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ABSTRACT

M.Sc. Thesis

FIRST PRINCIPLES INVESTIGATION OF ELECTRONIC AND MAGNETIC
PROPERTIES OF HALF-METALLIC HEUSLER ALLOYS

Ulvi KANBUR

Karab Gk University
Graduate School of Natural and Applied Science

the Division of Physics

Thesis Advisor
Assist. Prof. Dr. Gokhan GOKO GLU
July 2011, 48 pages

In this study, we present the electronic, magnetic, andtral properties of two novel
half-metallic full-Heusler compound€,o,CrAs andCo,CrSb, in cubicL.2; geometry.
The calculations are based on the density functional theatiin plane-wave
pseudopotential method and spin-polarized generalizadigmt approximation of the
exchange-correlation functional. The electronic bandcstires and density of states
of the systems indicate half-metallic behavior with vamghelectronic density of
states of minority spins at Fermi level, which yields petfsgin polarization. The
calculated magnetic moments of both systemkapstructure aré.00. 5, which are
largely localized on the chromium site. The energy gaps inomily spin states are
restricted by th&d-states of cobalt atoms on two different sublattices. The&tion
enthalpies for both structures are negative indicatinjliiaof these systems against

decomposition into stable solid compounds.
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OZET
Y Uksek Lisans Tezi

YARI-METAL K HEUSLER ALASIMLARININ ELEKTRON  IK VE
MANYET IK OZELL IKLER ININ ILK PRENS IPLERDEN INCELENMES i

Ulvi KANBUR

Karab ik Universitesi
Fen Bilimleri Enstit sl

Fizik Ana Bilim Dali

Tez Danismani
Yrd. Dog. Dr. Gokhan GOKOGLU
Temmuz 2011, 48 sayfa

Bu calismada, kubiklL.2; geometrisine sahip iki yeni yari-metalik tam-Heusler
bilesikleri olanCo,CrAs ve Co,CrSh igin elektronik, menyetik ve yapisal ozellikler
verilmistir. Hesaplamalar, dizlem dalga stzde-pdtehismetodu ve degis tokus
korelasyon fonksiyonelleri igin spin-polarize geneliebnis gradyan yaklasimi
Isiginda yogunluk fonksiyoneli teorisine dayanmakta8istemlerin elektronik bant
yapilart ve durum yogunluklari, Fermi dizeyinde asa@in elektronik durum
yogunlukarinin sifirlanmasi ile tam bir spin polarizagyolusturarak yari-metalik
karakter gostermektedir. Her iki sistemi2; yapisinda hesaplanan manyetik
momentleri5.00.5 degerindedir ve buyik olgiide krom atomu kaynaklidgagi spin
durumlarinda enerji bosluklari, iki farkl alt érgiideédobalt atomlarinirsd durumlari
tarafindan sinirlandiriimistir. Sistemlerin olugsmaadpileri negatif degere sahiptir ve

kendini olusturan elementlerin kati bilesikerine bamaya karsi kararlihgini gosterir.
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PART 1

INTRODUCTION

One of the basic problems in theoretical physics is the g&sum of the structure and
dynamics of many-electron systems comprising single atdhes most elementary
building blocks of ordinary matter, all kinds of moleculet¢ [1]. For polyatomic

molecules, the presence of several nuclei makes quantwhamigal calculations
harder than for diatomic molecules. Moreover, the eleatramavefunction of a

diatomic molecule is a function of only one parameter—therinuclear distance [2].
In contrast, the electronic wave function of a polyatomidecale depends on several
parameters—the bond distances, bond angles, and dihedjaiseof rotation about
single bonds (these angles define the molecular conformatié full theoretical

treatment of a polyatomic molecule involves calculatiothafelectronic wavefunction

for a range of each of these parameters [2].

The calculation of geometries and energies of moleculedeanvestigated by three
techniques: molecular mechanic) initio methods, and semiempirical methods.
Both ab initio and semiempirical methods are based on guamhechanics with
Schrodinger equation and calculate a molecular wavefam@nd molecular orbital

energies [3].

The first calculations handled on many-body systems by D .dRiree and E. Hylleraas
were for atoms. Hartree’'s method today is still in use for etioal calculations
known as self-consistent field (SCF) method, in which eaettedn moves in a central
potential due to the nucleus and other electrons. In 1936k pablished the first
calculations by using a antisymmetrized determinant wawfons, known as the
Hartree-Fock method. Hylleraas provided accurate salatfor the ground state of

two-electron systems as early as 1930 [4].



However, a wavefunction is not a measurable quantity of amatr molecule, i.e. not
an observable. Density Functional Theory, DFT, is not basetthe wavefunction, but
rather on the electron probability density function or &lec density function. Unlike
the wavefunctions, charge density is measurable. The nthiangage of electron

density is that it is a function of position only comprisirigée coordinates [3].

1.1. HISTORY OF DFT

The modern progress of DFT uses a philosophy which in a maahepeaking
starts from exploiting a one-to-one correspondence betvpegticle densities(r)
and many-body wavefunctions(z,, zs, . .., x5 ) Of ground states. One tries to find a
functional expression of the ground state enefgyhrough the ground state density
p(r) instead of the two-particle density matrix, and then to tzagariational principle

for the density on that functional relation.

Thomas-Fermi theory is the earliest and most naive versi@uch theories, which
uses the electron density rather than the wavefunction ktaiming information

about atomic and molecular systems. E. Fermi and P. A. M.cDimdependently
made calculations on an ideal electron gas delivering thania and molecular
properties can be investigated by use of electron dendityiisan independent work
by Fermi and Thomas, atoms were thought with a positive peatelocated in a

uniform (homogeneous) electron gas. Thomas-Fermi modajiven good results for
atoms, but failed for molecules: it has predicted all molesuo be unstable toward

dissociation into their atoms [3].

The Xa (X =exchangeq is a parameter in thE« equation) method [6] by Slater, a
more accurate version of Thomas-Fermi model introduce®%1 1was the first useful
DFT model. Slater regarded it as a simplification of the H&tFock approach. The
Xa method was developed mainly for atoms and solids and hashakso used for

molecules, and has been replaced by more accurate KohnigpamFT method [3].



1.2. THE THOMAS-FERMI MODEL

To investigate the atomic and molecular properties of sysi¢he electron density was
firstly used by Thomas and Fermi with a simple quantum stedilsthodel which takes
into account only the kinetic energy term of the many bodybfm while treating
others in a classical way. In their model, Thomas and Fernveaat the following,
very simple expression for the kinetic energy based on thimum electron gas, a

fictitious model system of constant electron density [5],

Trplp(r)] = -5 (37 / o(r) dr (1.1)

If this is combined with the classical expression for theleacelectron attractive
potential and the electron-electron repulsive potentiad Wwave the famous

Thomas-Fermi expression for the energy of an atom,

Erplp(r)] = %(37?)2/,0(7°)5/3d'r—2/ dr+= // \""1—""2\ d’r dr,. (1.2)

As mentioned, Thomas-Fermi approach is only a coarse appation to the true
kinetic energy and, exchange and correlation effects arplaiely neglected. But the
importance of this equation arises from the fact that theggnis given completely in

terms of the electron densipfr).

Thus we have the first example of a density functional for thergy. In other words,
Eg. 1.2 is a prescription for how to map a dengity) onto an energy~ without any

additional information required. In particular no recauts the wavefunction is taken.
1.3. THE HOHENBERG-KOHN THEOREMS

The histories of the Thomas-Fermi and Hohenberg-Kohn teeqresent instructive
examples of the way knowledge is gathered in many-body phy%]. The starting
point of any discussion of DFT is the Hohenberg-Kohn (HK)aitegn. The approach of
Hohenberg and Kohn is to formulate DFT as an exact theory afr@dy systems [4].



