybı	Kaybı (%)	Kaybı (%)	Kaybı (%)
	(%)			
$Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:$ 0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺	5	% 0.5 (267 °C -360 °C) (Max. Hız:332 °C)	% 2.3 (360 °C -548 °C) (Max. Hız:479 °C)	% 2.2 (548 °C -747 ° C) Max. Hız (612-700°C)
$Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:$ 0.05 mol Eu ³⁺ 0.01 mol Dy ³⁺	5	% 0.5 (257 °C -354 °C) (Max. Hız:312 °C)	% 2.3 (354 °C -565 °C) (Max. Hız:471 °C)	% 2.2 (565 °C -761 ° C) Max. Hız (610-699 °C)
$Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$: 0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	5	% 0.5 (258 °C -361 °C) (Max. Hız:313 °C)	% 2.3 (361 °C -565 °C) (Max. Hız:478 °C)	% 2.2 (565 °C -767 °C) Max. Hız (633-681 °C)
$Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$: 0.01 mol Eu ³⁺	5	% 0.5 (266 °C -374 °C) (Max. Hız:312 °C)	% 2.3 (374 °C -570 °C) (Max. Hız:475 °C)	% 2.2 (570 °C -772 °C) Max. Hız (613-702 °C)

Çizelge 4.4. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄ ışıldar sistemlerin termal analiz verileri

DTA/TG/DTG eğrilerinden elde edilen bilgilere göre ışıldar sistemlerde 770 °C'den sonra herhangi bir kütle değişimi gözlenmemiş bu nedenle CaCO₃ ve BaCO₃ bileşiklerinin oksitlerine bozunması amacıyla 650 °C'de 10 saat ön ısıl işlem uygulanmasına karar verilmiştir. Ön ısıl işlem öncesi ve sonrası tartımı yapılan ışıldar maddelerin kütlece % 5.0 oranında bir kayba uğradığı tespit edilmiş, bu durumun Şekil 4.21-4.24'de verilen DTA/TG/DTG analizi ile uyumlu olduğu görülmüştür.

Ön ısıl işlem uygulanan ışıldar sistemlere 2 saat mekanik ögütme uygulandıktan sonra katı hal tepkimelerini gerçekleştirmek amacıyla kül fırında 850 °C' de 10 saat ısıl işlem uygulanmıştır. Işıl işlem öncesi ve sonrası tartım yapılan ışıldar maddeler de kütlece herhangi bir kayıp görülmemiş olup, kristal yapılarının ve birim hücre parametrelerinin belirlenebilmesi amacıyla agat havanda 2 saat öğütülen malzemelerin X-Işını Toz Difraktometresi (XRD) analizleri yapılmıştır.

850 °C'de 10 saat ısıl işlem uygulanan $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$ ışıldar sistemlerinin toz desenleri Şekil 4.25.'de verilmiştir.

Şekil 4.25. 850 °C' de 10 saat ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin x-ışını toz difraksiyon desenleri

Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄ sisteminin tek fazlı olduğu ve JCPDS:00-035-0365 kart numaralı kristal ile uyumlu olduğu tespit edilmiştir. Monoklinik yapıdaki ışıldar sistemler için hesaplanan birim hücre parametreleri a=1079 pm, b=1061 pm, c=1277 pm, α =90°, β =90°, γ =90.44°, V=1461.89x10⁶ pm³ olarak bulunmuştur. Kristal sisteme ait x-ışını toz difraksiyon verileri Ek 10-14'de verilmiştir.

Uygulanan 850 °C'de 12 saat 1s1l işlem sonucunda, $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$ ışıldar sistemlerinin SEM ile yüzey analizleri yapıldı ve sistemleri oluşturan taneciklerin 20.000 kat büyütülmüş görüntüsü kaydedildi. $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:Eu^{3+},Dy^{3+}$ sistemlerinin 20.000 büyütülmüş görüntüsü Şekil 4.26.-4.30.'da, EDX analizleri ise Şekil 4.31.-4.36.'da görülmektedir. $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:Eu^{3+},Dy^{3+}$ sistemlerinin EDX analizi verileri Çizelge 4.5.'de verilmektedir. EDX analizine göre yapıda safsızlık elementlerinin bulunmadığı görülmektedir. SEM görüntülerine göre tanecik boyutlarının 0.1-4 µm civarında olduğu, taneciklerin homojen olarak dağıldığı görülmektedir.

Şekil 4.26. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.27. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.03 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.28. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.05 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.29. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.1 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.30. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 mol Eu³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.32. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.03 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin EDX analizi

 $\label{eq:sekil-4.33} \ensuremath{\text{Ba}_{0.5}\text{Ca}_{0.5}\text{La}_2(\text{MoO}_4)_4: 0.05 \mbox{ mol Eu}^{3^+}, 0.01 \mbox{ mol Dy}^{3^+} \mbox{ 1şıldar sisteminin EDX analizi}$

Şekil 4.35. $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 mol Eu^{3^+} ışıldar sisteminin EDX analizi

		Ba	Ca	La	Mo	0	Eu	Dy
Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :	Teorik %	6.80	1.99	27.52	38.02	25.36	0.15	0.16
0.01 mol Eu ³⁺ 0.01 mol Dy ³⁺	Deneysel %	7.95	2.31	36.89	30.05	21.78	0.13	0.88
Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :	Teorik %	6.78	1.98	27.45	37.90	25.28	0.45	0.16
0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺	Deneysel %	9.43	2.16	38.07	27.89	21.70	0.34	0.41
Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :	Teorik %	6.76	1.97	27.40	37.72	25.24	0.75	0.16
$0.05 \text{ mol Eu}^{3^+} 0.01 \text{ mol Dy}^{3^+}$	Deneysel %	10.67	1.37	38.78	26.70	20.59	1.25	0.64
Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :	Teorik %	6.71	1.96	27.15	37.51	25.02	1.49	0.16
0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	Deneysel %	8.47	0.99	33.53	31.76	22.84	1.88	0.53
Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄ :	Teorik %	6.81	1.99	27.57	38.08	25.40	0.15	*
0.01 mol Eu ³⁺	Deneysel %	8.13	2.21	36.83	28.74	23.97	0.12	*

Çizelge 4.5. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin EDX analiz verileri

*Yardımcı aktivatör olarak Dy3+ iyonları katkılanmamıştır.

Eu³⁺ ve Dy³⁺ iyonları katkılı Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄ ışıldar sistemlerinin ışıma özellikleri ve ışıma süreleri, 200 nm ile 900 nm arasında değişen dalga boyu aralığındaki fotoluminesans spektrofotometresi ile analiz edilmiştir. Işıldar sistemlerin 290 nm'de Eu³⁺ iyonlarının yük transferinden kaynaklanan ve Eu³⁺ iyonlarının 389 nm'de ⁷F₀→⁵L₆ geçişinden kaynaklanan iki adet uyarma bandı tespit edilmiştir. Bu uyarmalar neticesinde Eu³⁺ iyonlarının karakteristik ⁵D₀→⁷F_j (J=2, 3 ve 4) geçişlerinden kaynaklanan 619 nm'de turuncu, 652 nm'de kırmızı ve 706 nm dalga boyunda spektrumun baskın kırmızı bölgesine karşılık gelen üç adet ışıma bandı gözlenmiştir (Jinsheng ve ark., 2013). Yardımcı aktivatör olarak katkılanan Dy³⁺ iyonunun karakteristik ışıma bandlarına rastlanmamıştır. Farklı oranlarda katkılanan Eu³⁺ iyonlarının ışıldar sistemlerin uyarma ve ışıma şiddetlerine olan etkisi Şekil 4.36.'da ışıma sürelerine olan etkisi ise Şekil 4.37.'de görülmektedir. Işıldar sistemlerin ışıma sürelerin.

Işıldar Sistemler	Aktivatör Madde ve Katkı Oranı (mol)	Yardımcı Aktivatör Madde ve Katkı Oranı (mol)	Işıma Süreleri	
Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄	0.01 mol Eu ³⁺	0.01 mol Dy ³⁺	442.2 μs	
	0.03 mol Eu ³⁺	0.01 mol Dy ³⁺	453.3 μs	
	0.05 mol Eu ³⁺	0.01 mol Dy ³⁺	43.35 μs	
	0.1 mol Eu ³⁺	0.01 mol Dy ³⁺	62.35 μs	
	0.01 mol Eu ³⁺		423.6 µs	

Çizelge 4.6. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin ışıma süreleri

Şekil 4.36. Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin uyarma ve ışıma spektrumları

Şekil 4.37. $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu^{3^+} , Dy^{3^+} ışıldar sistemlerinin ışıma süreleri

4.3. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:Eu³⁺, Dy³⁺ Işıldar Sistemlerinin İncelenmesi

 $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 mol Eu^{3^+} , 0.01 mol Dy^{3^+} ışıldar maddesinin sentezinde kullanılan $SrCO_3$, $CaCO_3$, La_2O_3 , MoO_3 , Eu_2O_3 ve Dy_2O_3 başlangıç maddelerinden oluşan toz karışımın yapılan termal analiz sonucu Şekil 4.38.'de termogramda görülmektedir.

Şekil 4.38. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA termogramı

Şekil 4.38.'de $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 mol Eu^{3+} , 0.01 mol Dy^{3+} ışıldar sisteminin termogramı görülmektedir. TG eğrisine göre toplam % 5.1 oranında kütle kaybının dört bölgede gerçekleştiği görülmektedir. İlk kütle kaybının TG eğrisinde 272-398 °C sıcaklık aralığında kütlece % 0.5 oranında gerçekleştiği, DTG eğrisinden 319 °C de maksimum hıza ulaştığı görülmektedir. Bu kütle kaybı Şekil 4.20.'de görüldüğü gibi saf La₂O₃'in 250-350 °C sıcaklık aralığına aittir.

