T.C. KAFKAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

p-METOKSİBENZOATLARIN NİKOTİNAMİD, İZONİKOTİNAMİD VE DİETİLNİKOTİNAMİD KOMPLEKSLERİNİN SENTEZİ VE ÖZELLİKLERİ

Erdinç TENLİK YÜKSEK LİSANS TEZİ

DANIŞMAN Prof. Dr. Hacali NECEFOĞLU

HAZİRAN - 2011 KARS T.C. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Yüksek Lisans öğrencisi Erdinç TENLİK' in Prof. Dr. Hacali NECEFOĞLU' nun danışmanlığında yüksek lisans tezi olarak hazırladığı "*p*-Metoksibenzoatların Nikotinamid, İzonikotinamid, Dietilnikotinamid Komplekslerinin Sentezi ve Özellikleri" adlı bu çalışma, yapılan tez savunması sınavı sonunda jüri tarafından Lisansüstü Eğitim Öğretim Yönetmeliği uyarınca değerlendirilerek oy.....ile kabul edilmiştir.

...../ 2011

Adı-Soyadı

İmza

Başkan	: Prof. Dr. Hacali NECEFOĞLU
Üye	: Prof. Dr. Refik ABDULLA
Üye	: Yrd. Doç. Dr. Ali ARSLANTAŞ

Bu tezin kabulü, Fen Bilimleri Enstitüsü Yönetim Kurulu'nun/2011 gün ve/..... sayılı kararıyla onaylanmıştır.

Doç. Dr. Muzaffer ALKAN Enstitü Müdürü Vekili

ÖZET

Bu çalışmada Mn(II), Co(II), Ni(II), Cu(II), Zn(II) metallerinin *p*-metoksibenzoik asit ile nikotinamid (NA), izonikotinamid (İNA) ve dietilnikotinamidli (DENA) ligandlardan oluşan 12 adet kompleks ilk defa sentezlenmiştir.

$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{-2}H_2O$	(I)
$[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O$	(II)
$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$	(III)
$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]H_2O$	(IV)
$[Mn(C_8H_7O_3)_2(H_2O)_2]_n$	(V)
$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2]$	(VI)
$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2]$ H ₂ O	(VII)
$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]H_2O$	(VIII)
$[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(IX)
$[Ni(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(X)
$[Cu_2(C_8H_7O_3)_4(C_{10}H_{14}N_2O)_2]^{-3}H_2O$	(XI)
$[Zn(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2]^{-}H_2O$	(XII)

X ışını kırınımı yöntemiyle (X-Ray) 5 adet kompleksin (**I**, **II**, **III**, **IV**, **VII**) yapısı aydınlatılmıştır.

Komplekslerin yapıları elementel analiz, IR spektroskopisi ve termik analiz verileriyle karakterize edilmiştir.

p-Metoksibenzoik asit komplekslerinde; metal : p-metoksibenzoik asit, nikotinamid (NA), izonikotinamid (İNA) veya dietilnikotinamid (DENA) oranlarının 1 : 2 : 2 oldukları bulunmuştur.

Bozunma mekanizması ve termal kararlılıkları incelenen komplekslerden final ürünü olarak MnO, MnO₂, CoO, NiO, CuO, Cu₂O, ZnO oluştuğu gözlenmiştir.

2011, 142 sayfa

ANAHTAR SÖZCÜKLER : Mn(II), Co(II), Ni(II), Cu(II), Zn(II) *p*-metoksibenzoik asit, nikotinamid, izonikotinamid, *N*,*N*'-dietilnikotinamid.

ABSTRACT

In this study, the 12 complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) metals with *p*-methoxybenzoic acid and with consist nicotinamide (NA), isonicotinamide (INA), and diethylnicotinamide (DENA) ligands have been synthesized:

$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{-2}H_2O$	(I)
$[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O$	(II)
$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$	(III)
$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]H_2O$	(IV)
$[Mn(C_8H_7O_3)_2(H_2O)_2]_n$	(V)
$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2]$	(VI)
$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2]$ [·] H ₂ O	(VII)
$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ H ₂ O	(VIII)
$[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(IX)
$[Ni(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(X)
$[Cu_2(C_8H_7O_3)_4(C_{10}H_{14}N_2O)_2]^{-3}H_2O$	(XI)
$[Zn(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2]^{-}H_2O$	(XII)

Crystal and molecular structures of five complexes (**I**, **II**, **III**, **IV**, **VII**) were determined by X-ray analysis. The complexes of structure were characterized by elementel analysis, IR spectroscopy and thermogravimetry measurements.

In complexes of *p*-methoxybenzoic acid: rates of metals, *p*-methoxybenzoic acid, nicotinamide (NA), isonicotinamide (INA) or diethylnicotinamide (DENA) 1:2:2 were to be found.

The decomposition mechanism and thermal stability of the investigated comlexes are interpreted in terms of their structures the final products are found to be MnO, MnO₂, CoO, NiO, CuO, Cu₂O, ZnO.

2011, 142 pages

Key Words: Mn(II), Co(II), Ni(II), Cu(II), Zn(II) *p*- methoxybenzoic acid, nicotinamide (NA), isonicotinamide (INA) or diethylnicotinamide (DENA).

ÖNSÖZ

Bu çalışma Kafkas Üniversitesi Fen Bilimleri Enstitüsü Kimya Ana Bilim Dalı, Anorganik Kimya Dalında yüksek lisans tezi olarak hazırlanmıştır.

Tez çalışmamda en büyük emeği geçen, yoğun çalışmalarından bana zaman ayırarak derin bilgilerinden faydalanma fırsatı veren, ögrencisi olmaktan her zaman gurur duyduğum, değerli bilim adamı, Kafkas Üniversitesi Kimya Bölüm Başkanı Sayın Prof. Dr. Hacali NECEFOĞLU' na en içten teşekkürlerimi sunarım.

Ayrıca çalışmamın X-Ray analiz verilerinin aydınlatılması esnasında yardımlarını esirgemeyen Sayın Prof. Dr. Tuncer HÖKELEK'e çok teşekkür ederim.

Tezin hazırlanması sürecinde emeği geçen ve katkılarını esirgemeyen Sayın Dr. Özgür AYBİRDİ'ye çok teşekkür ederim.

Ayrıca yardımlarından dolayı Sayın Arş. Gör. F. Elif ÖZTÜRKKAN' a ve Sayın Uzm. Efdal Çimen'e teşekkürlerimi sunarım.

Haziran 2011

Erdinç TENLİK

İÇİNDEKİLER

ÖZ	ЕТ			vi
AB	STRA	СТ		vi
ÖN	SÖZ			vi
ŞE]	KİLLI	ER DİZİ	Nİ	viiii
ТА	BLOL	AR DİZ	İNİ	vii
SİN	1GEL	ER VE I	KISALTMALAR	xiv
1.	GİR	İŞ		1
2.	<i>p</i> -M	ETOKSİ	BENZOİKASİT VE METAL KOMPLEKSLERİ	3
3.	NİK	OTİNAN	MİD, İZONİKOTİNAMİD VE	11
	N,N	′ –DİETİ	LNİKOTİNAMİD	
4.	NİK	OTÍNA	MÌD, ÌZONİKOTİNAMİD VE	
_	N,N	'-DIETII	LNIKOTINAMID METALKOMPLEKSLER	2
5.	MA	FERYAI	L VE METOD	34
	5.1.	Materya	al	34
		5.1.1.	Kullanılan Kimyasal Maddeler	34
		5.1.2.	Kullanılan Aletler	34
	5.2.	Sentez		35
		5.2.1.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O \text{ kompleksinin sentezi}$	35
		5.2.2.	$[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{2}H_2O \text{ kompleksinin sentezi}$	35
		5.2.3.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin sentezi	36
		5.2.4.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ 'H ₂ O kompleksinin sentezi	36
		5.2.5.	$Mn[(C_8H_7O_3)_2(H_2O)_2]_n$ kompleksinin sentezi	37
		5.2.6.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2]$ kompleksinin sentezi	37