A paper published in 1964 by Hohenberg and Kohn [8] vitalip&d after the studies
of Thomas, Fermi, and Dirac in early years. Theorems pravémat research were the
pillars of modern DFT. This section discusses these themeard their consequences.
We will focus on how a physically meaningful wavefunctiomdae uniquely related

to a density, i.e. to electron density.

1.3.1. The First Hohenberg-Kohn Theorem

Quoting directly from the Hohenberg-Kohn paper [8], thet fireorem states thaiife
external potential,,.(r) is (to within a constant) a unique functional afr); since,

in turn V() fixes H we see that the full many particle ground state is a unique
functional ofp(r)’ [5]. In other words, giverp(r) we can in principle calculate any

ground state property, e.g. the energy,

The theorem is merely an existence theorem: it says thatcifumal F exists, but does
not tell us how to find it; this omission is the main problem2FT [3]. For the
proof [4, 5] we consider two external potentidls,, andV , (differ by more than a
constant) which give the same electron dengity) (for non-degenerate case). The
external potentials lead to two different hamiltonidiisand 77’ which have different
ground state wavefunctiong,and 0’ with the same ground state densityr). Since

Y is not the ground state df, it follows that,

Ey < (V| H W) = (| H'|') + (V| { — 7'|V) (1.3)
which yields
Ey < Ey+ (V| Vege = V., |9) | (1.4)

By the same trick we have

Ey < By — (V| Vi — V0 |0 . (1.5)



After adding equations (1.4) and (1.5) we get the desiredltés+ £’ < E' + FE
which means that there cannot be two different externalrpiaie that yield the same

non-degenerate ground state electron density.
1.3.2. The Second Hohenbergh-Kohn Theorem

It has been emphasized that the ground state electronyldes#rmines all property of
the system in interest. But how can we be sure that the abatgés the true ground
state density that we are looking for? Second theorem sayatbensity functional
gives the ground state energy of the system if and only if ipeii density is the true
ground state density. For the proof [5], we again refer tosiveational principle which

can be expressed as
Ey < E[f] = TIp') + Eneld] + Eeelp). (1.6)

where T, Ey. and E,. are kinetic energy, nucleus-electron and electron-alactr
interactions of particles. Any trial densiy has a corresponding wavefunctidri
which can be used as the trial wavefunction for the true Hamikn to give the desired

result as following,
<wﬁwaM+%m+ﬁ%mhwmz%m:wmm> (1.7)
in which the integral term giveBy..

1.4. THE KOHN-SHAM APPROACH

Now we will apply the HK theorems to our problem. The secongiomeontribution
to the DFT was made by Kohn and Sham in 1965 in which the kirestergy was
determined in an ingenious way [9]. Kohn and Sham propose&dduacing orbitals
into the problem in such a way that the kinetic energy can bepted simply to good
accuracy, leaving a small residual correction that is heshdéparately [10]. According

to HK theorems, our fundamental quantity was electron dgndie can write ground



state energy of an atomic or molecular system as

Ey = min (F[p] +/,0(7°)VNedr) (1.8)

whereVy, is the potential due to the nuclei-electron interactiord an

Flp(r)] = Tlp(r)] + Ecelp(r)] (1.9)

is the HK functional which is a universally valid term i.es fiorm is independent of
N, R, and Z, which denotes number of electrons, spatial coordinatesicienand
nuclear charge of indexed atom, respectively. We can gplitterm by extracting

Coulomb part

Bl =5 [ [ 22T s, + Bl = Tl + Bual (1.10)

in which E,,.[p] is thenon-classicakontribution to the electron-electron interaction.

Thus we have the final but not ultimate form of HK functional as

Flp(r)] =Tl[p] + J[p] + Enalp]- (1.11)

Through these terms only[p] is known while other two remain a mystery. Kohn
and Sham treated the kinetic energy term in a different waybfter accuracy.
They separated the functional[p] by extracting the exact non-interacting part of
kinetic energy term while combining the residue with the aamng unknown term.
Ultimately we have a functional with two exact terms and onenbined unknown

term as

Flp(r)] = Ts[p] + Jlp] + Exclp]- (1.12)

The first termT’s stands for the non-interaction contribution to kinetic rgiyeand the

last term is the so-callegikxchange-correlation energyhich is defined as



Exclp] = Telp) + Enalp) (1.13)

inwhichT¢[p] is the residual part of the kinetic energy. As can be undedstasily the
term E'xc contains everything unknown. What can we say about the nigmacting
kinetic energy ternils[p]? We know mathematically that the solution to a system
which consists of N non-interacting particles ,is exactly as dimensional Slater

determinant. We immediately write the term explicitly aidas,
1 N
— 2
Ts = 3 E (il V= [ei) (1.14)

)

It is clear from the result that;s are spin orbitals. If we write explicitly all terms of

the electronic Hamiltonian except for one (which is of ceuttse unknown) we get

Elp(r)] = Tslp] + Jlp] + Exclp] + Ene[p] (1.15)

— o V2 - 5 1 2 g
= —§Z<,¢)Z| |¢z>+§2/|wl('f‘1)| Eh/)j('r'z” r1dry

+Bxclp Z / Z—wz IR (1.16)

By using the variational principle with constraiit;|;) = ¢;; the above expression

results following Kohn-Sham (KS) one electron equatiorfy [1

) M

1
<——V2 —|—/ ( d’l"2 + VXC 7‘1 Z ) wl = 62‘1/12‘ (117)
2 T12 7 1A

which have to be solved iteratively. A schematic diagramhieva in Figure 1.1.
The only approximations in these equations arise from thectfonal for the

exchange-correlation enerd@yx - and the corresponding potentiat ..



Constructl;,,, given atomic numbers and positions of ions

Pick a cutoff for the plane-wave basis s&k+G)*

Pick a trial density:(r)

CalculateV,, (n) andV,. . (n)

Solve Kohn-Sham equations by diagonaliziig; ¢ x+a’

ﬁ2v2
2m

Hs = | = G Vion + Vi (1) + Vieo ()] s = exti

Calculate new:(r)

IS SOLUTION SELF-CONSISTENT ?

YES NO

Generate

Compute

The Total Energy New Densityn(r)

Figure 1.1. Schematic representation of the self-congist®p for solution of KS
equations.

1.5. EXCHANGE-CORRELATION ENERGY FUNCTIONAL

We introduced the KS formalism which allows an exact treained most of the
contributions to the electronic energy of an atomic or mali@c system, including
the major fraction of the kinetic energy. In this section, lrgefly introduce the

approximations used for the xc-energy functional. The gm&tion focuses on the



derivation of the most important functionals, and theiuttes the local density and
generalized gradient approximations. The quality of thesdg functional approach

hinges solely on the accuracy of the chosen approximati@nte[5].
1.5.1. Local (Spin) Density Approximation: L(S)DA

Kohn and Sham pointed out that solids can often be consideretbse to the limit of
the uniform electron gas [4]. The simple concept of the lalegdsity approximation is
based on theniform electron gaswhich represents the bedrock of almost all current
functionals. This is a system in which electrons move on @igedackground charge
distribution such that the total ensemble is electricalbytmal. We continue with a
discussion of the problems due to the self-interaction ef ¢harge density and to
the behavior of the corresponding exchange-correlatidgerpials in the long range

asymptotic region [5].