TG eğrisinde ikinci kütle kaybının 398-584 °C sıcaklık aralığında kütlece % 2.4 oranında gerçekleştiği, teorik kütle kaybı ile uyumlu olduğu ve DTG eğrisinden 554 °C' de maksimum hıza ulaştığı görülmektedir. Bu kütle kaybının CaCO₃'ın CaO ve CO₂'e bozunmasına ilişkin (1) numaralı tepkime sonucunda açığa çıkan CO₂ gazı çıkışı ile

beraber Şekil 4.20.'de görüldüğü gibi saf La₂O₃'in 350-500 °C sıcaklık aralığında meydana gelen kütle kaybına karşılık geldiği görülmektedir.

$$\operatorname{SrCO}_3 \xrightarrow{\Delta} \operatorname{SrO} + \operatorname{CO}_2$$
 (3)

TG eğrisinde üçüncü ve dördüncü kütle kayıplarının 584-917 °C sıcaklık aralığında % 2.2 oranında gerçekleştiği, teorik kütle kaybı ile uyumlu olduğu ve DTG eğrisinden 631 ve 723 °C' de maksimum hıza ulaştığı görülmektedir. Bu kütle kaybının SrCO₃'ın bozunmasına ilişkin (3) numaralı tepkime gereği açığa çıkan CO₂ gazı çıkışı ile beraber Şekil 4.20.'de görüldüğü gibi saf La₂O₃'in 500-800 °C sıcaklık aralığında meydana gelen kütle kaybına karşılık geldiği görülmektedir.

 $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4:Eu^{3+}$, Dy^{3+} sistemlerine ait DTA/TG/DTG termal analiz verileri Çizelge 4.7. ve Şekil 4.39-4.42.'deki termogramlarda verilmiştir. Görüleceği üzere 1. kütle kaybının La_2O_3 'in birinci kütle kaybı sonucu meydana geldiği, 2. kütle kaybının CaCO₃'ın bozunmasına ilişkin (1) numaralı tepkime ve La_2O_3 'in ikinci kütle kaybı sonucunda meydana geldiği görülmektedir. 3. ve 4. kütle kayıplarının ise SrCO₃'ın bozunmasına ilişkin (3) numaralı tepkime ve La_2O_3 'in üçüncü kütle kaybı sonucunda meydana geldiği ve Şekil 4.38. ile benzerlik gösterdiği görülmektedir.

Şekil 4.39. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.03 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA termogramı

Şekil 4.40. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.05 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA termogramı

Şekil 4.41. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.1 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA termogramı

Şekil 4.42. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 mol Eu³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA termogramı

Işıldar Sistem	Toplam Kütle Kaybı (%)	1. Kütle Kaybı (%)	2. Kütle Kaybı (%)	3. ve 4. Kütle Kaybı (%)
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: 0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺	5.1	% 0.5 (252 ° C -388 °C) (Max. Hız:314 °C)	% 2.4 (388 ° C -595 °C) (Max. Hız:554 °C)	% 2.2 (595 ° C -904 °C) Max. H1z (636-722 °C)
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: 0.05 mol Eu ³⁺ 0.01 mol Dy ³⁺	5.1	% 0.5 (248 ° C -370 °C) (Max. Hız:316 °C)	% 2.4 (370 ° C -590 °C) (Max. Hız:557°C)	% 2.2 (590 ° C -921 °C) Max. H1z (631-720 °C)
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: 0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	5.1	% 0.5 (240 ° C -363 °C) (Max. Hız:315 °C)	% 2.4 (363 ° C -593 °C) (Max. Hız:558 °C)	% 2.2 (593 ° C -931 °C) Max. H1z (631-718 °C)
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: 0.01 mol Eu ³⁺	5.1	% 0.5 (263 ° C -368 °C) (Max. Hız:318 °C)	% 2.4 (368 ° C -587 °C) (Max. Hız:552 °C)	% 2.2 (587 ° C -930 °C) (Max. Hız 635-728 °C)

 $\label{eq:circle} \ensuremath{\textit{Cizelge 4.7. }} Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4 \ensuremath{\mbox{ isldar sistemlerin termal analiz verileri}}$

DTA/TG/DTG eğrilerinden elde edilen bilgilere göre ışıldar sistemlerde 931 °C'den sonra herhangi bir kütle değişimi gözlenmemiş bu nedenle CaCO₃ ve SrCO₃ bileşiklerinin oksitlerine bozunması amacıyla 700 °C'de 6 saat ön ısıl işlem uygulanmasının daha uygun olacağı tespit edilmiştir. Ön ısıl işlem öncesi ve sonrası tartımı yapılan ışıldar maddelerin kütlece % 5.1 oranında bir kayba uğradığı tespit edilmiş, bu durumun Şekil 4.39.-4.42.'de verilen DTA/TG/DTG analizi ile uyumlu olduğu görülmüştür.

Ön ısıl işlemden sonra ışıldar sistemlere 2 saat mekanik ögütme uygulandıktan sonra katı hal tepkimelerini gerçekleştirmek amacıyla kül fırında 860 °C' de 8 saat ısıl işlem uygulanmıştır. Işıl işlem öncesi ve sonrası tartım yapılan ışıldar maddeler de kütlece herhangi bir kayıp görülmemiş olup, kristal yapılarının ve birim hücre parametrelerinin belirlenebilmesi amacıyla agat havanda 2 saat öğütülen malzemelerin X-Işını Toz Difraktometresi (XRD) analizleri yapılmıştır.

860 °C'de 8 saat 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4:Eu^{3+}$, Dy^{3+} 1ş1ldar sistemlerinin toz desenleri Şekil 4.43.'de verilmiştir.

Şekil 4.43. 860 °C'de 8 saat ısıl işlem uygulanan Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin x-ışını toz difraksiyon desenleri

 $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$ kristal sisteminin toz deseninin JCPDS:00-025-0828 kart numaralı düzensiz şelit $Na_{0.5}Gd_{0.5}MoO_4$ yapısı ile uyumlu olduğu görülmüş olup, tek fazlı kristal sisteme ait olduğu tespit edilmiştir. Tetragonal yapıdaki ışıldar sistemler için hesaplanan birim hücre parametreleri a=524.4 pm, b=524.4 pm, c=1148.7 pm, α =90°, β =90°, γ =90°, V=315.89x10⁶ pm³ olarak bulunmuştur. Tetragonal kristal sisteme sahip $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$ kristal yapısında toprak alkali iyonun yarıçapının artması ile (r⁺_{Sr}²⁺:120 pm < r⁺_{Ba}^{2+:}152 pm) kristal yapının monoklinik sisteme dönüştüğü görülmüştür (Haque ve ark., 2009). Kristal sisteme ait x-ışını toz difraksiyon verileri Ek 15-19'da verilmiştir.

Uygulanan 860 °C'de 8 saat ısıl işlem sonucunda, $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$ ışıldar sistemlerinin SEM ile yüzey analizleri yapıldı ve sistemleri oluşturan taneciklerin 20.000 kat büyütülmüş görüntüsü kaydedildi. $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu^{3+} , Dy^{3+} sistemlerinin 20.000 büyütülmüş görüntüsü Şekil 4.44.-4.48.'de, EDX analizleri ise Şekil 4.49.-4.53.'de görülmektedir. $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu^{3+} , Dy^{3+} sistemlerinin EDX analizi verileri Çizelge 4.8.'de verilmektedir. EDX analizine göre yapıda safsızlık elementlerinin bulunmadığı görülmektedir. SEM görüntülerine göre tanecik boyutlarının 0.1-4 µm civarında olduğu, taneciklerin homojen olarak dağıldığı görülmektedir.

Şekil 4.44. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.45. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.03 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.46. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.05 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.47. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.1 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.48. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 mol Eu³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.49. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin EDX analizi

Şekil 4.50. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.03 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin EDX analizi

Şekil 4.53. Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.01 mol Eu^{3^+} ışıldar sisteminin EDX analizi

		Sr	Ca	La	Mo	0	Eu	Dy
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:	Teorik %	4.45	2.04	28.22	38.98	26.0	0.15	0.17
$0.01 \text{ mol Eu}^{3^+} 0.01 \text{ mol Dy}^{3^+}$	Deneysel %	5.50	1.82	35.88	29.42	26.63	0.07	0.68
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:	Teorik %	4.44	2.03	28.13	38.86	25.92	0.46	0.16
$0.03 \text{ mol Eu}^{3^+} 0.01 \text{ mol Dy}^{3^+}$	Deneysel %	5.21	2.54	37.72	30.87	21.42	1.09	1.16
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:	Teorik %	4.42	2.02	28.04	38.74	25.84	0.77	0.16
$0.05 \text{ mol Eu}^{3^+} 0.01 \text{ mol Dy}^{3^+}$	Deneysel %	5.23	1.72	31.04	35.28	25.21	1.02	0.50
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:	Teorik %	4.39	2.01	27.83	38.44	25.64	1.52	0.16
$0.1 \text{ mol Eu}^{3^+} 0.01 \text{ mol Dy}^{3^+}$	Deneysel %	6.07	2.05	33.38	31.14	24.95	2.04	0.37
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:	Teorik %	4.46	2.04	28.26	39.04	26.04	0.15	*
0.01 mol Eu ³⁺	Deneysel %	6.17	1.39	35.82	28.17	28.35	0.10	*

Çizelge 4.8. $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: Eu^{3+} , Dy^{3+} sistemlerinin EDX analiz verileri

*Yardımcı aktivatör olarak Dy³⁺iyonları katkılanmamıştır.

Eu³⁺ ve Dy³⁺ iyonları katkılı Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄ ışıldar sistemlerinin ışıma özellikleri ve ışıma süreleri, 200 nm ile 900 nm arasında değişen dalga boyu aralığındaki fotoluminesans spektrofotometresi ile analiz edilmiştir. Işıldar sistemlerin 290 nm'de Eu³⁺ iyonlarının yük transferinden kaynaklanan ve Eu³⁺ iyonlarının 389 nm'de ⁷F₀→⁵L₆ geçişinden kaynaklanan iki adet uyarma bandı tespit edilmiştir. Bu uyarmalar neticesinde Eu³⁺ iyonlarının karakteristik ⁵D₀→⁷F_j (J=2, 3 ve 4) geçişlerinden kaynaklanan 619 nm'de turuncu, 652 nm'de kırmızı ve 706 nm dalga boyunda spektrumun baskın kırmızı bölgesine karşılık gelen üç adet ışıma bandı gözlenmiştir (Jinsheng ve ark., 2013). Yardımcı aktivatör olarak katkılanan Dy³⁺ iyonunun karakteristik ışıma bandlarına rastlanmamıştır. Farklı oranlarda katkılanan Eu³⁺ iyonlarının ışıldar sistemlerin uyarma ve ışıma şiddetlerine olan etkisi Şekil 4.54.'de ışıma sürelerine olan etkisi ise Şekil 4.55.'de görülmektedir. Işıldar sistemlerin ışıma sürelerin ışıma sürelerine olan etkisi ise Şekil 4.55.'de görülmektedir. Işıldar sistemlerin ışıma sürelerin ışıma sürelerine olan etkisi ise Şekil 4.55.'de görülmektedir. Işıldar sistemlerin ışıma sürelerin ışıma sürelerine olan etkisi ise Şekil 4.55.'de görülmektedir. Işıldar sistemlerin ışıma sürelerin uşıma sürelerine olan etkişi ise Şekil 4.55.'de görülmektedir. Işıldar sistemlerin uşıma sürelerin uşıma sürelerine olan etkişi ise Şekil 4.55.'de görülmektedir. Işıldar sistemlerin uşıma sürelerin uşıma sürelerine olan etkişi ise Şekil 4.55.'de görülmektedir. Işıldar sistemlerin uşıma sürelerin uşıma sürelerine olan etkişi ise Şekil 4.55.'de görülmektedir. Işıldar sistemlerin uşıma sürelerin uşıma sürelerine olan etkişi ise Şekil 4.55.'de görülmektedir. Işıldar sistemlerin uşıma sürelerin uşıma sürelerine olan etkişi ise Şekil 4.55.'de görülmektedir. Işıldar sistemlerin uşıma sürelerine işıma sürelerine olan etkiş işıma bandı surelerine olan etkiş işında verilmiştir.

