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ABSTRACT
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Graduate School of Natural and Applied Science

the Division of Physics

Thesis Advisor

Assist. Prof. Dr. Gökhan GÖKOǦLU

July 2011, 48 pages

In this study, we present the electronic, magnetic, and structural properties of two novel

half-metallic full-Heusler compounds,Co2CrAs andCo2CrSb, in cubicL21 geometry.

The calculations are based on the density functional theorywithin plane-wave

pseudopotential method and spin-polarized generalized gradient approximation of the

exchange-correlation functional. The electronic band structures and density of states

of the systems indicate half-metallic behavior with vanishing electronic density of

states of minority spins at Fermi level, which yields perfect spin polarization. The

calculated magnetic moments of both systems inL21 structure are5.00µB, which are

largely localized on the chromium site. The energy gaps in minority spin states are

restricted by the3d-states of cobalt atoms on two different sublattices. The formation

enthalpies for both structures are negative indicating stability of these systems against

decomposition into stable solid compounds.
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ÖZET

Yüksek Lisans Tezi

YARI-METAL İK HEUSLER ALAŞIMLARININ ELEKTRON İK VE

MANYET İK ÖZELL İKLER İN İN İLK PRENS İPLERDEN İNCELENMES İ

Ulvi KANBUR

Karabük Üniversitesi

Fen Bilimleri Enstit üsü

Fizik Ana Bilim Dalı

Tez Danışmanı

Yrd. Doç. Dr. Gökhan GÖKOǦLU

Temmuz 2011, 48 sayfa

Bu çalışmada, kübikL21 geometrisine sahip iki yeni yarı-metalik tam-Heusler

bileşikleri olanCo2CrAs veCo2CrSb için elektronik, menyetik ve yapısal özellikler

verilmiştir. Hesaplamalar, düzlem dalga sözde-potansiyel metodu ve deǧiş tokuş

korelasyon fonksiyonelleri için spin-polarize genelles¸tirilmiş gradyan yaklaşımı

ışıǧında yoǧunluk fonksiyoneli teorisine dayanmaktadır. Sistemlerin elektronik bant

yapıları ve durum yoǧunlukları, Fermi düzeyinde aşaǧıspin elektronik durum

yoǧunlukarının sıfırlanması ile tam bir spin polarizasyonu oluşturarak yarı-metalik

karakter göstermektedir. Her iki sisteminL21 yapısında hesaplanan manyetik

momentleri5.00µB deǧerindedir ve büyük ölçüde krom atomu kaynaklıdır. Aşaǧı spin

durumlarında enerji boşlukları, iki farklı alt örgüdeki kobalt atomlarının3d durumları

tarafından sınırlandırılmıştır. Sistemlerin oluşma entalpileri negatif deǧere sahiptir ve

kendini oluşturan elementlerin katı bileşikerine bozulmaya karşı kararlılıǧını gösterir.
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Anahtar Sözcükler : İlk prensip hesabı,yarı-metal, elektronik yapı, Heusler alaşımları
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PART 1

INTRODUCTION

One of the basic problems in theoretical physics is the description of the structure and

dynamics of many-electron systems comprising single atoms, the most elementary

building blocks of ordinary matter, all kinds of molecules,etc [1]. For polyatomic

molecules, the presence of several nuclei makes quantum-mechanical calculations

harder than for diatomic molecules. Moreover, the electronic wavefunction of a

diatomic molecule is a function of only one parameter—the inter nuclear distance [2].

In contrast, the electronic wave function of a polyatomic molecule depends on several

parameters—the bond distances, bond angles, and dihedral angles of rotation about

single bonds (these angles define the molecular conformation). A full theoretical

treatment of a polyatomic molecule involves calculation ofthe electronic wavefunction

for a range of each of these parameters [2].

The calculation of geometries and energies of molecules canbe investigated by three

techniques: molecular mechanics,ab initio methods, and semiempirical methods.

Both ab initio and semiempirical methods are based on quantum mechanics with

Schrödinger equation and calculate a molecular wavefunction and molecular orbital

energies [3].

The first calculations handled on many-body systems by D. R. Hartree and E. Hylleraas

were for atoms. Hartree’s method today is still in use for numerical calculations

known as self-consistent field (SCF) method, in which each electron moves in a central

potential due to the nucleus and other electrons. In 1930, Fock published the first

calculations by using a antisymmetrized determinant wavefunctions, known as the

Hartree-Fock method. Hylleraas provided accurate solutions for the ground state of

two-electron systems as early as 1930 [4].
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However, a wavefunction is not a measurable quantity of an atom or molecule, i.e. not

an observable. Density Functional Theory, DFT, is not basedon the wavefunction, but

rather on the electron probability density function or electron density function. Unlike

the wavefunctions, charge density is measurable. The main advantage of electron

density is that it is a function of position only comprising three coordinates [3].

1.1. HISTORY OF DFT

The modern progress of DFT uses a philosophy which in a mannerof speaking

starts from exploiting a one-to-one correspondence between particle densitiesρ(r)

and many-body wavefunctionsψ(x1, x2, . . . , xN ) of ground states. One tries to find a

functional expression of the ground state energyE through the ground state density

ρ(r) instead of the two-particle density matrix, and then to basea variational principle

for the density on that functional relation.

Thomas-Fermi theory is the earliest and most naive version of such theories, which

uses the electron density rather than the wavefunction for obtaining information

about atomic and molecular systems. E. Fermi and P. A. M. Dirac independently

made calculations on an ideal electron gas delivering that atomic and molecular

properties can be investigated by use of electron density [5]. In an independent work

by Fermi and Thomas, atoms were thought with a positive potential located in a

uniform (homogeneous) electron gas. Thomas-Fermi model has given good results for

atoms, but failed for molecules: it has predicted all molecules to be unstable toward

dissociation into their atoms [3].