The number of electrond’ as well as the volumé&  of the gas are considered to
approach infinity, while the electron densify/ V' remains finite, and attains a constant
value everywhere. The uniform electron gas is a fairly gdwogspcal model for simple

metals. We can writé&’'x« in the following form [4],

EXSP 0", 0t = / p(T)exc(p’(r), pH(r)) dr. (1.18)

Here,exc(p'(r), p*(r)) is the exchange-correlation energy per particle of a umifor
electron gas of density(r). Writing Ex¢ in this way defines thécal spin density
approximation L(S)DA for short. The quantityxc(p'(r), p*(r)) can be further split

into exchange and correlation contributions,

exc(pl(r), pH(r)) = ex(p'(r), pH(r)) + ec(p (1), pH(r)) (1.19)

The first term on the right hand side of the last equatign,represents the exchange
energy of an electron in a uniform electron gas of a partralgasity. This term has the

form Slater found in his approximation of Hartree-Fock extafpe and was originally



derived by Bloch and Dirac in the late 1920s [5]:

1/3

No such explicit expression is known for the correlationtpas. Many analytical
expressions of- have been presented based on sophisticated interpolatiemes.
The most widely used one was developed by Vosko, Wilk, andaMy41], and
the most recent and probably the most accurate one has besmlg Perdew and

Wang [12].

If we restrict the L(S)DA to the unpolarized case, we arrivettee local density

approximation(LDA). We now write

FLPAY) = / p(r) exclp(r)) dr (1.21)

Just as for the simple, spin compensated situation whigre = p*(r) = (1/2)p(r)
there are related expressions for the exchange and caretatergies per particle of
the uniform electron gas characterized8yr) # p*(r) the so-called spin polarized

case.
1.5.2. The Generalized Gradient Approximation: GGA

For many years the LDA has been the only approximation evailtor Fx-. This
situation changed when the first successful extension toutedy local approximation
as developed. The use of not only the information about theitiep(r) at a particular
pointr, but thegradientof the charge densit¥/ (), has also been suggested in order
to account for the non-homogeneity of the true electron ithenk other words, we
interpret the local density approximation as the first tefra daylor expansion of the
uniform density and expect to obtain better approximataiiise exchange-correlation
functional by extending the series with the next lowest tfsnThus we arrive at the

functional

10



Vo Vs
EGEA[p p] ﬁEXC ;0 p dT+Z/ Ta \L 2/3 p2/3 d’l"+ (122)

OJ

called gradient expansion approximatiq@GEA) and that can be applied to a model
system where the density is not uniform but varies slowly.fddmnately the GEA
does not lead to desired improvement even frequently wdrae the simple LDA
when applied to real molecular problems. The reason for ftilare is that the
exchange-correlation hole associated with a functionaldst many of the properties
which made the LDA hole physically meaningful. Thus, the efegence between
the depth of the on-top hole and its extension is lost and tieshas well as the

corresponding exchange-correlation energies will be nmocte erratic [5].

This problem was solved by setting parts to zero in the GEAanrge holes violating
the requirement of being negative everywhere and trungaiie exchange and
correlation holes such thdty (r; ;) and ho(71;r2) which contain one and zero
electron charges, respectively. Functionals that inclindegradients of the charge
density and where the hole constraints have been restordak inbove manner are
collectively known agieneralized gradient approximatio(GGA). These functionals

have the form [5]

ESE 0", pY] = / f(o", 0", V!, Vpt)dr = B4 + BG4 (1.23)

in which the exchange part is rewritten as

ESGA = pEPA _ Z / So )3 () dr. (1.24)

where the argument df is thereduced density gradiefor sping and given by
Voo ()|

sq(r) = T4z, N

(1.25)
po ()

and must be understood as a local inhomogeneity parameter.

11



For the functionF' two main classes of realizations have been put forward. The fi
includes functionals with empirical parameters and thesséincludes functionals that
use a rational functional of the reduced density gradientfand have fewer empirical
parameters. The prominent representations are the eantyidnals by Becke, 1986
(B86) [13] and Perdew, 1986 (P) [14], the functional by Laek&l Gordon, 1993
(LG) [15] or the recent implementation of Perdew, Burke, dfthzerhof, 1996
(PBE) [16]. As an example, we explicitly write down of Perdew’s 1986 exchange
functional, which, just as for the more recent PBE functlsnia free of semiempirical

parameters:

9 4 6\ 1/15
P86 So So So

For the functionalE&%4, more complicated analytical forms exist and cannot be
understood by simple physically motivated reasonings. x@ples, the most widely
used choice is the correlation counterpart of the 1986 Reexehange functional. A
few years later Perdew and Wang, 1991, refined their coival&inctional, leading to
the parameter free PW91. Another, nowadays even more pomuga is due to Lee,
Yang, and Parr, 1988 (LYP) [17] which contains one empinpzameter. It should be
noted that all correlation functions are based on systeat®thly include short range

correlation effects.
1.6. PLANE-WAVES AND PSEUDOPOTENTIALS

The fundamental idea of a pseudopotential is the replaceofem problem with a
simpler one. The primary application in electronic struetis to replace the strong
Coulomb potential of the nucleus and effects of the tightiyiided core electrons by

an effective ionic potential acting on the valence eledr@h as shown in Figure 1.2.

The elements with atomic number 19 or more have a signifidamtirsg effect on
ab-initio calculations because of the many two-electrquison integrals. The usual
way of overcoming this problem is adding to the Fock operatone-electron operator

that takes into account the effect of the core electrons ollaative way on the valence
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1 VF(r)

Figure 1.2. Schematic representation of the pseudo-waggfn ¢(r) and
pseudopotentiall’?*(r); r. is the cutoff radius beyond which the
wavefunction and potential are not affected. Dashed lindgate real
valence wavefunction and Coulomb potential [18].

electrons. This average core effect operator is calledfactefe core potential (ECP)

or a pseudopotential [3].

The advent of ab initio molecular dynamics using the Carifalfo (CP) method [19]
has resulted in a considerable leap in the capability of gMave based density
functional methods. The application of these approachespbkanitted the solution

of numerous previously intractable problems [20].

A distinction is sometimes made between an ECP and a psetaiiad; the latter
term is being used to mean any approach limited to the valelemrons, while the
former is sometimes used to designate a simplified pseudopalt corresponding to
a function with fewer orbital nodes than the correct funesioHowever, the terms are
usually used interchangeably to designate a nuclei-plus-electrons potential used

with a set of valence functions, and that is what is meant [3re

The relativistic form of the Schrodinger equation i.e. th&ac equation, is not

commonly used explicitly in molecular calculations, butinstead used to develop

13



relativistic pseudopotentials [3]. Relativistic effeci@n begin to become significant
for about third-row elements, i.e. the first transition niet&or molecules with these
atoms ECPs begin to be useful for speeding up calculatians, makes sense to
take these effects into account in developing these palesytierators and their basis
functions, and indeed ECPs are generally relativistic. \SECPs can give accurate
results for molecules with third-row and beyond atoms byuating the electronic

relativistic mass increase [3].

Let us separate explicitly the single-particle stateswaience and core sets, identified
as [v™) and |¢(©)) respectively, that satisfies Schrodinger type equationghich
external potential due to nucleus and all other electrextsbn interactions included.

