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Brain’s Magnetic Resonance (MR) images include anatomic sense for neurologic 

research, diagnosis and treatment. Therefore to evaluate changes in serial scans of 

MR images becomes an important issue in cancer research field. The measurement of 

tumor volume change and tumor progression analysis is a very common task in 

cancer research. Tumor volume change analysis can be carried out in two ways. First 

is using different mathematical formulas, second using image registration-

segmentation methods. Specifically, image registration is a fundamental job used to 

match two or more than two images acquired, for example, at different times, from 

different machines or sensors, or from different viewpoints. In this thesis an 

objective application of registration and segmentation of multiple brain imaging 

scans is used to investigate brain tumor growth in a 3 dimensional (3D) manner. 

Using 3D medical image registration-segmentation algorithm, multiple scans of MR 

images of a patient who has brain tumor are registered with MR images of the same 
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patient acquired at a different time so that growth of the tumor inside the patient's 

brain can be investigated. Brain tumor volume measurement is also achieved using 

various mathematical formulas to testify the proposed application in this thesis. 

Medical image registration-segmentation is implemented to 19 patients and 

satisfactory results are obtained. A challenge of medical image registration-

segmentation method for brain tumor investigation is that grown, diminished and 

unchanged brain tumor parts of the patients are investigated and computed on an 

individual basis in a three-dimensional (3D) manner within the time. This study is a 

critical application for correlation of anatomic information obtained by MR for 

clinical and research purposes. This thesis is intended to supply a comprehensive 

reference source for the scientists, clinicians and researchers who are interested in 

medical image registration and tumor growth investigation. 

 

Key Words : Brain tumor growth, medical image registration, tumor volume 

computing, medical image segmentation. 

Science Code :  905.1.021 
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KOYULUK TEMELLİ 3 BOYUTLU TIBBİ GÖRÜNTÜ ÇAKIŞTIRMA 

 

Emrah IRMAK 
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Elektrik-Elektronik Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Yrd. Doç. Dr. Mustafa Burak TÜRKÖZ 

Ocak 2018, 58 sayfa 

 

Beynin Manyetik Rezonans (MR) görüntüleri nörolojik araştırma, tanı ve tedavi için 

anatomik bir anlam içerir. Bu nedenle, MR görüntülerinin seri taramalarındaki 

değişimleri değerlendirmek kanser araştırmaları alanında önemli bir konu haline 

gelmiştir. Tümörün hacim ilerlemesi ve tümör değişim hacmi hesaplanması, kanser 

araştırmalarında çok yaygın bir yer teşkil etmektedir. Tümör hacim değişim analizi 

iki şekilde gerçekleştirilebilir. Birincisi, literatürdeki çeşitli matematiksel formülleri 

kullanmak, ikincisi ise görüntü çakıştırma-bölütleme yöntemlerini kullanmaktır. 

Görüntü çakıştırma farklı zamanlarda, farklı makinelerden veya sensörlerden veya 

farklı bakış açılarından elde edilen iki veya ikiden fazla görüntüyü üst üste getirmek 

için kullanılan temel bir işlemdir. Bu tezde, beyin tümörü büyümesini 3 boyutlu (3B) 

bir şekilde araştırmak için, çoklu beyin görüntüleme taramalarının çakıştırılması ve 

bölütlenmesi suretiyle objektif bir uygulama yapılmıştır. 3B tıbbi görüntü çakıştırma-

bölütleme algoritması kullanılarak, beyin tümörü bulunan bir 
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hastanın MR görüntüleri, aynı hastadan farklı bir zamanda elde edilen farklı MR 

görüntüleriyle çakıştırılır, böylece hastanın beynindeki tümörün büyümesi 

araştırılmaktadır. Beyin tümörü hacim değişim ölçümü, aynı zamanda bu tezde 

matematiksel formüllerle de yapılarak önerilen uygulama test edilmektedir. 19 

hastaya tıbbi görüntü çakıştırma-bölütleme yöntemi uygulanmış ve tatmin edici 

sonuçlar elde edilmiştir. Bu çalışmanın bir diğer ilgi çekici yanı hastaların büyümüş, 

azalmış ve değişmemiş beyin tümörü parçalarının zaman içinde üç boyutlu (3B) bir 

şekilde bireysel olarak araştırılıp hacimlerinin hesaplanmasıdır. Bu çalışma MR 

tarafından elde edilen anatomik bilgilerinin klinik ve araştırma amaçlı korelasyonu 

için kritik bir uygulamadır. Bu tez, tıbbi görüntü çakıştırma ve tümör hacmi değişim 

analizi ile ilgilenen araştırmacılar için kapsamlı bir referans kaynağı sağlamayı 

amaçlamaktadır. 

 

Anahtar Sözcükler : Beyin tümörü gelişimi, tıbbi görüntü çakıştırma, tümör 

hacminin hesaplanması, tıbbi görüntü bölütleme. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. HUMAN BRAIN 

 

The brain of the human is the body’s single most crucial organ and makes up the 

central nervous system with the spinal cord. On average, the brain of an adult weighs 

roughly about 1.2 – 1.4 kg and this is almost about 2% of the whole body weight. 

Volume of average human brain is around 1260 cm³ in men and 1130 cm³ in women 

however there is still not a correlation between IQ and brain weight or volume [1]. 

Human brain comprises of three main parts. First human brain part is known as the 

cerebrum, the second one as the brainstem and finally the third one as the 

cerebellum. Brain manages body’s different multiple activities such as processing, 

integrating and coordinating the data that is come from the sense organs. Moreover it 

makes decisions and sends instructions to the rest of the body. There is the skull bone 

of the head outside of the brain to protect and surround the brain. Cerebrum which is 

exactly the biggest part of the brain consists of two cerebral hemispheres. Every 

single hemisphere is split into 4 important lobes. The outer part of the hemispheres is 

called cerebral cortex which is also known as grey matter. The ridges staying over 

the surface of the brain are called gyri and grooves on the surface of the brain are 

called sulci. These ridges and grooves are generally named according to their 

positions. Below of the brain is cerebellum resting at the back of the cranial activity. 

Cerebellum is joined to midbrain of brainstem, to the pons and to the medulla. The 

cerebellum, the last but not least main part of the human brain, consists of an inner 

white matter medulla and an outer richly folded grey matter cortex. See Figure 1.1 

for the main brain structures. 
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Figure 1.1. An introduction to brain structures, source: wikijournal of medicine. 

 

Three basic reference planes are often used to describe location of the human brain. 

These planes are Frontal Plane, Sagittal Plane and Transverse Plane. The frontal 

plane which is also known as coronal plane divides the brain back and front portions. 

The frontal plane is X-Z plane in terms of rectangular plane. The sagittal plane which 

is also known as longitudinal is a plane parallel to the sagittal suture. The sagittal 

plane is Y-Z plane in terms of rectangular plane and it is perpendicular to the ground. 

This plane, on the other hand, divides the brain right and left portions. The transverse 

plane which is also known as horizontal plane is cross section that divides the brain 

head and tail portions. The transverse plane is X-Y plane in terms of rectangular 

plane. See Figure 1.2 for sectional planes of the human brain. 
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Figure 1.2. Sectional planes of the human brain, source: wikijournal of medicine. 

 

1.2. BRAIN TUMORS  

 

Brain plays a key role in terms of the functioning of the body. This crucial role 

represents improving treatment protocols which are very important and related to 

brain tumors or gliomas. Brain tumors have been announced as one of the most fatal 

cancers in the western population [2]. Moreover, Kohler et al. [3] declared that 

probability of occurrence of primary tumors of the nervous system or brain is 25 per 

100,000. By almost a third are malignant and the remaining are benignant or some 

kind of benignant. Brain tumors are known as leading death cause among children 

cancers. In addition to this, they are the second for the males who are between ages 

of 20-39. Moreover, brain tumors are fifth death cause for the women who are 

between the ages of 20-39 [4]. World Health Organization (WHO) has introduced a 

grading scheme which categorizes brain tumors between I and IV. Glioblastoma 

(WHO grade IV) is known as the most fatal and the most frequent brain tumor which 

shows very rapid growth [5]. Although treatment methods such as surgery, radiation, 

chemotherapy are available for treatment of glioblastoma average survival time is 15 

months because of the infiltrating nature of glioblastoma [6]. That is why the special 

care should be given to treatment of glioblastoma. Actually treatment of 
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glioblastoma becomes one of the most challenging fields in oncology [5]. There is a 

thriving attention and application of glioblastoma progression analysis in clinical 

diagnostics and analysis. Thanks to the big amount of data the principal focus of this 

thesis will be on MRI and glioblastoma tumor volume change calculation. 

 

1.3. FROM RÖNTGEN TO MAGNETIC RESONANCE IMAGING: THE 

REVOLUTION OF MEDICAL IMAGING 

 

Medical imaging is a technical approach to generate informative images from the 

human body for the sake of clinical purposes. Medical imaging is a sort of 

mathematical invers problems because it is commonly perceived to specify the series 

of methods that noninvasively generate images belonging to body’s internal aspect. 

History of medical imaging goes along way back to November 1895 with Wilhelm 

Conrad Röntgen’s discovery of X-ray.  Wilhelm Conrad realized that invisible light 

were able to pass through solid parts of human body (e.g. human fletch) more than 

other parts (e.g. human bone). Because of this discovery, medical imaging is 

considered to be found with the invention of X-ray. Wilhem Conrad Röntgen 

realized that his bones were visible on a photographic plate placed on an electron 

beam tube in November 1985. Röntgen concluded his experiment when he saw 

bones of his wife’s hand too [7]. Röntgen’s technology was proofed after a number 

of experiments conducted in different parts of world such as in Europe and America. 

Nowadays clinicians or radiologists can easily image and investigate human body in 

details using various imaging technologies such as magnetic resonance imaging, 

ultrasound, radiography, nuclear medicine, computed tomography, tactile imaging, 

photoacoustic imaging, positron emission tomography etc. Screening, diagnosis and 

monitoring of disease have been remarkably improved thanks to these technologies. 

For instance, positron emission tomography which is a trending topic within the 

imaging modalities can now endow with tumor activity information. Ultrasound, on 

the other hand, is commonly used to provide needed monitoring of a fetus in due 

course of pregnancy. Mammography is now the primary technique for breast cancer 

imaging. Nuclear medicine became quite important after the advancements of 

magnetic resonance imaging, radiography, positron emission tomography and 

computed tomography. Diagnoses of central nervous system diseases (cerebrum and 
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spinal cord), sports injuries, musculoskeletal system problems, meniscus injuries, 

spinal disc herniation problems, neurologic diseases are basic diseases and problems 

which MR and other medical imaging techniques deal with. Figure 1.3 shows 

different medical imaging techniques which are quite popular in medicine. 

 

 
 

Figure 1.3. Different medical image modalities for the same patient. 