TheXα (X =exchange,α is a parameter in theXα equation) method [6] by Slater, a

more accurate version of Thomas-Fermi model introduced in 1951, was the first useful

DFT model. Slater regarded it as a simplification of the Hartree-Fock approach. The

Xα method was developed mainly for atoms and solids and has alsobeen used for

molecules, and has been replaced by more accurate Kohn-Shamtype DFT method [3].
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1.2. THE THOMAS-FERMI MODEL

To investigate the atomic and molecular properties of systems, the electron density was

firstly used by Thomas and Fermi with a simple quantum statistical model which takes

into account only the kinetic energy term of the many body problem while treating

others in a classical way. In their model, Thomas and Fermi arrive at the following,

very simple expression for the kinetic energy based on the uniform electron gas, a

fictitious model system of constant electron density [5],

TTF [ρ(r)] =
3

10
(3π2)2/3

∫

ρ(r)5/3 dr (1.1)

If this is combined with the classical expression for the nuclear-electron attractive

potential and the electron-electron repulsive potential we have the famous

Thomas-Fermi expression for the energy of an atom,

ETF [ρ(r)] =
3

10
(3π)2

∫

ρ(r)5/3 dr−Z

∫

ρ(r)

r
dr+

1

2

∫∫

ρ(r1)ρ(r1)

|r1 − r2|
dr1 dr2. (1.2)

As mentioned, Thomas-Fermi approach is only a coarse approximation to the true

kinetic energy and, exchange and correlation effects are completely neglected. But the

importance of this equation arises from the fact that the energy is given completely in

terms of the electron densityρ(r).

Thus we have the first example of a density functional for the energy. In other words,

Eq. 1.2 is a prescription for how to map a densityρ(r) onto an energyE without any

additional information required. In particular no recourse to the wavefunction is taken.

1.3. THE HOHENBERG-KOHN THEOREMS

The histories of the Thomas-Fermi and Hohenberg-Kohn theories present instructive

examples of the way knowledge is gathered in many-body physics [7]. The starting

point of any discussion of DFT is the Hohenberg-Kohn (HK) theorem. The approach of

Hohenberg and Kohn is to formulate DFT as an exact theory of many-body systems [4].

3



A paper published in 1964 by Hohenberg and Kohn [8] vitalizedDFT after the studies

of Thomas, Fermi, and Dirac in early years. Theorems proven in that research were the

pillars of modern DFT. This section discusses these theorems and their consequences.

We will focus on how a physically meaningful wavefunction can be uniquely related

to a density, i.e. to electron density.

1.3.1. The First Hohenberg-Kohn Theorem

Quoting directly from the Hohenberg-Kohn paper [8], the first theorem states that ‘the

external potentialVext(r) is (to within a constant) a unique functional ofρ(r); since,

in turn Vext(r) fixesĤ we see that the full many particle ground state is a unique

functional ofρ(r)’ [5]. In other words, givenρ(r) we can in principle calculate any

ground state property, e.g. the energy,E0.

The theorem is merely an existence theorem: it says that a functional F exists, but does

not tell us how to find it; this omission is the main problem with DFT [3]. For the

proof [4, 5] we consider two external potentialsVext andV ′
ext (differ by more than a

constant) which give the same electron densityρ(r) (for non-degenerate case). The

external potentials lead to two different hamiltoniansĤ andĤ ′ which have different

ground state wavefunctions,Ψ andΨ′ with the same ground state densityρ0(r). Since

ψ′ is not the ground state of̂H, it follows that,

E0 < 〈Ψ′| Ĥ |Ψ′〉 = 〈Ψ′| Ĥ ′ |Ψ′〉+ 〈Ψ′| Ĥ − Ĥ ′ |Ψ′〉 (1.3)

which yields

E0 < E ′
0 + 〈Ψ′| V̂ext − V̂ ′

ext |Ψ
′〉 . (1.4)

By the same trick we have

E ′
0 < E0 − 〈Ψ′| V̂ext − V̂ ′

ext |Ψ
′〉 . (1.5)
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After adding equations (1.4) and (1.5) we get the desired result E + E ′ < E ′ + E

which means that there cannot be two different external potentials that yield the same

non-degenerate ground state electron density.

1.3.2. The Second Hohenbergh-Kohn Theorem

It has been emphasized that the ground state electron density determines all property of

the system in interest. But how can we be sure that the above density is the true ground

state density that we are looking for? Second theorem says that a density functional

gives the ground state energy of the system if and only if the input density is the true

ground state density. For the proof [5], we again refer to thevariational principle which

can be expressed as

E0 ≤ E[ρ′] = T [ρ′] + ENe[ρ
′] + Eee[ρ

′]. (1.6)

where T , ENe and Eee are kinetic energy, nucleus-electron and electron-electron

interactions of particles. Any trial densityρ′ has a corresponding wavefunctionΨ′

which can be used as the trial wavefunction for the true Hamiltonian to give the desired

result as following,

〈Ψ′| Ĥ |Ψ′〉 = T [ρ′] + Eee[ρ
′] +

∫

ρ′Vextdr = E[ρ′] ≥ E0[ρ0] = 〈Ψ| Ĥ |Ψ〉 (1.7)

in which the integral term givesENe.

1.4. THE KOHN-SHAM APPROACH

Now we will apply the HK theorems to our problem. The second major contribution

to the DFT was made by Kohn and Sham in 1965 in which the kineticenergy was

determined in an ingenious way [9]. Kohn and Sham proposed introducing orbitals

into the problem in such a way that the kinetic energy can be computed simply to good

accuracy, leaving a small residual correction that is handled separately [10]. According

to HK theorems, our fundamental quantity was electron density. We can write ground
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state energy of an atomic or molecular system as

E0 = min

(

F [ρ] +

∫

ρ(r)VNedr

)

(1.8)

whereVNe is the potential due to the nuclei-electron interaction, and

F [ρ(r)] = T [ρ(r)] + Eee[ρ(r)] (1.9)

is the HK functional which is a universally valid term i.e. its form is independent of

N , RA andZA which denotes number of electrons, spatial coordinates of nuclei and

nuclear charge of indexed atom, respectively. We can splitEee term by extracting

Coulomb part

Eee[ρ] =
1

2

∫ ∫

ρ(r1)ρ(r2)

r12
dr1dr2 + Encl[ρ] = J [ρ] + Encl[ρ] (1.10)

in whichEncl[ρ] is thenon-classicalcontribution to the electron-electron interaction.