	ÖZC	GEÇMİŞ		142
10.	EKI	ER		81
9.	KAY	(NAKLA	R	73
8.	SON	UÇLAR		71
		7.2.6.	Diğer Komplekslerin Muhtemel Yapıları	65
		7.2.5	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2(VI)$ Kompleksi	62
		7.2.4.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ (IV) Kompleksi	60
		7.2.3.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$ (III) Kompleksi	59
		7.2.2.	[Ni(C ₈ H ₇ O ₃) ₂ (C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₂] ² H ₂ O (II) Kompleksi	57
		7.2.1.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O$ (I) Kompleksi	56
	7.2.	Komple	kslerin Yapıları	56
	/.1.	<i>p</i> -Metor Yorumu	i Komplekslerinin ik ve termik Analiz verilerinin	50
7.		KI IŞMA	- ikan	50
-	6.3.	Termik	Analiz	43 50
	6.2.	Infrared	Spektrumu	41
	6.1.	Element	tel Analiz	41
6.	BUL	GULAR		41
		5.2.12.	$[Zn(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2]$ [·] H ₂ O kompleksinin sentezi	40
		5.2.11.	$[Cu_2(C_8H_7O_3)_4(C_{10}H_{14}N_2O)_2]^{-3}H_2O$ kompleksinin sentezi	40
		5.2.10.	$[Ni(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin sentezi	39
		5.2.9.	$[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{ kompleksinin sentezi}$	39
		5.2.8.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ [·] H ₂ O kompleksinin sentezi	38
		5.2.7.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2]$ [·] H ₂ O kompleksinin sentezi	38

vii

ŞEKİLLER DİZİNİ

Şekil 1.1.	p-Metoksibenzoikasidin molekül yapısı	1
Şekil1.2.	<i>p</i> -Metoksibenzoik asidin <i>c</i> ekseni boyunca görünümü	2
Şekil 1.3.	2,4,6-triamino-1,3,5-triazin-4-metoksibenzoat-su (1:2)	
	kompleksinin kristal yapısı	3
Şekil 2. 1.	Komplekslerin X-ışınları toz difraktogramları:	
	a)Mn(MOBA)2 [·] 2H ₂ O;b)Co(MOBA)2 [·] 2H ₂ O;	
	c)Ni(MOBA) ₂ 3.5H ₂ O; d)Cu(MOBA) ₂ 3H ₂ O;	
	e)Zn(MOBA) ₂ ⁻¹ .75H ₂ O	5
Şekil 2.3.	$[Cu(C_7H_4O_3)_2(C_{10}H_{14}N_4O)]_n \text{ kompleksinin yapısı}$	8
Şekil 2.4.	$[Tb_2(C_8H_7O_3)_6(C_{12}H_8N_2)_2]$ kompleksinin molekül yapısı	9
Şekil 4.1.	$[Co(C_7H_5O_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin xz düzlemine	
	Projeksiyonu	13
Şekil 4.2.	$[Co(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$ kompleksinin kristal yapısı	14
Şekil 4.3.	$[Ni(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$ kompleksinin kristal yapısı	15
Şekil 4.4.	$[Ni(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin kristal yapısı	15
Şekil 4.5.	$Zn_2(C_8H_7O_2)_4(H_2O)_2] \cdot [Zn_2(C_8H_7O_2)_4(C_6H_6N_2O)_2] \cdot 2H_2O$	
	kompleksinin kristal yapısı	16
Şekil 4.6.	$[Cu(C_7H_5O_3)_2(C_6H_6N_2O)_2(H_2O)_2] \text{ kompleksinin yapısı}$	17
Şekil 4.7.	$[Pb(C_8H_7O_2)_2(C_6H_6N_2O)]_n$ kompleksinin kristal yapısı	17
Şekil 4.8.	İzonikotinamid-formamid (1/1) kompeksinin kristal yapısı	18
Şekil 4.9.	İzonikotinamid ve propiyonik asidin 1:2 eş kristalli molekül yapısı	19
Şekil 4.10.	$[Ba(C_6H_4NO_2)(NO_3)]_n$ kompleksinin yapısı	20
Şekil 4.11.	Mn $(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$ kompleksinin kristal yapısı	20
Şekil 4.12.	$[Co(C_6H_6N_2O)_2(H_2O)_4](C_8H_4O_4)\cdot 2H_2O$ kompleksinin yapısı	21

Şekil 4.13.	$[Co(C_7H_3NO_4)(C_6H_6N_2O)(H_2O)_2] \text{ kompleksinin yapısı} $ 2	
Şekil 4.14.	$[Co(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$ kompleksinin kristal yapısı	
Şekil 4.15.	$[Ni(C_6H_6N_2O)_2(H_2O)_4](C_8H_5O_3)_2 \cdot 2H_2O \text{ kompleksinin yapısı}$	23
Şekil 4.16.	$[Cu(NO_3)_2(C_6H_6N_2O)_2(H_2O)_2]$ ve $[Cu(C_6H_6N_2O)_4(H_2O)_2](ClO_4)_2$ kompleksinin molekül yapısı	24
Şekil 4.17.	$[Cu_2(C_2H_3O_2)_4(C_6H_6N_2O)_4]$ kompleksinin yapısı	25
Şekil 4.18.	$Cu_2 (C_8H_7O_2)_4 (C_6H_6N_2O)_2$ kompleksinin molekül yapısı	26
Şekil 4.19.	$[Zn(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$ kompleksinin kristal yapısı	27
Şekil 4.20.	$[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin yapısı	28
Şekil 4.21.	$[Co(C_9H_{10}NO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{ kompleksinin}$ kristal yapısı	29
Şekil 4.22.	[Cu(C ₇ H ₄ NO ₄) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin <i>xz</i> düzlem Projeksiyonu	30
Şekil 4.23.	$[Zn(C_7H_5O_3)_4(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin <i>xz</i> düzlem Projeksiyonu	31
Şekil 4.24	Cd(CH ₃ COO) ₂ (DENA) ₂ (H ₂ O) kompleksinin molekül yapısı	32
Şekil 4.25	Cd(DENA)(NSC) ₂ kompleksinin molekül yapısı	33
Şekil 7.1.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{-2}H_2O \text{ kompleksinin}$ kristal yapısı	57
Şekil 7.2	$[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{-2}H_2O kompleksinin krsital yapısı$	58
Şekil 7.3.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin kristal yapısı	60
Şekil 7.4.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ kompleksinin kristal yapısı	62
Şekil 7.5.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2$ kompleksinin kristal yapısı	64
Şekil 7.6.	$[Mn(C_8H_7O_3)_2(H_2O)_2]_n$ kompleksinin muhtemel yapısı	65
Şekil 7.7.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2]$.H ₂ O kompleksinin muhtemel yapısı	66

Şekil 7.8.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2] H_2O \text{ kompleksinin muhtemel yapısı} $	
Şekil 7.9.	$[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{kompleksinin} \text{muhtemel} $ yapısı	68
Şekil 7.10	$[Ni(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin muhtemel yapısı	69
Şekil 7.11.	$[Cu_2(C_8H_7O_3)_4(C_{10}H_{14}N_2O)_2]^{-3}H_2O \text{kompleksinin} \text{muhtemel}$	70
Şekil 7.12.	$[Zn(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2]$ [·] H ₂ O kompleksinin muhtemel yapısı	70 70
Ek Şekil 1.	p-Metoksibenzoik Asit bileşiğinin IR spektrum	82
Ek Şekil 2. Ek Sekil 3.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O \text{ kompleksinin}$ IR spektrumu [Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O \text{ kompleksinin}	83
y • c ·	IR spektrumu	84
Ek şekil 4.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin IR spektrumu	85
Ek şekil 5.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2] \text{ kompleksinin IR spektrumu} $	
Ek Şekil 6.	$[Mn(C_8H_7O_3)_2(H_2O)_2]_n$ kompleksinin IR spektrumu	87
Ek Şekil 7.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2] \text{ kompleksinin IR spektrumu.} 88$	
Ek Şekil 8.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2]^{\cdot}H_2O \text{ kompleksinin IR spektrumu} 8$	
Ek Şekil 9.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]^{\cdot}H_2O \text{ kompleksinin IR spektrumu} 9$	
Ek Şekil 10.	$[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin IR spektrumu	91
Ek Şekil 11	[Ni $(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2$] kompleksinin IR spektrumu	92
Ek Şekil 12.	$[Cu_2(C_8H_7O_3)_4(C_{10}H_{14}N_2O)_2]^{-3}H_2O$ kompleksinin IR spektrumu	93
Ek Şekil 13.	$[Zn(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2H_2O]$ kompleksinin IR spektrumu	94
Ek Şekil 14.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{-}2H_2O$ kompleksinin TG- DTA eğrileri	95
Ek Şekil 15.	$[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{-}2H_2O$ kompleksinin TG-DTA eğrileri	95

Ek Şekil 16.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin	
	TG-DTA eğrileri	96
Ek Şekil 17.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ H ₂ O kompleksinin	
	TG-DTG-DT eğrileri	96
Ek Şekil 18.	Mn $[(C_8H_7O_3)_2(H_2O)_2]$ kompleksinin TG-DTA eğrileri	97
Ek Şekil 19.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2]$ kompleksinin	97
	TG-DTA eğrileri	
Ek Şekil 20.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2]$ H ₂ O kompleksinin	
	TG-DTA eğrileri	98
Ek Şekil 21.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ H ₂ O TG-DTG-DTA eğrileri.	98
Ek Şekil 22.	$[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin	
	TG-DTA eğrileri	99
Ek Şekil 23.	$[Ni(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin	
	TG-DTA eğrileri	99
Ek Şekil 24.	$[Cu_2(C_8H_7O_3)_4(C_{10}H_{14}N_2O)_2]^{-3}H_2O$ kompleksinin	
	TG-DTA eğrileri	100
Ek Şekil 25.	$[Zn(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2]$ [·] H ₂ O DENA kompleksinin	
	TG-DTA eğrileri	100