We can define a new set of single-particle valence statedlaw$q18],

) = [90) = (M) [p©) (1.27)

C

Applying the single-particle hamiltoniaf *? to this equation, we obtain

H? [0 — 3 (9030 B @) = W% LY ) |w<c>>} (1.28)

c c

which takes into account th&t=? |1)(¢)) = ¢(© |4)()) giving,

1= S ) O [5) = 0 L= T @l 150) 29

C

reduces

{Hsp + Z (E(v) _ E(C)) 1)) <¢(C)|] |@/~)(”)> — ¢© |@/~)(”)> ) (1.30)
Therefore, the new statdﬁ?(”)> obey a single-particle equation with a modified

potential, but have the same eigenvaldésas the original valence states™). The

modified potential for these states is called plseudopotentialgiven by

14



VP =V S (e — @) i) (1) (1.31)
and, correspondingly, thh/?(”))’s are calledpseudo-wavefunctionsAnd finally the

entire procedure of constructing typical pseudopotenfiat modern calculations is

schematically shown in Figure 1.3.
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Select an Exchange-Correlation Sheme
For example : GGA (PBE) or LDA (PZ)

Calculate all-electron eigenvalues and eigenfunctions h
Hquﬁ(v)(r) — [F 4 VCoul(r)]w(v) (7‘) — 6(1))¢(1)) (’I")

Select a Pseudopotential Construction Sheme and its pteeame
For example : Vanderbilt (Ultrasoft) or Troullier-Martiildorm-Conserving)

e N\

Calculate pseudo-atom eigenvalues and eigenfunctions :
via Fixing the pseudo-wavefuncti@n®) (r) = ) (r) for r > r,
and Forcing the following conditions in the region> r < r. :

(v) 24()
[qs(v) (r) smooth, nodelessfi;d)d (r) andd (Z 2(r) are continuous atcj
T T

\. J

[ Normalize the pseudo-wavefunctions?) (r) for 0 < r < oo ]

Invert the system [£" + V5 (1)]p™) (1) = ) ¢() (1)

Figure 1.3. Typical pseudopotential construction scheme.
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PART 2

HEUSLER STRUCTURE

The compounds which contain magnetic transition elemeartgm@uped in four large
classes due to their magneto-optical properties. Thesgmeenspinels, garnets,
orthoferrites, and Heusler alloys [21], the last one beheydlass of materials we are

interested in the scope of this thesis.

2.1. HALF METALLICITY AND HEUSLER ALLOYS

The Heusler alloysNiMnSb, PdMnSb, and PtMnSb have been investigated
experimentally and theoretically since 1980’s [22]. At theme the unusual
magneto-optical properties of several Heusler alloys vatgid the study of their

electronic structure which yielded an unexpected resalt [2

Firstly the compound@®tMnSh has been found experimentally to have an extremely
large magneto-optical Kerr rotation of1.27° that was the record Kerr rotation
observed in a transition metal compound in room temperaindevas therefore called

a giant Kerr effect. Almost simultaneously, the theoretical firgliof the so-called
half-metallicnature of thé>tMnSb was reported [21]. The alloy showed the properties
of metals as well as insulators at th@metime in thesamematerial, depending on the

spin direction. This property was given the name of halfatietmagnetism [23].

More explicitly, half-metallicity means that the materigalmetallic for majority, but
insulating for minority spin electrons according to bandisture theory. Such a gap
for one spin type naturally may give rise to unusual magnatsiport and optical
propertiesNiMnSbh system was also predicted to be half-metallic, whileRd&InSb

was not. The detailed comparison became feasible only dileetdevelopment cdb
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initio calculations of the magneto-optical spectra.

Half-metallic ferromagnets represent a class of matenelfsch attracted a lot
of attention due to their possible applications in spinicen(also known as
magnetoelectronics) [24]. Adding the spin degree of freedo the conventional
electronic devices has several advantages like non-itylaticreased data processing
speed, decreased electric power consumption, and incredsgration densities [25—

27]. Half-metals can be considered as hybrids between snatal semiconductors.

However the expected00% spin polarization in a half-metallic ferromagnet is
a limit of vanishing temperature and can be achieved by &g spin-orbit
interactions [22]. The number of well-established halftageis a confusing situation
originating from the fact that there is no direct experimentetermine whether a
material is a half-metal or not. Because of experimental glarations, electronic
structure calculations which are based on DFT in the LDA oGy an important
role in the search for finding new half-metallic ferromagnet The power of
computational calculations is that it does not need sampleseover the calculations

can be performed for hypothetical materials.

2.2. HEUSLER STRUCTURE AND HALF-METALLICITY

Now we will present a study of the basic electronic and magrmebperties of the
half-metallic Heusler alloys. Usingp-initio results we explain the origin of the gap in

both the half- and full-Heusler alloys [28].

As mentioned above, developments in electronics have htoinglf-metallic
ferromagnets to the center of scientific research receftig first family of Heusler
alloys studied was of the for,YZ, in the L2, structure, which consists of four fcc
sublattices, wher¥ is a high-valence transition or noble metal atoma low-valance

transition metal and ansp element [29] as shown in Figure 2.1.

Particulary compounds that contaifo andMn have attracted most of the attention.
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Figure 2.1.X,YZ, in theL2; structure.

EachMn or sp atom has eigh€o atoms as first neighbors, sitting on an octahedral
symmetry position, while eacio has fourMn and foursp atoms as first neighbors
and thus the symmetry of the crystal is reduced to the tetrahene. TheCo atoms
occupying the two different sublattices are chemicallyiegjent as the environment

of the second one but rotated 9y’ [28].

The Heusler alloys of the second class are of the f&¥iY,, in theC1, structure, and
consisting of three fcc sublattices. They are often calladisor half-Heusler alloys
in the literature, whilel.2; structures are referred to as full-Heusler alloys [29]. It
can be understood that Heusl(ér,, alloys have a close relation with the zinc-blende
structure which has an fcc Bravais lattice with a basigiof, 0) and(1/4,1/4,1/4).
The HeuslerCl1,, structure consists of the zinc-blende structure with anteacl
occupation of thé1/2,1/2,1/2) site. Heuslel.2; structure differs from the Heusler
C1,, structure with an additional occupation of tf8/4,3/4,3/4) site [28].

The structure of full-Heusler system results in the ocawesof an inversion center that

is not present in th€'1,, and zinc-blende structures [28]. This difference has irtgmdr
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consequences for the half-metallic band gaps [28]. Thedstan these types of
intermetallic alloys increased after the predictionMafVIinShb using first-principles

calculations.

Heusler alloys have main advantages like high Curie tenwpers compared to
other half-metallic systems such as oxides and mangar2@s [Heusler alloys
have already been incorporated in spin-filters [30], tunaettions [31], and giant
magneto-resistance (GMR) devices [32]. The most sucdessfent applications in
spintronics concern the half-metallic full-Heusler aboyhich are the systems we will

investigate in detail for two particular compounds by udirgj-principles calculations.

2.2.1. Band Structure of Heusler Alloys

In the non-magnetic case, the local contributions to thesithenf states (DOS) comes
from the d-states ofX andY atoms dominantly while thep-atom introduces deep
lying s andp bands. Since all atomic orbitals, i.e. tHeandsp orbitals hybridize

with each other, all bands are hybrids between these stadieg) either of bonding or

antibonding type [33].

Those configurations is energetically not stable, sinc&#meni energyFr, lies in the
middle of an antibonding band and since atom can gain considerable exchange
energy by forming a magnetic moment. So that spin polarieedlts show a different
picture in which the majority spif-band hasX-d states shifted to lower energies
forming a commonl-band with theY-d states, while in the minority spifiband, the

X states are shifted to higher energies and are unoccupiedefbine a band gap &t

is formed separating the occupiédonding from the unoccupietttype antibonding
states which is the case that ensuXé# is a half metal, with a band gap &% in the

minority band and a metalligp-like DOS atE- in the majority band [33].

The band structure of the half-Heusler alloys due to migatiates is important for the
understanding of the magnetic properties, and this bandtste is universally valid

for all half-Heusler alloys including the semiconductd@8]|
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It can easily be understood that the gap is dominated-biates and originates from
the strong hybridization between tHestates of the two transition metal atoms. Note
that in theC1,, structure X andY sublattices form a zinc-blende type structure, which

is important for the formation of the gap [33].