Thus we have the final but not ultimate form of HK functional as

F [ρ(r)] = T [ρ] + J [ρ] + Encl[ρ]. (1.11)

Through these terms onlyJ [ρ] is known while other two remain a mystery. Kohn

and Sham treated the kinetic energy term in a different way for better accuracy.

They separated the functionalF [ρ] by extracting the exact non-interacting part of

kinetic energy term while combining the residue with the remaining unknown term.

Ultimately we have a functional with two exact terms and one combined unknown

term as

F [ρ(r)] = TS[ρ] + J [ρ] + EXC [ρ]. (1.12)

The first termTS stands for the non-interaction contribution to kinetic energy and the

last term is the so-calledexchange-correlation energywhich is defined as
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EXC [ρ] = TC [ρ] + Encl[ρ] (1.13)

in whichTC [ρ] is the residual part of the kinetic energy. As can be understood easily the

termEXC contains everything unknown. What can we say about the non-interacting

kinetic energy termTS[ρ]? We know mathematically that the solution to a system

which consists ofN non-interacting particles ,is exactly anN dimensional Slater

determinant. We immediately write the term explicitly as follows,

TS = −
1

2

N
∑

i

〈ψi|∇
2 |ψi〉 (1.14)

It is clear from the result thatψis are spin orbitals. If we write explicitly all terms of

the electronic Hamiltonian except for one (which is of course the unknown) we get

E[ρ(r)] = TS[ρ] + J [ρ] + EXC [ρ] + ENe[ρ] (1.15)

= −
1

2

N
∑

i

〈ψi|∇
2 |ψi〉+

1

2

N
∑

i,j

∫

|ψi(r1)|
2 1

r12
|ψj(r2)|

2dr1dr2

+EXC [ρ]−

N
∑

i

∫ M
∑

A

ZA

r1A
|ψi(r1)|

2dr1. (1.16)

By using the variational principle with constraint〈ψi|ψj〉 = δij the above expression

results following Kohn-Sham (KS) one electron equations [10]

(

−
1

2
∇2 +

∫

ρ(r2)

r12
dr2 + VXC(r1)−

M
∑

A

ZA

r1A

)

ψi = ǫiψi (1.17)

which have to be solved iteratively. A schematic diagram is shown in Figure 1.1.

The only approximations in these equations arise from the functional for the

exchange-correlation energyEXC and the corresponding potentialVXC .
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ConstructVion given atomic numbers and positions of ions

Pick a cutoff for the plane-wave basis setei(k+G)·r

Pick a trial densityn(r)

CalculateV
H
(n) andV

XC
(n)

Solve Kohn-Sham equations by diagonalizingHk+G,k+G′

Hψi =
[

−
ℏ
2
▽

2

2m
+ Vion + V

H
(n) + V

XC
(n)
]

ψi = εiψi

Calculate newn(r)

IS SOLUTION SELF-CONSISTENT ?

Compute

The Total Energy

Generate

New Densityn(r)

YES NO

Figure 1.1. Schematic representation of the self-consistent loop for solution of KS
equations.

1.5. EXCHANGE-CORRELATION ENERGY FUNCTIONAL

We introduced the KS formalism which allows an exact treatment of most of the

contributions to the electronic energy of an atomic or molecular system, including

the major fraction of the kinetic energy. In this section, webriefly introduce the

approximations used for the xc-energy functional. The presentation focuses on the
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derivation of the most important functionals, and their results, the local density and

generalized gradient approximations. The quality of the density functional approach

hinges solely on the accuracy of the chosen approximation toEXC [5].

1.5.1. Local (Spin) Density Approximation: L(S)DA

Kohn and Sham pointed out that solids can often be consideredas close to the limit of

the uniform electron gas [4]. The simple concept of the localdensity approximation is

based on theuniform electron gas, which represents the bedrock of almost all current

functionals. This is a system in which electrons move on a positive background charge

distribution such that the total ensemble is electrically neutral. We continue with a

discussion of the problems due to the self-interaction of the charge density and to

the behavior of the corresponding exchange-correlation potentials in the long range

asymptotic region [5].

The number of electronsN as well as the volumeV of the gas are considered to

approach infinity, while the electron density,N/V remains finite, and attains a constant

value everywhere. The uniform electron gas is a fairly good physical model for simple

metals. We can writeEXC in the following form [4],

E
L(S)DA
XC [ρ↑, ρ↓] =

∫

ρ(r)ǫXC(ρ
↑(r), ρ↓(r)) dr . (1.18)

Here,ǫXC(ρ
↑(r), ρ↓(r)) is the exchange-correlation energy per particle of a uniform

electron gas of densityρ(r). Writing EXC in this way defines thelocal spin density

approximation, L(S)DA for short. The quantityǫXC(ρ
↑(r), ρ↓(r)) can be further split

into exchange and correlation contributions,

ǫXC(ρ
↑(r), ρ↓(r)) = ǫX(ρ

↑(r), ρ↓(r)) + ǫC(ρ
↑(r), ρ↓(r)) . (1.19)

The first term on the right hand side of the last equation,ǫX , represents the exchange

energy of an electron in a uniform electron gas of a particular density. This term has the

form Slater found in his approximation of Hartree-Fock exchange and was originally
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derived by Bloch and Dirac in the late 1920s [5]:

ǫX = −
3

4

(

3ρ(r)

π

)1/3

. (1.20)

No such explicit expression is known for the correlation part, ǫC . Many analytical

expressions ofǫC have been presented based on sophisticated interpolation schemes.

The most widely used one was developed by Vosko, Wilk, and Nusair [11], and

the most recent and probably the most accurate one has been given by Perdew and

Wang [12].

If we restrict the L(S)DA to the unpolarized case, we arrive at the local density

approximation(LDA). We now write

ELDA
XC [ρ] =

∫

ρ(r) ǫXC(ρ(r)) dr . (1.21)

Just as for the simple, spin compensated situation whereρ↑(r) = ρ↓(r) = (1/2)ρ(r)

there are related expressions for the exchange and correlation energies per particle of

the uniform electron gas characterized byρ↑(r) 6= ρ↓(r) the so-called spin polarized

case.