TABLOLAR DİZİNİ

Tablo 1.	Komplekslerin elementel analiz verileri 41	
Tablo 2.	p-Metoksibenzoik asit komplekslerinin IR spektrum verileri	42
Tablo 3.	p-Metoksibenzoik asit komplekslerinin IR spektrum verileri	43
Tablo 4.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{2}H_2O \qquad kompleksinin termik$	
	analiz verileri	44
Tablo 5.	$[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O$ kompleksinin termik analiz verileri	44
Tablo 6.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2] \text{ kompleksinin termik analiz}$	
	verileri	45
Tablo 7.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ [·] H ₂ O kompleksinin termik analiz verileri	45
Tablo 8.	$[Mn(C_8H_7O_3)_2(H_2O)_2]_n$ kompleksinin termik analiz verileri	46
Tablo 9.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2] kompleksinin termik analiz$	
	verileri	46
Tablo 10.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2]$ [·] H ₂ O kompleksinin termik analiz verileri	47
Tablo 11.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ [·] H ₂ O kompleksinin termik analiz verileri	47
Tablo 12.	$[Co(C_8H_7O_3\)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{kompleksinin termik analiz}$	
	verileri	48
Tablo 13.	$[Ni(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{ kompleksinin termik analiz}$	10
	verileri	48
Tablo 14.	$[Cu_2(C_8H_7O_3)_4(C_{10}H_{14}N_2O)_2]^{\cdot}3H_2O \text{ kompleksinin termik analiz verileri}$	49
Tablo 15.	$[Zn(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2H_2O] kompleksinin termik analiz$	
	verileri	49
Ek Tablo 1.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{-2}H_2O kristalinin fraksiyonel$	
	atomik koordinatları ve izotropik veya equvalent izotropik	
	yerdeğiştirme parametreleri (Å ²)	101

Ek Tablo 2.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{\cdot}2H_2O kristalinin geometrik$	
	parametreleri (Å,°)	102
Ek Tablo 3.	$\label{eq:constant} [Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O \ \ kristalinin \ hidrojen \ bağ$	
	geometrisi (Å,°)	105
Ek Tablo 4.	$Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O$ kristalinin fraksiyonel	
	atomik koordinatları ve izotropik veya equvalent izotropik	
	yerdeğiştirme parametreleri (Å ²)	105
Ek Tablo 5.	$[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{-2}H_2O kristalinin geometrik$	
	parametreleri (Å,°)	107
Ek Tablo 6.	$[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O \text{ kompleksinin hidrojen bağı}$	
	geometrisi (Å,°)	109
Ek Tablo 7.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2] \ kristalinin \ fraksiyonel \ atomik$	
	koordinatları ve izotropik veya equvalent izotropik yerdeğiştirme	
	parametreleri (Å ²)	110
Ek Tablo 8.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2] \text{kompleksinin} \text{geometrik}$	
	parametreleri (Å,°)	112
Ek Tablo 9.	$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2] kristalinin \qquad hidrojen bağı$	
	geometrisi (Å,°)	115
Ek Tablo 10.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2$ kristalinin fraksiyonel atomik	
	koordinatları ve izotropik veya equvalent izotropik yerdeğiştirme	
	parametreleri (Å ²)	116
Ek Tablo 11.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2$ kristalinin geometrik parametreleri	
	(Å,°)	118
Ek Tablo 12.	$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2 kristalinin hidrojen bağı$	
	geometrisi (Å,°)	121
Ek Tablo 13.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2] $ kristalinin fraksiyonel atomik	
	koordinatları ve izotropik veya equvalent izotropik yerdeğiştirme	
	parametreleri (Å ²)	122
Ek Tablo 14.	$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ kristalinin geometrik parametreleri (Å,°)	128
Ek Tablo 15.	[Zn(C ₈ H ₇ O ₃) ₂ (C ₆ H ₆ N ₂ O) ₂] kristalinin hidrojen bağı geometrisi (Å,°)	141

SİMGELER VE KISALTMALAR

Å	: Angström
<i>p</i> -MOB	: <i>p</i> -Metoksibenzoat
NA	: Nikotinamid
İNA	: İzonikotinamid
DENA	: Dietilnikotinamid
DTA	: Diferansiyel Termik Analiz
TG	: Termogravimetri
DTG	: Diferansiyel Termogravimetri
IR	: İnfrared Spektroskpisi

1. GİRİŞ

Kimyasal formülü C₈H₈O₃, molekül ağırlığı 152,15 g/mol, erime sıcaklığı 181-186 °C, kaynama noktası 275 °C, yoğunluğu 1,385 g/cm³ olan bileşiğin IUPAC ismi 4-metoksi benzoik asittir. Bileşik ayrıca, *p*-anisik asit, *p*-metoksi fenon, 4-karboksil fenil metil eter, dragonik asit gibi isimleriyle de bilinmektedir. *p*-metoksi benzoik asit alkol, eter ve kloroform içerisinde çözünürken, sudaki çözünürlüğü 20 °C'de 0,3 g/L dir.

p-Metoksibenzoik asit oda şartlarında beyaz toz halindedir.

Şekil 1.1. p-Metoksibenzoik asidin molekül yapısı

p-Metoksibenzoik asitin daha önce Bryan tarafından aydınlatılmış kristal yapısı [1]. Colapietro ve Domenicano tarafından yeniden çözülmüştür. Kristal monoklinik olup, birim hücre parametreleri a = 16.968(4) Å, b = 10.962(2) Å, c = 3.968(1) Å, β =98.13(2)°, Z = 4 olup uzay grubu P21/a' dır. Substituentlerin varlığı halka simetrisinin D6b(6/mmm) den CS(m) 'ye azalmasına neden olmaktadır. Aksiyal simetrinin C(1)...C(4) çizgisi boyunca kaybının metoksi grubunun substituent etkisi olarak yorumlanmaktadır [2].

Fausto ve arkadaşları tarafından *p*-Metoksibenzoik asidin moleküler yapısı ve yük yoğunluğu X-Ray ve SCF-MO çalışmasıyla aydınlatılmıştır (Şekil 1.2) [3].

Şekil1.2. *p*-Metoksibenzoik asidin *c* ekseni boyunca görünümü [3]

p-Metoksibenzoik asidin (anisik asit) titreşimsel spektrumu hesaplanarak deneysel spektrumlarla karşılaştırıldı [4].

Çözelti içerisinde mono ve dimetoksi benzoik asitlerin konformasyonu IR, ¹³C ve ¹H-NMR spektrumlarından Exner ve arkadaşları tarafından saptanmıştır [5].

Yang ve arkadaşları 2,4,6-triamino-1,3,5-triazin-4-metoksibenzoat-su (1:2), $[C_{3}H_{7}N_{6}][CH_{3}OC_{6}H_{4}COO]$ ²H₂O kompleksinin kristal yapısını aydınlatmışlardır(Şekil 1.3). C₁₁H₁₈N₆O₅ bileşiğinin kristal sistemi monoklinik, uzay grubu *P*12₁/*c*1 olup birim hücre parametreleri; *a* = 7.0464(8) Å, *b* = 16.667(2) Å, *c* = 12.512(1) Å, *β* = 95.934 ° (1), V = 1461.5 Å, Z = 4, T = 295 °K [6].

Şekil 1.3. 2,4,6-triamino-1,3,5-triazin-4-metoksibenzoat-su (1:2), kompleksinin kristal yapısı [6].

2. p-METOKSİBENOZİKASİT VE METAL KOMPLEKSLERİ

Kalinowska ve arkadaşları halkalarda substituent pozisyonlarının ve lityum, sodyum ve potasyum iyonlarının *o-, m-* ve *p*-metoksibenzoikasitlerin elektronik yapıları üzerindeki etkilerini incelemişler. FT-IR. FT-Raman, Ar matrix FT-IR ve ¹H-NMR metodları ve teorik hesaplamalar kullanılarak halkada substituent pozizyonunun ve lityum, sodyum ve potasyum iyonlarının *o-, m-* ve *p*-metoksibenzoik asitlerinin (anisik asitlerinin) eletronik yapıları üzerine etkileri incelenmiştir. Spektrumdaki bandın karakteristik kaymaları ve metal ve ligand grupları boyunca bandların şiddetlerinde değişiklikler gözlemlenmiştir. Alkali metallerin, ligandların elektronik yapısına etkisi metoksi substituentinkinden daha zayıftır. Ligandların aromatik halkalar üzerine Li, Na ve K iyonlarının etkisi çoğunlukla orto izomeri durumunda belirgindir [7].

Brzyska ve arkadaşları Skandiyum(III)'un benzoat, *p*-metilbenzoat, *p*-metoksibenzoat, *p*-nitrobenzoat ve *p*-klorobenzoat komplekslerinin termik bozunmalarını hava ve azot atmosferinde incelemişlerdir [8].

Skandiyum(III)' ün metilbenzoik ve metoksibenzoik asit kompleksleri Kurpiel-Gorgol tarafından aydınlatılmıştır. Skandiyum 2-metil-, 3-metil-, 4-metil-, 2-metoksi-, 3metoksi- ve 4-metoksibenzoatlar su-etanol çözeltisinde elde edilerek termal bozunmaları ve 22 °C'de suda çözünürlüğü incelenmiştir. Komplekslerin kristalik yapıya sahip olduğu X-Ray analiziyle kanıtlanmıştır. IR spektrum analizi komplekste metal-ligand bağının açıkça iyonik olmadığını belirtmektedir ve bu koordinasyon yalnız COO⁻ grubunun oksijen atomu üzerinden gerçekleşir. Isıtma süresince bu kompleksler birçok basamakta bozunmaktadır. İlk kompleksler kısmen veya tamamen suyunu kaybetmektedirler ve daha sonra bir ekzotermik bozunma sonucu Sc₂O₃ meydana gelmektedir [9].