Işıldar Sistemler	Aktivatör Madde ve Katkı Oranı	Yardımcı Aktivatör Madde ve Katkı Oranı	Işıma Süreleri
Sr _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄	0.01 mol Eu ³⁺	0.01 mol Dy ³⁺	448.2 μs
	0.03 mol Eu ³⁺	0.01 mol Dy ³⁺	90.79 µs
	0.05 mol Eu ³⁺	0.01 mol Dy ³⁺	466.40 μs
	0.1 mol Eu ³⁺	0.01 mol Dy ³⁺	16.77 μs
	0.01 mol Eu ³⁺		400.8 μs

Çizelge 4.9. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:Eu³⁺, Dy³⁺ sistemlerinin ışıma süreleri

Şekil 4.55. Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin ışıma süreleri

4.4. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄: Eu³⁺, Dy³⁺ Işıldar Sistemlerinin İncelenmesi

 $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.01 mol Eu^{3+} , 0.01 mol Dy^{3+} ışıldar maddesinin sentezinde kullanılan $SrCO_3$, $CaCO_3$, Y_2O_3 , MoO_3 , Eu_2O_3 ve Dy_2O_3 başlangıç maddelerinden oluşan toz karışımın yapılan termal analiz sonucu Şekil 4.56.'da termogramda görülmektedir.

Şekil 4.56. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.01 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA-DTG termogramı

Termogramda, TG eğrisinden görüleceği üzere toplamda % 4.6 oranında kütle kaybı gerçekleştiği görülmektedir. İlk kütle kaybının TG eğrisinde 357-593 °C sıcaklık aralığında kütlece % 2.4 oranında gerçekleştiği, DTG eğrisinden 550 °C' de maksimum hıza ulaştığı görülmektedir. Bu kütle kaybı, CaCO₃'ın CaO ve CO₂'e bozunmasına ilişkin (1) numaralı tepkime sonucunda açığa çıkan CO₂ gazı çıkışı nedeniyle meydana gelmektedir. Teorik olarak yapılan hesaplamalar sonucunda da CO₂ gazı çıkışı nedeniyle kütlece % 2.37 civarında bir kütle kaybının meydana gelmesi gerektiği tespit edilmiş olup, bu hesaplamalar deneysel olarak bulunan kütle kaybı ile uyumludur.

TG eğrisinde ikinci kütle kaybının 593-838 °C sıcaklık aralığında % 2.2 oranında gerçekleştiği, DTG eğrisinden 748 °C' de maksimum hıza ulaştığı görülmektedir. Bu kütle kaybının, SrCO₃'ın bozunmasına ilişkin (3) numaralı tepkime gereği açığa çıkan CO_2 gazı çıkışı nedeniyle meydana geldiği anlaşılmaktadır. Teorik olarak yapılan hesaplamalar sonucunda da CO_2 gazı çıkışı nedeniyle kütlece % 2.39 civarında bir kütle kaybının meydana gelmesi gerektiği tespit edilmiş olup, bu değer deneysel bulgular ile uyum içerisindedir.

 $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:Eu³⁺, Dy³⁺ sistemlerine ait DTA/TG/DTG termal analiz verileri Çizelge 4.10. ve Şekil 4.57-4.60.'daki termogramlarda verilmiştir. Görüleceği üzere, 1. kütle kaybının CaCO₃'ın bozunmasına ilişkin (1) numaralı tepkime sonucunda 2. kütle kaybının SrCO₃'ın bozunmasına ilişkin (3) numaralı tepkime sonucunda meydana geldiği ve Şekil 4.56. ile benzerlik gösterdiği görülmektedir.

Şekil 4.57. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.03 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA-DTG termogramı

Şekil 4.58. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.05 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA-DTG termogramı

Şekil 4.59. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.1 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA-DTG termogramı

Şekil 4.60. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.01 mol Eu³⁺ ışıldar sistemi için başlangıç maddelerinin TG-DTA-DTG termogramı

Çizelge 4.10. $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$ ışıldar sistemlerinin termal analiz verileri

Işıldar Sistem	Toplam Kütle Kaybı	1. Kütle Kaybı (%)	2. Kütle Kaybı (%)
$Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: 0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺	4.6	% 2.4 (380 °C -595 °C) (Max. Hız: 554 °C)	% 2.2 (595 °C -834 °C) (Max. Hız: 749 °C)
$Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: 0.05 mol Eu ³⁺ 0.01 mol Dy ³⁺	4.6	% 2.4 (385 °C -600 °C) (Max. Hız: 556 °C)	% 2.2 (600 °C -828 °C) (Max. Hız: 723 °C)
$Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: 0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	4.6	% 2.4 (353 °C -595 °C) (Max. H1z: 552°C)	% 2.2 (595 °C -827 °C) (Max. Hız: 730 °C)
$Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$: 0.01 mol Eu ³⁺	4.6	% 2.4 (373 °C -597 °C) (Max. H1z: 552 °C)	% 2.2 (597 °C -864 °C) (Max. H1z: 737 °C)

DTA/TG/DTG eğrilerinden elde edilen bilgilere göre ışıldar sistemlerde 850 °C'den sonra herhangi bir kütle değişimi gözlenmemiş bu nedenle CaCO₃ ve SrCO₃ bileşiklerinin oksitlerine bozunması amacıyla 750 °C'de 6 saat ön ısıl işlem uygulanmasının daha uygun olacağı tespit edilmiştir. Ön ısıl işlem öncesi ve sonrası tartımı yapılan ışıldar maddelerin kütlece % 4.6 oranında bir kayba uğradığı tespit edilmiş, bu durumun Şekil 4.57.-4.60.'da verilen DTA/TG/DTG analizleri ile uyumlu olduğu görülmüştür.

Uygulanan ön ısıl işlemden sonra ışıldar sistemlere 2 saat mekanik ögütme uygulandıktan sonra katı hal tepkimelerini gerçekleştirmek amacıyla kül fırında 850 °C' de 10 saat ısıl işlem uygulanmıştır. Işıl işlem öncesi ve sonrası tartım yapılan ışıldar maddeler de kütlece herhangi bir kayıp görülmemiş olup, kristal yapılarının ve birim hücre parametrelerinin belirlenebilmesi amacıyla agat havanda 2 saat öğütülen malzemenin X-Işını Toz Difraktometresi (XRD) analizi yapılmıştır.

850 °C'de 10 saat ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$ ışıldar sistemlerinin toz desenleri Şekil 4.61.'de verilmiştir.

Şekil 4.61. 850 °C'de 10 saat ısıl işlem uygulanan Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin x-ışını toz difraksiyon desenleri

Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄ kristal sisteminin toz deseninin tek fazlı olarak JCPDS:00-008-0482 kart numaralı yapı ile uyumlu olduğu görülmüştür. Kristal yapı, SrMoO₄ tetrahedronlarının oluşturduğu şelit tipi yapı ile ilgilidir (Chang, 2014). Tetragonal yapıdaki ışıldar sistemler için hesaplanan birim hücre parametreleri a=539.4 pm, b=539.4 pm, c=1202 pm, α =90°, β =90°, γ =90°, V=349.72x10⁶ pm³ olarak bulunmuştur. Kristal sisteme ait x-ışını toz difraksiyon verileri Ek 20-24'de verilmiştir.

Uygulanan 850 °C'de 12 saat 1s1l işlem sonucunda, $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$ ışıldar sistemlerinin SEM ile yüzey analizleri yapıldı ve sistemleri oluşturan taneciklerin 20.000 kat büyütülmüş görüntüsü kaydedildi. $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4:Eu^{3+},Dy^{3+}$ sistemlerinin 20.000 büyütülmüş görüntüsü Şekil 4.62.-4.66.'da, EDX analizleri ise Şekil 4.67.-4.71.'de görülmektedir. $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4:Eu^{3+}, Dy^{3+}$ sistemlerinin EDX analizi verileri Çizelge 4.11.'de verilmektedir. EDX analizine göre yapıda safsızlık elementlerinin bulunmadığı görülmektedir. SEM görüntülerine göre tanecik boyutlarının 0.1-4 µm civarında olduğu, taneciklerin homojen olarak dağıldığı görülmektedir.