1.5.2. The Generalized Gradient Approximation: GGA

For many years the LDA has been the only approximation available for EXC . This

situation changed when the first successful extension to thepurely local approximation

as developed. The use of not only the information about the densityρ(r) at a particular

pointr, but thegradientof the charge density,∇ρ(r), has also been suggested in order

to account for the non-homogeneity of the true electron density. In other words, we

interpret the local density approximation as the first term of a Taylor expansion of the

uniform density and expect to obtain better approximationsof the exchange-correlation

functional by extending the series with the next lowest term[5]. Thus we arrive at the

functional
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EGEA
XC [ρ↑, ρ↓] =

∫

ρ ǫXC(ρ
↑, ρ↓) dr +

∑

σ,σ′

∫

Cσ,σ′

XC (ρ↑, ρ↓)
∇ρσ

ρ
2/3
σ

∇ρσ′

ρ
2/3
σ′

dr + · · · (1.22)

calledgradient expansion approximation(GEA) and that can be applied to a model

system where the density is not uniform but varies slowly. Unfortunately the GEA

does not lead to desired improvement even frequently worse than the simple LDA

when applied to real molecular problems. The reason for thisfailure is that the

exchange-correlation hole associated with a functional has lost many of the properties

which made the LDA hole physically meaningful. Thus, the dependence between

the depth of the on-top hole and its extension is lost and the holes as well as the

corresponding exchange-correlation energies will be muchmore erratic [5].

This problem was solved by setting parts to zero in the GEA exchange holes violating

the requirement of being negative everywhere and truncating the exchange and

correlation holes such thathX(r1; r2) and hC(r1; r2) which contain one and zero

electron charges, respectively. Functionals that includethe gradients of the charge

density and where the hole constraints have been restored inthe above manner are

collectively known asgeneralized gradient approximations(GGA). These functionals

have the form [5]

EGGA
XC [ρ↑, ρ↓] =

∫

f(ρ↑, ρ↓,∇ρ↑,∇ρ↓) dr = EGGA
X + EGGA

C (1.23)

in which the exchange part is rewritten as

EGGA
X = ELDA

X −
∑

σ

∫

F (sσ)ρ
4/3
σ (r) dr. (1.24)

where the argument ofF is thereduced density gradientfor spinσ and given by

sσ(r) =
|∇ρσ(r)|

ρ
4/3
σ (r)

(1.25)

and must be understood as a local inhomogeneity parameter.
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For the functionF two main classes of realizations have been put forward. The first

includes functionals with empirical parameters and the second includes functionals that

use a rational functional of the reduced density gradient for F and have fewer empirical

parameters. The prominent representations are the early functionals by Becke, 1986

(B86) [13] and Perdew, 1986 (P) [14], the functional by Lacksand Gordon, 1993

(LG) [15] or the recent implementation of Perdew, Burke, andErnzerhof, 1996

(PBE) [16]. As an example, we explicitly write downF of Perdew’s 1986 exchange

functional, which, just as for the more recent PBE functionals, is free of semiempirical

parameters:

F P86 =

(

1+1.296

(

sσ
(24π2)1/3

)2

+14

(

sσ
(24π2)1/3

)4

+0.2

(

sσ
(24π2)1/3

)6
)1/15

(1.26)

For the functionalEGGA
C , more complicated analytical forms exist and cannot be

understood by simple physically motivated reasonings. As examples, the most widely

used choice is the correlation counterpart of the 1986 Perdew exchange functional. A

few years later Perdew and Wang, 1991, refined their correlation functional, leading to

the parameter free PW91. Another, nowadays even more popular one, is due to Lee,

Yang, and Parr, 1988 (LYP) [17] which contains one empiricalparameter. It should be

noted that all correlation functions are based on systems that only include short range

correlation effects.

1.6. PLANE-WAVES AND PSEUDOPOTENTIALS

The fundamental idea of a pseudopotential is the replacement of a problem with a

simpler one. The primary application in electronic structure is to replace the strong

Coulomb potential of the nucleus and effects of the tightly bounded core electrons by

an effective ionic potential acting on the valence electrons [4] as shown in Figure 1.2.

The elements with atomic number 19 or more have a significant slowing effect on

ab-initio calculations because of the many two-electron repulsion integrals. The usual

way of overcoming this problem is adding to the Fock operatora one-electron operator

that takes into account the effect of the core electrons in a collective way on the valence

12



Figure 1.2. Schematic representation of the pseudo-wavefunction φ(r) and
pseudopotentialV ps(r); rc is the cutoff radius beyond which the
wavefunction and potential are not affected. Dashed lines indicate real
valence wavefunction and Coulomb potential [18].

electrons. This average core effect operator is called an effective core potential (ECP)

or a pseudopotential [3].

The advent of ab initio molecular dynamics using the Car-Parrinello (CP) method [19]

has resulted in a considerable leap in the capability of planewave based density

functional methods. The application of these approaches has permitted the solution

of numerous previously intractable problems [20].

A distinction is sometimes made between an ECP and a pseudopotential; the latter

term is being used to mean any approach limited to the valenceelectrons, while the

former is sometimes used to designate a simplified pseudopotential corresponding to

a function with fewer orbital nodes than the correct functions. However, the terms are

usually used interchangeably to designate a nuclei-plus-core electrons potential used

with a set of valence functions, and that is what is meant here[3].

The relativistic form of the Schrödinger equation i.e. theDirac equation, is not

commonly used explicitly in molecular calculations, but isinstead used to develop
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relativistic pseudopotentials [3]. Relativistic effectscan begin to become significant

for about third-row elements, i.e. the first transition metals. For molecules with these

atoms ECPs begin to be useful for speeding up calculations, so it makes sense to

take these effects into account in developing these potential operators and their basis

functions, and indeed ECPs are generally relativistic. Such ECPs can give accurate

results for molecules with third-row and beyond atoms by simulating the electronic

relativistic mass increase [3].

Let us separate explicitly the single-particle states intovalence and core sets, identified

as |ψ(v)〉 and |ψ(c)〉 respectively, that satisfies Schrödinger type equations in which

external potential due to nucleus and all other electron-electron interactions included.