Antsyshkina ve arkadaşları Co(II) p-metoksibenzoat trihidratın Co(p-CH₃OC₆H₄COO)₂'3H₂O kristal yapısını X-ray analiz yöntemiyle incelemişlerdir [10].

Mishra ve arkadaşları Hg(II), UO₂(II), Be(II) ve Cu(II) 4-metoksibenzoat komplekslerinin dayanıklık sabitlerini kağıt elektroforez yöntemiyle incelemişlerdir [11].

Tallium metilbenzoatlar ile tallium metoksibenzoatlar Kharitonov ve arkadaşları tarafından osillografik spektroskopi yöntemleriyle incelenmiştir [12].

Katı haldeki M(MOB)₂'nH₂O (M: çift değerlikli Mn, Co, Ni, Cu ve Zn) bileşikleri Rodrigues ve arkadaşları tarafından sentezlenmiştir. Bu bileşiklerin karakterize edilmesi için termogravimetrik diferansiyel analiz (TG-DTG), diferansiyel tarama kalorimetresi (DSC), X-ışınları toz difraktometrisi, infrared spektroskopisi, elementel analiz ve kompleksometri analiz yöntemleri kullanılmış ve komplekslerin termal bozunmaları incelenmiştir [13]. X-ışınları toz difraksiyon analizi neticesinde komplekslerin kristalik olduğu, izomorf seri oluşturmadıkları belirlenmiştir (Şekil 2.1).

Şekil 2. 1. Komplekslerin X-ışınları toz difraktogramları: a) Mn(MOB)₂ 2H₂O;
b) Co(MOB)₂ 2H₂O; c) Ni(MOB)₂ 3.5H₂O; d) Cu(MOB)₂ 3H₂O;
e) Zn(MOB)₂ 1.75H₂O [13].

Brzyska ve arkadaşları 4-metoksibenzoik asit ve benzoik asitin toryum(IV) tuzlarının termal bozunma durumlarını incelemişlerdir. Isıtıldığında $Th(OH)_2(C_6H_5COO)_4H_2O$ dehidrasyona maruz kalır ve susuz kompleks ThO_2 'ye kadar parçalanıyor. Susuz $Th(C_6H_5COO)_4$ ve $Th(4-CH_3OC_6H_4COO)_4$ kompleksleri; Th(IV) oksokarbonat ve karbon karışımı oluşturarak ThO_2 'ye kadar parçalanmaktadırlar. Bu iki tuzda metal oksijen bağlarının iyonik doğası farklı olduğundan benzoik asitin Th(IV) tuzu 4-metoksibenzoik asit tuzuna nazaran yüksek sıcaklıkta ayrışmaktadır [14].

 $[Sm(p-MOB)_3phen]_2$ kompleksi (*p*-MOB, *p*-metoksibenzoat, phen, 1,10 -fenontrolin) sentezlenerek elementel analiz, IR ve UV spektroskopiler ile karakterize edilmiştir. $[Sm(p-MOB)_3phen]_2$ kompleksinin temel bozunması ve bozunma kinetiği statik hava atmosferinde TG-DTG metoduyla incelenmiştir. Her bir bozunma evresi için ara madde ve son ürün TG eğrisiyle saptanmıştır [15].

 $[Co(Im)_6(OBz)_2$ ve $[Co(Im)_6(mB)_2]$ (Im = imidazol, OBz = benzoat, mB = *p*-metoksibenzoat) komplekslerinin kristal ve moleküler yapıları X-Ray difraksyon analizi vasıtasıyla belirlenmiştir. Kristal yapılar çok benzerlik göstermektedir ve uygun olarak diskret $[Co(Im)_6(OBz)_2$ ve $[Co(Im)_6(mB)_2]$ molekülerinden oluşmaktadırlar. Triklinik

sistemdeki her iki kristalde uzay grubu P1, birim hücre parametreleri: a = 7.6934(3) Å, b = 10.4518(5) Å, c = 11.6088(5) Å, $\alpha = 73.920(1)^{\circ}$, $\beta = 79.023(1)^{\circ}$, $\gamma = 73.681(1)^{\circ}$ ve Z = 1 ve diğerinki a = 9.8336(3) Å, b = 10.5509(2) Å, c = 10.8889(3) Å, $\alpha = 61.450(1)^{\circ}$, $\beta = 76832(1)^{\circ}$, $\gamma = 71.157(1)^{\circ}$ ve Z = 1. Co(II) iyonu CoN₆ kromoforuyla oktahedral geometriye sahiptir. Katı halde kompleksler N—H...O hidrojen bağları vasıtasıyla üç boyutlu ağ örgüsünü oluşturmaktadır. Komplekslerin elektronik spektrum ve IR spektrum verileri yapısal veriler ile uyuşmaktadır [16].

 ${[Eu(p-MOB)_3(H_2O)_2]0,5H_2O'0,5(4,4'-bipy)]_x}$ (*p*-MOB: *p*-metoksibenzoat, 4,4'-bipy: 4,4' bipiridin) kompleksinin yapısı tek kristal X-ray difraksiyon çalışmasıyla belirlenmiştir. Her bir Eu atomu, şelatlaşmış karboksil grubunun iki oksijen atomuyla dört adet bidentat köprü karboksilat grubunun dört adet oksijen atomu ve iki molekül suyun iki oksijen atomuyla sonsuz polimerik zincir yapı biçiminde koordine olmuş durumdadır. Uyarılma ve lüminessens spektrumu 77 °K'de gözlenmiştir. Kompleksin yüksek çözünürlüklü spektrumu kristal içerisine yerleşmiş Eu iyonunun düşük simetriye sahip olduğunu göstermiştir. Kompleksin yoğun lüminesans göstermesi *p*-MOB ligandı ve polimerik koordinasyonla alakalı olmasıyla izah edilmiştir [17].

Eu(II) 2,2'-dipridin-*tris*(*p*-metoksibenzoat) kompleksinin termal bozunması ve bozunma kinetikleri TG-DTG ve DTA metodlarıyla izotermal olmayan hava ortamında incelenmiştir. Ara madde ve her bir bozunmadan arta kalan kısmı TG eğrisinden belirlenmiştir. İzotermal olmayan kinetik veriler diferansiyel ve integral metodlar vasıtasıyla analiz edildi. Olası reaksiyon mekanizmaları kinetik parametrelerin karşılaştırmasıyla incelenmiştir [18].

 $[Eu_2(p-MOB)_6(phen)_2](H_2O)_2$ (p-MOB = C₃H₇O₃, metoksibenzoat; phen = C₁₂H₈N₂, 1,10 fenontrolin)'nin termal bozunması ve kinetikleri TG ve DTG metodları ile incelendi. Her bir bozunma için ara ve son ürünler TG eğrisinden belirlendi. İzotermal olmayan kinetik veriler Achet metodu ve Coats-Redfern metodu ile analiz edildi. Kinetik parametrelerin karşılaştırmasıyla mümkün reaksiyon mekanizmaları ileri sürülmüştür [19]. Evropyum 1,10-fenontrolin-tris(4-metoksibenzoat), etanol çözeltisi içerisinde elde edilmiştir. Kristal Eu(*p*-MOB)₃phen bileşiği iki çekirdekli moleküllerinden oluşur. İki çekirdekli molekül içerisindeki her bir Eu⁺³ iyonu sadece köprü karboksilatların dört oksijen atomuyla koordine olmuş değil, ayrıca bidentat karboksil grubunun iki oksijen atomları ve 1,10-fenontrolin ligandının iki N atomları vasıtasıyla sekizli kordinasyona sahiptir. Eu—O bağları 0.2336(3) ile 0.2483(3) nm aralığındadır. Eu—N arasındaki mesafe ortalama 0.2624(4) nm'dir. Lüminesans verileri bir Eu⁺³ iyonunun kompleks içerisinde düşük simetride olduğunu göstermektedir [20].

[Ni(C₃H₄N₂)₆](C₈H₇O₃)₂ kompleksinde, Ni atomu imidazol molekülleri tarafından biçimlendirilmiş bir oktahedral çevre içerisinde yer almaktadır. Metoksibenzoat anyonları iki hekzakis(imidazol)Ni(II) katyonları arasında N—H...O hidrojen bağları vasıtasıyla köprü rolündedir [21].

 $[Cu(C_7H_4O_3)_2(C_{10}H_{14}N_4O)]_n$ kompleksinde Cu(II) atomu simetri merkezinde yerleşerek iki adet 4-metoksibenzoat anyonunun iki O atomu ve iki adet 1,1`-(oksidietilen)diimidazol (BIE) ligandlarındaki iki N atomları ile kare düzlemsel geometride dörtlü koordine oluşturmuş durumdadır. Her bir BIE ligandı iki Cu(II) atomu ile birleşerek *c* ekseni boyunca sonsuz zincir oluşturmuştur. 4-metoksibenzoat anyonu uç ligand gibi BIE-Cu(II) zincirinin her iki tarafından bağlanmaktadır [22].