 

1.4. MEDICAL IMAGING AND MRI 

 

Magnetic Resonance (MR) can be considered as one of the main and early medical 

imaging techniques with the X-ray to investigate the anatomy and function of human 

body. With the aid of high level magnetism and reflection method the living tissue is 

visualized. Indeed, the technique which is known as MR is nuclear magnetic 

resonance imaging. The image is created according to the density and mobility of the 

hydrogen atoms inside the living tissues. Nowadays MR is particularly used for 

imaging of soft tissues. Various researchers have showed that MRI is superior to CT 

for diagnostic brain imaging [8–11]. Magnetic resonance imaging is a quite standard, 

very popular, useful, practical and non-invasive technique at the same time. In 

addition MRI is widely available in clinics. Consequently, MRI together in 

combination with other medical imaging modalities based studies is more feasible 

and rational in a clinical point of view. Nevertheless, it should be kept in mind that 

for a final decision and diagnosis, biopsy and histology are necessary despite the all 

suitability and practicability of non-invasive imagings. Thanks to the big amount of 

data the principal focus of this thesis will be on MRI and glioblastoma tumor volume 

change calculation. 
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1.5. IMPORTANCE OF VOLUME DETERMINATION 

 

It is quite important for the radiologists and/or clinicians to see the volume changes 

of the brain tumor for neurologic research, diagnosis and treatment plan. These 

subject matters for the brain tumor are applicable only if the related volume can be 

implicitly identified and only then tumor volume can be calculated. Glioblastoma is a 

notably deadly disease today and even today’s treatment modalities are all around 

insufficient in curing or even controlling. In radiotherapy, X radiation of high 

amount is used to damage and annihilate cancerous cells in the brain.  This is 

applicable only if the related volume can be implicitly identified. Namely the aim of 

radiotherapy can be seen as powerfully irradiate the tumor area and consequently the 

target volume but one has to prevent related radiation dose absorbed by nearby 

healthy cells. Different radiation dose is delivered to different volumes. International 

Commission on Radiation Units and Measurements (ICRU) introduced ICRU 50 

reports which explain the different volumes to be used for radiation treatment 

planning to keep away from uncertainty in definition of target volumes  [4]. One 

deficiency of today’s brain radiotherapy methods is an incompetency to satisfyingly 

irradiate the target volume to destroy cancerous cells. Glioblastomas are 

comparatively resistant to X radiation in comparison with other tumor types. 

Scientists have introduced that most brain tumor which had reoccurenced within the 

time are seemed to be located inside the primary tumor area [12–15]. Although there 

are studies on measuring the volume of the brain tumor, the definition of brain tumor 

volume still depends on time consuming, quite based on manual outlining by 

radiologists, clinicians etc. [4]. Today’s treatments for glioblastoma ordinarily need 

tumor removal using surgical methods.  

 

1.6. LITERATURE SURVEY 

 

Various researchers have studied tumor volume investigation by both measuring and 

calculation [14–19]. Tumor volume measurement is done by a lot of techniques such 

as 3D I-scan, ultrasonic 3D scanning system, correlation, diameter, height, area 

calculation etc. These techniques can be mainly classified into two groups; medical 

image processing based models and mathematical models [15,16]. 
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For mathematical models, tumor volume calculation is achieved by using various 

mathematical formulas [16–18]. Guthoff [19], for example, made use of area of 

sphere phenomena, however the usage of that methods was not sustainable now that 

it was found to be too complicated. Char et al. [16] searched growth rate using an 

exponential growth model with tumor volume formula. Difference in tumor size with 

respect to time was considered as growth rate. Li et al. [17] considered the tumor 

volume as a part of spheroid intersected by a sphere with a very detailed formula. 

Many researchers believed the change in tumor diameter to be model for the whole 

brain tumor volume [20–22]. These researchers found it enough to measure only one 

dimension of the tumor. On the other hand some researchers measured average of 

two dimensions [23,24]. Others considered the volume to be proportional to area and 

measured tumor area from measurements of two perpendicular diameters. E. Richtig 

et al. [18] investigated that tumor volume, calculated by the easy to use formula of 

the half volume of a rotation ellipsoid, rotated around the y-axis, is a better than 

tumor diameter or tumor height. 

 

For medical image processing based models, a wide range of medical image 

techniques have been presented with the developments in medical image processing 

field over the years. As these techniques were independently studied, a large body of 

research is evolved. As far as it goes there are quite a large number of techniques. 

However, now that every method is designed for a specific application rather than 

specific types of problems, categorizations and comparison of techniques with each 

other become difficult. Fortunately calculation was made using medical image 

segmentation, medical image registration and the combination of segmentation and 

registration. Medical image registration with segmentation is very important for 

monitoring glioblastomas growth during therapy as well as glioblastoma tumor 

volume measurement. Since the year of 2000, a very large number of academic and 

scientific manuscripts have been showing the growing interest and application of 

medical image processing [25–28]. See Figure 1.4 for frequency of publications in 

medical image registration field between years 2000 to 2014. Brock et al. [29] used a 

deformable registration method for tumor registration. The drawback was the 

substantial processing time. Kaus et al. [30] explored a new surface-based technique 

and applied on human brain. This researcher accomplished a few seconds of 
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processing time but to manually select control point was quite complicated and 

tedious. Maxwell’s demons registration was used with lesion growth model by 

Cuadra et al. [31]. Bloch et al. [32] applied morphology operators to brain diagnosis. 

However image variations which comes from the outliers such as, size, noise and 

feature shapes affected to these operators which are used by the author [25]. Wavelet 

based methods are getting increase in medical image registration for brain tumor 

analysis. There are highly various implementations of the wavelets in medical image 

registration for medical diagnosis [33–38]. The neural network have the ability of 

predicting, analyzing and deriving useful related information from a given data 

therefore this ability makes the neural network attractive to image registration for 

brain cancer diagnosis [25]. Konukoglu et al. [39] made use of a very useful 

registration technique which involved tumor segmentation, image registration and 

change detection to be able monitor slowly growing brain tumors. Pohl et al. [40] 

suggested to perceive differences in slowly evolving brain tumors using 

segmentation, registration and final analysis of differences. Angelini et al. [41] used 

affine registration to compute and compare intensity difference maps directly for 

tumor growth.  

 

Image registration is a leading-edge for image processing because rewarding 

complex data is transported in more than one image which may be obtained at 

various timelines, from different perspectives or even by totally separate sensors. 

That is why proper alignment of the beneficial information coming inside two 

images is very useful for clinical purposes. Besides, preoperative and intraoperative 

medical image registration is a critical process for image-guided therapy. 

 

A wide range of medical image techniques have been presented with the 

developments in medical image processing field over the years. As these techniques 

were independently studied, a large body of research is evolved. Fortunately, 

techniques differ in information on which registration relies. To put it briefly, 

connection between the changes of the images and type of the registration method 

that is most appropriate should be established by the researchers or scientists [42]. 

Changes points to the volumetric changes of the values and locations of pixels 
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among the two images [43]. Value changes are generally differences in intensity. The 

changes in question can be classified in three major types. 

 

The first type is the changes which result in misalignment of the images such as the 

differences in acquisition. For registering images in question, a spatial transformation 

is used to cut out these changes. The type of transformations that should be sought to 

find the optimal transformation is established by gain insight about the changes of 

this type. The transformation type then affects the general method which should be 

used. The second type of changes is quite similar to first type because they are also 

due to changes in acquisition. One of the difference between them is that they cannot 

be modeled easily, for the sake of example; lighting and atmospheric conditions. 

Another difference is that this type usually changes intensity value. The third type is 

changes in the nature of the images, for example tumor growths, or other scene 

changes. For the medical purposes such as, diagnosis, treatment or neurologic 

research changes of the third type must not be removed by registration. Therefore 

third type causes registration to be more challenging because an exact match is not 

possible anymore [44]. The characteristics of the each type of changes should be 

taken into account since knowledge about the characteristics of each type of change 

establishes the choice of feature space, similarity metric, search space and search 

strategy. Ultimately these all together will establish the main method to be used for 

registration process for the sake of neurologic research, treatment, diagnosis, etc. 

This course of action is quite practical for understanding relationships between the 

large number of existing methods and to be helpful to choose the most appropriate 

method for the specific purpose.  

 

Within the image registration methods the first widely-used method is point-based 

(fiducial markers) registration method. Aforementioned registration method is 

managed via getting the rigid transformation which collects the fiducial points into 

two spaces into alignment [45]. Promptness, accuracy and robustness are important 

advantages of point-based registration method. However it requires fixation of 

fiducial markers to rigid structures, which is not always possible or is too invasive to 

be acceptable.  
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Second widely-used method is surface-based registration method. This method is 

based on an identification of the shape of an anatomical structure. This anatomical 

structure may be skin or outer bone surface. To be able to estimate registration 

transformation minimizing points-to-surface or surface-to-surface distances is used. 

Unfortunately skin is not a rigid structure and that bone surface has to be exposed 

during the procedure. 

 

Third widely-used method is intensity-based registration method. This technique 

works directly with image data. Just as almost all the registration techniques to 

register and process medical images all the associated images must be converted into 

the digital form, which are originally in analog form. This means that the images 

must be in number which represents the intensity value of each pixel in the images. 

Each intensity value in the images refers to color of corresponding location inside the 

images [46]. Recently intensity-based registration method has grown compare to 

other methods. There are a few reasons for this situation. Firstly, twenty years ago it 

was taking hours or even days of computers for registering two image volumes if 

intensity-based registration method is used. At the present time, a few minutes or 

even seconds in some situations is enough for a simple computer to be able solve the 

same intensity-based registration problems. Therefore advances about computational 

resources, processing speed has led intensity-based registration method over other 

methods. Secondly, before introduction of similarity measures in intensity-based 

methods there was not a robust similarity metric to compare the interpolated image 

as the result of registration process. Namely, with introduction and development of 

similarity measure, especially mutual information (MI), there has been a 

considerable development in usage of intensity-based image registration as well. 

Thirdly, the simplicity of intensity based registration techniques among the 

remaining techniques encourages the researchers involved in medical image 

registration to make use of intensity based methods. Not having to struggle with 

image segmentation which is usually open to making mistakes and is generally 

complex, is an important result of the simplicity of this method [42].  

 

Looking at literature of medical analysis it can be easily seen that image registration 

builds up much of the research. Li et al. [47] is worth to be read to consider medical 
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image registration using mathematical tools. Most of the work related to medical 

image registration is about registration of functional medical images with anatomical 

medical images. Positron emission tomography (PET) or functional magnetic 

resonance imaging (fMRI) is functional medical images which give information 

about functionality of the human body. On the other hand magnetic resonance 

imaging (MRI) and computed tomography (CT) are anatomical medical images 

which give information about anatomy of the human body. By registering two 

different images a new medical image which contains both anatomical and functional 

information about human body is much more informative and useful. There are a lot 

of works in literature about this issue: Gering et al. [48] and Pereira et al. [49] are 

must read papers for intervention and treatment planning. Chang et al. [50] studied a 

good case for computer-aided diagnosis and disease following-up. For guided 

surgery on the other hand, Hurvitz and Joskowicz [51], Huang et al. [52] and 

Galloway et al. [53] are some the best papers. Ozsavas et al. [54], Mendrik et al. 