We can define a new set of single-particle valence states as follows [18],

|ψ(v)〉 = |ψ̃(v)〉 −
∑

c

〈ψ(c)|ψ̃(v)〉 |ψ(c)〉 (1.27)

Applying the single-particle hamiltonianHsp to this equation, we obtain

Hsp |ψ̃(v)〉 −
∑

c

〈ψ(c)|ψ̃(v)〉Hsp |ψ(c)〉 = ǫ(v)
[

|ψ̃(v)〉 −
∑

c

〈ψ(c)|ψ̃(v)〉 |ψ(c)〉

]

(1.28)

which takes into account thatHsp |ψ(c)〉 = ǫ(c) |ψ(c)〉 giving,

[

Hsp −
∑

c

ǫ(c) |ψ(c)〉 〈ψ(c)|

]

|ψ̃(v)〉 = ǫ(v)
[

1−
∑

c

|ψ(c)〉 〈ψ(c)|

]

|ψ̃(v)〉 (1.29)

reduces

[

Hsp +
∑

c

(

ǫ(v) − ǫ(c)
)

|ψ(c)〉 〈ψ(c)|

]

|ψ̃(v)〉 = ǫ(c) |ψ̃(v)〉 . (1.30)

Therefore, the new states|ψ̃(v)〉 obey a single-particle equation with a modified

potential, but have the same eigenvaluesǫ(v) as the original valence states|ψ(v)〉. The

modified potential for these states is called thepseudopotential, given by
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V ps = V sp +
∑

c

(

ǫ(v) − ǫ(c)
)

|ψ(c)〉 〈ψ(c)| (1.31)

and, correspondingly, the|ψ̃(v)〉’s are calledpseudo-wavefunctions. And finally the

entire procedure of constructing typical pseudopotentials for modern calculations is

schematically shown in Figure 1.3.
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Select an Exchange-Correlation Sheme

For example : GGA (PBE) or LDA (PZ)

Calculate all-electron eigenvalues and eigenfunctions

Hspψ(v)(r) = [F̂ + V Coul(r)]ψ(v)(r) = ǫ(v)ψ(v)(r)

Select a Pseudopotential Construction Sheme and its parameters

For example : Vanderbilt (Ultrasoft) or Troullier-Martins(Norm-Conserving)

Calculate pseudo-atom eigenvalues and eigenfunctions :

via Fixing the pseudo-wavefunctionφ(v)(r) = ψ(v)(r) for r ≥ rc

and Forcing the following conditions in the region0 > r ≤ rc :

φ(v)(r) smooth, nodeless;
dφ(v)(r)

dr
and

d2φ(v)(r)

dr2
are continuous atrc

Normalize the pseudo-wavefunctionsφ(v)(r) for 0 ≤ r <∞

Invert the system :[F̂ + V PS(r)]φ(v)(r) = ǫ(v)φ(v)(r)

V PS(r) = ǫ(v) −
F̂ φ(v)(r)

φ(v)(r)

Figure 1.3. Typical pseudopotential construction scheme.
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PART 2

HEUSLER STRUCTURE

The compounds which contain magnetic transition elements are grouped in four large

classes due to their magneto-optical properties. These comprise spinels, garnets,

orthoferrites, and Heusler alloys [21], the last one being the class of materials we are

interested in the scope of this thesis.

2.1. HALF METALLICITY AND HEUSLER ALLOYS

The Heusler alloysNiMnSb, PdMnSb, and PtMnSb have been investigated

experimentally and theoretically since 1980’s [22]. At thetime the unusual

magneto-optical properties of several Heusler alloys motivated the study of their

electronic structure which yielded an unexpected result [22].

Firstly the compoundPtMnSb has been found experimentally to have an extremely

large magneto-optical Kerr rotation of−1.27◦ that was the record Kerr rotation

observed in a transition metal compound in room temperatureand was therefore called

a giant Kerr effect. Almost simultaneously, the theoretical finding of the so-called

half-metallicnature of thePtMnSb was reported [21]. The alloy showed the properties

of metals as well as insulators at thesametime in thesamematerial, depending on the

spin direction. This property was given the name of half-metallic magnetism [23].

More explicitly, half-metallicity means that the materialis metallic for majority, but

insulating for minority spin electrons according to band structure theory. Such a gap

for one spin type naturally may give rise to unusual magnetotransport and optical

properties.NiMnSb system was also predicted to be half-metallic, while thePdMnSb

was not. The detailed comparison became feasible only due tothe development ofab
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initio calculations of the magneto-optical spectra.

Half-metallic ferromagnets represent a class of materialswhich attracted a lot

of attention due to their possible applications in spintronics (also known as

magnetoelectronics) [24]. Adding the spin degree of freedom to the conventional

electronic devices has several advantages like non-volatility, increased data processing

speed, decreased electric power consumption, and increased integration densities [25–

27]. Half-metals can be considered as hybrids between metals and semiconductors.

However the expected100% spin polarization in a half-metallic ferromagnet is

a limit of vanishing temperature and can be achieved by neglecting spin-orbit

interactions [22]. The number of well-established half-metals is a confusing situation

originating from the fact that there is no direct experimentto determine whether a

material is a half-metal or not. Because of experimental complications, electronic

structure calculations which are based on DFT in the LDA or GGA play an important

role in the search for finding new half-metallic ferromagnets. The power of

computational calculations is that it does not need samples, moreover the calculations

can be performed for hypothetical materials.

2.2. HEUSLER STRUCTURE AND HALF-METALLICITY

Now we will present a study of the basic electronic and magnetic properties of the

half-metallic Heusler alloys. Usingab-initio results we explain the origin of the gap in

both the half- and full-Heusler alloys [28].

As mentioned above, developments in electronics have brought half-metallic

ferromagnets to the center of scientific research recently.The first family of Heusler

alloys studied was of the formX2YZ, in theL21 structure, which consists of four fcc

sublattices, whereX is a high-valence transition or noble metal atom,Y a low-valance

transition metal andZ ansp element [29] as shown in Figure 2.1.

Particulary compounds that containCo andMn have attracted most of the attention.
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Figure 2.1.X2YZ, in theL21 structure.