Şekil 2.3. $[Cu(C_7H_4O_3)_2(C_{10}H_{14}N_4O)]_n$ kompleksinin yapısı [22].

Gao ve arkadaşları $[Tb_2(C_8H_7O_3)_6(C_{12}H_8N_2)_2]$ kompleksinin kristal yapısını aydınlatmışlardır. Dinükleer kompleks olan [Tb₂(C₈H₇O₃)(6)(C₁₂H₈N₂)₂]'nun yapısında her Tb(III) iyonu bozulmuş kare anti-prizmatik geometride 1,10-fenontrolin ligandının iki N atomu ve beş 4-metoksibenzoat ligandının karboksilat gruplarından altı adet O atomu ile sekizli koordine oluşturmuştur. Tüm 4-metoksibenzoat ligandları bidentat olup, bunlardan ikisi bir Tb merkezi ile koordineli, diğer dört adet ligand ise iki Tb merkezi arasındaki köprüyü oluşturmuştur (Tb merkezleri arası 4.3144 Å). Kristal içerinde 1,10 fenontrolin ve 4-metoksibenzoat ligandlarının aromatik halkaları arasında moleküller arası π - π etkileşimle iki molekül bir merkezi simetrik dimer içerisinde birbirine bağlanmış durumdadır (merkezler arası mesafe 3.742 Å). Zayıf moleküller arası hidrojen bağları (C-H...O) kristal paketin sağlamlaşmasına katkı sağlamaktadır (Şekil 2.4) [23].

Şekil 2.4. [Tb₂(C₈H₇O₃)₆(C₁₂H₈N₂)₂] kompleksinin molekül yapısı [23].

Deacon ve arkadaşları tarafından bir seri terbiyum ve ittriyum benzoat komplekslerinin bir grubu sentezlenerek DMF (dimetilformamid) veya DMSO (dimetilsülfoksid) solvatları ve hidratlar biçiminde yapısal olarak karakterize edilmiştir. Bu komplekslerin yapıları ligandın sterik hacmine ve solvatlaşma derecesine göre değişmektedirler. Küçük nadir toprak elementi olan itriyum ve terbiyum karşılaştırılabilir büyüklükteler ve birkaç eş yapıdan oluşmuş komplekslerle aynı davranışı gösterdikleri gözlemlenmiştir ve oluşturdukları komplekslerin ekseriyetinin dimerik olduğu saptanmıştır. [Ln(O₂CR)₆(solv)₂(H₂O)₂] {(O₂CR: 3- ve 4-metilbenzoat veya 4metoksibenzoat, solv: DMF veya DMSO)} benzer yapılara sahiptirler [24].

 $[Tb_2(p-MOB)_6(Phen)_2]$ (*p*-MOB = C₈H₇O₃, *p*-metoksibenzoat; Phen = C₁₂H₈N₂, 1,10fenontrolin) kompleksi sentezlenerek elementel analiz ve IR spektroskopisi yöntemleriyle karakterize edildi. Sabit atmosfer basınçta $[Tb_2(p-MOB)_6(PHEN)_2]$ 'nin termal davranışı TG-DTG, DTA, SEM ve IR teknikleriyle araştırıldı [25].

Zhao ve arkadaşları tarafından $[Cd(H_2O)(CH_3OC_6H_4COO)_2]_n$ kompleksi sentezlendi ve kristal yapısı aydınlatılmıştır. Oda sıcaklığında etanol çözeltisindeki anisik asid ve $Cd(NO_3)_2$ ·4H₂O'nun reaksiyonu $[Cd(H_2O)(CH_3OC_6H_4COO)_2]_n$ formüllü kadmiyum(II)

kompleksini meydana getirir. Empirik formülü C₁₆H₁₆O₇Cd olan kristal monokliniktir. Molekül ağırlığı 432.69 g/mol' dür. Birim hücre parametreleri a = 34.211(2) Å, b = 60.030(2) Å, c = 7.61(3) Å, β = 95.619(5)°, V = 1562,5(9) Å³, Z =4, Dc =1.831g/cm³, μ = 1.434 mm⁻¹, F₀₀₀ 856, R = 0.0215 ve wR = 0.0456' dır. Her kadmiyum atomu bozulmuş pentagonal biprimidal geometri içerisinde 7 koordinelidir. Her bir Cd(II) merkezi komşu anisat ligantları vasıtasıyla Cd merkezleriyle çifte köprüleşerek tekrarlanan Cd-O-Cd-O birimleriyle dört üyeli halka oluşturmaktalar [26].

Zhan ve arkadaşları tarafından 1,10-fenontrolin-tris(4-metoksibenzoat)disprosyum, Dy(*p*-MOB)₃Phen (*p*-MOB = *p*-metoksibenzoat ve Phen = 1,10-fenontrolin) sentezlenmiştir. Kompleks elementel analiz, UV, IR, XRD, molar iletkenlik ve TG-DTG analizleri içeren çeşitli tekniklerle karakterize edilmiştir. Kristaller iki çekirdekli moleküllerden ve monoklinik yapıdan meydana gelmektedir. Uzay grubu P2₁/n: a = 14.143(6) Å, b = 17.550(7) Å, c = 14.493(6), β = 117.357°, Z = 2, rho(c) = 1.655 cm⁻³, F(000) = 1588; R0.0176, wR(2)=0.0455. Kompleks içerisinde her bir Dy³⁺ iyonu bir 1,10-fenontrolin molekülü, bir adet bidentat şelat karboksilat grubu ve dört adet köprü karboksilat grubu (bunlarda karboksilat grupları Dy³⁺ iyonlarıyla üç modla bağlanmışlar: bidentat köprü, tridentat köprü ve şelatlaşmış bidentat) ile dokuz koordineli durumdadır. Termal bozunma mekanizması termik analiz esasına dayanarak saptanmıştır [27].

Genelde trifenilkalay substitue olmuş benzoatlarda Ph₃SnO₂CC₆H₄X *cis*-C SnO konfigurasyonunu benimseme eğilimi görülmektedir. Song ve arkadaşlarının sentezledikleri komplekslerde Sn-O bağının 2.043-3.071 Å aralığında kısa bir bağ uzunluğuna sahip olduğu ve daha uzun bağın 2.564-30.071 R aralığında olduğu gözlemlenmiştir. Bununla birlikte *trans*-C₃SnO₂ konfigürasyonlu trifenilkalay karboksilatlar da gözlenmiştir. Onlar sırasıyla 2.201 Å ve 2.384 Å'luk benzer SnO bağ uzunluğu ile karakterize edilmiştir. Trifenilkalay 4-metoksibenzoat kompleksinin ester tipli bağ ile monomerik yapıya sahip olduğu sonucuna varılmıştır [28].

3. NİKOTİNAMİD, İZONİKOTİNAMİD VE N,N' -DİETİLNİKOTİNAMİD

 $C_6H_6N_2O$ kimyasal formülüne sahip, molekül ağırlığı 122,12g/mol, erime sıcaklığı 128-131 °C olan bileşiğin IUPAC ismi 3-piridin karboksamid'dir. Temelde nikotinik asidin bir amidi olan nikotinamid; niyasinamid, niyasin, nikotin asit amid, vitamin PP olarak da isimlendirilmektedir. 20 °C' de sudaki çözünürlüğü 100 g/100 ml iken, etanoldeki çözünürlüğü 666g/100 ml olup etanolde sudan daha iyi çözünür. Yağlarda hiç çözünmez, fakat eterde çok yavaş çözünür.

Kendine has bir kokusu ve tadı olan nikotinamid renksiz bir kristalin maddedir. Nikotinamid piridin halkasına sahip olduğundan dolayı piridinin karaktersitik reaksiyonlarını vermektedir [29].

 $C_6H_6N_2O$ kimyasal formülüne sahip, molekül ağırlığı 122,12g/mol erime sıcaklığı 155-158 °C olan bilşeğin IUPAC ismi 4-piridin karboksamid'dir. Bileşiğin yaygın ismi izonikotinamid olarak bilinmektedir.

Kimyasal formülü $C_{10}H_{14}N_2O$ olan *N*,*N'*-dietilnikotinamidin (DENA) molekül ağırlğı 178,12 g/ mol olup, IUPAC ismi 3-piridin dietilkarboksiamid'dir. Bileşiğin kordiamin, niketamid gibi isimleride bilinmektedir. Sudaki çözünürlüğü iyi iken, yağlarda ve eterde çözünmemektedir.

Yapı formülü yukarıdaki gibi olan dietilnikotinamid renksiz kendine has kokusu ve tadı olan kristalin bir maddedir. Bu bileşik de nikotinamid gibi piridin halkasına sahip olduğundan dolayı piridinin karakteristik reaksiyonlarını vermektedir.

4. NİKOTİNAMİD, İZONİKOTİNAMİD VE *N,N'*-DİETİLNİKOTİNAMİD METAL KOMPLEKSLERİ

Nikotinamidin geçiş metalleriyle komplekslerinin B3 vitamini olarak ilaçların preparatlarının yapımında kallanılması bu alanda çalışmalarında yoğunlaşmasına sebep olmaktadır [30].