[55], Zhuang [56] and Oliveira et al. [57] made a great effort about anatomy 

segmentation. Recent improvements have been more on monomodal medical image 

registration rather than multimodal medical image registration. Acquisition of 

temporal image sequences contains much of the monomodal image registration 

research. Compared to multimodal images, mentioned sequences propose additional 

information about the changes of the imaged organs, such as tumor growths in any 

part of human body. Object lessons of temporal image registration of the heart can be 

found in Perperidis et al. [58], Marinelli et al. [59] and Peyrat et al. [60]. Despite that 

nearly entire anatomic parts and organs of the human body have been studied, much 

of the research of monomodal image registration has been done on brain. Duay et al. 

[61], Studhole et al. [62] , Liao and Chung [63], Cho et al. [64] and Yazdani et al. 

[65]. A certain number of reviews on medical image registration such as Pluim et al. 

[66] Salvi et al. [67], Wyawahare et al. [68], Slomka and Baum [69], Francisco P.M. 

Oliveira and João Manuel R.S. Tavares [42] can be examined in detail.  
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Figure 1.4. Frequency of published papers in medical image registration obtained via 

ISI. 

   

1.7. PROBLEM STATEMENT AND CONTRIBUTION OF THESIS 

 

It is quite important for the radiologists and/or clinicians to see the volume changes 

of the brain tumor for neurologic research, diagnosis and treatment plan. Neurologic 

research, diagnosis and treatment for the brain tumor are applicable only if the 

related volume can be implicitly identified and tumor volume can be calculated. 

 

Each medical image from different modality or each medical image from the same 

modality gives unique data and of generally a complementary nature, convenient 

integration and combination of information gained and collected from separate 

images is intended. This process is called registration and the goal is to bring images 

from different modalities or images from same modalities to the spatial alignment. 

Hence, the problem statement is the requirement of an effective and easy way of 
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aligning two medical images (MR/MR), taking those medical images to the same 

coordinate system so that corresponding features can easily be related. Soon after 

corresponding features are related, the brain volume must be calculated. 

 

A contribution of this thesis is that grown, diminished, and unchanged brain tumor 

parts of the patients are investigated, segmented out and their volumes are computed 

on an individual basis in a three-dimensional (3D) manner within the time. It is 

investigated experimentally that in the case of tumor changing, how much brain 

tumor grows, how much brain tumor diminishes, or how much brain tumor stays the 

same using color information. Green parts shows tumor which has been growing 

with time. Magenta parts, on the other hand, shows tumor which has been 

diminishing parts with time and lastly white parts are unchanged brain tumors. In 

literature, three-dimensional volume investigation, not volume calculation, is studied 

just using three planes (three slices) of the brain tumor. However, it is well-known 

that brain tumor is a three dimensional phenomenon. That is why not only three 

slices of tumor but also all the tumor associated slices must be processed. 

 

1.8. ORGANIZATION OF THESIS 

 

This thesis composes of four chapters. Chapter 1 presents overall and well-known 

information about human brain and brain tumors. Some statistical data about 

glioblastoma brain tumor is given in this chapter. Moreover, historical background of 

the medical imaging in medicine is discussed. The question ‘Why is brain tumor 

volume change so important’ is addressed. Problem statement, contribution of the 

thesis and a detailed literature survey can be found in Chapter 1. Chapter 2 

introduces material and methods. Mathematical based methods and medical image 

processing method are demonstrated in this chapter. In addition to this, the proposed 

medical image processing method is presented in detail. Medical image registration 

and medical image segmentation concepts are discussed and formulated in this 

chapter. The proposed algorithm for brain volume change investigation is itemized. 

Chapter 3 demonstrates experimental results obtained from the experiments. 

Registered and fused MR images are showed and brain volume change results are 
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given in this chapter. Lastly Chapter 4 is the conclusion part of the thesis. Results 

and outcomes are commented and possible future work is presented in this chapter.   
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

2.1. MATHEMATICAL MODELS FOR TUMOR VOLUME PROGRESSION 

ANALYSIS 

 

There exist important mathematical models for tumor volume progression analysis. 

Various studies have showed that three dimensional fundamental shape of brain 

tumor is hemi-ellipsoid [70]. Three dimensions of the tumor measurement are 

necessary for tumor volume calculations. These are: length (L), width (W), height 

(H). Measurement of tumor volume is a very common task in brain cancer research.  

Conventional ellipsoid volume is known as; 

 

𝑉 =
𝜋

6
∗ (𝑙𝑒𝑛𝑔𝑡ℎ) ∗ (𝑤𝑖𝑑𝑡ℎ) ∗ (ℎ𝑒𝑖𝑔ℎ𝑡)                                                                (2.1) 

 

Although measuring length and width of brain tumor is possible, height measuring is 

quite problematic. Because when measuring tumor height, there mainly exists 

inaccuracy which causes the largest error to volume results. The difficulty is 

determination where to position the caliper for measuring a precise height 

measurement [71]. That is why some authors have reduced essential number of 

dimensions in order to measure tumor volume. John P. Feldman et al. [71] explored a 

new mathematical method for tumor measurement which uses just two dimensions; 

length and width. There are other researchers who use two or even one dimension for 

measuring brain tumor. Although measuring brain tumor using 2 dimensions (2D) 

has been traditionally used one dimensional (1D) measurements have recently 

recommended. For 2D dimensional estimations one of the dimensions is the longest 

diameter of the tumor in the MR slices whereas the other dimension is the longest 

diameter perpendicular to the first dimension. For 1D estimations, on the other hand, 

the only dimension is the sum of the longest diameters of tumors. Mathematical 
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measurements of brain tumor are also known as linear measurement based formulae. 

The simplest one is sphere volume assumption formula which uses just 1D linear 

measurement for measuring tumor volume. For this purpose the conventional 

formula is VolSph=
4

3
𝜋(
1𝐷

2
)³. A brain tumor volume can also be assumed as a 

cylinder when using two orthogonal dimensions for measuring tumor volume. For 

this assumption the traditional formula is VolCyl= π(
𝑎

2
)²𝑏 Besides, an ellipsoid 

volume assumption would probably be more accurate. VolEll=
4

3
𝜋
𝑎

2

𝑏

2

𝑐

2
 which is a 

3D linear measurement. For the 3D measurement estimations, one of the dimension 

is the longest diameter of tumor, the second dimension is again the longest dimeter 

orthogonal to the first dimension and the last one is the longest diameter which is 

orthogonal to both of the dimensions. 

 

Table 2.1 shows a lot of mathematical formulas which have been used for tumor 

volume calculation up to now.  
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Table 2.1. Tumor volume measurement formulas. 

 

Formula Used Volume Type Assumption 

𝛑

𝟔
∗ 𝑳 ∗ 𝑾 ∗ 𝑯 Ellipsoid  

3 Dimensions are proportional wrt 

tumor growth 

𝛑

𝟔
∗ 𝑳 ∗ 𝑾² Ellipsoid  H = W  

𝛑

𝟔
∗ [
𝑳+𝑾

𝟐
]³ Ellipsoid  

 

H = A nonlinear function in terms of 

L and W 

𝛑

𝟔
∗ (𝑳 ∗𝑾)

𝟑
𝟐 Ellipsoid  H = √𝐿 ∗𝑊 

0.4* 𝑳 ∗ 𝑾² Spheroid  H = 
L²∗W²

𝜋
 

𝟒

𝟑
∗ 𝝅 ∗ (

𝑳 +𝑾

𝟐
)³        Spheroid  r = 

𝐿+𝑊

2
 

𝟒

𝟑
∗ 𝝅 ∗ (

𝑳

𝟐
)³ Spheroid  r = 

𝐿

2
 

𝑳 ∗𝑾 ∗ 𝑯 Rectangular Solid  
3 Dimensions are proportional wrt 

tumor growth 

𝑳 ∗𝑾² Rectangular Solid H = W 

𝟏

𝟐
∗ 𝑳 ∗ 𝑾 ∗ 𝑯 Ellipsoid π = 3 

𝟏

𝟐
∗ 𝑳 ∗ 𝑾² Ellipsoid H = W 

𝑳 ∗𝑾 Areal Area proportional to volume 

𝛑

𝟒
∗ 𝑳 ∗ 𝑾 Areal Area proportional to volume 

𝑳 Diameter 
Diameter to be representative to 

volume 

𝑳 +𝑾

𝟐
 Diameter 

Diameter to be representative to 

volume 

 

 

M. M. Tomayko and C.P. Reynolds [72] showed that tumor volume calculation using 

three-dimensional formula results in the most accurate tumor volume. All the tumor 
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volume measurement formulas are reasonable good at estimating brain tumor but the 

formula  
𝜋

6
∗ (𝑙𝑒𝑛𝑔𝑡ℎ) ∗ (𝑤𝑖𝑑𝑡ℎ) ∗ (ℎ𝑒𝑖𝑔ℎ𝑡) stood out as the best.  

 

2.2. MEDICAL IMAGE REGISTRATION-SEGMENTATION BASED 

MODEL 

 

Medical image processing techniques, specifically image registration and image 

segmentation can be used for brain tumor volume measuring and brain tumor volume 

progression analysis. Image registration is a leading-edge for image processing 

because rewarding complex data is conveyed in more than one image which may be 

obtained at various timelines, from different perspectives or even by totally separate 

sensors. That is why proper alignment of the beneficial information coming from two 

images is very useful for clinical purposes. Besides, preoperative and intraoperative 

medical image registration is a critical process for image-guided therapy. In this 

section of the thesis, well-known definition and general concepts image registration 

and image segmentation are presented. In addition, proposed algorithm for the 

intended application is specified. Theoretical background of image registration and 

image segmentation is explained in detail.  

 

To summarize registration process, Figure 2.1 is an ideal illustration of how process 

works. It should be stated that the objective is to search repeatedly for a geometrical 

transformation which optimizes the similarity metric once implemented to moving 

images. Image which is not changed during registration is called fixed image, the 

image which is changed, i.e. transformed during registration is called Moving image. 

The objective of a similarity metric is to establish a value promising how well two 

images correlate [73]. Role of optimizer is to define search strategy for the process. 

Interpolator is used to update pixel intensity values in the new coordinate system 

with respect to the geometrical transformation found previously. Interpolator 

measures the value of intensity difference between the images in the new positions.   
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Figure 2.1. Visual representation of image registration. 

 

In this part of the thesis the basic and the simplest mathematical theory of the 

registration problem are given. Medical image registration strategy can be drawn up 

as following: To begin with, the type of the transformation is specified. Determining 

the type of the transformation is a good starting point to help in selecting registration 

method. On the other hand, transformation itself depends upon the cause of the 

misalignment. Furthermore, feature space is indicated. Feature space is the intrinsic 

information of the image. This space is image information space by which similarity 

measure is computed. Last but not least, similarity measure (metric) is selected. 