EachMn or sp atom has eightCo atoms as first neighbors, sitting on an octahedral

symmetry position, while eachCo has fourMn and foursp atoms as first neighbors

and thus the symmetry of the crystal is reduced to the tetrahedral one. TheCo atoms

occupying the two different sublattices are chemically equivalent as the environment

of the second one but rotated by90◦ [28].

The Heusler alloys of the second class are of the formXYZ, in theC1b structure, and

consisting of three fcc sublattices. They are often called semi- or half-Heusler alloys

in the literature, whileL21 structures are referred to as full-Heusler alloys [29]. It

can be understood that HeuslerC1b alloys have a close relation with the zinc-blende

structure which has an fcc Bravais lattice with a basis of(0, 0, 0) and(1/4, 1/4, 1/4).

The HeuslerC1b structure consists of the zinc-blende structure with an additional

occupation of the(1/2, 1/2, 1/2) site. HeuslerL21 structure differs from the Heusler

C1b structure with an additional occupation of the(3/4, 3/4, 3/4) site [28].

The structure of full-Heusler system results in the occurrence of an inversion center that

is not present in theC1b and zinc-blende structures [28]. This difference has important
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consequences for the half-metallic band gaps [28]. The interest in these types of

intermetallic alloys increased after the prediction ofNiMnSb using first-principles

calculations.

Heusler alloys have main advantages like high Curie temperatures compared to

other half-metallic systems such as oxides and manganites [29]. Heusler alloys

have already been incorporated in spin-filters [30], tunneljunctions [31], and giant

magneto-resistance (GMR) devices [32]. The most successful recent applications in

spintronics concern the half-metallic full-Heusler alloys which are the systems we will

investigate in detail for two particular compounds by usingfirst-principles calculations.

2.2.1. Band Structure of Heusler Alloys

In the non-magnetic case, the local contributions to the density of states (DOS) comes

from thed-states ofX andY atoms dominantly while thesp-atom introduces deep

lying s andp bands. Since all atomic orbitals, i.e. thed and sp orbitals hybridize

with each other, all bands are hybrids between these states,being either of bonding or

antibonding type [33].

Those configurations is energetically not stable, since theFermi energy,EF , lies in the

middle of an antibonding band and since theX atom can gain considerable exchange

energy by forming a magnetic moment. So that spin polarized results show a different

picture in which the majority spin-↑ band hasX-d states shifted to lower energies

forming a commond-band with theY-d states, while in the minority spin-↓ band, the

X states are shifted to higher energies and are unoccupied. Therefore a band gap atEF

is formed separating the occupiedd bonding from the unoccupiedd-type antibonding

states which is the case that ensuresXYZ is a half metal, with a band gap atEF in the

minority band and a metallicsp-like DOS atEF in the majority band [33].

The band structure of the half-Heusler alloys due to minority states is important for the

understanding of the magnetic properties, and this band structure is universally valid

for all half-Heusler alloys including the semiconductors [33].
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It can easily be understood that the gap is dominated byd-states and originates from

the strong hybridization between thed-states of the two transition metal atoms. Note

that in theC1b structure,X andY sublattices form a zinc-blende type structure, which

is important for the formation of the gap [33].

Half-metallicC1b compounds have a gap which is normally indirect, with maximum

of the valence band at theΓ point and the minimum of the conduction band at the

X point. It will be seen for two particular compounds that the band gap can be well

described by the LDA and GGA since the screening is metallic in these systems [33].

If we look at the role of thesp-elements, it is clear that they are not responsible for

the existence of the band gap, but they are nevertheless veryimportant for the physical

properties of the Heusler alloys and the structural stability of C1b structure.

The second family of Heusler alloys, which will be discussedmore deeply for two

particular compounds in the next section, are the full-Heusler alloys. The importrance

of the full-Heusler alloys which are all strong ferromagnets is that they have high Curie

temperatures above600K and they show very little disorder except for theCo2MnAl

compound. Similar to the half-Heusler alloys,sp bands are not relevant for the band

gap and located far below theEF . Therefore, only the hybridization of oneY and two

X atoms can be considered as the reason of the gap. For simplicity, only thed-states

at theΓ point can be considered, which show the full structural symmetry. We note

thatX atoms form a simple cubic lattice and theY atoms that have8 X atoms as the

nearest neighbor, occupy the body centered sites. The distance between theX atoms

is a second neighbor distance but the hybridization betweentheX atoms qualitatively

very important because of field splitting due to simple cubiclattice formed byX atoms.

In a second step the hybridization betweenX-X orbitals andY-d orbitals can be

considered. They create a doubly degenerate bonding state that is very low in energy

and an anti-bonding one that is unoccupied and locates abovetheEF [33]. The origin

of the band gap in the full-Heusler alloys is rather subtle.

21



2.2.2. Slater-Pauling Behavior

The total magnetic moment in units of Bohr magneton (µB) is just the difference

between the number of occupied spin-↑ states and occupied spin-↓ states. The number

of spin-down bands below the gap isN↓ = 9 in all cases. If the total number of valence

electrons isZt we deduce the number of occupied spin-up statesN↑ = Zt−N↓ = Zt−9

and the total magnetic moment is found to beM = (N↑ − N↓)µB = (Zt − 18)µB.

For example in theNiMnSb, we haveN↑ = 13 andM = 4µB. It will be seen that the

calculated local moment per unit cell by the ab-initio methods will be very close to the

characteristic value for half-metallic full-Heusler alloys. This is a direct analogue to

the well-known Slater-Pauling behavior of the binary transition metal alloys [34] with

a difference of minority population which is fixed and equal to 9, so that the screening

is achieved by filling the majority band.

It seems in full-Heusler alloys the total spin moment,Mt, is related to the total number

of valence electrons,Zt, with a similar equation of the half-Heusler alloys. The

behavior is shown in Figure 2.2. Minority band contains12 electrons per unit cell,

i.e. N↓ = 12. So that, we immediately arrive thatMt = Zt − 24 whereZt is total

number of valence electrons. Overall it is seen that many theresults coincide with the

Slater-Pauling curve.
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Figure 2.2. Slater-Pauling behavior in full-Heusler systems with some examples.
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PART 3

SYSTEMS UNDER INVESTIGATION

Half-metallic ferromagnets (HMFs) have attracted great attention due to their

extraordinary physical properties and several technological applications in various

fields. NiMnSb half-Heusler compound is the firstly discovered half-metallic

ferromagnet withC1b structure andF43m space group [23]. HMFs are characterized

by the metallic band structure for one spin state, while the electronic band structure of

other spin state presents an insulating character yieldinga perfect spin polarization at

EF . This situation also results in a spin-polarized electrical conductivity, which is very

sensitive to applied magnetic field. HMFs have central importance in spin-dependent

electronic applications: spintronics [24, 35], GMR spin valve [36], and spin injection

to semiconductors [37–39].