Nikotinamidin geçiş metalleriyle yapmış olduğu komplekslerin spektral incelenmesi sonucu, kompleksin monodentant özelliğe sahip olduğu anlaşılmıştır [31-33].

Nikotinamid ve *N,N'*-dietilnikotinamid, metal komplekslerinde aromatik halkada (piridin halkası) bulunan azot atomu üzerinden monodentant olarak koordinasyona dahil edildiği tespit edilmiştir [31,34].

Metal formiyat ve bunun asetatlarının nikotinamidle oluşturduğu komplekslerde de ligand olan nikotinamidin, piridin halkası üzerindeki heteroazot atomuyla monodentant olarak merkezi metal atomuyla bağ oluşturduğu gözlemlenmiştir [31,34].

Simetri merkezli bir kobalt kompleksi olan $[Co(C_7H_5O_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ bileşik monomerik bir yapıya sahiptir. $[Co(C_7H_5O_3)_2(C_6H_6N_2O)(H_2O)_2]$ [35]., $[Co(p-H_2NC_6H_4COO)_2(C_6H_6N_2O).(H_2O)_4]$ [36]. , $[Cu(C_7H_5O_3)_2(C_6H_6N_2O)_2]$ [37]., trans- $[Cu(C_7H_3ClFO_2)_2(C_6H_6N_2O)_2]$ [38]. formüllü arilkarboksilat komplekslerinin yapısına da piridin halkasındaki azot atomu üzerinden katılma görülmektedir. Komplekslerin yapıları genel olarak birbirinin benzeridir.

Şekil 4.1. $[Co(C_7H_5O_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin *xz* düzlemine projeksiyonu [35].

 $[Co(C_7H_4NO_4)_2(C_6H_6N_2O)_2(H_2O)_2]$ kompleksi monomerik ve merkezi simetriktir. Kompleks iki su molekülü, iki nitrobenzoat ve iki nikotinamid ligandı içermekte olup monodentat gibi tüm hareketleri içermektedir [39]. Tetraaquabis(nikotinamid- κN^1)cobalt(II) bis(2-florobenzoat) kompleksinin kristal yapısı aydınlatılmıştır. [Co(C₆H₆N₂O)₂(H₂O)₄](C₇H₄FO₂)₂ formülüne sahip kompleksin kristal sistemi triklinik, uzay grubu *P*1'dir. Birim hücre parametreleri: M_A = 653.45g/mol *a* = 7.2913 (2) Å, *b* = 7.4522 (4) Å, *c* = 14.4853 (5) Å, *a* = 82.160 (2)°, *β* = 77.275 (3)°, *γ* = 63.740 (3)°, *V* = 687.83 (5) Å³, *Z* = 1, Mo *Ka* radyasyonu, μ = 0.70 mm⁻¹, T = 294 K [40].

Şekil 4.2. [Co(C₆H₆N₂O)₂(H₂O)₄](C₇H₄FO₂)₂ kompleksinin kristal yapısı [40].

Tetraaquabis(nikotinamid- κN^1)nikel(II)bis(2-florobenzoat) kompleksinin kristal yapısı aydınlatılmıştır. Molekül formülü [Ni(C₆H₆N₂O)₂(H₂O)₄](C₇H₄FO₂)₂, kristal sistemi triklinik, uzay grubu *P*1, birim hücre parametreleri: M_A = 653.23 g/mol *a* = 7.2529 (1) Å, *b* = 7.3315 (1) Å, *c* = 14.3831 (3) Å, *a* = 82.115 (2)°, *β* = 77.332 (2)°, *γ* = 63.664 (1)°, *V* = 668.05 (2) Å³, *Z* = 1, Mo *Ka* radyasyonu, μ = 0.81 mm⁻¹, T = 100 K [41].

Şekil 4.3. $[Ni(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$ kompleksinin kristal yapısı [41].

Diaquabis(2-bromobenzoat- αO)bis(nikotinamid- αN^1)nikel(II) kompleksinin kristal yapısı aydınlatılmış olup, [Ni(C₇H₄BrO₂)₂(C₆H₆N₂O)₂(H₂O)₂] formülüne sahiptir. Kompleksin kristal sistemi monoklinik, uzay grubu *P*21/*n*, birim hücre parametreleri: M_A = 739.02 g/mol *a* = 7.8851 (2) Å, *b* = 18.2865 (4) Å, *c* = 9.7574 (3) Å, β = 106.609 (2)°, *V* = 1348.23 (6) Å³, *Z* = 2, Mo *K* α radyasyonu, μ = 3.74 mm⁻¹, T = 100 K [42].

Şekil 4.4. [Ni(C₇H₄BrO₂)₂(C₆H₆N₂O)₂(H₂O)₂] kompleksinin kristal yapısı [42].

 $[Zn_{2}(C_{8}H_{7}O_{2})_{4}(H_{2}O)_{2}] \cdot [Zn_{2}(C_{8}H_{7}O_{2})_{4}(C_{6}H_{6}N_{2}O)_{2}] \cdot 2H_{2}O \text{ formuluine sahip bis}(\mu-4-metilbenzoato-\pi^{2}O;O')bis[aqua(4-metilbenzoato-\pi^{2}O,O')cinko(II)]-bis(\mu-4-metilbenzoato-\pi^{2}O;O')bis[(4-metilbenzoat-\pi O)(nikotinamid-\pi N)zinc(II)]-su (1/1/2) kompleksi aydınlatılmış olup, kompleksin kristal verileri: M_A = 1658.97 g/mol kristal sistemi monoklinik uzay grubu$ *Pc*olan bileşiğin birim hücre parametreleri*a*= 19.7038 (3) Å,*b*= 12.2884 (2) Å,*c*= 15.4477 (3) Å,*β*= 98.708 (1)°,*V* $= 3697.21 (11) Å^{3},$ *Z*= 2, Mo*Ka* $radyasyonu, <math>\mu = 1.36 \text{ mm}^{-1}$, T = 100 K [43].

Şekil 4.5. $[Zn_2(C_8H_7O_2)_4(H_2O)_2] \cdot [Zn_2(C_8H_7O_2)_4(C_6H_6N_2O)_2] \cdot 2H_2O$ kompleksinin kristal yapısı [43].

 $[Cu(C_7H_5O_3)_2(C_6H_6N_2O)_2(H_2O)_2]$ bileşiği; Cu(II) yaklaşık 1.956 (2), 2.011 (2) ve 2.575 (2) Å mesafelerle, piridinin N atomu, karboksilat ve suyun O atomlarıyla Jahn-Teller tetragonal bozulma ile oktahedron formunda kristalografik merkezi simetrik yapıda bir komplekstir [44].

Şekil 4.6. [Cu(C₇H₅O₃)₂(C₆H₆N₂O)₂(H₂O)₂] kompleksinin yapısı [44].

[Pb(C₈H₇O₂)₂(C₆H₆N₂O)]_n formüllü catena-Poly[[bis(4-metilbenzoato- κ^2 O:O')kurşun(II)]-#-nikotinamid- $\kappa^2 N^1$:O] kompleksi aydınlatılmış olup, kompleksin kristal verileri: M_A = 599.60 g/mol kristal sistemi monoklinik uzay grubu P2₁/c olan bileşiğin birim hücre parametreleri a = 14.1146 (3) Å, b = 7.7431 (2) Å, c = 19.2165 (4) Å, $\beta = 102.322$ (2)°, V = 2051.81 (8) Å³, Z = 4, Mo K\alpha radyasyonu, $\mu = 8.26$ mm⁻¹, T = 100 K [45].

Şekil 4.7. $[Pb(C_8H_7O_2)_2(C_6H_6N_2O)]_n$ kompleksinin kristal yapısı [45].

Smith ve arkadaşları tarafından 4,5-dikloroftalikasit ile monoklinik heteroatomik 2aminoprimidin, nikotinamid ve izonikotinamid Lewis bazlı bileşiklerde 1:1 proton transferinin hidrojen bağlı sıfır, bir ve iki boyutlu yapıları aydınlatılmıştır [46].

Kiral karboksilikasitlerinin iki sisteminin eş kristallerinin kristal yapıları, izonikotinamid ile optikçe aktif ve rasemik 2-fenilpropiyonikasit ve 2- fenilbütirikasit benzer kristal komplekslerinin erime noktalarına kiral karboksilik asitlerin kiralitelliğinin etkileri incelenmiştir. Bu rasemik eş kristallerin erime noktasının optikçe aktif eş kristallerin erime noktasından yüksek olduğu bulunmuştur, bunlar merkezi simetrik uzay gruplarının doğasında olan sıkı paket oluşumuyla bağlantı kurarlar [47]

İzonikotinamid ve formamidin 1:1 eş kristalleri $C_6H_6N_2O\cdot CH_3NO$ hidrojen bağlı dimerlerden herbiri iki izonikotinamid veya iki formamid molekül içeriğinden meydana gelir. Bu dimerler tabaka içerisine hidrojen bağlarıyla daha sıkı bağlıdır, ($\overline{2}11$) düzlemine paralel durumdadır [48].

Şekil 4.8. İzonikotinamid-formamid (1/1) kompeksinin kristal yapısı [48].