Similarity metric should be most likely to find the best match between fixed image 

and moving image. On top of that, optimization type is picked up to guide the search 

to the best match of the fixed and transformed moving image. Finally search 

techniques are selected to decrease the cost of computations. If possible as a pre-

treatment, a pre-registration should be performed for the registration process to bring 

the fixed and moving images close to each other in the new coordinate system and to 

provide a faster convergence of the optimization process. This additional algorithm 

will decrease the possibility of convergence for a local optimum. 
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2.2.1. Geometrical Transformation 

 

Image registration process has a variety of characteristics. Transformation type is one 

of the basic characteristic of the image registration in order to properly overlay fixed 

and moving images. In this part of the thesis procedure of selecting the 

transformation type for our specific application is explained. Affine transformation is 

an efficient transformation type for this problem. Now that an affine transformation 

is composed of a combination of a translation, a rotation, a scale and a shear change. 

Possible misalignment for MR images taken at different type with the same sensors 

are translation, rotation scale and shear change. Affine transformation is among the 

most used transformation types because it is highly sufficient to map two different 

images of a scene gained from similar angle but at different times.  

 

It is convenient to start by considering linear functions x, y and transformations 

defined by x and y functions. These transformations might be applied to a point P(x, 

y) within a plane. All linear transformations T might be represented using following 

equations: 

 

x´ = ax + by + e                                                                                                       (2.2) 

 

y´ = cx + dy + f                                                                                                        (2.3) 

 

The point Q(x´, y´) is called image of P under the transformation T. It is written as, Q 

= T(P). Two equations can be written in matrix form as follow: 

 

[
x´
y´
] = [

a b
c d

] [
x
y] + [

e
f
]                                                                                            (2.4)  

 

Two equations can also be written as Q = MP +v⃗  , where M and v⃗  are: 

 

M = [
a b 
 c d

] ,   v⃗  = [
e
f
]                                                                                            (2.5)    
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Therefore the product of the matrix M and point P yields MP, and the addition of 

vector v⃗  and product MP results in a point that is geometrically the transportation of 

the point by the magnitude and orientation of the vector.  

 

2.2.2. Types of Transformation 

 

2.2.2.1. Translation 

 

Within the plane, a translation can be generated by setting the transformation matrix 

M to the identity matrix I and adding 𝑣  to the intended translation. 

 

I = [
1 0 

 0 1
]                                                                                                              (2.6) 

 

Translation is quite simple however it has many properties to be discussed. For 

instance, translation preserves angles which are between lines of the registered 

images, for this reason we say that parallelism is preserved under translation 

transformation. This means that the parallel lines within the images, shapes etc. 

remain parallel after the translation [74]. Translation preserves distances as well as 

angles; this means that areas of the associated images are also preserved. Simply, we 

can say that translation is a process of transportation of the images without any 

physical change. See Figure 2.2 for representation. 

 

X = x + h                                                                                                                 (2.7) 

 

Y = y +k                                                                                                                  (2.8) 

 

[
X

Y

1

] = [
1 0 h

0 1 k

0 0 1

] [

x

y

1
]                                                                                                (2.9) 

 

Our goal is to find parameters h and k which are the transformation parameters. The 

next question is how to find transformation parameters. Knowing a pair of 

corresponding points in the images, parameter h and k can be determined. In the case 
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of having more than one pair of corresponding points in images, h and k will be 

determined using a robust estimator.  

 

 
 

Figure 2.2. A simple translation transformation. 

 

2.2.2.2. Scaling 

 

Scaling transformation can be generated by applying a factor k to the identity matrix 

I. As we clearly see in Figure 2.3, in scaling transformation angles and parallelism 

are preserved but areas are not. Let us assume that a matrix, multiplied by a k factor, 

 

[
k 0 

 0 k
]                                                                                                                  (2.10) 

 

is utilized to scale a closed figure. New area after scaling is k² times its area before 

scaling. Figure 2.3 shows geometrically that area is not preserved under scale 

transformation. 
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Figure 2.3. A simple scale transformation. 

 

2.2.2.3. Rotation 

 

When speaking about rotation its simplest form is considering rotation about origin.  

We think that there is a point P(x, y) in Cartesian Coordinates but for simplicity we 

convert that point into polar coordinates as P(rcos(Ө), rsin(Ө)). And then we applied 

rotation transformation by angle ø to this point. The coordinates of the rotated point 

P´(x´, y´) is (rcos(Ө + ø), sin(Ө + ø)) in polar coordinates. See Figure 2.4 below. 

 

 
 

Figure 2.4. Rotation of a point. 

 

Now that, 
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x´ = rcos(Ө+ø) = r(cosӨcosø – sinӨsinø)                                                             (2.11) 

y´ = rsin(Ө+ø) =  r(cosӨsinø + sinӨcosø)                                                            (2.12) 

 

a rotation by an angle ø can be expressed in matrix form as 

 

[
x´

y´
] = [cosø -sinø

sinø cosø
] [

rcosӨ

rsinӨ
] = [cosø -sinø

sinø   cosø
] [

x

y]                                                (2.13) 

  

We can conclude that the determinant of a rotation transformation matrix is always 1.   

    

|M| = |cosø -sinø

sinø   cosø
|=1.                                                                                        (2.14) 

 

Our goal is again to find transformation angle ø. This angle can be calculated if we 

know a pair of corresponding points in the images. One important note is that if the 

counterclockwise rotation is the point in question, the transpose of the transformation 

matrix should be used instead of above matrix. 

 

 
 

Figure 2.5. A simple rotation transformation. 

 

2.2.2.4. Shearing 

 

Shearing is a more complicated transformation type than translation, scaling and 

rotation transformations. From a transformation point of view, shearing is a linear 

map that transports each point in fixed direction by an amount proportional to its 
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signed distance from a line that is parallel to that direction. The mapping that takes a 

point with location (x, y) to the point with location (x+2y, y) is a good example of 

shearing. We know that the displacement is horizontal, the fixed line is x-axis and 

the signed distance is the y coordinate. It is important to figure out that the points on 

opposite sides of the reference line are changed in an opposite direction. 

 

Shearing transformation must not be confused with rotation transformation, shearing 

distorts the geometry of the figure. For instance shearing change squares to 

parallelograms and change circles to ellipses. One common property of both rotation 

and shearing is that both of them preserve areas of the images. If we consider point 

P(x, y) the new point after shearing P´(x´, y´) is; 

 

Horizontal Shear 

 

[
x´

y´
] = [

x+my

y
]= [

1 m

0 1
] [

x

y] .                                                                                 (2.15)  

   

    Vertical Shear 

[
x´

y´
] = [

x

y+mx]= [
1 0

m 1
] [

x

y] .                                                                                 (2.16)  

 

Where m is a fixed parameter called shear factor. 

 

 
 

Figure 2.6. A simple horizontal shear transformation. 
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SUMMARY 

 Translation transformation moves a set of points a fixed distance in x and y, 

 Scale transformation scales a set of points up or down in the x and y 

directions, 

 Rotate transformation rotates a set of points about the origin, 

 Shear transformation offsets a set of points a distance proportional to their x 

and y coordinates. 

 

2.2.3. Similarity Measure 

 

The key similarity metric which is utilized in this thesis is known as sum of squared 

differences, as the abbreviated as SSD, similarity metric. This similarity metric is 

utilized in so many monomodal intensity registration problems and it depends on 

pixel intensity differences. Returning a number that indicates how well any two 

images are similar to each other is the goal of similarity measure. The restriction of 

the SSD similarity metric is that homologous images should have similar pixel 

intensities after accurate registration. 

 

2.2.3.1. Sum of Squared Differences (SSD) 

 

The expression of the SSD for image A which is Fixed Image and for image B which 

is Moving Image can be written as 

 

                      (2.17) 

 

where  

 

A(I) = Fixed Image pixel intensity value, 

B´(I) = Transformed Moving Image pixel intensity value, 

N = Number of pixels in the images. 

 

Theoretically, the SSD is said to be zero after a successful registration process 

however in practical it is close to zero because of the misregisrations. The SSD 

SSD = 
1

N
  ∑  |A(I) - B´(I)|

2N
i  ,        ∀i ∈ A ∩ B´.                                 
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metric has a limited use as mentioned previously because the fixed and moving 

images must be identical. Now that brain’s corresponding fixed and moving MR 

images of the same patient are quite similar excluding the misalignments, the 

restriction of the SSD metric that was mentioned previously does not conflict.  

 

2.2.4. Optimizer 

 

The role of the optimization is to find the possible minimum value of the similarity 

metric. As soon as optimizer finds the minimum value of the SSD the optimization 

process is over. For this reason, registration process can be mathematically 

summarized as: 

 

                                                                     (2.18) 

  

where  

 

D = Similarity Metric (Cost Function), 

A(I) = Fixed Image, 

B(I)  = Moving Image, 

T = Transformation. 

 

2.2.4.1. Regular Step Gradient Descend Optimizer 

 

As for optimizer Regular Step Gradient Method is utilized at the thesis. This method 

was found by Cauchy in 1847. This optimization technique is among the simplest 

method within the optimization techniques used for image registration problems. 

Cauchy was the first to make use of the negative gradient direction in 1847 for 

minimization problems. In this method an initial trial point 𝑋1 is chosen, which is 

iteratively moved along the steepest descent direction until the optimum point is 

found. See Figure 2.7. In a theoretical point of view, this algorithm will not end until 

a fixed value is achieved. The technique can be considered as an hill-climbing 

process. This process begins with an starting SSD guess 𝑋𝑘. Another estimate about 

the SSD 𝑋𝑘+1 is made from the previous estimate 𝑋𝑘 at each time. The difference 

minTD[A(I) ,T(B(I))]   
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function is computed at all points (say, 4x4) at the neighborhood of 𝑋𝑘. Later on the 

next estimate 𝑋𝑘+1 is taken that minimizes the difference function. 

 

 
 

Figure 2.7. Regular step gradient descend optimizer. 

 

2.2.5. Color Based Image Segmentation of Grown, Diminishing and Unchanged 

Tumor Parts using L*a*b* Color Space 

 

One of the simplest methods for image segmentation is pixel clustering which is 

obtained by adjusting each pixel with its clustering. There are many different color 

spaces which have been introduced that describe the colors or gamut which can be 

displayed, analyzed or interpreted by electronic devices. CIE L*a*b* color space is 

commonly considered and known as the color-opponent space. In this study the 

purpose of using CIE L*a*b* color space is to establish a space which can be 

calculated using simple formulas from the XYZ (RGB) color coordinate system. The 

advantage of CIE L*a*b* space is that it is more perceptually uniform than XYZ 

space. The meaning of perceptually uniform is that a simple difference in a color 

value shall result in a same amount of difference in visual appearance. CIE L*a*b* is 

the most complete color space specified by the International Commission on 

Illumination (CIE). It contains and identifies the whole colors which are said to be 

visible to the naked human eye. The nonlinear relations for L*, a*, and b* are 

intended to mimic the nonlinear response of the eye [75].  
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In CIE L*a*b* color space, the vertical axis L* stands for ‘’Lightness or 

Luminosity’’ and its range is 0-100. The first horizontal axis which is represented by 

a* stands for colors fall along the red-green axis. The idea is that a color cannot be 

both red and green. In practice its range is from -128 to +127 (256 levels). The a * 

axis is red at one end (indicated by +a), and green at the other end (indicated by -a).  