Half-metallic C1,, compounds have a gap which is normally indirect, with maximu
of the valence band at the point and the minimum of the conduction band at the
X point. It will be seen for two particular compounds that tteé gap can be well

described by the LDA and GGA since the screening is metalltbése systems [33].

If we look at the role of thep-elements, it is clear that they are not responsible for
the existence of the band gap, but they are neverthelesawpoytant for the physical

properties of the Heusler alloys and the structural stgtwh C1,, structure.

The second family of Heusler alloys, which will be discusseore deeply for two
particular compounds in the next section, are the full-Herudloys. The importrance
of the full-Heusler alloys which are all strong ferromagnistthat they have high Curie
temperatures abov&0 K and they show very little disorder except for the, MnAl
compound. Similar to the half-Heusler alloyg, bands are not relevant for the band
gap and located far below the-. Therefore, only the hybridization of onéand two
X atoms can be considered as the reason of the gap. For siyymicly thed-states
at thel" point can be considered, which show the full structural sytmm We note
that X atoms form a simple cubic lattice and tieatoms that hav8 X atoms as the
nearest neighbor, occupy the body centered sites. Thendestaetween th& atoms
is a second neighbor distance but the hybridization betwlseK atoms qualitatively

very important because of field splitting due to simple cugitice formed byX atoms.

In a second step the hybridization betweenX orbitals andY-d orbitals can be
considered. They create a doubly degenerate bonding btdtestvery low in energy
and an anti-bonding one that is unoccupied and locates d@heve- [33]. The origin

of the band gap in the full-Heusler alloys is rather subtle.
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2.2.2. Slater-Pauling Behavior

The total magnetic moment in units of Bohr magnetpn)(is just the difference
between the number of occupied spistates and occupied spjnstates. The number
of spin-down bands below the gap/s = 9 in all cases. If the total number of valence
electrons isZ, we deduce the number of occupied spin-up stadtes- Z,— N, = Z,—9
and the total magnetic moment is found tole= (Ny — N))up = (Z; — 18)ug.
For example in th&liMnSh, we haveN; = 13 andM = 4up. It will be seen that the
calculated local moment per unit cell by the ab-initio mekhwill be very close to the
characteristic value for half-metallic full-Heusler atko This is a direct analogue to
the well-known Slater-Pauling behavior of the binary traos metal alloys [34] with

a difference of minority population which is fixed and equed{so that the screening

is achieved by filling the majority band.

It seems in full-Heusler alloys the total spin momeMt, is related to the total number
of valence electronsZ;, with a similar equation of the half-Heusler alloys. The
behavior is shown in Figure 2.2. Minority band contair?selectrons per unit cell,
l.e. Ny = 12. So that, we immediately arrive that, = Z, — 24 whereZ, is total
number of valence electrons. Overall it is seen that manyablts coincide with the

Slater-Pauling curve.
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Figure 2.2. Slater-Pauling behavior in full-Heusler systevith some examples.

23



PART 3

SYSTEMS UNDER INVESTIGATION

Half-metallic ferromagnets (HMFs) have attracted grederdion due to their
extraordinary physical properties and several technodgapplications in various
fields. NiMnSb half-Heusler compound is the firstly discovered half-mgtal
ferromagnet withC1,, structure and’43m space group [23]. HMFs are characterized
by the metallic band structure for one spin state, while theteonic band structure of
other spin state presents an insulating character yiellipgrfect spin polarization at
Er. This situation also results in a spin-polarized electeoaductivity, which is very
sensitive to applied magnetic field. HMFs have central irtgrare in spin-dependent
electronic applications: spintronics [24, 35], GMR spiitveg[36], and spin injection

to semiconductors [37-39].

These types of materials have been extensively studieckim of the first principles
calculations, and several compounds are predicted to bertetigllic [22,40—-44]. The
electronic structure and magnetic properties of half- atiedHeusler compounds with
various combinations of constituent elements have beelestextensively in previous
works [45,46]. A recent comprehensive ab initio study ress¢he electronic structure
and spin polarization properties of half-metallic Heusédloys [47]. Among the
several Co-based full-Heusler compoun@s«YZ) in cubic .2, structure,Co,MnSi
system seems to be the most promising material for spirdscapplications due to
the ideal physical properties like high Curie temperatlie=£ 985K) [48] and wide
band gap in minority spin channel [44]o-based Heusler compounds are investigated
theoretically in view of the density functional calculat® and most of them are
predicted to be half-metallic [42—-45, 48-50]. Moreovés, MnSi compound is used
in production of thin films [51-53] and devices [54, 55].
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The half-metallic behavior of full-Heusler compounds @m@s more complicated
characteristics than that of half-Heusler alloys due to phesence of the states
located entirely at th€ o sites [45, 56] resulting an ideal local moment system [57,
58]. The integer magnetic moment is an important charatierproperty for
half-metallic systems in stoichiometric composition. Tl magnetic moments of
the perfect HMFs obey Slater-Pauling [59, 60] rule, in whilcl saturation magnetic
moment scales with the number of valance electrons [61]. idBesCoMn based
full-Heusler compounds, there is a lack of study in literatan CoCr based Heusler
systems. In this thesis, the electronic structure and nmegpeperties of two novel
full-Heusler compoundsZo,CrAs and Co,CrSb, are investigated using plane-wave
pseudopotential method and spin-polarized GGAGGA) of DFT. There are no
comparable studies on electronic structure and half-in@talof these systems in
literature. The details of the calculations performed areusfer geometry are
described in next section. The features of buk structures of the compounds under

study are also presented in next section.
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PART 4
COMPUTATIONAL DETAILS

Materials that have been investigated in our study were tileHeusler ternary
intermetallic compounds;o,CrAs and Co,CrSh, based on th&,YZ stoichiometry
for theL2; phase Fm3m space group#225) including one formula unit of atoms per

primitive cell.

X atoms are transition metals located@t), 0) and(3, 3, 5) Wyckoff crystallographic
positions, whileY andZ are a magnetic transition metal and a Ill-V group element
occupying the positionét, 1, 1) and (2, 2, 2), respectively. These are the materials
that show ferromagnetic behavior even though none of thesto the composition is

ferromagnetic, which is the phenomena that makes them tauptor

All the calculations that will be presented in this work haween carried out by
using PWscf code, distributed with the Quantum ESPRESS®Ragac[62, 63]. In
order to approximate exchange correlation poteniidbGA of the density functional

theory [8, 9] is used with Perdew-Burke-Ernzerhof pararpation [16].

In describing the physical properties of Heusler compout@SA functionals are
more successful than local spin density functional (LSDéhesne [43]. Ultrasoft
pseudopotentials are generated by scalar relativistotitzlon for all the atoms in the
composition with non-linear correction. The valence Sateatoms are considered as
follows, Co: 4s'3d®, Cr: 3s23p%4s'3d®, As: 4s%4p?, Sb: 4d'5s25p3. An automatically
generate@0x20x20 k-point grid following the convention of Mankhorst and P464]

is used for Brillouin zone integration yieldirig 2 k-points in the irreducible wedge of

the Brillouin zone centered &tpoint.
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Wave functions are expanded in plane wave basis sets up toetdkenergy cut-off
value of50 Ry corresponding to aboud40 plane waves. The electron kinetic energy
cut-off value has been determined by calculating the totatges at different kinetic
energy cut-off values as given in Figure 4.1-4.2. The cayemee is well provided
with 50 Ry cut-off value which is sufficient for ultrasoft pseudopdtals used in
calculations. The observed total energy difference batviédy and90 Ry cut-offs

is approximatelyr mRy for both systems studied indicating a well-converged gdoun

State.