İzonikotinamid monofonksiyonel karboksilik asidlerle birçok 1:1 eş kristalleri şeklinde gösterilmiştir, fakat propiyonikasidle birlikte bu iki asid molekülleri ve formül birim başına bir izonikotinamid molekül içeren eş kristal şeklini alır, $C_6H_6N_2O\cdot 2C_3H_6O_2$. 'Süper moleküllerin' kristal yapısına bağlı oluşu bir izonikotinamid molekülünden ve iki asid moleküllerinden oluşmuştur, ve asimetrik birim bu süpermoleküllerin ikisini içermektedir. Asid moleküllerinin biri hidrojenle piridin fonksiyonuna ve diğeri izonikotinamidin amid fonksiyonuna bağlanır. Ayrıca N—H...O hidrojen bağları bu süper molekülleri zincire bağlamaktadır, bu süper moleküller [100] istikameti boyunca uzanmaktadır. Zincirler C—H...O ve π -etkileşimi aracılığıyla dikey tabakalar (010)' a bağlanır. Tabakalar daha sonra ayrıca C—H...O etkileşimleriyle birlikte bağlanır [49].

Şekil 4.9. izonikotinamid ve propiyonikasidin 1:2 eş kristalli molekül yapısı [49].

 $[Ba(C_6H_4NO_2)(NO_3)]_n$ bileşiği amonyak salınımı ile $Ba(NO_3)_2$, izonikotinamid ve KOH' in hidrotermal reaksiyonu ile oluşmuştur. Ba iyonu dokuz O atomlarıyla ve bir N atomuyla on koordineli durumdadır. Bu O atomlarının beşi, bir monodentat ve iki bidentat nitrat anyonlarından elde edilir. Diğer O atomları bir bidentat ve izonikotinat anyonlarının iki monodentat karboksilat gruplarından elde edilir. Koordinasyon izonikotinat anyonunun bir N atomuyla tamamlanır. Bu birimler üç boyutlu kafes yapı formu ile bağlanır [50].

Şekil 4.10. $[Ba(C_6H_4NO_2)(NO_3)]_n$ kompleksinin yapısı [50].

[Mn(C₉H₁₀NO₂)₂(C₆H₆N₂O)(H₂O)₂] formülüne sahip diaquabis[4-dimetilaminobenzoat] (izonikotinamid)mangan(II) kompleksi bozulmuş oktahedral geometriye sahiptir. Kristal verileri: renksiz, M_A = 541,46 g/mol, kristal sistemi monoklinik, uzay grubu P2₁/*n*, birim hücre parametreleri *a*= 6,9120 (2) Å, *b*= 45,1365 (5) Å, *c*= 8,1506 (2) Å, θ = 2.6–28.4°, μ = 0,57 mm, *T*= 100 K, β = 93,889 (1)°, *V*= 2537 (1) Å³, *Z* = 4, Mo K α radyasyonu, μ = 0,57 mm⁻¹, T = 100 K [51].

Şekil 4.11. $Mn(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$ kompleksinin kristal yapısı [51].

 $[Co(C_6H_6N_2O)_2(H_2O)_4](C_8H_4O_4)\cdot 2H_2O$ bileşiğinde, Co(II) atomu su molekülünün dört O atomu ve iki N atomuyla bağlı izonikotinamid moleküllerinden oluşan hafif bükülmüş *trans*-CoN₂O₄ oktahedral koordinasyon geometrisi gösterir. Koordine olmamış merkezi simetrik tereftalat anyonu ve koordine olmamış su molekülleri O— H...O ve N—H...O hidrojen bağları vasıtasıyla katyonla etkileşir ve üç boyutlu ağ örgüsü meydana gelir [52].

Şekil 4.12. $[Co(C_6H_6N_2O)_2(H_2O)_4](C_8H_4O_4) \cdot 2H_2O$ kompleksinin yapısı [52].

 $[Co(C_7H_3NO_4)(C_6H_6N_2O)(H_2O)_2]$ bileşiğinde Co(II) atomu, aksiyal pozisyondaki izonikotinamid ve ekvatoryal pozisyondaki piridin 2,6-dikarboksilat ligandları ve izonikotinamidle bükülmüş oktahedral koordinasyon geometrisindedir. Moleküller O— H...O ve N—H...O hidrojen bağlarıyla üç boyutlu ağ yapısındadır [53].

Şekil 4.13.[$Co(C_7H_3NO_4)(C_6H_6N_2O)(H_2O)_2$] kompleksinin yapısı [53].

 $[Co(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$ formülüne sahip diaquabis[4-(dimetilamino)benzoat](izonikotinamid) kobalt(II) molekülü bozulmuş oktahedral yapıda olup kristal yapıda intermoleküler O-H...O, O-H...N ve N-H...O hidrojen bağlarıyla moleküller supramoleküler bir yapıda birbirine bağlıdır. $[Co(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$ kompleksinin kristal verileri: $M_A = 545,45$ g/mol, kristal sistemi triklinik, kristal rengi pembe, uzay grubu P1 olan bileşiğin birim hücre parametreleri a = 6,85550 (10) Å, b = 8,1028 (2) Å, c = 22,4642 (3) Å, $a = 90,9180 (10)^{\circ}$, β = 92,965 (2)°, γ = 93,230 (2)°, V= 1243,98 (4) Å ³, Z= 2, Mo K α radyasyonu, μ = 0,74 mm^{-1} , T = 100 K [54].

Şekil 4.14. $[Co(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$ kompleksinin kristal yapısı [54].

[Ni(C₆H₆N₂O)₂(H₂O)₄](C₈H₅O₃)₂·2H₂O kompleksinin asimetrik birimi inversiyon merkezine yerleşmiş Ni(II) atomlarıyla bir buçuk kompleks katyonu, bir 4formilbenzoat karşı anyonu ve koordine olmamış su molekülü içermektedir. Ekvatoryal düzlem içerisinde Ni atomu çevresinde dört oksijen atomu hafif bozulmuş kare düzlemsel düzen şekli ve hafif bozulmuş oktahedral koordinasyon aksiyal pozisyonda biraz uzak mesafedeki izonikotinamid (İNA) ligandının N atomuyla tamamlanır [55].

Şekil 4.15. [Ni($C_6H_6N_2O_2(H_2O_4)$]($C_8H_5O_3$)₂·2H₂O kompleksinin yapısı [55].

Dakovic ve Popoviv tarafından trans-diaquabis(nitrato-kO)bis(piridin-4-karboksiamid- κN^{1})bakır(II), [Cu(NO₃)₂(C₆H₆N₂O)₂(H₂O)₂] ve trans-diaquatetrakis (piridin-4karboksiamid- κN^{l})bakır(II)bis(perklorat), $[Cu(C_6H_6N_2O)_4(H_2O)_2](ClO_4)_2$ bileşiklerinden oluşan kompleks Cu(II) iyonları ve izonikotinamidi kapsayan mononükleer koordinasyon birimlerinden meydana gelir. $[Cu(NO_3)_2(C_6H_6N_2O)_2(H_2O)_2]$ bileşiğinde tetragonal simetri merkezli bozulmuş oktahedral bakır(II) çevresi, ekvatoryal düzlemde ve aksiyal konumda bulunan iki nitrat iyonlarının trans bağlı izonikotinamid ve su moleküllerinden meydana gelir. $[Cu(C_6H_6N_2O)_4(H_2O)_2](ClO_4)_2$ bileşiğinde bozulmuş oktahedron C₂ simetriğinin ekvatoryal düzlemi dört izonikotinamid ligandlarını oluşturuyorken, su molekülleri aksiyal pozisyonlarda yeralmaktadır. $[Cu(NO_3)_2(C_6H_6N_2O)_2(H_2O)_2]$ $[Cu(C_6H_6N_2O)_4(H_2O)](ClO_4)_2$ ve kompleks molekülleri O-H...O ve N-H...O hidrojen bağlarıyla üç boyutla supramoleküler(çok moleküllü) yapıya bağlanır. Nitrat ve perklorat iyonları, genellikle bakır-izonikotinamid komplekslerinin kristal yapılarında bulunan güçlü $R_2^2(8)$ amid supramoleküler motifi engelleyici bloklar kurmaktadır [56].

Şekil 4.16. $[Cu(NO_3)_2(C_6H_6N_2O)_2(H_2O)_2]$ ve $[Cu(C_6H_6N_2O)_4(H_2O)_2](ClO_4)_2$ kompleksinin molekül yapısı [56].

 $[Cu(C_2H_3N)(C_{11}H_9N_5)(C_6H_6N_2O)](BF_4)_2 \cdot 2C_2H_3N$ kompleksi (asetonitril)[2,6bis(pirazol-1-il)piridin] (izonikotinamid) bakır(II) katyonları, tetrafloroborat anyonları ve asenitril molekül kafeslerinden meydana gelmektedir. Katyonlar N₃- donör yani 2,6bis(pirazol-1-il)piridin ve N-donör yani izonikotinamid ligandın dört taban pozisyona oturtulmasıyla, tepe pozisyona oturtulan koordine olmuş asetonitril N donör atomu ile bozulmuş kare-pirimidal geometriye sahiptir. Katyon çiftlerinin N-H...F hidrojen bağlarıyla tetrafloroborat anyonlarına bağlanması, merkezi dimer simetrik sekillenlenmeleri, ayrıca C—H...O hidrojen bağlarıyla iki boyutlu dalgalı yapraklara bağlanması gibi üç durumun birbiri içine geçmesi iki boyutlu bir ağ örgüsünü meydana getirir [57].