These types of materials have been extensively studied in view of the first principles

calculations, and several compounds are predicted to be half-metallic [22,40–44]. The

electronic structure and magnetic properties of half- and full-Heusler compounds with

various combinations of constituent elements have been studied extensively in previous

works [45,46]. A recent comprehensive ab initio study reviews the electronic structure

and spin polarization properties of half-metallic Heusleralloys [47]. Among the

several Co-based full-Heusler compounds (Co2YZ) in cubicL21 structure,Co2MnSi

system seems to be the most promising material for spintronics applications due to

the ideal physical properties like high Curie temperature (Tc = 985K) [48] and wide

band gap in minority spin channel [44].Co-based Heusler compounds are investigated

theoretically in view of the density functional calculations and most of them are

predicted to be half-metallic [42–45, 48–50]. Moreover,Co2MnSi compound is used

in production of thin films [51–53] and devices [54,55].
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The half-metallic behavior of full-Heusler compounds presents more complicated

characteristics than that of half-Heusler alloys due to thepresence of the states

located entirely at theCo sites [45, 56] resulting an ideal local moment system [57,

58]. The integer magnetic moment is an important characteristic property for

half-metallic systems in stoichiometric composition. Thetotal magnetic moments of

the perfect HMFs obey Slater-Pauling [59, 60] rule, in whichthe saturation magnetic

moment scales with the number of valance electrons [61]. Besides CoMn based

full-Heusler compounds, there is a lack of study in literature onCoCr based Heusler

systems. In this thesis, the electronic structure and magnetic properties of two novel

full-Heusler compounds,Co2CrAs andCo2CrSb, are investigated using plane-wave

pseudopotential method and spin-polarized GGA (σ-GGA) of DFT. There are no

comparable studies on electronic structure and half-metallicity of these systems in

literature. The details of the calculations performed and Heusler geometry are

described in next section. The features of bulkL21 structures of the compounds under

study are also presented in next section.
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PART 4

COMPUTATIONAL DETAILS

Materials that have been investigated in our study were the full-Heusler ternary

intermetallic compounds,Co2CrAs andCo2CrSb, based on theX2YZ stoichiometry

for theL21 phase (Fm3̄m space group,#225) including one formula unit of atoms per

primitive cell.

X atoms are transition metals located at(0, 0, 0) and(1
2
, 1
2
, 1
2
) Wyckoff crystallographic

positions, whileY andZ are a magnetic transition metal and a III-V group element

occupying the positions(1
4
, 1
4
, 1
4
) and(3

4
, 3
4
, 3
4
), respectively. These are the materials

that show ferromagnetic behavior even though none of the atoms in the composition is

ferromagnetic, which is the phenomena that makes them important.

All the calculations that will be presented in this work havebeen carried out by

using PWscf code, distributed with the Quantum ESPRESSO package [62, 63]. In

order to approximate exchange correlation potential,σ-GGA of the density functional

theory [8,9] is used with Perdew-Burke-Ernzerhof parametrization [16].

In describing the physical properties of Heusler compounds, GGA functionals are

more successful than local spin density functional (LSDA) scheme [43]. Ultrasoft

pseudopotentials are generated by scalar relativistic calculation for all the atoms in the

composition with non-linear correction. The valence states of atoms are considered as

follows,Co: 4s13d8,Cr: 3s23p64s13d5,As: 4s24p3, Sb: 4d105s25p3. An automatically

generated20x20x20 k-point grid following the convention of Mankhorst and Pack[64]

is used for Brillouin zone integration yielding512 k-points in the irreducible wedge of

the Brillouin zone centered atΓ point.
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Wave functions are expanded in plane wave basis sets up to a kinetic energy cut-off

value of50Ry corresponding to about1940 plane waves. The electron kinetic energy

cut-off value has been determined by calculating the total energies at different kinetic

energy cut-off values as given in Figure 4.1–4.2. The convergence is well provided

with 50Ry cut-off value which is sufficient for ultrasoft pseudopotentials used in

calculations. The observed total energy difference between 50Ry and90Ry cut-offs

is approximately7mRy for both systems studied indicating a well-converged ground

state.

Mathfessel-Paxton type smearing with parameterσ = 0.005Ry is applied on

fermionic occupation function [65], and Davidson type diagonalization method [66]

with 10−8Ry energy convergence threshold was used in order to solve KS equations

iteratively. In order to get equilibrium structural parameters of the systems, we use

Vinet equation of state [67] which is found to be most accurate among the several

equation of state formulations [68]. This formulation is asfollows:

E(V, T ) = E0(T ) +
9B0(T )V0(T )

χ2

[

1 +
[

χ(1− x)− 1
]

eχ(1−x)

]

(4.1)

in whichx = (V/V0)
1/3 andχ = 3(B′

0−1)/2, whereV0 is the equilibrium volume,B0

is zero pressure bulk modulus andB′
0 is its pressure derivative. We construct the static

equation of states of the system performing fits using the total energies at20 different

volumes ranging from0.8V0 to 1.2V0.
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PART 5

RESULTS AND DISCUSSION

While studying the half-metallic systems, the accurate determination of equilibrium

structural parameters has central importance, since the electronic band structure is

sensitive to applied strain. We show the calculated total energies as a function of lattice

constant together with the fitting curves for the relevant systems in Figure 5.1 and 5.2.

The asymptotic standard errors in fitting curves are less then 10−6 which shows the

precision of the obtained results. A summary of calculated structural parameters of

Co2CrAs(Sb) systems is given in Table 1 showing equilibrium lattice parameters in

a.u., Bulk moduli inGPa, and magnetic moments inµB.