Mathfessel-Paxton type smearing with parameter= 0.005Ry is applied on
fermionic occupation function [65], and Davidson type diaglization method [66]
with 10~8 Ry energy convergence threshold was used in order to solve K&iegs
iteratively. In order to get equilibrium structural paraers of the systems, we use
Vinet equation of state [67] which is found to be most acai@nong the several

equation of state formulations [68]. This formulation iSaléows:

9Bo(T)Vo(T)

E(V,T) = Eo(T) + 0

1+ [)((1 —x) — l}eX(l_x) (4.1)
inwhichz = (V/Vp)Y? andy = 3(B)—1)/2, wherel}, is the equilibrium volumeB,
is zero pressure bulk modulus aB{ is its pressure derivative. We construct the static
equation of states of the system performing fits using tred &stergies a0 different

volumes ranging frond.8Vj to 1.2V4.
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Figure 4.1. Energy cut-off test f@lo,CrAs.
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Figure 4.2. Energy cut-off test f@ro, CrSb.
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PART 5

RESULTS AND DISCUSSION

While studying the half-metallic systems, the accuratemheination of equilibrium
structural parameters has central importance, since #wrehic band structure is
sensitive to applied strain. We show the calculated totaigias as a function of lattice
constant together with the fitting curves for the relevastems in Figure 5.1 and 5.2.
The asymptotic standard errors in fitting curves are less the® which shows the
precision of the obtained results. A summary of calculatedactural parameters of
CoyCrAs(Sbh) systems is given in Table 1 showing equilibrium lattice paeters in

a.u., Bulk moduli in GPa, and magnetic moments j1s.

Table 5.1. Equilibrium structural parameters of b, CrX (X = As, Sh)

CoyCrAs CoyCrSb

a (a.u.) 10.933 11.322
B (GPa) 179.3 173.9
Lot (UB) 5.00 5.00
Lico (UB) 1.98 1.92
wer (UB) 2.95 3.13
Pas(sy) (148) 0.07 —0.05

The calculated lattice constant18.933 (11.322) a.u., the zero pressure bulk moduli
is 179.3 (173.9) GPa for the systemCo,CrAs(Sb). These values are relatively low
compared t&€Co — Mn based Heusler systems. (elg}, = 214 GPa forCo,MnSi [69]).

The calculated equilibrium lattice constants of severtd &nd half-Heusler systems
usingec — GGA deviate from experimental results by a ratiol6f following general
tendency oBd elements [43] corresponding to large improvement @¢8yDA. Thus,

it is deduced that — GGA scheme can be used to obtain accurate results.
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Figure 5.1. Static equation of statedaf, CrAs with calculated data and fitting curve.

50

Vinet EOS
Calculated = i

45

40 +

ay=11.3246 a.u

35t By = 173.9 GPa

B’ =4.6598

25 Hio=5-0Qg

AE (mRy)

15

10

-5 1 1 1 1 1
10.8 11 11.2 11.4 11.6 11.8 12

Lattice Constant (a.u.)
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One of the properties of the half-metallic systems thatdat the stability of behavior
Is the total magnetic moment which is found to be an intégedu.z obeying the
Slater-Pauling rule with the number of valence electrgns= 29 for both Co,CrAs
and Co,CrSh systems in cubid.2; structure. The largest contributions to total
magnetic moments are due the chromium site with the val9®(3.13)u 5 for the
compoundCo,CrAs(Sb), while the magnetic moments of the elements show

relatively large difference with the valwe07(—0.05) x5 for As(Sb).

It is realized that the calculation conditions affect thessevity of the magnetic
moments. A relatively weaker Brillouin zone integratiorthwl 5x15x15 k-mesh and
increased smearing parameter (e@02 Ry) give non-integer saturation magnetic

moments.

The GGA calculated spin resolved electronic band strustoafethe Co,CrAs(Sh)
systems along the main symmetry directions in irreducibliédBin zone and the total

electronic DOS are given in Figure 5.3-5.8.

Electronic bands of the majority spin states show typicatiie character with bands
crossingEr in all high symmetry directions, while the band structurethe minority
states show semiconducting behavior with the energy bapsiga, = 0.40eV and
Eyqp = 0.46 eV for Co,CrAs andCo,CrSb systems, respectively. The minority spin
band structures show direct gaplagpoint for Co,CrAs and an indirect gap along
[' — X direction forCo,CrSb. The nature of the minority gap is also very sensitive to

calculation conditions.

The difference between the valence band maximum (VBM) Ends defined as spin
gap which is an important quantity corresponding to the ireguenergy to flip a
minority spin from VBM to majority spinFr [43]. The calculated spin gap values
are Eg,;, = 0.39(0.25) eV for Co,CrAs(Sb). The increasing atomic number g

elements in composition results in a reduced spin gap value.

The orbital projected spin-resolved electronic DOS (ED&f#wn in Figure 5.9-5.10
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give a sensible understanding of the systems. Deep lyinggbands around-12 eV
and—14 eV are due to the-states of chromium atom and are not strongly affected by
the interaction oBd-states of cobalt and chromium atoms. The bands aredneV

are mainly caused by thg-states of group-\sp elementsAs(Sb). For both spin
configurationsd-states of cobalt and chromium sites show their dominantacier
between—5eV and—4¢eV energy range. The majority bands around Hyeresults
from the strong hybridization af-states of cobalt and chromium atoms while the the
minority spin energy band gap arour- is restricted byd-states of cobalt atoms.
This gap is originated from the interactions @ftates of cobalt atoms standing on
two different atomic positions as expected (f-based full-Heusler systems [40].
Spin-resolved electronic band structures together withl t8DOS are also given in

Figure 5.11-5.12.

We can easily state that both valence and conduction bandsnairity spin states
around=+2eV of the £ emerge from the hybridization dfo-d-states. 3d orbitals
of Co atoms couple and form bonding hybrids [22]. Consequerttlnminority band
gaps in these systems are due to the bonding and anti-bofedituges ofCo-d-states.
Cr-d-states of minority spins take place & 2eV above theFE with local and
non-hybridized character. It should be noted thatdoes not take place at the mid

of the minority gap.

The formation enthalpy is a measure of synthesizabilithefrelevant compounds and

can be calculated by using following relation,

AH = E(CosCrX) — [E(Co) + B(CrX)] (5.2)

where E(Co,CrX) is the equilibrium energy of the compoundli; phase,F(Co)
and E(CrX) are the energies of the hexagonal close-packed solid cetrattture
containing two atoms per primitive cell and conventionalchlende phase dfrX
binary compound, respectively. It is more reasonable teicen the stability of the
systems against phase segregation into stable compokad®lidCo andCrX which

can occur in sample preparation.
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As mentioned above negative values of formation enthalpg isieasure of the
stability of the compounds against decomposition intolstablid structures [70]. The

calculated enthalpies are26.10 mRy and —75.09 mRy for Co,CrAs and Co,CrSh,
respectively.
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PART 6

SUMMARY AND CONCLUSION

The electronic structure and magnetism of two novel halfatlie full-Heusler
compounds{Co,CrAs andCo,CrSh, are studied in the orderd@; structure in view
of the first principles density functional calculations.elpplane-wave pseudopotential
method and spin-polarized GGA scheme for the exchangelatare functionals are
applied. These systems show perfect half-metallic charact. a semiconducting
minority spin band structure, which has zero electronicsdgof states at Fermi level,

and an ordinary metallic band structure for majority spins.

The energy gap in minority spin channel G6,CrAs is found to have a direct gap
atI'-point, while Co,CrSb system has an indirect gap alohgX direction. The total
magnetic moments of both systems au@ .z in consistet with the Slater-Pauling rule

indicating a stable hallf-metallic behavior.