The other horizontal axis which is represented by b* stands for colors fall along the 

blue-yellow axis. The idea is again that a color cannot be both blue and yellow. In 

practice its range is from -128 to + 127 (256 levels). The b* axis is yellow at one end 

(indicated by +b), and blue at the other end (indicated by -b). Each axis’s origin is 

said to be zero. Zero value or a very value which is very close to zero of both a* and 

b* will define a neutral or near neutral. a* and b* layers contain color information 

whereas L* layer contains luminosity (lightness) information [76].  

 

Considering all the properties and benefits of CIE L*a*b* up to now, it can be 

concluded that the difference between the two points in the CIE L*a*b* color space 

is exactly similar with the human visual system. Therefore, after image registration 

process, obtained medical images are converted to CIE L*a*b* from RGB color 

space. Conversion from XYZ color space to CIE L*a*b* color space is achieved 

using the equation 19-20. 

 

 

(

 
  𝐿

∗=116𝑓(
𝑌

𝑌𝑛
)−16              

𝑎∗ =500[𝑓(
𝑋

𝑋𝑛
)− 𝑓(

𝑌

𝑌𝑛
)] 

𝑏∗ = 200[𝑓(
𝑌

𝑌𝑛
)− 𝑓(

𝑍

𝑍𝑛
)]
)

 
 

                                                                           (2.19) 

 

Where, 

 

𝑓(𝑡) = {
𝑡
1
3⁄ ,                    𝑡 > (

6

29
)
3

1

3
(
29

6
)
2

𝑡 +
4

29
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                           (2.20) 
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X, Y and Z are the coordinates of XYZ color space. 𝑋𝑛, 𝑌𝑛, and 𝑍𝑛 are XYZ 

tristimulus values of the reference white point. The subscript n stands for 

‘’normalized’’. The reason for partition off 𝑓(𝑡) function is to prevent an infinite 

slope at t = 0.   

 

2.2.5.1. Color Differences, Delta E Differences and Tolerances 

 

In this study color difference is used to segment grown, diminishing and unchanged 

tumor parts from rest of the image and from each other as well after images are 

registered. Color difference is a well-advised technique to compute difference 

(distance) between two colors in color based image segmentation science. Color 

difference is a kind of metric which actually provides Euclidean distance. Delta E 

was defined by The International Commission on Illumination (CIE) and represented 

by ΔE which generally indicates color difference. The higher the ΔE, the bigger the 

difference between two colors in comparison. Theoretically, for average human 

vision a ΔE less than 1 is said to be indistinguishable on the condition that colors are 

not adjacent to each other. This means that color difference of less than 1 is hardly 

distinguishable by average human vision. a ΔE value between 3 and 6 is supposed to 

be moderate [75]. ΔE is computed using equation 21. 

 

ΔE = √(𝐿2
∗ − 𝐿1

∗ )2 + (𝑎2
∗ − 𝑎1

∗)2 + (𝑏2
∗ − 𝑏1

∗)2                                        (2.21) 

 

(𝐿1
∗ , 𝑎1

∗, 𝑏1
∗) and (𝐿2

∗ , 𝑎2
∗ , 𝑏2

∗) are two points having three components: L*, a*, b* 

in three-dimensional CIE L*a*b* color space. 

 

Tolerance means that how a set of colors is close to a specified reference point. Now 

that the distance in L*a*b* color space is perceptually uniform, tolerance will be 

defined as the set of colors whose difference to the reference point is smaller than 

noticeable-difference threshold. This tolerance value will specify the cluster of 

similar colors, i.e. pixel values. Tolerance value is a quality control for segmenting 

colors from each other, hence shows difference (distance) for color and lightness. 

 



31 

The whole process including image registration and image segmentation is 

summarized as follows: 

 

Proposed Algorithm: 

 

Step 1: Read the MR images of the patient which contains brain tumor taken at a 

previous time and save as Fixed Image. Read the MR image of the same patient 

which contains brain tumor taken at a later time and save as Moving Image. 

 

Step 2: Register Fixed and Moving Images using similarity metric and optimizer 

defined previously. 

 

Step 3: Save Fused (registered) image. 

              Repeat Steps 1-3 for all tumor associated MR scans of the patient brain. 

 

Step 4: Convert Fused medical images from RGB color space to CIE L*a*b* color 

space using equations 19-20. In CIE L*a*b* color space, the vertical axis L* stands 

for ‘’Lightness or Luminosity’’. The first horizontal axis which is represented by a* 

stands for colors fall along the red-green axis. The other horizontal axis which is 

represented by b* stands for colors fall along the blue-yellow axis. 

 

Step 5: Draw free-hand irregularly shaped region to specify a color (i.e. anatomic 

parts: grown tumor, diminishing tumor or unchanged tumor).  

 

Step 6: Compute Color Difference (Delta E) for every pixel in the image between 

that pixel's color and the average CIE L*a*b* color of the drawn region using 

equation 21.  

 

Step 7: Specify the Tolerance Value according to sensitivity your work needs. 

Tolerance value is a quality control for segmenting colors from each other, hence 

shows difference (distance) for color and lightness. This is a number that indicates 

how close to that color would the user like to be. The algorithm then will find all 

pixels within that computed Delta E of the color of the drawn region. 
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Step 8: Categorize each pixel using nearest neighbor idea which tells that the 

smallest distance means similar colors, hence similar anatomic parts. 

 

Step 9: Create new image that segment the original image by color. Green color 

shows tumor which has been growing with time. Magenta color, on the other hand, 

shows tumor which has been diminishing parts with time and lastly white color 

shows unchanged brain tumors. 

 

Step 10: Compute the area of each color (each anatomic part) in segmented image. 

               Repeat Steps 4-10 for all Fused (registered) images. 

 

Step 11: Add all the results came from Step 10 to compute volume of grown brain 

tumor, diminished brain tumor and unchanged brain tumor. 
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CHAPTER 3 

 

EXPERIMENTAL RESULTS 

 

The data has been used from RIDER Neuro MRI project from The Cancer Imaging 

Archieve (TCIA) database [77,78]. RIDER Neuro MRI contains imaging data on 19 

patients with recurrent glioblastoma who underwent repeat imaging sets with 

SIEMENS manufacturer. All 19 patients underwent whole brain 3D FLASH imaging 

in the sagittal plane after the administration of Magnevist on the same 1.5T imaging 

magnet. For this sequence, the Frequency was 63.676694, the TR was 6000 ms, TE 

353 ms, and TI 2200ms; 180 degree flip angle, 1 signal average, matrix 256 x 216; 1 

mm isotropic voxel size. The patients’ head position was Head First-Supine. 

 

Figures 3.1 (Fixed Image) and 3.2 (Moving Image) are just two MR images of a 

patient brain that has brain tumor. Tumors are marked with red arrows in the 

associated images. These MR images are taken at two different times. Figure 3.1 and 

3.2 are just one scan of the patient acquired at different times. However registration 

process has been applied to all scans which have brain tumor. In this patient 30 scans 

of the patient brain have brain tumor. Slices thickness between scans is 1mm which 

is a perfect thickness for tumor analysis. It is investigated experimentally that in the 

case of tumor changing, how much brain tumor grows, how much brain tumor 

diminishes, or how much brain tumor stays the same using color information. Green 

parts shows tumor which has been growing with time. Magenta parts, on the other 

hand, shows tumor which has been diminishing parts with time and lastly white parts 

are unchanged brain tumors. 
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Figure 3.1. Fixed image. 
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Figure 3.2. Moving image. 

 

Figure 3.3 is just overlapping of two scans. Misregistration of the scans is quite 

obvious. Misregistration between two scans is marked with red arrows as well. 

Figure 3.4 is registration result. In figure 3.4, it can be seen that distortions which is 

called misregistration is removed. The remaining variations are changes which are of 

interest; they are therefore not distortions, they are tumor changes which are desired 

to be detected. These important changes are marked with red arrows. Green parts 

shows tumor which has been growing with time. Magenta parts, on the other hand, 
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shows tumor which has been diminishing parts with time and lastly white parts are 

unchanged brain tumors. This process has been applied to all 30 scans and results can 

be seen in Figure 3.7 and Figure 3.8.  

 

 
 

Figure 3.3. Overlapping result. 
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Figure 3.4. Registration result. 

 

Segmented tumor after registration process is individually indicated in Figure 3.5. 

Figure 3.6 is filtering result of segmented tumor image. Figure 3.6 is necessary to 

compute area (hence volume) of diminished tumor part, growing tumor part and 

unchanged tumor part on an individual basis. 
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Figure 3.5. Segmented tumor. 
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Figure 3.6. Segmented tumor after filtering. 

 

Scores related to SSD metric is tabulated in Table 3.1 when the iteration number 

increases the better match is achieved. Therefore, the golden rule is that the lower the 

SSD, the better registration process is. Looking at the Table 3.1 it is seen that the best 

match is found at the Iteration Number 86. At 86th iteration number the value of SSD 

is 286.2024 whereas SSD number starts with 1627.2952 at 1st iteration number.  On 

the other hand, time required for the registration increases with maximum iterations. 

Hence registration process takes longer time when iteration number increases.  
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Table 3.1. SSD results with respect to iteration number. 

 

      Iter.    SSD         Iter.    SSD       Iter.    SSD        Iter.    SSD 

1    1627.2952 26   321.2599 51     286.8984 76     287.2046 

2    1268.3555 27   317.4207 52     286.8578 77     286.6178 

3    1584.4344 28   314.0301 53     286.6623 78     286.5840 

4    5242.0876 29   310.8376 54     286.6876 79     286.5539 

5    2098.3634 30   307.9623 55     286.7207 80     286.6160 

6    1851.5011 31   305.6251 56     286.6427 81     286.5475 

7    1525.9047 32   303.2605 57     286.5345 82     286.7101 

8    1354.2674 33   300.5287 58     286.5914 83     286.6453 

9      834.4523 34   298.3436 59     286.3135 84     286.7862 

10    665.7449 35   296.8114 60     286.6338 85     286.8951 

11    617.4345 36   294.9558 61     286.2620 86     286.2024 

12    584.5832 37   293.3388 62     286.3391       87    CONVERGE 

13    550.9578 38   292.7274 63     286.7855       88    CONVERGE 

     14    520.9090 39   290.8807 64     287.3632       89    CONVERGE 

15    489.3432 40   291.0479 65     290.5421       90    CONVERGE 

16    461.6606 41   294.3186 66     286.9279       91    CONVERGE 

17    432.3264 42   301.4828 67     286.4376       92    CONVERGE 

18    409.9917 43   302.8219 68     286.2334       93    CONVERGE 

19    386.5456 44   290.8027 69     286.2593       94    CONVERGE 

20    386.8915 45   287.8876 70    286.3713       95    CONVERGE 

21    484.6777 46   287.7257 71     286.3901       96    CONVERGE 

22    579.0272 47   287.5535 72     286.4022      97   CONVERGE 

23    433.4253 48   287.3056 73     286.4613       98    CONVERGE 

24    338.2038 49   287.1376 74     286.8364       99    CONVERGE 

25    325.1858 50   287.1037 75     286.6227        100  CONVERGE 
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As stated before the process explained until this point has been implemented to all 

tumor associated part of the brain. For first patient this number was 30 scans. For 

demonstration, result of 16 scans is shown in Figure 18 and corresponding tumors 

are shown in Figure 3.8.  