Şekil 4.62. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.01 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.63. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.03 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.64. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.05 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.65. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.1 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.66. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.01 mol Eu³⁺ ışıldar sisteminin 20.000 kat büyütülmüş SEM görüntüsü

Şekil 4.67. $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.01 mol Eu^{3^+} , 0.01 mol Dy^{3^+} ışıldar sisteminin EDX analizi

 $\label{eq:sekil-4.68} \mbox{$${\rm Sr}_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:} 0.03 \mbox{ mol Eu^{3^+}}, 0.01 \mbox{ mol Dy^{3^+}} \mbox{$${\rm isldar sisteminin EDX analizi}$}$

Şekil 4.70. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.1 mol Eu³⁺, 0.01 mol Dy³⁺ ışıldar sisteminin EDX analizi

Şekil 4.71. $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.01 mol Eu^{3^+} ışıldar sisteminin EDX analizi

		Sr	Ca	Y	Мо	0	Eu	Dy
$Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:	Teorik %	4.95	2.27	20.10	43.39	28.94	0.17	0.18
$0.01 \text{ mol Eu}^{3+}, \ 0.01 \text{ mol Dy}^{3+}$	Deneysel %	3.55	0.77	19.90	36.00	38.53	0.97	0.29
$Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:	Teorik %	4.94	2.26	20.03	43.24	28.84	0.51	0.18
$0.03 \text{ mol Eu}^{3^+}, \ 0.01 \text{ mol Dy}^{3^+}$	Deneysel %	5.66	1.81	18.62	32.23	40.42	0.66	0.60
Sr _{0.5} Ca _{0.5} Y ₂ (MoO ₄) ₄ :	Teorik %	4.92	2.25	19.96	43.10	28.74	0.85	0.18
$0.05 \text{ mol Eu}^{3^+}, \ 0.01 \text{ mol Dy}^{3^+}$	Deneysel %	5.24	1.61	21.71	37.14	32.52	0.01	1.76
Sr _{0.5} Ca _{0.5} Y ₂ (MoO ₄) ₄ :	Teorik %	4.88	2.23	19.80	42.72	28.50	1.69	0.18
$0.1 \text{ mol Eu}^{3^+}, \ 0.01 \text{ mol Dy}^{3^+}$	Deneysel %	4.16	1.16	21.48	38.20	33.41	1.50	0.10
$Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:	Teorik %	4.96	2.27	20.14	43.47	28.99	0.17	*
0.01 mol Eu ³⁺	Deneysel %	5.95	0.36	21.34	37.12	34.73	0.50	*

 $\label{eq:cizelge 4.11.} \ Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4: Eu^{3^+}, \ Dy^{3^+} \ \mbox{isitemlerinin EDX analiz verileri}$

*Yardımcı aktivatör olarak Dy³⁺iyonları katkılanmamıştır.

Eu³⁺ ve Dy³⁺ iyonları katkılı Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄ ışıldar sistemlerinin ışıma özellikleri ve ışıma süreleri, 200 nm ile 900 nm arasında değişen dalga boyu aralığındaki fotoluminesans spektrofotometresi ile analiz edilmiştir. Işıldar sistemlerin 290 nm'de Eu³⁺ iyonlarının yük transferinden kaynaklanan ve Eu³⁺ iyonlarının 389 nm'de ⁷F₀→⁵L₆ geçişinden kaynaklanan iki adet uyarma bandı tespit edilmiştir. Bu uyarmalar neticesinde Eu³⁺ iyonlarının karakteristik ⁵D₀→⁷F_j (J=2, 3 ve 4) geçişlerinden kaynaklanan 619 nm'de turuncu, 652 nm'de kırmızı ve 706 nm dalga boyunda spektrumun baskın kırmızı bölgesine karşılık gelen üç adet ışıma bandı gözlenmiştir (Jinsheng ve ark., 2013). Yardımcı aktivatör olarak katkılanan Dy³⁺ iyonunun karakteristik ışıma bandlarına rastlanmamıştır. Farklı oranlarda katkılanan Eu³⁺ iyonlarının ışıldar sistemlerin uyarma ve ışıma şiddetlerine olan etkisi Şekil 4.72.'de ışıma sürelerine olan etkisi ise Şekil 4.73.'de görülmektedir. Işıldar sistemlerin ışıma süreleri, Eşitlik 4.1. kullanılarak hesaplanmış ve Çizelge 4.12.'de verilmiştir.

Işıldar Sistemler	Aktivatör Madde ve Katkı Oranı	Yardımcı Aktivatör Madde ve Katkı Oranı	Işıma Süreleri
	0.01 mol Eu ³⁺	0.01 mol Dy ³⁺	535.4 μs
Sr _{0.5} Ca _{0.5} Y ₂ (MoO ₄) ₄	0.03 mol Eu ³⁺	0.01 mol Dy ³⁺	582.6 µs
	0.05 mol Eu ³⁺	0.01 mol Dy ³⁺	571.6 μs
	0.1 mol Eu ³⁺	0.01 mol Dy ³⁺	612.0 μs
	0.01 mol Eu ³⁺		507.8 μs

Çizelge 4.12. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin ışıma süreleri

Şekil 4.72. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin uyarma ve ışıma spektrumları

Şekil 4.73. Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:Eu³⁺, Dy³⁺ ışıldar sistemlerinin ışıma süreleri

5. TARTIŞMA VE SONUÇ

Sentez şartlarının optimizasyonu DTA/TG/DTG termal analiz yöntemleri ile gerçekleştirildi. Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄, Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄ ve Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄ sistemleri için en uygun sentez sıcaklığının 850 °C, Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄ sistemleri için ise 860 °C olduğu tespit edildi. Yapı aydınlatma çalışmaları ise X-ışınları toz difraksiyonu tekniği ile yapıldı. Yüzey incelemeleri ve noktasal elementel analizleri ise SEM-EDX ölçümleri ile gerçekleştirildi. Işıma özellikleri fotolüminesans spektrofotometresi ile belirlendi.

Bu çalısmada UV ışığı ile uyarılabilen molibdat temelli 20 yeni ışıldar sentezlendi ve karakterize edildi. Sentezlenen bileşiklerin hepsinin fosforesans özellik gösterdiği belirlendi. Literatür bilgileriyle paralel olarak $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$ ve $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$ sistemlerinin monoklinik, $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$ ve $Sr_0 _5Ca_0 _5Y_2(MoO_4)_4$ sistemlerinin tetragonal yapıda olduğu bulunmuştur. M(II)M(III)₂(MoO₄)₄ sistemlerinde ise yapıda bulunan toprak alkali iyonun atom yarıçapının artması ($r_{sr}^{+}^{2+}:120 \text{ pm} < r_{Ba}^{+}^{-2+}:152 \text{ pm}$) ile kristal yapının tetragonal sistemden monoklinik sisteme dönüstüğü tespit edilmistir (Haque ve ark., 2009). Cizelge 5.1' de görüldüğü gibi Eu³⁺, Dy³⁺ iyonları katkılarının bulundukları kristal vapıları değiştirmediği belirlendi.

Eu³⁺ ve Dy³⁺ (aktivatör-yardımcı aktivatör) iyonları katkılı ışıldarların ışıma özellikleri ve ışıma süreleri fotoluminesans spektrofotometresi ile analiz edilmiştir. Işıldar sistemlerin Eu³⁺ iyonlarının yük transferinden kaynaklanan 290 nm'de bir uyarma bandı ve Eu³⁺ iyonlarının 389 nm'de ⁷F₀→⁵L₆ geçişinden kaynaklanan bir uyarma bandı olmak üzere iki adet uyarma tespit edilmiştir. Bu uyarmalar neticesinde Eu³⁺ iyonlarının karakteristik ⁵D₀→⁷F₂ geçişinden kaynaklanan 619 nm dalga boyunda spektrumun turuncu bölgesine karşılık gelen, Eu³⁺ iyonlarının 652 nm'de ⁵D₀→⁷F₃ geçişinden kaynaklanan spektrumun baskın kırmızı ve 706 nm'de ⁵D₀→⁷F₄ geçişinden kaynaklanan spektrumun baskın kırmızı bölgesine karşılık gelen üç adet ışıma bandı tespit edilmiştir (Jinsheng ve ark., 2013). Yardımcı aktivatör olarak katkılanan Dy³⁺ iyonunun karakteristik ışıma bandları tespit edilememiş olup, Dy³⁺ iyonunun boşluk tutucu ya da tuzaklayıcı görevi üstlendiği, Eu³⁺ iyonlarının ise ışıma merkezi olarak görev yaptığı sonucuna varılmıştır.

Işıldar Sistemler	Үарі	a (pm)	b (pm)	c (pm)	V (x10 ⁶ pm ³)	α (°)	β (°)	γ (°)
	Monoklinik	526.3	1939	1267.7	1293.30	90	90	91.39
${f Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4:}\ Eu^{3+}\ Dy^{3+}$	Monoklinik	526.3	1939	1267.7	1293.30	90	90	91.39
	Monoklinik	526.3	1939	1267.7	1293.30	90	90	91.39
	Monoklinik	526.3	1939	1267.7	1293.30	90	90	91.39
	Monoklinik	526.3	1939	1267.7	1293.30	90	90	91.39
	Monoklinik	1079	1061	1277	1461.89	90	90	90.44
	Monoklinik	1079	1061	1277	1461.89	90	90	90.44
$Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$: $Eu^{3+} Dy^{3+}$	Monoklinik	1079	1061	1277	1461.89	90	90	90.44
	Monoklinik	1079	1061	1277	1461.89	90	90	90.44
	Monoklinik	1079	1061	1277	1461.89	90	90	90.44
	Tetragonal	524.4	524.4	1148.7	315.89	90	90	90
	Tetragonal	524.4	524.4	1148.7	315.89	90	90	90
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$: $Eu^{3+} Dy^{3+}$	Tetragonal	524.4	524.4	1148.7	315.89	90	90	90
	Tetragonal	524.4	524.4	1148.7	315.89	90	90	90
	Tetragonal	524.4	524.4	1148.7	315.89	90	90	90
	Tetragonal	539.4	539.4	1202	349.72	90	90	90
	Tetragonal	539.4	539.4	1202	349.72	90	90	90
$Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:	Tetragonal	539.4	539.4	1202	349.72	90	90	90
Eu Dy	Tetragonal	539.4	539.4	1202	349.72	90	90	90
	Tetragonal	539.4	539.4	1202	349.72	90	90	90

Çizelge 5.1. Işıldarların kristal sitemleri ve birim hücre parametreleri

Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄ kristal sistemlerinde Eu³⁺ iyonlarının Dy³⁺ iyonlarına göre katkı oranlarının 1:1, 3:1, 5:1 ve 10:1 oranlarında artırılarak oluşturulan sistemler ile Dy³⁺ iyonları katkısız sistemler karşılaştırıldığında en uygun ışıldar sistemin 10:1 katkı oranı ile ışıma süresinin 533.7 μ s olduğu 0.1 Eu³⁺, 0.01 Dy³⁺ katkılı sistem olduğu tespit edilmiştir.

Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄ kristal sistemlerinde Eu³⁺ iyonlarının Dy³⁺ iyonlarına göre katkı oranlarının 1:1, 3:1, 5:1 ve 10:1 oranlarında artırılarak oluşturulan sistemler ile Dy³⁺ iyonları katkısız sistemler karşılaştırıldığında en uygun ışıldar sistemin 3:1 katkı oranı ile ışıma süresinin 453.3 μ s olduğu 0.3 Eu³⁺, 0.01 Dy³⁺ katkılı sistem olduğu tespit edilmiştir.

 $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$ kristal sistemlerinde Eu^{3^+} iyonlarının Dy^{3^+} iyonlarına göre katkı oranlarının 1:1, 3:1, 5:1 ve 10:1 oranlarında artırılarak oluşturulan sistemler ile Dy^{3^+} iyonları katkısız sistemler karşılaştırıldığında en uygun ışıldar sistemin 10:1 katkı oranı ile ışıma süresinin 466.4 µs olduğu 0.1 Eu^{3^+} , 0.01 Dy^{3^+} katkılı sistem olduğu tespit edilmiştir.