The minority spin energy band gaps are restricted byltstates of cobalt atoms and

it can be inferred that the physical origin of the band gap inamty spin channel

is the interactions of thd-states of cobalt atoms at two different sublattices namely
(Co'(000) — Co?(333)). The calculated formation enthalpies are negative initigat
stability and synthezability of these compounds.

42



10.

11.

12.

13.

14.

15.

REFERENCES

. Engel, E. and Dreizler, R. M., “Density functional theogn advanced course”,

Springer, New York, 1 (2011).
Levine, I. N., “Quantum chemistry 5th edPrentice Hall, New York, 480 (1999).

Lewars, E. G., “Computational chemistry introduction tioe theory and
applications of molecular and quantum mechanics 2nd 8gringer, New York,
61, 251, 252, 445, 448 (2011).

Richard, M. M., “Electronic structure: basic theory ancgtical methods”,
Cambridge University Press, United Kingdom, 5, 201 (2004).

Koch, W. and Max, C. H., “A chemist’s guide to density funotal theory 2nd ed.”
Wiley, Germany, 30 (2001).

Slater, J. C., “A simplification of the Hartree-Fock medhoPhys. Rev., 81 (3):
385-390 (1951).

. Eschrig, H., “The fundamentals of density functionalaty® Teubner, Stuttgart,

74 (1996).

. Hohenberg, P. and Kohn, W., “Inhomogeneous electron, g&sj/s. Rev., 136

(3B): B864—B871 (1964).

Kohn, W. and Sham, L. J., “Self-consistent equationsuigiclg exchange and
correlation effectsPhys. Rev., 140 (4A): A1133-A1138 (1965).

Parr, R. G. and Yang, W., “Density-functional theory tdras and molecules”,
Oxford University Press, New York, 143 (1989).

Vosko, S. H., Wilk, L. and Nusair, M., “Accurate spin-@gpent electron liquid
correlation energies for local spin density calculatiore: critical analysis”,
Canadian Journal of Physics, 58 (8): 1200-1211 (1980).

Perdew, J. P. and Wang, Y., “Accurate and simple analgpcesentation of the
electron-gas correlation energy?hys. Rev. B, 45 (23): 13244-13249 (1992).

Becke, A. D., “Density functional calculations of maléar-bond energies”).
Chem. Phys., 84 (8): 4524-4529 (1986).

Perdew, J. P., “Density-functional approximation fug torrelation-energy of the
inhomogeneous electron-gafhys. Rev. B, 33 (12): 8822-8824 (1986).

Lacks, D. J. and Gordon, R. G., “Pair interactions of-gas atoms as a test of
exchange-energy-density functionals in regions of lagyesdy gradients”Phys.
Rev. A, 47 (6): 4681-4690 (1993).

43



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Perdew, J. P., Burke, K. and Ernzerhof, M., “Generalgedlient approximation
made simple”Phys. Rev. Lett., 77 (18): 3865—-3868 (1996).

Lee, C., Yang, W. and Parr, R. G., “Development of the &8llvetti
correlation-energy formula into a functional of the eleatdensity”,Phys. Rev.
B, 37 (2): 785-789 (1988).

Kaxiras, E., “Atomic and electronic structure of solid€ambridge University
Press, New Yok, 72—74, 77 (2003).

Car, R. and Parrinello, M., “Unified approach for molectdynamics and
density-functional theory'Phys. Rev. Lett., 55 (22): 2471-2474 (1985).

Singh, D. J. and Nordstrom, L., “Planewaves, pseudopiets and the LAPW
method 2nd ed."Springer, USA, 23 (2005).

Antonov, V., Harmon, B. and Yaresko A., “Electronic stwre and
magneto-optical properties of solidK]uwer Academic Publishers, Dordrecht,
71, 127 (2004).

Katsnelson, M. I., Irkhin V. Y., Chioncel, L., Lichteest, A. |. and de Groot, R.
A., “Half-metallic ferromagnets: from band structure tamgebody effects” Rev.
Mod. Phys., 80 (2): 315-378 (2008).

de Groot, R. A., Mueller, F. M., Van Engen, P. G. and Buschd. H. J.,
“New class of materials: half-metallic ferromagnetBhys. Rev. Lett., 50 (25):
2024-2027 (1983).

Zutic, |., Fabian, J. and Das Sarma S., “Spintronics: fumelatals and
applications” Rev. Mod. Phy., 76 (2): 323—-410 (2004).

Wolf, S. A., Awschalom, D. D., Buhrman, R. A., DaughtonMl, von Molnr, S.,
Roukes, M. L., Chtchelkanova, A. Y. and Treger, D. M., “Spaniics: a spin-based
electronics vision for the futureScience, 294 (5546): 1488-1495 (2001).

Prinz, G. A., “MagnetoelectronicStience, 282 (5394): 1660-1663 (1998).

Prinz, G. A., “Magnetoelectronics applicatiods’Magn. Magn. Mater., 2 (1-3):
57-68 (1999).

Galanakis, I. and Dederichs P.H., “Half-metallicityde®later-Pauling behavior in
the ferro-magnetic Heusler alloyd”ect. Notes Phys., 676: 1-39 (2005).

Ozdogan, K., Sasioglu, E. and Galanakis, I., “Fundaaisrof half-metallic
full-Heusler alloys”, spintronics: materials, applicats, and devices, Lombardi,
G. C. and Bianchi, G. ENova Science Pub Inc, New York, 214 (2009).

Kilian, K. A. and Victora, R. H., “Electronic structuré i, MnIn for use in spin
injection”, J. Appl. Phys., 87 (9): 7064—7066 (2000).

Tanaka, C. T., Nowak, J. and Moodera, J. S., “Spin-medritunneling in a
half-metallic ferromagnet’). Appl. Phys., 86 (11): 6239-6242 (1999).

44



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Caballero, J. A., Park, Y. D., Childress, J. R., BasCliang, W.-C., Reilly, A.
C., Pratt, W. P. and Petroff, F., “Magnetoresistanc®&dnSh-based multilayers
and spin valvesJ. Vac. Sci. Technol. A, 16 (3): 1801-1805 (1998).

Galanakis, I., Mavropoulos, P. and Dederichs, P. H.eC&bnic structure and
Slater-Pauling behaviour in half-metallic Heusler alloyalculated from first
principles”J. Phys. D:Appl. Phys., 39 (5): 765-775 (2006).

Kubler, J., “First principle theory of metallic magrseh”, Physica B+C, 127
(1-3): 257-263 (1984).

Irkhin, V. Y. and Katsnelson, M. I., “Half- metallic fasmagnets”Phys. Usp., 37
(7): 659-676 (1994).

Dieny B., Speriosu, V.S., Parkin, S. S. P., Gurney, BWilhoit, D. R. and Mauiri,
D., “Giant magnetoresistive in soft ferromagnetic muitédes”, Phys. Rev. B, 43
(1): 1297-1300 (1991).

Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A.,ahd Van Wees, B. J.,
“Fundamental obstacle for electrical spin injection fronleromagnetic metal
into a diffusive semiconductorRhys. Rev. B, 62 (8): R4790-R4793 (2000).

Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Sdhnts., Waag, A.
and Molenkamp, L.W., “Injection and detection of a spingsaed current in a
light-emitting diode”,Nature, 402 (6763): 787—790 (1999).

Ohno, Y., Young, D. K., Beschhoten, B., Matsukura, F.,n@hH. and
Awschalom, D. D., “Electrical spin injection in a ferromagit semiconductor
heterostructureNature, 402 (6763): 790-792 (1999).

Miura, Y., Shirai, M. and Nagao, K., “Ab initio study orasility of half-metallic
Co-based full-Heusler alloys'J. Appl. Phys., 99 (8): 08J112 (2006).