 

 
 

Figure 3.7. Segmented tumor (first patient). 
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Figure 3.8. Segmented tumor (first patient). 

 

Results for the second patient are shown in Figure 3.9 and Figure 3.10. For second 

patient, number of scans which are tumor associated part of the brain was 24. 

Registration process has been applied to 24 scans. For demonstration, result of 16 

scans is shown in Figure 3.9 and corresponding tumors are shown in Figure 3.10. 

 



43 

 
 

Figure 3.9. Segmented tumor (second patient). 
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Figure 3.10. Segmented Tumor (second patient). 

 

Table 3.2 shows volume measurement results for both mathematical models and 

medical image registration model. Table 3.2 is comparison of the proposed method 

with other standard methods. For tumor volume evaluation, there exist important 

mathematical models. Various studies show that three dimensional fundamental 

shape of brain tumor is hemi-ellipsoid. Table 3.2 shows results for 12 mathematical 

formula and medical image registration-segmentation method. Through these 

mathematical formulas  
π

6
∗ 𝐿 ∗ 𝑊 ∗ 𝐻 is the most used formula for tumor size 

variation volume measurement. Results of mathematical formulas can vary from 
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formula to formula. Results of tumor volume vary between 72654 mm³ and 1853 

mm³. Through these mathematical formulas  
π

6
∗ 𝐿 ∗ 𝑊 ∗ 𝐻 is the most used formula 

for tumor size variation volume measurement and with this formula result is found to 

be 36659 mm³. Medical image registration-segmentation result is found to be 36154 

mm³. This proves that medical image-registration method is not also between the true 

ranges but also is very close to the best formula. In reality medical image 

registration-segmentation formula gives better result than all mathematical formulas 

including  
π

6
∗ 𝐿 ∗ 𝑊 ∗ 𝐻 formula. The reason is that all mathematical formulas make 

some assumption when measuring tumor volume. However medical image 

registration-segmentation method does not make any assumption. It computes each 

MR scan with 1 mm thickness and adds all results to compute volume. This gives the 

most real volumes for tumor. Besides, growing tumor part, diminishing tumor part 

and unchanged tumor part are also possible just for medical image registration-

segmentation method. It is quite obvious that measuring the brain volume from 1D or 

2D introduces further possibilities of errors in to the measurement since 1D and 2D 

is based on choosing maximum diameter and maximum area and so on, which is not 

objective but subjective. The results show that automatic 3D techniques are 

obviously needed for the sake of objective and are much more meaningful from a 

clinical point of view. 
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Table 3.2. Tumor volume measurement formulas and results. 

 

Formula Used 

Previous 

Tumor 

Volume 

(mm³) 

Current 

Tumor 

Volume 

(mm³) 

Growing 

Tumor 

Volume 

(mm³) 

Diminishing 

Tumor 

Volume 

(mm³) 

Unchanged 

Tumor 

Volume 

(mm³) 

 

Difference 

(mm³) 

Medical Image 

Registration-

Segmentation 

Method 

36154 31221 10345 15278 20876 

 

 

 

(-) 4933 

𝛑

𝟔
∗ 𝑳 ∗𝑾 ∗ 𝑯 36659 31653 N/A N/A N/A 

 

(-) 5006 

𝛑

𝟔
∗ 𝑳 ∗𝑾² 

 

34709 

 

27689 

 

N/A 

 

N/A 

 

N/A 

 

 

(-) 7020 

𝛑

𝟔
∗ [
𝑳+𝑾

𝟐
]³ 43678 33010 N/A N/A N/A 

 

(-) 10668 

𝛑

𝟔
∗ (𝑳 ∗ 𝑾)

𝟑
𝟐 42689 32379 N/A N/A N/A 

 

(-) 10310 

0.4* 𝑳 ∗ 𝑾² 28033 

 

21177 
N/A N/A N/A 

 

(-) 6856 

𝟒

𝟑
∗ 𝝅 ∗ (

𝑳

𝟐
)³ 72654 45652 N/A N/A N/A 

 

 

(-) 27012 

𝑳 ∗𝑾 ∗ 𝑯 70049 60483 N/A N/A N/A 

 

(-) 9566 

 

 

𝑳 ∗𝑾² 
66322 55201 N/A N/A N/A 

 

(-) 11121 

𝟏

𝟐
∗ 𝑳 ∗ 𝑾 ∗ 𝑯 35024 30241 N/A N/A N/A 

 

(-) 4783 

𝟏

𝟐
∗ 𝑳 ∗ 𝑾² 33166 27600 N/A N/A N/A 

 

(-) 5566 

𝑳 ∗𝑾 1853 1565 N/A N/A N/A 
(-) 288 

𝛑

𝟒
∗ 𝑳 ∗𝑾 1940 1228 N/A N/A N/A 

(-) 712 
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Results for 19 patients’ brain tumor size variation volumes using medical image 

registration-segmentation method are demonstrated in Table 3.3. 

 

Table 3.3. Tumor size variation results for 19 patients using medical image 

registration-segmentation method. 

 

Patient 

Number 

Previous 

Tumor 

Volume 

(mm³) 

Current 

Tumor 

Volume 

(mm³) 

Growing 

Tumor 

Volume 

(mm³) 

Diminishing 

Tumor 

Volume 

(mm³) 

Unchanged 

Tumor 

Volume 

(mm³) 

Difference 

(mm³) 

1. Patient 36154 31221 10345 15278 20876 (-) 4933 

2. Patient 24356 21967 11657 14657 18076 (-) 2389 

3. Patient 37234 38644 15432 14022 23212 (+) 1410 

4. Patient 18465 20087 2223 601 17864 (+) 1622 

5. Patient 23987 29647 10002 4342 19645 (+) 5660 

6. Patient 34123 31076 9109 12156 21967 (-) 3047 

7. Patient 26781 25816 9081 10046 16735 (-) 965 

8. Patient 21647 19087 184 2744 18903 (-) 2560 

9. Patient 42790 44718 14873 12945 29845 (+) 1928 

10. Patient 20043 25098 10055 5000 15043 (+) 5055 

11. Patient 34981 30241 7903 12643 22338 (-) 4740 

12. Patient 22132 27457 10048 4723 17409 (+) 5325 

13. Patient 30483 35654 10531 5360 25123 (+) 5171 

14. Patient 38654 33376 11411 16689 21965 (-) 5278 

15. Patient 27908 31209 10319 7018 20890 (+) 3301 

16. Patient 17592 20982 4237 847 16745 (+) 3390 

17. Patient 23879 18231 2485 8133 15746 (-) 5648 

18. Patient 30675 26783 11110 15002 15673 (-) 3892 

19. Patient 29876 33832 13748 9792 20084 (+) 3956 

 

 



48 

 

 

 

 

CHAPTER 4 

 

CONCLUSION 

 

Brain tumors have been announced as one of the most fatal cancers in the western 

populations. World Health Organization specifies glioblastoma as WHO grade IV 

according to grading scheme which categorizes brain tumors between I and IV. That 

is why glioblastoma is chosen for investigation in this thesis. Magnetic resonance 

imaging has been used to monitor brain tumors and image processing techniques 

have been used to evaluate changes in the magnetic resonance images for a long 

time. In this thesis magnetic resonance imaging and image processing techniques are 

used to propose an objective application for the sake of monitoring glioblastoma 

volume changes.  

 

A useful and effective application of medical image registration-segmentation is 

offered in this thesis with comparison of mathematical based methods. Intensity-

based medical image registration phenomenon is used in this study. Sum of squared 

differences metric is used as similarity metric and regular step gradient descent 

optimizer is used as optimization technique. L*a*b color space image segmentation 

is used to segment each part of tumor. Using 3D medical image registration-

segmentation algorithm, multiple scans of MR images of a patient who has brain 

tumor are registered with MR images of the same patient acquired at a different time 

so that growth of the tumor inside the patient's brain can be investigated. Tumor 

growthiness inside the patient’s brain is successfully investigated. For the first 

patient, results are shown in Figure 3.7 and Figure 3.8. Grown brain tumor volume is 

found to be 10345 mm³, diminished brain tumor volume is found to be 15278 mm³ 

and unchanged brain tumor volume is found to be 20876 mm³. Process is applied to 

another patient and results are shown in Figure 3.9, Figure 3.10. For the second 

patient, grown brain tumor volume is found to be 11657 mm³, diminished brain 

tumor volume is found to be 14657 mm³ and unchanged brain tumor volume is found 
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to be 18076 mm³. Technique is implemented to 19 patients and satisfactory results 

are obtained and demonstrated in Table 3.3. A challenge of medical image 

registration-segmentation method for brain tumor investigation is that grown, 

diminished, and unchanged brain tumor parts of the patients are investigated and 

computed on an individual basis in a three-dimensional manner (3D) within the time. 

On the other hand, there is no possibility of mathematical based methods to computer 

grown, diminished and unchanged tumor parts. Mathematical based methods can 

compute previous tumor volume and next tumor volume. Most mathematical based 

methods are reasonable for tumor volume measurement but medical image 

registration is more accurate because it measures actual volume without making any 

assumptions. 

 

This thesis study provides radiologists and/or clinicians to see the volume changes of 

the glioblastoma for neurologic research, diagnosis and treatment plan. Now that it is 

achieved to implicitly identify the related tumor change and to calculate related 

tumor volume change therefore neurologic research, diagnosis and treatment for the 

brain tumor are now applicable. 

 

The next step for this study can be integrating this medical image registration-

segmentation MATLAB software with a Digital Signal Processor (DSP) and to 

prepare an MR/MR registration machine to be used in clinics, hospitals, cancer 

imaging research centers etc. A new medical imaging/processing machine will 

provide added value to our medical technologies. This value added service will 

reduce external dependency and increase the standard of living of the humanity.  

 

Another suggestion for the future work may be to apply this software tool to other 

kind of tumors because the software prepared is intensity based which means that it 

can be implemented to any tumor which has a different intensity from  the whole 

intensity of the rest of the medical image. 

 

 

 

 



50 

 

 

 

 

REFERENCES 

 

1. Bigos K. L., Hariri A. R., Weinberger D. R., "Neuroimaging genetics principles 

and practices 1th Ed.", Oxford University Press, New York, 157-158 (2016). 

 

2. DeAngelis L. M., "Brain tumors", Medical Progress N Engl J Med, 114 (2): 114–

123 (2001). 

 

3. Kohler, B. A., Ward, E., McCarthy, B. J., Schymura, M. J., Ries, L. A. G., 

Eheman, C., Jemal, A., Anderson, R. N., Ajani, U. A., and Edwards, B. K., 

"Annual report to the nation on the status of cancer, 1975–2007, featuring tumors 

of the brain and other nervous system", Journal of the National Cancer Institute, 

(2011). 