 $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$ kristal sistemlerinde Eu^{3^+} iyonlarının Dy^{3^+} iyonlarına göre katkı oranlarının 1:1, 3:1, 5:1 ve 10:1 oranlarında artırılarak oluşturulan sistemler ile Dy^{3^+} iyonları katkısız sistemler karşılaştırıldığında en uygun ışıldar sistemin 10:1 katkı oranı ile ışıma süresinin 612.0 µs olduğu 0.1 Eu^{3^+} , 0.01 Dy^{3^+} katkılı sistem olduğu tespit edilmiştir.
Işıldar Sistemler	Aktivatör ve Yardımcı Aktivatörler ve Katkı Miktarları	Uyarma Şiddeti (a.u)	Uyarma Dalga Boyu (nm)	Işıma Şiddeti (a.u)	Işıma Dalga Boyu (nm)
	0.01 mol Eu ³⁺ 0.01 mol Dy ³⁺	3642 333	290 389	3693 74 222	619 652 706
	0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺	9007 2930	290 389	425 1353	619 652 706
Ba _{0.5} Ca _{0.5} Gd ₂ (MoO ₄) ₄	0.05 mol Eu ³⁺ 0.01 mol Dy ³⁺	7984 797	290 389	257 812	619 652 706
	0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	9969 4977	290 389	9923 1206 3804	619 652 706
	0.1 mol Eu ³⁺	9925 4104	290 389	9799 959 3200	619 652 706
	0.01 mol Eu ³⁺ 0.01 mol Dy ³⁺	1825 645	290 389	1724 39 91	619 652 706
	0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺	4052 1020	290 389	3906 93 215	619 652 706
Ba _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄	0.05 mol Eu ³⁺ 0.01 mol Dy ³⁺	6940 3086	290 389	6822 241 569	619 652 706
	0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	7599 2740	290 389	7314 288 694	619 652 706
	0.01 mol Eu ³⁺	3292 1515	290 389	3276 72 167	619 652 706

Çizelge 5.2. Işıldar sistemlerin uyarma, ışıma şiddetleri ve dalga boyları

Işıldar Sistemler	Aktivatör ve Yardımcı Aktivatörler ve Katkı Miktarları	Uyarma Şiddeti (a.u)	Uyarma Dalga Boyu (nm)	Işıma Şiddeti (a.u)	Işıma Dalga Boyu (nm)
	0.01 mol Eu ³⁺ 0.01 mol Dy ³⁺	3208 1003	290 389	3114 66 161	619 652 706
	0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺	6245 2723	290 389	6247 186 468	619 652 706
Sr _{0.5} Ca _{0.5} La ₂ (MoO ₄) ₄	0.05 mol Eu ³⁺ 0.01 mol Dy ³⁺	6706 2008	290 389	6374 207 524	619 652 706
	0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	8578 5328	290 389	8514 610 1529	619 652 706
	0.01 mol Eu ³⁺	3357 1089	290 389	3222 67 167	619 652 706
Sr _{0.5} Ca _{0.5} Y ₂ (MoO ₄) ₄	0.01 mol Eu ³⁺ 0.01 mol Dy ³⁺	4736 659	290 389	4650 163 291	619 652 706
	0.03 mol Eu ³⁺ 0.01 mol Dy ³⁺	7493 1215	290 389	7527 308 766	619 652 706
	0.05 mol Eu ³⁺ 0.01 mol Dy ³⁺	8402 3140	290 389	8442 462 1056	619 652 706
	0.1 mol Eu ³⁺ 0.01 mol Dy ³⁺	8920 3640	290 389	8838 626 1334	619 652 706
	0.01 mol Eu ³⁺	4921 940	290 389	4897 128 328	619 652 706

Çizelge 5.2 (Devam). Işıldar sistemlerin uyarma, ışıma şiddetleri ve dalga boyları

(MII)(MIII)(MoO₄)₄:Eu³⁺, Dy³⁺ sistemlerinde [M(II): Ca²⁺, Ba²⁺, Sr²⁺, M(III): La³⁺, Gd³⁺, Y³⁺] olmak üzere Çizelge 5.2' den verilen ışıma şiddetleri karşılaştırılır ise M(II): Ba²⁺ ve Ca²⁺ olduğunda M(III) olarak Gd³⁺ katkısı La³⁺ katkısından daha şiddetli sonuç vermektedir. M(II):Sr²⁺ ve Ca²⁺ olduğunda, M(III) yerine Y³⁺ kullanılması La³⁺ iyonlarından daha şiddetli sonuç vermektedir. Çizelge 5.3' den görüleceği üzere M(II): Ba²⁺ ve Ca²⁺ olduğunda, M(III) yerine Gd³⁺ kullanıldığında La³⁺ kullanılmasından daha uzun süreli ışıma elde edilmektedir. M(II): Sr²⁺ ve Ca²⁺ olduğunda, M(III) yerine Y³⁺ kullanılmasından daha

Işıldar Sistemler	Aktivatör Madde ve Katkı Oranı	Yardımcı Aktivatör Madde ve Katkı Oranı	Işıma Süreleri	Gün Işığında Numune Rengi	UV Işık Altında Numune Rengi (364 nm)
	0.01 mol Eu ³⁺	$0.01 \text{ mol } \text{Dy}^{3^+}$	125.8 μs	Beyaz	Pembe
	0.03 mol Eu ³⁺	0.01 mol Dy ³⁺	459.6 μs	Beyaz	Pembe
$Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$	0.05 mol Eu ³⁺	0.01 mol Dy ³⁺	4.722 μs	Beyaz	Pembe
	0.1 mol Eu ³⁺	0.01 mol Dy ³⁺	533.7 μs	Beyaz	Pembe
	0.1 mol Eu ³⁺		4.359 μs	Beyaz	Pembe
	0.01 mol Eu ³⁺	0.01 mol Dy ³⁺	442.2 μs	Beyaz	Pembe
	0.03 mol Eu ³⁺	0.01 mol Dy ³⁺	453.3 μs	Beyaz	Pembe
$Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4$	0.05 mol Eu ³⁺	0.01 mol Dy ³⁺	43.35 μs	Beyaz	Pembe
	0.1 mol Eu ³⁺	0.01 mol Dy ³⁺	62.35 μs	Beyaz	Pembe
	0.01 mol Eu ³⁺		423.6 μs	Beyaz	Pembe
	0.01 mol Eu ³⁺	0.01 mol Dy ³⁺	448.2 μs	Beyaz	Pembe
	0.03 mol Eu ³⁺	0.01 mol Dy ³⁺	90.79 µs	Beyaz	Pembe
$Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$	0.05 mol Eu ³⁺	0.01 mol Dy ³⁺	466.40 μs	Beyaz	Pembe
	0.1 mol Eu ³⁺	0.01 mol Dy ³⁺	16.77 μs	Beyaz	Pembe
	0.01 mol Eu ³⁺		400.8 µs	Beyaz	Pembe
	0.01 mol Eu ³⁺	0.01 mol Dy ³⁺	535.4 μs	Beyaz	Pembe
	0.03 mol Eu ³⁺	0.01 mol Dy ³⁺	582.6 µs	Beyaz	Pembe
$Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$	0.05 mol Eu ³⁺	0.01 mol Dy ³⁺	571.6 μs	Beyaz	Pembe
	0.1 mol Eu ³⁺	0.01 mol Dy ³⁺	612.0 μs	Beyaz	Pembe
	0.01 mol Eu ³⁺		507.8 µs	Beyaz	Pembe

Çizelge 5.3. Işıldar sistemlerin ışıma süreleri

6. KAYNAKLAR

- Abakumov, A. M., Morozov, V. A., Tsirkin, A. A., Verbeek, J. ve Hadermann, J., 2014. Cation ordering and flexibility of the BO_4^{2-} tetrahedra in in commensurately modulated $CaEu_2(BO_4)_4$ (B = Mo, W) scheelites. *Inorganic Chemistry*, 53, 9407–9415.
- Albani, J. R., 2007. Principles and Applications of Fluorescence Spectroscopy, *Blackwell publishing*, France.
- Chang, S. L., 2014. Upconversion photoluminescence properties of $SrY_2(MoO_{4)4}:Er^{3+}/Yb^{3+}$ phosphors synthesized by a cyclic microwave-modified sol-gel method. *Infrared Physics and Technology*, 67, 371-376.
- Çırçır, E., 2011. Aluminasilikat Bazlı Yeni Işıldar Maddelerin Sentezi ve Karakterizasyonu. Doktora Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Kayseri.
- Emen, M. F., 2009. Silikat ve Aluminat Bazlı Yeni Işıldarların Hazırlanması ve Karakterizasyonu. *Doktora Tezi, Mersin Üniversitesi Fen Bilimleri Enstitüsü,* Mersin.
- Gschneidner, K. A., Bünzli, C. G. ve Pecharsk, V. K., 2007. Handbook on the Physics and Chemistry of Rare Earths, *Elsevier Science*, Vol. 5.
- Haque, M. M. ve Kim, D. K., 2009. Luminescent Properties of Eu³⁺ Activated MLa₂(MoO₄)₄ Based (M=Ba, Sr and Ca) Novel Red-Emitting Phosphors. *Materials Letters*, 63, 793–796.
- Harvey, N., 1957. A history of luminescence, American Philosophical Society Independence Square Philadephia, 770 p, Maryland.
- Jinsheng, L., Dan, Z., Bin, Y., Ruiqing, L., Qian, Z. ve Quanhui, Z., 2013. Sol–gel preparation and photoluminescence properties of CaLa₂(MoO₄)₄:Eu³⁺ phosphors. *Journal of Luminescence*, 134, 533-538.
- Kasap, S. ve Capper, P., 2007. Springer Handbook of Electronic and Photonic Materials, *Springer US*, Boston.
- Katsumata, T., Kohno, Y., Kubo, H., Komuro, S. ve Morikawa, T., 2005. Low temperature fluorescence thermometer application of long afterglow phosphorescent SrAl₁₂O₁₉: Eu^{2+,} Dy³⁺ crystals. *Review Of Scientific Instruments*, 76(8).
- Li, Y. C., Chang, Y. H., Lin, Y. F., Chang, Y. S. ve Lin, Y. J., 2007. Synthesis and luminescent properties of Ln³⁺ (Eu³⁺, Sm³⁺, Dy³⁺) doped lanthanum aluminum germanate LaAlGe₂O₇ phosphors. *Journal of Alloys and Compounds*, 439, 367–375.