Kandpal, H. C., Fecher, G. H., Felser, C. and Schonhé&hséCorrelation in the
transition-metal-based Heusler compoufidsMnSi andCo,FeSi” Phys. Rev. B,
73 (9): 094422 (2006).

Shirai, M., “Possible half-metallic ferromagnetisnzinc blendeCrSb andCrAs”
J. Appl. Phys, 93 (10): 6844—-6846 (2003).

Picozzi, S., Continenza, A. and Freeman, A. Tio,MnX (X = Si, Ge, Sn)
Heusler compounds: an ab initio study of their structuidaGteonic, and magnetic
properties at zero and elevated pressupdys. Rev. B, 66 (9): 094421 (2002).

Ishida, S., Fujii, S., Kashiwagi, S. and Asano, S., “Sedor half-metallic
compounds iCooMnZ (Z = I1Ib, IVb, Vb element)”J. Phys. Soc. Japan, 64
(6): 2152-2157 (1995).

Galanakis, 1., Dederichs, P. H. and Papanikolaou, NatégPauling behavior and
origin of the half-metallicity of the full-Heusler alloysPhys. Rev. B, 66 (17):
174429 (2002).

45



46

47.

48.

49.

50.

o1.

52.

53.

54.

55.

56.

S57.

58.

Galanakis, I., Dederichs, P. H. and Papanikolaou, Nrigi®and properties of
the gap in the half-ferromagnetic Heusler alloyBhys. Rev. B, 66 (13): 134428
(2002).

Galanakis, I. and Mavropoulos, Ph., “Spin-polarizamd electronic properties
of half-metallic Heusler alloys calculated from first priples”, J. Phys.:
Condens. Matter, 19 (31): 315213 (2007).

Brown, P. J., Neumann, K. U., Webster, P. J. and ZiebeckRKA., “The
magnetization distributions in some Heusler alloys pregosas half-metallic
ferromagnets”J. Phys.: Condens. Matter, 12 (8): 1827-1835 (2000).

Kandpal, H. C., Fecher, G. H. and Felser, C., “Calculatedtronic and magnetic
properties of the half-metallic, transition metal basedi$ler compounds”,.
Phys. D: Appl. Phys., 40 (6): 1507-1523 (2007).

Block, T., Felser, C., Jakob, G., Ensling, J., Muhling, Butlich, P., Beaumont,
V., Studer, F. and Cava, R.J., “Large negative magnetdeesis effects in
CoyCrg gFeq4Al”, J. Solid State Chem., 176 (2): 646-651 (2003).

Wang, W. H., Przybylski, M., Kuch, W., Chelaru, L. I., Wgd., Lu, Y. F., Barthel,
J. and Kirschner, J., “Spin polarization of single-crylatal Co,MnSi films grown
by PLD onGaAs(001)”, J. Magn. Magn. Mater., 286 (Sl): 336—339 (2005).

Wang, W. H., Przybylski, M., Kuch, W., Chelaru, L. I., Wgd., Lu, Y. F., Barthel,
J., Meyerheim, H. L. and Kirschner, J., “Magnetic propert@d spin polarization
of Co,MnSi Heusler alloy thin films epitaxially grown ddaAs(001)”, Phys. Rev.
B, 71 (14): 144416 (2005).

Kammerer, S., Heitmann, S., Meyners, D., Sudfeld, Domi#s, A., Htten, A. and
Reiss, G., “Room-temperature preparation and magnetiavi@hof Co,MnSi
thin films”, J. Appl. Phys., 93 (10): 7945-7947 (2003).

Inomata, K., Okamura and Tezuka, N., “Tunnel magneisteese using
full-Heusler alloys”,J. Magn. Magn. Mater., 282 (Sl): 269-274 (2004).

Kammerer, S., Thomas, A., Htten, A. and Reiss, Gg,MnSi Heusler alloy as
magnetic electrodes in magnetic tunnel junctiofppl. Phys. Lett., 85 (1): 79-81
(2004).

Sasioglu, E., Sandratskii, L. M., Bruno, P. and Galkisy |., “Exchange
interactions and temperature dependence of magnetizatiaif-metallic Heusler
alloys”, Phys. Rev. B, 72 (18): 184415 (2005).

Hamzit, A., Asomoza, R. and Campbell, 1. A., “The transport projesrtof
Heusler alloys: ideal local moment ferromagnet3”Phys. F: Met. Phys,, 11
(7): 1441-1447 (1981).

Kubler, J., Williams, A. R. and Sommers, C. B., “Formatiand coupling of
magnetic moments in Heusler alloy#&hys. Rev. B, 28 (4): 1745-1755 (1983).

46



59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Slater, J. C., “The Ferromagnetism of nickel. Il. tenapere effects”Phys. Rev.
49 (12): 931-937 (1936).

Pauling, L., “The nature of the interatomic forces in a&t Phys. Rev., 54 (11):
899-904 (1938).

Kubler, J., “Theory of itinerant electron magnetisr@xford University Press,
Oxford, New York, 396 (2000).

QUANTUM-ESPRESSO is a community project for high-quyali
guantum-simulation software, based on density-functioti@eory, and

coordinated by Paolo Gianozzi. Seehttp://www.quantum-espresso.org and
http://www.pwscf.org-

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., ,Gar, Cavazzoni, C.,
Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I.,I80, A. D., de Gironcoli,
S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U.g&G®sis, C., Kokalj,
A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., ddzarello, R.,
Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, €an8olo, S., Sclauzero, G.,
Seitsonen, A.P., Smogunov, A., Umari, P. and WentzcoviRciM., “QUANTUM
ESPRESSO: a modular and open-source software projectémtapn simulations
of materials”,J. Phys.. Condens. Matter, 21 (39): 395502 (2009).

Monkhorst, H. J. and Pack, J. D., “Special points forlBuiin-zone integrations”,
Phys. Rev. B, 13 (12): 5188-5192 (1976).

Methfessel, M. and Paxton, A. T., “High-precision saimglfor Brillouin-zone
integration in metals”Phys. Rev. B, 40 (6): 3616—3621 (1989).

Ernest R. D., “The iterative calculation of a few of thevést eigenvalues
and corresponding eigenvectors of large real-symmetritricesa”, Journal of
Computational Physics, 17 (1): 87-94 (1975).

Vinet, P., Ferrante, J., Smith, J. R. and Rose, J. S., eusal equation of state
for solids”, J. Phys. C, 19 (20): L467-L473 (1986).

Cohen, R. E., Gilseren O and Hamley R. J., “Accuracy ofaggn of state
formulations”,Am. Mineral, 85: 338—-344 (2000).

Gokoglu, G. and Giilseren, O., “Electronic structoir@alf-metallic ferromagnet
Co,MnSi at high-pressure’fur. Phys. J. B, 76 (2): 321-326 (2010).

Hao, A, Yang, X., Wang, X., Zhu, Y., Liu, X. and Liu, R., ‘St-principles
investigations on electronic, elastic and optical prapsmfXC (X = Si, Ge, and
Sn) under high pressured, Appl. Phys., 108 (6): 063531 (2010).

47



AUTOBIOGRAPHY

Ulvi KANBUR was born in Rize in 1986. After graduating from Z& Fener Super
High School in 2004 he started to study physics in Dokuz Bytiiversity from which
he graduated in 2009. He is now working at Karabik Univgissta research assistant
on physics. He has completed his M. Sc. degree on 2011 witkesstion “First
Principles Investigation of Electronic and Magnetic Prmbips of the Half-Metallic

Heusler Alloys”.
Publications
1) Kanbur, U., @KOGLU, G., “Half-metallic magnetism of02CrX (X = As, Sb)

Heusler compounds: An ab initio studyJournal of Magnetism and Magnetic
Materials, 323 (9): 1156-1160 (2011).

48