 

4. Mazzara, G., Velthuizen, R., Pearlman, J., Greenberg, H., and Wagner, H., "Brain 

tumor target volume determination for radiation treatment planning through 

automated MRI segmentation.", Int J Radiat Oncol Biol Phys, 59 (1): 300–312 

(2004). 

 

5. Van Landeghem, F. K. H., Maier-Hauff, K., Jordan, A., Hoffmann, K. T., 

Gneveckow, U., Scholz, R., Thiesen, B., Brück, W., and Von Deimling, A., "Post-

mortem studies in glioblastoma patients treated with thermotherapy using 

magnetic nanoparticles", Biomaterials, 30 (1): 52–57 (2009). 

 

6. Krex, D., Klink, B., Hartmann, C., Von Deimling, A., Pietsch, T., Simon, M., 

Sabel, M., Steinbach, J. P., Heese, O., Reifenberger, G., Weller, M., and 

Schackert, G., "Long-term survival with glioblastoma multiforme", Brain, 130 

(10): 2596–2606 (2007). 

 

7. Scatliff, J. H. and Morris, P. J., "From roentgen to magnetic resonance imaging: 

the history of medical imaging", North Carolina Medical Journal, 75 (2): 111–

113 (2014). 

 

8. Seither, R. B., Jose, B., Paris, K. J., Lindberg, R. D., and Spanos, W. J., "Results 

of irradiation in patients with high-grade gliomas evaluated by magnetic 

resonance imaging.", American Journal of Clinical Oncology, 18 (4): 297–299 

(1995). 

 

9. Caudrelier, J.-M., Vial, S., Gibon, D., Kulik, C., Fournier, C., Castelain, B., 

Coche-Dequeant, B., and Rousseau, J., "MRI definition of target volumes using 

fuzzy logic method for three-dimensional conformal radiation therapy", 

International Journal of Radiation Oncology* Biology* Physics, 55 (1): 225–

233 (2003). 

 



51 

10. Ten Haken, R. K., Thornton, A. F., Sandler, H. M., LaVigne, M. L., Quint, D. J., 

Fraass, B. A., Kessler, M. L., and McShan, D. L., "A quantitative assessment of 

the addition of MRI to CT-based, 3-D treatment planning of brain tumors", 

Radiotherapy And Oncology, 25 (2): 121–133 (1992). 

 

11. Halperin, E. C., Bentel, G., Heinz, E. R., and Burger, P. C., "Radiation therapy 

treatment planning in supratentorial glioblastoma multiforme: an analysis based 

on post mortem topographic anatomy with CT correlations", International 

Journal of Radiation Oncology* Biology* Physics, 17 (6): 1347–1350 (1989). 

 

12. Lee, S. W., Fraass, B. A., Marsh, L. H., Herbort, K., Gebarski, S. S., Martel, M. 

K., Radany, E. H., Lichter, A. S., and Sandler, H. M., "Patterns of failure 

following high-dose 3-D conformal radiotherapy for high-grade astrocytomas: a 

quantitative dosimetric study", International Journal of Radiation Oncology* 

Biology* Physics, 43 (1): 79–88 (1999). 

 

13. Khoo, V. S., Adams, E. J., Saran, F., Bedford, J. L., Perks, J. R., Warrington, A. 

P., and Brada, M., "A comparison of clinical target volumes determined by CT 

and MRI for the radiotherapy planning of base of skull meningiomas", 

International Journal of Radiation Oncology* Biology* Physics, 46 (5): 1309–

1317 (2000). 

 

14. Sminia, P. and Mayer, R., "External beam radiotherapy of recurrent glioma: 

radiation tolerance of the human brain", Cancers, 4 (2): 379–399 (2012). 

 

15. Ten Haken, R. K., Fraass, B. A., Lichter, A. S., Marsh, L. H., Radany, E. H., and 

Sandler, H. M., "A brain tumor dose escalation protocol based on effective dose 

equivalence to prior experience", International Journal Of Radiation 

Oncology* Biology* Physics, 42 (1): 137–141 (1998). 

 

16. Char, D. H., Kroll, S., and Phillips, T. L., "Uveal melanoma: growth rate and 

prognosis", Archives Of Ophthalmology, 115 (8): 1014–1018 (1997). 

 

17. Li, W., Gragoudas, E. S., and Egan, K. M., "Tumor basal area and metastatic 

death after proton beam irradiation for choroidal melanoma", Archives of 

Ophthalmology, 121 (1): 68–72 (2003). 

 

18. Richtig, E., Langmann, G., Müllner, K., Richtig, G., and Smolle, J., "Calculated 

tumour volume as a prognostic parameter for survival in choroidal melanomas.", 

Eye (London, England), 18 (6): 619–623 (2004). 

 

19. Guthoff, R., "Modellmessungen zur Volumenbestimmung des malignen 

Aderhautmelanoms", Graefe’s Archive For Clinical And Experimental 

Ophthalmology, 214 (2): 139–146 (1980). 

 

20. Rubin, H., Arnstein, P., and Chu, B. M., "Tumor progression in nude mice and 

its representation in cell culture", Journal of the National Cancer Institute, 77 

(5): 1125–1135 (1986). 

 



52 

21. Rubin, H., Chu, B. M., and Arnstein, P., "Selection and adaptation for rapid 

growth in culture of cells from delayed sarcomas in nude mice", Cancer 

Research, 47 (2): 486–492 (1987). 

 

22. Karpagam, S. and Gowri, S., "Brain Tumor Growth and Volume Detection by 

Ellipsoid-Diameter Technique Using MRI Data", International Journal of 

Computer Science, 9 (2): 121–126 (2012). 

 

23. Dempsey, M. F., Condon, B. R., and Hadley, D. M., "Measurement of tumor 

“size” in recurrent malignant glioma: 1D, 2D, or 3D?", AJNR American 

Journal of Neuroradiology, 26 (4): 770–776 (2005). 

 

24. Talkington, A. and Durrett, R., "Estimating tumor growth rates in vivo", V: 1–27 

(2014). 

 

25. James, A. P., Dasarathy, B. V, and Consultant, I. F., "Medical Image Fusion : A 

survey of the state of the art", Information Fusion, 4-19 (2014). 

 

26. Matl, S., Brosig, R., Baust, M., Navab, N., and Demirci, S., "Vascular image 

registration techniques: A living review", Medical Image Analysis, 35: 1–17 

(2017). 

 

27. Chen, M., Carass, A., Jog, A., Lee, J., Roy, S., and Prince, J. L., "Cross contrast 

multi-channel image registration using image synthesis for MR brain images", 

Medical Image Analysis, 36: 2–14 (2016). 

 

28. Muenzing, S. E. A., van Ginneken, B., Murphy, K., and Pluim, J. P. W., 

"Supervised quality assessment of medical image registration: Application to 

intra-patient CT lung registration", Medical Image Analysis, 16 (8): 1521–1531 

(2012). 

 

29. Brock, K. K., Dawson, L. A., Sharpe, M. B., Moseley, D. J., and Jaffray, D. A., 

"Feasibility of a novel deformable image registration technique to facilitate 

classification, targeting, and monitoring of tumor and normal tissue", 

International Journal of Radiation Oncology* Biology* Physics, 64 (4): 1245–

1254 (2006). 

 

30. Kaus, M. R., Warfield, S. K., Nabavi, A., Black, P. M., Jolesz, F. A., and 

Kikinis, R., "Automated segmentation of mr images of brain tumors 1", 

Radiology, 218 (2): 586–591 (2001). 

 

31. Thirion, J.-P., "Image matching as a diffusion process: an analogy with 

Maxwell’s demons", Medical Image Analysis, 2 (3): 243–260 (1998). 

 

32. Bloch, I., Colliot, O., Camara, O., and Géraud, T., "Fusion of spatial 

relationships for guiding recognition, example of brain structure recognition in 

3D MRI", Pattern Recognition Letters, 26 (4): 449–457 (2005). 

 



53 

33. Alfano, B., Ciampi, M., and De Pietro, G., "A wavelet-based algorithm for 

multimodal medical image fusion", International Conference On Semantic 

And Digital Media Technologies, Genoa, İtaly, 117–120 (2007). 

 

34. Yuanyuan, K., Bin, L., Lianfang, T., and Zongyuan, M., "Multi-modal medical 

image fusion based on wavelet transform and texture measure", Control 

Conference, Chinese IEEE 697–700 (2007). 

 

35. Zhang, Q. P., Liang, M., and Sun, W. C., "Medical diagnostic image fusion 

based on feature mapping wavelet neural networks", Image And Graphics 

(ICIG’04), Third International Conference on Image and Graphics, IEEE 

Computer Society  51–54 (2004). 

 

36. Zhang, Q. P., Tang, W. J., Lai, L. L., Sun, W. C., and Wong, K. P., "Medical 

diagnostic image data fusion based on wavelet transformation and self-

organising features mapping neural networks", Proceedings of 2004 

International Conference on Machine Learning and Cybernetics, Shangai, 

China, 5: 2708–2712 (2004). 

 

37. Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., and Roux, C., "Wavelet 

optimization for content-based image retrieval in medical databases", Medical 

Image Analysis, 14 (2): 227–241 (2010). 

 

38. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., 

Pal, C., Jodoin, P. M., and Larochelle, H., "Brain tumor segmentation with deep 

neural networks", Medical Image Analysis, 35: 18–31 (2017). 

 

39. Pohl, K. M., Konukoglu, E., Novellas, S., Ayache, N., Fedorov, A., Talos, I. F., 

Golby, A., Wells, W. M., Kikinis, R., and Black, P. M., "A new metric for 

detecting change in slowly evolving brain tumors: Validation in meningioma 

patients", Neurosurgery, 68 (SUPPL. 1): 225–233 (2011). 

 

40. Bauer, S., Wiest, R., Nolte, L.-P., and Reyes, M., "A survey of MRI-based 

medical image analysis for brain tumor studies", Physics In Medicine And 

Biology, 58 (13): R97–R129 (2013). 

 

41. Angelini, E. D., Delon, J., Bah, A. B., Capelle, L., and Mandonnet, E., 

"Differential MRI analysis for quantification of low grade glioma growth", 

Medical Image Analysis, 16 (1): 114–126 (2012). 

 

42. Oliveira, F. P. M. and Tavares, J. M. R. S., "Medical image registration: a 

review", Computer Methods in Biomechanics and Biomedical Engineering, 17 

(2): 73–93 (2014). 

 

43. Brown, L. G., "A survey of image registration", ACM Computing Surveys, 24 

(4): 325–376 (1992). 

 

44. Gao, X., Wang, C., Zhang, W., Wu, J., and Liu, H., "The Analysis and 

Application of Spline Interpolation for Multi-Sensor and Multi-Resolution 



54 

Image Registration", International Geoscience And Remote Sensing 

Symposium (IGARSS), Toulousei France 7929–7931 (2003). 