- Nag, A. ve Kutty, T. R. N., 2005. Photoluminescence due to efficient energy transfer from Ce³⁺ to Tb³⁺ and Mn²⁺ in Sr₃Al₁₀SiO₂₀, *Material Chemistry and Physics*, 91(2), 524-531.
- Nakazawa, E. ve Mochida, T., 1997. Traps in SrAl₂O₄:Eu²⁺ phosphor with rare earth ion doping. *Journal of Luminescence*, 72-74, 236-237.
- Ogiegło, J. M., Zych, A., Ivanovskikh, K., Jüstel, T., Ronda1, C. ve Meijerink, A., 2012. Luminescence and energy transfer in Lu₃Al₅O₁₂ scintillators co-doped with Ce³⁺ and Tb³⁺. *Journal of Physical Chemistry A*, 116, 33, 8464-74.
- Ozawa, L., 2007. Cathodoluminescence and Photoluminescence Theories and Practical Applications. *CRC Press*, 1 p, New York.
- Paulose, P. I., 2002. Luminescence Studie of certain Doped Phosphors and Glassy Material, School of Pure&Applied Physics. *Mamatha Gandhi University, Phd. Thesis*, 137 s, Kottayam.
- Takayuki, H., Takuya, O. ve Isao, K., 2002. Preparation of Y₂O₃:Yb³⁺, Er³⁺ Infrared-to-Visible Converion Phosphor Fine Particles Using an Emulsion Liquid Membrane. *System Chemicals Materials*, 14(8), 3576-3583.
- Toprak, M., 2006. Metanol Ortamında Kumarin 35 ile Pyronin Bileşikleri Arasındaki Floresans Enerji Transferinin İncelenmesi, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
- Tunalı, N. K. ve Özkar, S., 2005. Anorganik Kimya, Gazi Kitabevi, 287-297, Ankara.
- Uluç, V. A., 2008. Synthesis And Characterization of Phosphorescent Strontium Aluminate Compounds. Yüksek Lisans Tezi, Sabancı Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
- Yaomin, D., Shuangping Y., Yinhai W. ve Jieqiang X., 2014. Synthesis and photoluminescence characteristics of Ln³⁺ (Ln=Sm, Er and Dy) doped BaGd₂(MoO₄)₄ phosphors. *Optical Materials*, 36, 1378–1383.
- Yen, W. M., Shionaya, S. ve Yamamoto, H., 2006. Second Edition Phosphor Handbook. *CRC Press*, 420 p, Tokyo.
- Yen, W. M., Shionaya, S. ve Yamamoto, H., 2006. Second Edition Phosphor Handbook. *CRC Press*, 445 p, Tokyo.
- Yen, W. M., Shionaya, S. ve Yamamoto, H., 2006. Second Edition Phosphor Handbook. *CRC Press*, 462-463 p, Tokyo.
- Yen, W. M., Shionaya, S. ve Yamamoto, H., 2006. Second Edition Phosphor Handbook. *CRC Press*, 569-570 p, Tokyo.

- Yoshihiko, M., Nobuyoshi, T., Yasumitsu, A. ve Takashi, M., 1994. Phosphorescent Phosphor, Europien Patent Office, No: 0622440A1 dated 01.11.04.
- Yu, R., Xue, N., Wang, T., Zhao, Z., Wang, J., Hei, Z., Li, M., Noh, H. M. ve Jeong, J. H., 2015. Photoluminescence characteristics of high thermal stable fluorosilicate apatite Ba₂Y₃(SiO₄)₃F:Sm³⁺ orange-red emitting phosphor. *Ceramics International*, 41(4), 6030–6036.
- Yüksel, M., 2008. Orta Anadolu Flouritlerinin (CaF₂) Termolüminesans (TL) Işıma Tepelerine Tavlamanın Etkisi, *Çukurova Üniversitesi, Yüksek Lisans Tezi,* Adana.

EKLER

EK 1. MoO₃'ün DTA/TG/DTG Termogramı.

EK 2. BaCO₃'ın DTA/TG/DTG Termogramı.

EK 3. CaCO₃'ın DTA/TG/DTG Termogramı.

EK 4. SrCO₃'ın DTA/TG/DTG Termogramı.

EK 5. 850 °C' de 1s1l işlem uygulanan $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4:0.01 Eu^{3+}, 0.01 Dy^{3+}$ 1ş1ldar sisteminin x-1ş1nı toz difraksiyon verileri.

EK 6. 850 °C' de 1s1l işlem uygulanan $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4:0.03 Eu^{3+}, 0.01 Dy^{3+}$ 1ş1ldar sisteminin x-1ş1nı toz difraksiyon verileri.

EK 7. 850 °C' de 1s1l işlem uygulanan $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4:0.05 Eu^{3+}, 0.01 Dy^{3+}$ 1ş1ldar sisteminin x-1ş1nı toz difraksiyon verileri.

EK 8. 850 °C' de 1s1l işlem uygulanan $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$:0.1 Eu³⁺, 0.01 Dy³⁺ 1ş1ldar sisteminin x-1ş1nı toz difraksiyon verileri.

EK 9. 850 °C' de ısıl işlem uygulanan $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$:0.1 Eu³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 10. 850 °C'de 10 saat ısıl işlem uygulanan $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.01 Eu^{3+}$, 0.01 Dy^{3+} ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 11. 850 °C'de 10 saat ısıl işlem uygulanan $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.03 Eu^{3+}$, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 12. 850 °C' de 10 saat ısıl işlem uygulanan $Ba_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.05 Eu^{3+}$, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 13. 850 °C'de 10 saat ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.1 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 14. 850 °C'de 10 saat ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 Eu³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 15. 860 °C'de ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 16. 860 °C' de ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.03 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 17. 860 °C'de ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4:0.05 \text{ Eu}^{3+}$, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 18. 860 °C'de ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.1 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 19. 860 °C' de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 Eu³⁺ 1ş1ldar sisteminin x-1ş1nı toz difraksiyon verileri.

EK 20. 850 °C' de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4:0.01 \text{ Eu}^{3+}$, 0.01 Dy³⁺ 1ş1ldar sisteminin x-1ş1nı toz difraksiyon verileri.

EK 21. 850 °C' de ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4:0.03 \text{ Eu}^{3+}$, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 22. 850 °C' de ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4:0.05 \text{ Eu}^{3+}$, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 23. 850 °C' de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.1 Eu³⁺, 0.01 Dy³⁺ 1ş1ldar sisteminin x-1ş1nı toz difraksiyon verileri.

EK 24. 850 °C' de ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}Y_2(MoO_4)_4$:0.01 Eu³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

EK 2. BaCO₃'ın DTA/TG/DTG Termogramı.

						% Bağıl Şiddet
Num	h	k	1	2θ (°)	d (pm)	(I/I_0)
1	0	2	0	9.1459	966.158	38.8
2	0	1	2	14.7705	599.266	11.0
3	0	2	2	16.7218	529.751	9.4
4	1	-1	1	18.8336	470.801	12.6
5	1	3	1	23.0824	385.010	6.6
6	1	-4	1	25.5909	347.811	23.4
7	1	4	1	26.2242	339.553	25.8
8	1	0	3	27.0095	329.856	12.9
9	0	6	0	27.4984	324.101	30.2
10	1	2	3	28.6776	311.037	100.0
11	1	-5	1	29.0534	307.100	44.5
12	1	5	1	29.7508	300.057	33.5
13	1	-3	3	30.2509	295.210	9.2
14	1	3	3	30.6611	291.353	8.5
15	0	6	2	31.0334	287.942	41.6
16	0	3	4	31.4306	284.394	18.4
17	0	4	4	34.0713	262.931	27.0
18	2	0	0	34.3207	261.077	26.9
19	0	7	2	35.3422	253.762	7.1
20	2	-2	2	37.9389	236.969	7.4
21	1	0	5	39.3308	228.897	9.4
22	1	-1	5	39.7180	226.755	7.4
23	1	-8	1	41.2667	218.596	6.4
24	2	5	2	44.4068	203.839	18.0
25	0	6	5	45.2539	200.219	7.4
26	1	-8	3	46.1429	196.566	14.8
27	-2	3	4	46.9739	193.280	37.1
28	0	10	2	49.2258	184.953	12.2

EK 5. 850 °C' de ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.01 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl Şiddet
Num	h	k	1	2θ (°)	d (pm)	(I/I ₀)
1	0	2	0	9.1015	970.857	22.4
2	0	1	2	14.8478	596.164	7.0
3	0	2	2	16.9110	523.868	8.1
4	1	-1	1	18.7045	474.021	8.3
5	1	3	1	23.0379	385.744	5.0
6	1	-4	1	25.5555	348.285	19.8
7	1	4	1	26.2071	339.771	19.5
8	0	5	2	26.9250	330.872	10.8
9	1	-1	3	27.4097	325.131	27.1
10	1	2	3	28.6551	311.276	100.0
11	0	2	4	29.7113	300.447	24.4
12	1	-3	3	30.1905	295.786	7.4
13	1	3	3	30.5814	292.094	6.9
14	0	6	2	31.0073	288.178	29.8
15	0	3	4	31.4158	284.523	12.6
16	2	0	0	34.2318	261.735	20.3
17	0	7	2	35.3337	253.821	4.3
18	1	0	5	39.3228	228.942	7.3
19	1	-8	1	41.1900	218.984	5.4
20	2	5	2	44.4216	203.775	10.0
21	0	6	5	45.1889	200.491	5.4
22	2	2	4	46.0586	196.906	9.8
23	-2	3	4	46.9283	193.457	30.9
24	0	10	2	49.1793	185.117	10.5

EK 6. 850 °C' de ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.03 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