Table 5.1. Equilibrium structural parameters of bulkCo2CrX (X = As, Sb)

Co2CrAs Co2CrSb
a (a.u.) 10.933 11.322
B (GPa) 179.3 173.9
µtot (µB) 5.00 5.00
µCo (µB) 1.98 1.92
µCr (µB) 2.95 3.13
µAs(Sb) (µB) 0.07 −0.05

The calculated lattice constant is10.933 (11.322) a.u., the zero pressure bulk moduli

is 179.3 (173.9)GPa for the systemCo2CrAs(Sb). These values are relatively low

compared toCo−Mn based Heusler systems. (e.g.B0 = 214GPa forCo2MnSi [69]).

The calculated equilibrium lattice constants of several full- and half-Heusler systems

usingσ −GGA deviate from experimental results by a ratio of1% following general

tendency of3d elements [43] corresponding to large improvement overL(S)DA. Thus,

it is deduced thatσ −GGA scheme can be used to obtain accurate results.
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One of the properties of the half-metallic systems that indicate the stability of behavior

is the total magnetic moment which is found to be an integer5.00µB obeying the

Slater-Pauling rule with the number of valence electronsZt = 29 for bothCo2CrAs

and Co2CrSb systems in cubicL21 structure. The largest contributions to total

magnetic moments are due the chromium site with the value2.95(3.13)µB for the

compoundCo2CrAs(Sb), while the magnetic moments of thesp elements show

relatively large difference with the value0.07(−0.05)µB for As(Sb).

It is realized that the calculation conditions affect the sensitivity of the magnetic

moments. A relatively weaker Brillouin zone integration with 15x15x15 k-mesh and

increased smearing parameter (e.g.0.02 Ry) give non-integer saturation magnetic

moments.

The GGA calculated spin resolved electronic band structures of theCo2CrAs(Sb)

systems along the main symmetry directions in irreducible Brillouin zone and the total

electronic DOS are given in Figure 5.3–5.8.

Electronic bands of the majority spin states show typical metallic character with bands

crossingEF in all high symmetry directions, while the band structures of the minority

states show semiconducting behavior with the energy band gapsEgap = 0.40 eV and

Egap = 0.46 eV for Co2CrAs andCo2CrSb systems, respectively. The minority spin

band structures show direct gap atΓ point for Co2CrAs and an indirect gap along

Γ− X direction forCo2CrSb. The nature of the minority gap is also very sensitive to

calculation conditions.

The difference between the valence band maximum (VBM) andEF is defined as spin

gap which is an important quantity corresponding to the required energy to flip a

minority spin from VBM to majority spinEF [43]. The calculated spin gap values

areEspin = 0.39(0.25) eV for Co2CrAs(Sb). The increasing atomic number ofsp

elements in composition results in a reduced spin gap value.

The orbital projected spin-resolved electronic DOS (EDOS)shown in Figure 5.9–5.10
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give a sensible understanding of the systems. Deep lying energy bands around−12 eV

and−14 eV are due to thep-states of chromium atom and are not strongly affected by

the interaction of3d-states of cobalt and chromium atoms. The bands around−7 eV

are mainly caused by thep-states of group-Vsp elementsAs(Sb). For both spin

configurations,d-states of cobalt and chromium sites show their dominant character

between−5 eV and−4 eV energy range. The majority bands around theEF results

from the strong hybridization ofd-states of cobalt and chromium atoms while the the

minority spin energy band gap aroundEF is restricted byd-states of cobalt atoms.

This gap is originated from the interactions ofd-states of cobalt atoms standing on

two different atomic positions as expected inCo-based full-Heusler systems [40].

Spin-resolved electronic band structures together with total EDOS are also given in

Figure 5.11–5.12.

We can easily state that both valence and conduction bands ofminority spin states

around±2 eV of theEF emerge from the hybridization ofCo-d-states.3d orbitals

of Co atoms couple and form bonding hybrids [22]. Consequently, the minority band

gaps in these systems are due to the bonding and anti-bondingfeatures ofCo-d-states.

Cr-d-states of minority spins take place at≈ 2 eV above theEF with local and

non-hybridized character. It should be noted thatEF does not take place at the mid

of the minority gap.

The formation enthalpy is a measure of synthesizability of the relevant compounds and

can be calculated by using following relation,

∆H = E(Co2CrX)− [E(Co) + E(CrX)] (5.2)

whereE(Co2CrX) is the equilibrium energy of the compound inL21 phase,E(Co)

andE(CrX) are the energies of the hexagonal close-packed solid cobaltstructure

containing two atoms per primitive cell and conventional zincblende phase ofCrX

binary compound, respectively. It is more reasonable to consider the stability of the

systems against phase segregation into stable compounds like solidCo andCrX which

can occur in sample preparation.
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As mentioned above negative values of formation enthalpy isa measure of the

stability of the compounds against decomposition into stable solid structures [70]. The

calculated enthalpies are−26.10mRy and−75.09mRy for Co2CrAs andCo2CrSb,

respectively.
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PART 6

SUMMARY AND CONCLUSION

The electronic structure and magnetism of two novel half-metallic full-Heusler

compounds,Co2CrAs andCo2CrSb, are studied in the orderedL21 structure in view

of the first principles density functional calculations. The plane-wave pseudopotential

method and spin-polarized GGA scheme for the exchange correlation functionals are

applied. These systems show perfect half-metallic character i.e. a semiconducting

minority spin band structure, which has zero electronic density of states at Fermi level,

and an ordinary metallic band structure for majority spins.

The energy gap in minority spin channel ofCo2CrAs is found to have a direct gap

atΓ-point, whileCo2CrSb system has an indirect gap alongΓ–X direction. The total

magnetic moments of both systems are5.00µB in consistet with the Slater-Pauling rule

indicating a stable hallf-metallic behavior.

The minority spin energy band gaps are restricted by thed-states of cobalt atoms and

it can be inferred that the physical origin of the band gap in minority spin channel

is the interactions of thed-states of cobalt atoms at two different sublattices namely

(Co1(000)− Co2(1
2
1
2
1
2
)). The calculated formation enthalpies are negative indicating

stability and synthezability of these compounds.
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