 

45. Fitzpatrick, J. M., West, J. B., and Maurer, C. R., "Derivation of expected 

registration error for point-based rigid-body registration", SPIE Conference on 

Image Processing, California, USA, 16–27 (1998). 

 

46. Irmak, E., Erçelebi, E., and Ertaş, A. H., "Brain tumor detection using 

monomodal intensity based medical image registration and MATLAB", Turkish 

Journal of Electrical Engineering & Computer Sciences, 24: 2730–2746 

(2016). 

 

47. Li, L., Niu, T., and Gao, Y., "Mathematical Methods and Applications in 

Medical Imaging 2014", Computational and Mathematical Methods in 

Medicine, 2015:  1–2 (2015). 

 

48. Gering, D. T., Nabavi, A., Kikinis, R., Hata, N., O’Donnell, L. J., Grimson, W. 

E., Jolesz, F. A., Black, P. M., and Wells, W. M., "An integrated visualization 

system for surgical planning and guidance using image fusion and an open 

MR.", Journal of Magnetic Resonance Imaging, 13 (6): 967–75 (2001). 

 

49. Pereira, G. C., Traughber, M., and Jr, R. F. M., "The role of imaging in radiation 

therapy planning : Past , present , and future", BioMed Research International, 

2014 (2): 1-9 (2014). 

 

50. Chang, C. J., Lin, G. L., Tse, A., Chu, H. Y., and Tseng, C. S., "Registration of 

2D C-Arm and 3D CT Images for a C-Arm image-assisted navigation system for 

spinal surgery", Applied Bionics And Biomechanics, 2015: 478-483 (2015). 

 

51. Hurvitz, A. and Joskowicz, L., "Registration of a CT-like atlas to fluoroscopic 

X-ray images using intensity correspondences", International Journal of 

Computer Assisted Radiology and Surgery, 3 (6): 493–504 (2008). 

 

52. Huang, X., Ren, J., Guiraudon, G., Boughner, D., and Peters, T. M., "Rapid 

dynamic image registration of the beating heart for diagnosis and surgical 

navigation", IEEE Trans. Med. Imag., 28 (11): 1802–1814 (2009). 

 

53. Galloway, R., Herrell, S., and Miga, M., "Image-Guided Abdominal Surgery and 

Therapy Delivery", Journal Of Healthcare Engineering, 3 (2): 203–228 (2012). 

 

54. Ozsavag, E. E., Telatar, Z., Dirican, B., Saler, Omer, and Beyzadeollu, M., 

"Automatic segmentation of anatomical structures from CT Scans of thorax for 

RTP", Computational and Mathematical Methods in Medicine, 2014: 1–15 

(2014). 

 

55. Mendrik, A. M., Vincken, K. L., Kuijf, H. J., Breeuwer, M., Bouvy, W. H., De 

Bresser, J., Alansary, A., De Bruijne, M., Carass, A., El-Baz, A., Jog, A., Katyal, 

R., Khan, A. R., Van Der Lijn, F., Mahmood, Q., Mukherjee, R., Van Opbroek, 

A., Paneri, S., Pereira, S., Persson, M., Rajchl, M., Sarikaya, D., Smedby, rjan, 



55 

Silva, C. A., Vrooman, H. A., Vyas, S., Wang, C., Zhao, L., Biessels, G. J., and 

Viergever, M. A., "MRBrainS challenge: online evaluation framework for brain 

image segmentation in 3T MRI scans", Computational Intelligence And 

Neuroscience, 2015: 1–16 (2015). 

 

56. Zhuang, X., "Challenges and methodologies of fully automatic whole heart 

segmentation: a review", Journal of Healthcare Engineering, 4 (3): 371–408 

(2013). 

 

57. Oliveira, F. P. M., Sousa, A., Santos, R., and Tavares, J. M. R. S., "Towards an 

efficient and robust foot classification from pedobarographic images", Computer 

Methods in Biomechanics and Biomedical Engineering, 5842 (February 2015): 

1–8 (2011). 

 

58. Perperidis, D., Mohiaddin, R. H., and Rueckert, D., "Spatio-temporal free-form 

registration of cardiac MR image sequences", Medical Image Analysis, 9 (5 

SPEC. ISS.): 441–456 (2005). 

 

59. Marinelli, M., Positano, V., Tucci, F., Neglia, D., and Landini, L., "Automatic 

PET-CT image registration method based on mutual information and genetic 

algorithms", The Scientific World Journal, 2012: 1–12 (2012). 

 

60. Peyrat, J. M., Delingette, H., Sermesant, M., Xu, C., and Ayache, N., 

"Registration of 4D cardiac CT sequences under trajectory constraints with 

multichannel diffeomorphic demons", IEEE Transactions on Medical Imaging, 

29 (7): 1351–1368 (2010). 

 

61. Duay, V., Houhou, N., Gorthi, S., Allal, A. S., and Thiran, J. P., "Hierarchical 

image registration with an active contour-based atlas registration model", 

European Signal Processing Conference, Lausanne, Switzerland, 1-5 (2008). 

 

62. Studholme, C., Hill, D. L., and Hawkes, D. J., "Automated three-dimensional 

registration of magnetic resonance and positron emission tomography brain 

images by multiresolution optimization of voxel similarity measures.", Medical 

Physics, 24 (1): 25–35 (1997). 

 

63. Liao, S. and Chung, A. C. S., "With symmetric alpha stable filters", IEEE Trans  

Med Imaging, 29 (1): 106–119 (2010). 

 

64. Cho, Y., Seong, J. K., Shin, S. Y., Jeong, Y., Kim, J. H., Qiu, A., Im, K., Lee, J. 

M., and Na, D. L., "A multi-resolution scheme for distortion-minimizing 

mapping between human subcortical structures based on geodesic construction 

on Riemannian manifolds", NeuroImage, 57 (4): 1376–1392 (2011). 

 

65. Yazdani, S., Yusof, R., Karimian, A., Riazi, A. H., and Bennamoun, M., "A 

Unified Framework for Brain Segmentation in MR Images", Computational and 

Mathematical Methods in Medicine, 2015, 1-17 (2015). 

 



56 

66. Pluim, J. P. W., Maintz, J. B. A. A., and Viergever, M. A., "Mutual-information-

based registration of medical images: A survey", IEEE Transactions On 

Medical Imaging, 22 (8): 986–1004 (2003). 

 

67. Salvi, J., Matabosch, C., Fofi, D., and Forest, J., "A review of recent range 

image registration methods with accuracy evaluation", Image and Vision 

Computing, 25 (5): 578–596 (2007). 

 

68. Wyawahare, M. V, Patil, P. M., and Abhyankar, H. K., "Image registration 

techniques : an overview", International Journal of Signal Processing, Image 

Processing and Pattern Recognition, 2 (3): 11–28 (2009). 

 

69. Slomka, P. J. and Baum, R. P., "Multimodality image registration with software: 

state-of-the-art", European Journal of Nuclear Medicine and Molecular 

Imaging, 36 (SUPPL. 1): 44–55 (2009). 

 

70. Schmidt, K. F., Ziu, M., Schmidt, N. O., Vaghasia, P., Cargioli, T. G., Doshi, S., 

Albert, M. S., Black, P. M., Carroll, R. S., and Sun, Y., "Volume reconstruction 

techniques improve the correlation between histological and in vivo tumor 

volume measurements in mouse models of human gliomas", Journal of Neuro-

oncology, 68 (3): 207–215 (2004). 

 

71. Feldman, J. P. and Goldwasser, R., "A mathematical model for tumor volume 

evaluation using two-dimensions", Journal of Applied Quantitative Methods, 4 

(4): 455–462 (2009). 

 

72. Tomayko, M. M. and Reynolds, C. P., "Determination of subcutaneous tumor 

size in athymic (nude) mice", Cancer Chemotherapy and Pharmacology, 24 

(3): 148–154 (1989). 

 

73. Du, X., Dang, J., Wang, Y., Wang, S., and Lei, T., "A parallel nonrigid 

registration algorithm based on b-pline for medical images", Computational and 

Mathematical Methods in Medicine, 2016, 1-14 (2016). 

 

74. Irmak E., ''Implementation of image processing techniques for tumor 

progression purposes in clinical application'', IEEE 2nd International 

Conference on Signal and Image Processing, Singapore, Singapore, 1-4 

(2017). 

 

75. Baldevbhai, P. J. and Anand, R. S., "Color image segmentation for medical 

images using L * a * b * color space", Journal of Electronics and 

Communication Engineering, 1 (2): 24–45 (2012). 

 

76. Rathore, V. S., Kumar, M. S., and Verma, A., "Colour based image 

segmentation using L * A * B * colour space sased on genetic algorithm", 

International Journal of Emerging Technology and Advanced Engineering, 2 

(6): 156–162 (2012). 

 



57 

77. Barboriak, D., "Data from RIDER_NEURO_MRI.", The Cancer Imaging 

Archive. Http://doi.org/10.7937/K9/TCIA.2015.VOSN3HN1, (2015). 

 

78. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., 

Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., and Prior, F., "The Cancer 

Imaging Archive (TCIA): Maintaining and Operating a Public Information 

Repository", Journal of Digital Imaging, 26 (6): 1045–1057 (2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

 

 

 

RESUME 

 

Emrah IRMAK was born in 1988 in Mardin, Turkey. He completed his primary and 

secondary education in his hometown, Nusaybin. He completed his high school 

education in Mardin Anatolia High School in 2007. Emrah Irmak started his 

Bachelor’s degree in Electrical and Electronics Engineering at the Faculty of 

Engineering, Gaziantep University, Gaziantep, in 2007. The language of the study 

was English. In 2011 he earned scholarship for continuing his bachelor studies as an 

Erasmus student at the Opole University of Technology in Opole, Poland. He 

enrolled in Electrical Engineering, Automatic Control and Informatics study 

programme. The studies were summoned in January, and he completed his Erasmus 

studies in June 2011. Immediately after that he continued his bachelor education in 

Gaziantep University and he was graduated from Gaziantep University in January 

2012. As soon as he finished his bachelor he started his Master Education in the 

same university and same department in Gaziantep. Emrah Irmak completed his 

Master’s Degree in June 2014. The master thesis was titled: ‘‘Application of 

Monomodal Intensity-based Medical Image Registration Technique on Brain Tumor 

Growthiness Investigation’’. The language of the study was English. He started 

pursuing his PhD degree in September 2014. He completed his doctoral studies 

successfully in January 2018. The doctoral thesis was titled: ‘‘3 Dimensional 

Monomodal Intensity-based Medical Image Registration for Brain Tumor 

Progression Analysis’’. From June 2012 Emrah Irmak is a part of Department of 

Biomedical Engineering at the Faculty of Engineering of Karabuk University as a 

Research Assistant. 

 

CONTANT INFORMATION 

 

Address : Karabuk University Engineering Faculty, Department of Biomedical 

Engineering 4th Floor, Room No: 427 

E-mail : emrahirmak@karabuk.edu.tr; emrah.2@hotmail.com  

mailto:emrahirmak@karabuk.edu.tr
mailto:emrah.2@hotmail.com