					% Bağıl
h	k	1	2θ (°)	d (pm)	Şiddet (I/I_0)
0	1	2	14.8906	594.463	7.5
0	2	2	16.9822	521.686	7.1
0	4	0	17.5604	504.637	6.6
1	-1	1	18.5467	478.017	8.0
1	1	1	18.9641	467.589	15.4
1	-2	1	20.4387	434.176	6.2
1	3	1	23.1041	384.653	4.3
1	-4	1	25.6897	346.496	26.5
1	4	1	26.3296	338.218	26.0
1	0	3	27.0827	328.981	11.8
0	6	0	27.5168	323.889	31.7
1	2	3	28.7773	309.983	100.0
1	-5	1	29.1500	306.103	39.4
1	5	1	29.8394	299.186	35.4
1	-3	3	30.3303	294.455	8.4
1	3	3	30.7332	290.686	11.3
0	6	2	31.1361	287.015	43.5
0	3	4	31.5407	283.425	17.1
1	-6	1	32.9674	271.478	2.8
0	4	4	34.1682	262.207	29.9
2	0	0	34.4287	260.283	27.6
0	7	2	35.4581	252.959	7.0
1	7	1	37.8411	237.559	4.9
1	0	5	39.4870	228.028	10.6
1	-1	5	39.9510	225.486	8.9
1	-8	1	41.2972	218.441	5.4
-2	5	-2	43.5940	207.449	3.7
	h 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	hk0102041-1111-2131-4141006121-5151-31306031-604200717101-11-8-25	hk10120220401-111111-211-211-411-411030601231-511511-511511-511-511-511-511-511-511062000721711051-151-81-25-2	hk1 $20 (°)$ 01214.890602216.982204017.56041-1118.546711118.96411-2120.438713123.10411-4125.689714126.329610327.082706027.516812328.77731-5129.150015129.83941-3330.330313330.733206231.136103431.54071-6132.967404434.168220034.428707235.458117137.841110539.48701-1539.95101-8141.2972-25-243.5940	hk1 $20 (^{\circ})$ d (pm)01214.8906594.46302216.9822521.68604017.5604504.6371-1118.5467478.01711118.9641467.5891-2120.4387434.17613123.1041384.6531-4125.6897346.49614126.3296338.21810327.0827328.98106027.5168323.88912328.7773309.9831-5129.1500306.10315129.8394299.1861-3330.3303294.45513330.7332290.68606231.1361287.01503431.5407283.4251-6132.9674271.47804434.1682262.20720034.4287260.28307235.4581252.95917137.8411237.55910539.4870228.0281-1539.9510225.4861-8141.2972218.441-25-243.5940207.449

EK 7. 850 °C' de ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.05 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
28	2	5	2	44.5128	203.379	16.7
29	0	6	5	45.3221	199.933	6.6
30	1	-9	1	45.6940	198.392	4.6
31	1	-8	3	46.2190	196.260	14.3
32	-2	3	4	47.0283	193.069	35.7
33	1	3	6	48.5377	187.413	3.6
34	0	10	2	49.2814	184.757	13.1

EK 7(Devam). 850 °C' de 1s1l işlem uygulanan $Ba_{0.5}Ca_{0.5}Gd_2(MoO_4)_4$:0.05 Eu³⁺, 0.01 Dy³⁺ 1ş1ldar sisteminin x-1ş1nı toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
1	0	2	0	9.1198	968.911	31.8
2	0	1	2	14.7158	601.484	6.0
3	0	2	2	16.7585	528.600	8.3
4	1	-1	1	18.7585	472.597	9.9
5	1	3	1	23.0702	385.211	5.6
6	1	-4	1	25.5595	348.231	21.3
7	1	4	1	26.2006	339.854	21.1
8	0	5	2	26.9818	330.188	9.7
9	1	-1	3	27.3766	325.516	27.2
10	0	6	0	27.4007	325.235	28.7
11	1	1	3	27.5000	324.083	25.9
12	0	6	1	28.6158	311.695	89.4
13	0	1	4	28.6621	311.202	100.0
14	1	2	3	28.6930	310.874	92.8
15	1	-5	1	29.0423	307.214	31.2
16	0	2	4	29.7047	300.512	27.3
17	1	-3	3	30.2052	295.646	7.8
18	1	3	3	30.6387	291.561	7.7
19	0	6	2	31.0158	288.102	34.3
20	0	3	4	31.4186	284.499	15.9
21	2	0	0	34.0175	263.334	22.6
22	0	7	2	35.3394	253.781	5.0
23	1	7	1	37.7552	238.079	3.1
24	1	0	5	39.3693	228.682	10.8
25	1	-1	5	39.8050	226.279	5.4
26	1	-8	1	41.2508	218.676	5.5
27	-2	5	2	43.3921	208.368	3.4

EK 8. 850 °C' de ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.1 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
28	2	5	2	44.3437	204.115	13.2
29	0	6	5	45.1856	200.505	6.6
30	2	2	4	46.1007	196.736	9.8
31	-2	3	4	46.9356	193.429	32.6
32	1	3	6	48.3518	188.090	2.5
33	0	10	2	49.1753	185.131	10.7

EK 8(Devam). 850 °C' de ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.1 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
1	0	1	2	14.5083	610.040	5.6
2	0	2	2	16.7117	530.069	10.5
3	1	-1	1	18.5407	478.171	11.7
4	1	3	1	22.8630	388.654	3.7
5	1	-4	1	25.4876	349.197	20.0
6	1	4	1	26.0994	341.148	20.1
7	0	5	2	26.8659	331.587	11.6
8	0	6	1	28.5575	312.318	100.0
9	1	2	3	28.9277	308.405	28.7
10	0	2	4	29.6092	301.460	25.5
11	1	-3	3	30.0953	296.701	8.4
12	1	3	3	30.5358	292.520	7.2
13	0	6	2	30.9063	289.097	32.4
14	0	3	4	31.3093	285.467	14.3
15	0	4	4	33.9150	264.107	22.7
16	2	0	0	34.1544	262.310	23.7
17	0	7	2	35.1922	254.809	6.1
18	1	7	1	37.6013	239.018	3.7
19	2	2	2	38.3777	234.360	2.8
20	1	0	5	39.1939	229.665	8.1
21	1	-1	5	39.5323	227.777	5.0
22	1	-8	1	40.9656	220.132	3.3
23	-2	-5	2	43.3345	208.631	2.6
24	2	5	2	44.2702	204.437	12.3
25	0	6	5	45.0067	201.261	5.9
26	2	2	4	45.9025	197.539	9.5
27	-2	3	4	46.8119	193.912	31.2
28	1	3	6	48.2117	188.603	2.0

EK 9. 850 °C' de ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.1 Eu³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
29	0	10	2	490.080	185.723	10.9

EK 9(Devam). 850 °C' de ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}Gd₂(MoO₄)₄:0.1 Eu³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
1	1	-1	0	11.9367	740.820	2.6
2	0	2	0	16.7535	528.757	4.0
3	2	0	1	18.1200	489.178	4.6
4	2	2	2	27.6782	322.037	100.0
5	3	-1	2	29.6029	301.522	3.4
6	0	2	4	33.2543	269.202	16.9
7	2	-4	0	38.1780	235.539	3.4
8	4	-1	4	45.2291	200.323	10.4
9	3	-4	3	47.7669	190.255	6.4

EK 10. 850 °C'de 10 saat ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	20 (°)	d (pm)	Şiddet (I/I _o)
1	1	-1	0	11.8736	744.747	3.1
2	2	0	0	16.5624	534.812	5.4
3	2	0	1	18.0576	490.853	3.1
4	2	2	2	27.5233	323.814	100.0
5	3	-1	2	29.4182	303.373	15.6
6	0	2	4	32.9716	271.445	7.9
7	2	-4	0	37.9721	236.769	4.1
8	4	-1	4	44.8716	201.835	21.4
9	2	5	0	45.0555	201.054	6.4

EK 11. 850 °C'de 10 saat ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.03 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
1	1	-1	0	11.7676	751.427	4.0
2	2	0	0	16.5060	536.628	8.0
3	2	0	1	17.9446	493.918	4.4
4	0	0	3	21.3585	415.680	2.0
5	2	2	2	27.4760	324.361	100.0
6	0	1	4	28.5243	312.674	5.4
7	3	-1	2	29.3285	304.281	23.3
8	0	2	4	33.1463	270.054	17.1
9	2	-4	0	37.8231	237.668	4.7

EK 12. 850 °C' de ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.05 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
1	1	-1	0	11.9710	738.708	3.6
2	0	2	0	16.8809	524.794	8.3
3	2	0	1	18.2692	485.214	4.0
4	2	2	2	27.7242	321.513	100.0
5	0	1	4	28.7232	310.554	6.6
6	3	-1	2	29.5948	301.603	27.7
7	0	2	4	33.4225	267.885	19.4
8	2	-4	0	38.1427	235.749	6.0
9	4	-1	4	45.1869	200.500	23.1
10	3	-4	3	47.8194	190.058	6.4

EK 13. 850 °C' de ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.1 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
1	1	-1	0	12.0946	731.186	5.4
2	0	2	0	16.7384	529.229	6.8
3	2	0	1	18.2527	485.649	6.3
4	0	0	3	21.5954	411.174	3.1
5	0	3	0	25.1063	354.413	2.8
6	2	2	2	27.7542	321.172	100.0
7	3	-1	2	29.6586	300.969	42.4
8	0	2	4	33.4445	267.714	30.4
9	2	-4	0	38.1728	235.570	8.9
10	1	-4	3	41.0671	219.612	2.5

EK 14. 850 °C' de ısıl işlem uygulanan Ba_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 Eu³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
1	1	0	1	18.3891	482.079	7.8
2	1	1	2	27.9017	319.508	100.0
3	0	0	4	29.9747	297.866	15.0
4	2	0	0	33.4549	267.633	39.1
5	2	0	2	38.3889	234.294	6.8
6	2	1	3	44.0290	205.500	2.2
7	2	0	4	45.5684	198.909	35.7
8	2	2	0	48.0591	189.166	10.8
9	1	1	6	51.8887	176.069	15.4
10	2	1	5	56.3847	163.049	25.7
11	3	1	2	57.5387	160.051	12.9
12	3	1	4	62.2133	149.100	3.1
13	2	1	7	70.1361	134.070	2.8
14	4	0	0	72.3485	130.506	4.2
15	2	0	8	73.2880	129.063	8.6
16	3	1	6	76.9357	123.828	3.1
17	3	2	5	78.0317	122.360	3.8
18	3	3	2	79.8585	120.014	2.6

EK 15. 860 °C'de ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.01 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
1	1	0	1	18.2977	484.467	5.3
2	1	1	2	27.8849	319.697	100.0
3	0	0	4	29.9362	298.241	16.2
4	2	0	0	33.4386	267.759	33.0
5	2	1	1	38.3647	234.436	6.3
6	2	1	3	44.0509	205.403	2.3
7	2	0	4	45.5337	199.053	26.2
8	2	2	0	47.9831	189.448	11.0
9	1	1	6	51.8116	176.313	15.2
10	2	1	5	56.3377	163.175	23.2
11	3	1	2	57.5106	160.122	11.1
12	2	1	7	70.0517	134.211	4.0
13	4	0	0	72.3343	130.528	5.4
14	2	0	8	73.1936	129.206	7.7
15	3	1	6	76.9443	123.816	3.4
16	3	2	5	77.9738	122.436	3.4
17	3	3	2	79.8280	120.052	3.1

EK 16. 860 °C'de ısıl işlem uygulanan Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.03 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
1	1	0	1	18.2158	486.627	4.3
2	1	1	2	27.8351	320.257	100.0
3	0	0	4	29.9059	298.536	12.8
4	2	0	0	33.3865	268.166	26.6
5	2	1	1	38.2939	234.853	6.0
6	2	1	3	45.4189	199.529	35.9
7	2	0	4	47.9108	189.717	11.0
8	1	1	6	51.7737	176.433	12.7
9	2	1	5	56.2868	163.310	27.4
10	3	1	2	57.4774	160.207	11.1
11	2	1	7	70.0766	134.170	2.9
12	4	0	0	72.3124	130.562	3.8
13	2	0	8	73.1807	129.226	7.2
14	3	1	6	76.9559	123.800	3.2
15	3	2	5	77.9633	122.450	4.0
16	3	3	2	79.8551	120.018	2.9

EK 17. 860 °C' de 1s1l işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.05 Eu³⁺, 0.01 Dy³⁺ 1ş1ldar sisteminin x-1ş111 toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
1	1	0	1	18.2488	485.753	4.8
2	1	1	2	27.8434	320.163	100.0
3	0	0	4	28.4527	313.444	5.8
4	2	0	0	33.4016	268.048	24.3
5	2	0	2	38.3058	234.783	5.6
6	2	1	3	45.4294	199.486	28.1
7	2	2	0	47.9478	189.580	10.3
8	1	1	6	51.7769	176.423	11.8
9	2	1	5	56.3197	163.222	18.2
10	3	1	2	57.4962	160.159	9.4
11	2	1	7	70.1424	134.060	3.1
12	4	0	0	72.2848	130.605	3.6
13	2	0	8	73.2083	129.184	6.9
14	3	2	5	77.0409	123.685	3.0
15	3	3	2	77.9827	122.425	2.5
16	4	0	4	79.9290	119.926	3.3

EK 18. 860 °C'de ısıl işlem uygulanan $Sr_{0.5}Ca_{0.5}La_2(MoO_4)_4$:0.1 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						% Bağıl
Num	h	k	1	2θ (°)	d (pm)	Şiddet (I/I _o)
1	1	0	1	17.8984	495.183	6.2
2	1	1	2	27.6286	322.604	100.0
3	0	0	4	29.6957	300.602	16.9
4	2	0	0	33.1674	269.887	23.0
5	2	0	2	38.0113	236.534	5.5
6	2	1	3	43.7117	206.918	2.4
7	2	0	4	45.2469	200.248	30.5
8	2	2	0	47.7630	190.270	10.5
9	1	1	6	51.6612	176.791	9.0
10	2	1	5	56.0773	163.870	26.0
11	3	1	2	56.3668	163.097	7.9
12	2	2	4	57.2312	160.837	19.7
13	3	1	4	57.5366	160.056	5.3
14	3	0	5	61.9078	149.762	2.1
15	3	2	3	69.7898	134.651	2.9
16	2	1	7	72.2298	130.691	3.5
17	4	0	0	73.0340	129.449	7.0
18	2	0	8	73.5124	128.724	2.5
19	3	1	6	76.8284	123.974	3.3
20	3	2	5	77.8607	122.586	2.9
21	3	3	2	79.6125	120.323	3.3

EK 19. 860 °C' de ısıl işlem uygulanan Sr_{0.5}Ca_{0.5}La₂(MoO₄)₄:0.01 Eu³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

Num	h	k	1	2θ (°)	d (pm)	% Bağıl Şiddet (I/I₀)
1	1	0	1	18.1982	487.093	42.2
2	1	1	2	27.8961	319.571	100.0
3	0	0	4	29.0092	307.557	14.5
4	2	0	0	33.0115	271.126	10.7
5	2	0	2	37.7982	237.819	7.2
6	1	1	4	38.5021	233.631	8.9
7	2	1	3	43.8487	206.304	4.2
8	2	0	4	45.5830	198.849	22.4
9	2	2	0	46.9050	193.548	12.9
10	1	1	6	52.0834	175.457	11.7
11	3	1	2	55.5703	165.245	2.5
12	2	2	4	57.7570	159.498	15.5
13	0	0	8	62.6171	148.235	3.1
14	3	1	6	73.4887	128.760	3.4
15	3	3	2	75.8209	125.368	2.6
16	1	1	10	80.2700	119.502	2.4
16	1	1	10	80.2700	119.502	2.4

EK 20. 850 °C' de ısıl işlem uygulanan Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.01 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

NT		lz.	1	20	1 ()	% Bağıl
Num	n	K	I	20(1)	d (pm)	Şiddet (I/I _o)
1	1	0	1	17.8470	496.597	45.9
2	1	1	2	27.5552	323.446	100.0
3	0	0	4	29.7516	300.049	13.0
4	2	0	0	33.0719	270.645	19.8
5	2	0	2	36.3642	246.861	5.7
6	1	1	4	38.0453	236.331	4.4
7	2	1	3	41.0569	219.664	4.7
8	2	0	4	45.2649	200.172	25.2
9	2	2	0	47.6410	190.728	8.0
10	1	1	6	51.6803	176.730	11.7
11	3	1	2	56.0487	163.947	19.9
12	2	2	4	57.5720	159.966	16.9
13	0	0	8	62.3179	148.875	4.5
14	4	0	0	69.8166	134.606	2.7
15	3	1	6	73.1593	129.258	5.1
16	3	3	2	75.5636	125.731	4.0
17	4	0	4	76.7952	124.019	3.0
18	4	2	0	77.8507	122.599	2.4

EK 21. 850 °C' de ısıl işlem uygulanan Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.03 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

Num	h	k	1	2θ (°)	d (pm)	% Bağıl Şiddet (I/I ₀)
1	1	0	1	18.2468	485.807	43.6
2	1	1	2	27.8982	319.548	100.0
3	0	0	4	30.0639	297.003	10.9
4	2	0	0	33.1098	270.343	14.8
5	2	0	2	37.8412	237.558	9.9
6	1	1	4	38.4792	233.765	11.0
7	2	1	3	43.8486	206.304	4.0
8	2	0	4	45.5737	198.888	27.2
9	2	2	0	47.9598	189.535	8.3
10	1	1	6	52.0074	175.695	18.2
11	3	1	2	55.6329	165.074	3.2
12	2	2	4	57.6354	159.805	14.7
13	0	0	8	61.2198	151.279	2.2
14	4	0	0	70.2195	133.932	2.3
15	3	1	6	73.4145	128.872	5.3
16	3	3	2	75.9023	125.254	4.5

EK 22. 850 °C' de ısıl işlem uygulanan Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.05 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

						0/ Doğil Giddat
Num	h	k	1	2θ (°)	d (pm)	70 Dagii Şiudel
					-	(I/I _o)
1	1	0	1	18.2588	485.489	44.2
2	1	1	2	27.9746	318.691	100.0
3	0	0	4	30.2003	295.692	11.0
4	2	0	0	33.1965	269.657	14.9
5	2	0	2	35.1993	254.759	4.1
6	1	1	4	38.5435	233.390	8.9
7	2	1	3	43.8564	206.269	4.6
8	2	0	4	45.6827	198.438	24.9
9	2	2	0	48.0367	189.249	10.0
10	1	1	6	52.2439	174.956	12.8
11	3	1	2	55.6151	165.122	3.6
12	2	2	4	57.9344	159.051	19.2
13	0	0	8	61.2517	151.208	2.9
14	4	0	0	69.1299	135.774	2.0
15	2	0	8	70.2362	133.904	2.6
16	3	1	6	72.8636	129.709	2.2
17	3	3	2	75.9455	125.194	4.4

EK 23. 850 °C' de ısıl işlem uygulanan Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.1 Eu³⁺, 0.01 Dy³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

Num	h	k	1	2θ (°)	d (pm)	% Bağıl Şiddet (I/I ₀)
1	1	0	1	18.2617	485.413	45.0
2	1	1	2	27.8779	319.776	100.0
3	0	0	4	29.0810	306.814	15.1
4	2	0	0	33.1382	270.118	15.3
5	2	0	2	37.7602	238.049	9.1
6	1	1	4	38.4284	234.062	10.0
7	2	1	3	43.7462	206.763	4.3
8	2	0	4	45.5511	198.981	26.0
9	2	2	0	47.9224	189.674	8.7
10	1	1	6	51.9594	175.846	18.8
11	3	1	2	55.6066	165.145	3.9
12	2	2	4	57.8345	159.302	19.2
13	0	0	8	61.1750	151.380	3.4
14	2	1	7	67.4916	138.666	17.5
15	4	0	0	67.8854	137.957	7.1

EK 24. 850 °C' de ısıl işlem uygulanan Sr_{0.5}Ca_{0.5}Y₂(MoO₄)₄:0.01 Eu³⁺ ışıldar sisteminin x-ışını toz difraksiyon verileri.

ÖZGEÇMİŞ

Kişisel Bilgiler

Adı Soyadı	: Murat EBİÇ
Doğum Tarihi ve Yer	i: 14.04.1982 Kayseri
Medeni Hali	: Evli
Yabancı Dili	: İngilizce
Telefon	: 05068709764
e-mail	: m-ebic@hotmail.com/muratebic@kmu.edu.tr

Eğitim

Derece	Eğitim Birimi	Mezuniyet Tarihi	
	Fırat Üniversitesi		
Lisans	Teknik Eğitim Fakültesi	2007	
	Metal Öğretmenliği		
Lise	Merkez Endüstri Meslek Lisesi	2001	
	Model Bölümü		

İş Deneyimi:

Yıl	Yer	Görev
2007-2011	Bozok Üniversitesi Rektörlüğü Yapı İşleri ve Teknik Daire Başkanlığı	Teknisyen/Teknik Öğretmen
2011-2013	Karamanoğlu Mehmetbey Üniversitesi Rektörlüğü Yapı İşleri ve Teknik Daire Başkanlığı	Teknisyen/Teknik Öğretmen
2013-Halen	Karamanoğlu Mehmetbey Üniversitesi Teknik Bilimler M.Y.O.	Teknisyen/Teknik Öğretmen