[Cu₂(C₂H₃O₂)₄(C₆H₆N₂O)₄] kompleksi iki Cu(II) katyonu, dört asetat anyonu ve dört izonikotinamid (İNA) ligandından oluşmuş merkezi simetrik bimetalik bir komplekstir. Asimetrik birim bir bakır katyonunu iki asetat birimine asimetrik olarak: Co—O arası mesafelerden birisi oldukça uzundur [2.740(2) Å], hemen hemen koordinasyon bağ sınırındadır. Bu Cu—O bağları bir ekvatoryal düzlemi, Cu—N bağları İNA ligandlarına oldukça dik doğrultuta, Cu—N normal düzleme 2.4(1) ve 2.3(1)° vektörel açılarla karşılık geldiğini belirtmektedir. Metal koordinasyon geometrisi, son derece zayıf Cu— O bağı ihmal edilmişse hafif bükülmüş trigonal bipiramid olarak, ihmal edilmemişse büyük ölçüde bükülmüş kare piramid olarak tanımlanabilir. Bakır iyonları arasındaki iki çift asetat köprüsü CuO₄ ekvatoryal düzlem ile eş düzlemli değildir. (O—C—O)₂ ve O—Cu—O grupları arasındaki dihedral açı 34.3 (1) ° olmaktadır. Sekiz üyeli köprüleme döngüsü kanepeye benzer konformasyonla sonuçlanır. Kristal içerisinde N—H...O hidrojen bağlarının bazıları, İNA birimleri arasında başı ile sonu arasında bağlantı kurulması [101] düzlemi boyunca zincirin uzamasına sebep olduğu görülmektedir, arta kalanlar zincirler arası temasta bulunarak üç boyutlu yapıyı belirlemektedir. Aromatik H atomu içeren C—H...O bağlarına bir dizi katılma vardır. Muhtemelen sterik engel sebebiyle aromatik halkalar belirgin π ... π etkileşimini içermemektedir [58].

Şekil 4.17. [Cu₂(C₂H₃O₂)₄(C₆H₆N₂O)₄] kompleksinin yapsısı [58].

 ${[Cu(C_6H_6N_2O)_2(C_8H_4O_4)] \cdot H_2O}n$ bileşiğinde, Cu(II) merkezi iki benzen-1,2dikarboksilat (bdc) dianyonları ve iki izonikotinamid molekülünün iki N azot atomundan oluşan bir *trans*-CuN₂O kare düzlemsel geometri göstermektedir. Bdc dianyonları zigzag zincir içerisinde Cu merkezlerine bağlanır. O—H...O ve N—H...O hidrojen bağları bir üç boyutlu bir ağ örgüsü oluşturur [59].

 $[Cu_2(C_8H_4O_4)_2(C_6H_6N_2O)_4]$ ·3H₂O kompleksinde Cu(II) atomu bozulmuş trigonalbiprimidal geometri sergilemektedir ve iki izonikotinamid ligandının iki N atomu ve üç izoftalat ligandının üç O atomuyla koordinedir. C—H...O ve N—H...O arasında hidrojen bağlarının yanı sıra π - π etkileşimleri de gözlemlenmiştir [60]. $Cu_2(C_8H_7O_2)_4(C_6H_6N_2O)_2$ formülüne sahip ve bozulmuş kare piramidal geometrik yapıda olan tetrakis(#-4-metilbenzoato $\kappa^2 O:O'$)bis[(izonikotinamid- κN)bakır(II)] kompleksi aydınlatılmıştır [61].

Şekil 4.18. Cu₂(C₈H₇O₂)₄(C₆H₆N₂O)₂ kompleksinin molekül yapısı [61].

[Zn(C₉H₁₀NO₂)₂(C₆H₆N₂O)(H₂O)₂] formüllü diaquabis[4-dimetilaminobenzoat] (izonikotinamid) çinko(II) kompleksi bozulmuş oktahedral koordinasyon geometrisine sahip olup, komplekse monodentat bağlı karboksil grubu ile bir su molekülü arasındaki intramoleküler O—H...O hidrojen bağı zarf biçiminde altılı bir halka oluşturmaktadır. Kristal verileri: M_A = 551,91, kristal sistemi triklinik, renksiz, uzay grubu *P*1 olan bileşiğin birim hücre parametreleri *a* = 6,8616 (2) Å, *b* = 8,0947 (3) Å, *c* = 22,4953 (4) Å, *α* = 90,683 (2)°, *β* = 92,838 (2)°, *γ* = 93,313 (3)°, *V* = 1245,69 (6) Å³, *Z* = 2, Mo K*α* radyasyonu, μ = 1,04 mm⁻¹, T = 100 K [62].

Şekil 4. 19. $[Zn(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$ kompleksinin kristal yapısı [62].

[Zn(C₈H₈NO₂)₂(C₆H₆N₂O)₂·H₂O] formülüne sahip komplekste Zn atomunun koordinasyonu biri bidentat ligant olan iki *p*-metilaminobenzoat ve iki izonikotinamid ligandı ile bozulmuş trigonal-bipiramidal geometri göstermekte olup kristal verileri: M_A = 627,95 g/mol, kristal sistemi monoklinik, sarı renkli, uzay grubu P2₁/*c*, birim hücre boyutları *a* = 8,1323 (8) Å, *b* = 13,2098 (12) Å, *c* = 27,219 (3) Å, *β* = 96,949 (6) °, *V* = 2902,6 (5) Å³, *Z* = 4, Mo K*α* radyasyonu, μ = 0,90 mm⁻¹, T = 294 K [63].

Nikotinik asitin bir türevi olan ve metabolizmada önemli bir solunum sitimulantı gibi görev üstlenen N,N' dietilnikotinamid'in metal komplekslerinin sentezi ve incelenmesi giderek daha çok önem kazanmaktadır. Bu ligand da yapısında bulunan piridin halkasındaki heteroazot atomu üzerinde kompleklerdeki metal ile bağ oluşturmaktadır. N,N'-dietilnikotinamid, metal komplekslerinde aromatik halkada (piridin halkası)bulunan azot atomu üzerinden monodentat olarak koordinasyona dahil olduğu bilinmektedir [64,34].

Zn(II), Mn(II) ve Ni(II) *o*-kloro- ve *o*-bromobenzoatlarının *N*,*N*-detilnikotinamid komplekslerinin [M(o-X-C₆H₄-COO)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] (M = Zn, Ni, Mn; X = Cl,

Br) molekül yapıları benzer olup, simetri merkezindeki metal atomu *trans* pozisyonda monodentat ligantların oktahedrik çevrede bulunmasıyla oluşmaktadır (Şekil 4.20.) [65-69].

Şekil 4.20. $[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin yapısı [69].

 $[Co(C_7H_5O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2$, $[Cu(C_7H_5O_2)_2(C_{10}H_{14}N_2O)_2]$ molekül formüllü arilkarboksilat komplekslerinin yapıları incelendiğinde de ligand olarak komplekslere giren dietilnikotinamidin, nikotinamidde olduğu gibi, yapısındaki piridin halkasında bulunan hetero azot atomu üzerinden koordinasyona dahil olduğu anlaşılmıştır. Bu tipli komplekslerin de yapıları genel olarak birbirlerinin benzeridirler [70-72].

[Co(C₉H₁₀NO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] formüllü diaquabis(*N*,*N*-dietilnikotinamid)bis[4dimetilaminobenzoat]kobalt(II) kompleksi bozulmuş oktahedron geomerik yapıda olup, kristal verileri: M_A = 779,79 g/mol, kristal sistemi monoklinik, uzay grubu P2₁/*c*, birim hücre parametreleri *a* = 6,5184 (1) Å, *b* = 20,4829 (3) Å, *c* = 14,6481 (2) Å, *T* = 100K, β = 98,492 (1)°, kırmızı renkli, *V* = 1934,31 (5) Å³, Z = 2, Mo K*α* radyasyonu, μ = 0,56 mm⁻¹, T = 100 K [73].

Şekil 4.21. [Co(C₉H₁₀NO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin kristal yapısı [73].

[Ni(C₉H₁₀NO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] formülüne sahip diaquabis(*N*,*N*-dietilnikotinamid)bis[4-dimetilaminobenzoat] nikel(II) kompleksi bozulmuş oktahedron geometrisine sahip olup, Kristal verileri: M_A= 779,57 g/mol, mavi renkli, kristal sistemi monoklinik, , birim hücre parametreleri *a* = 6,5081 (1) Å, *b* = 20,3157 (3) Å, *c* = 14,7235 (2) Å, β = 98,487 (2)°, *V* = 1925,37 (5) Å³, *T* = 100 K, uzay grubu P2₁/*c*, Z = 2, Mo K*a* radyasyonu, μ = 0,56 mm⁻¹, T = 100 K [74].

 $[Cu(C_7H_4NO_4)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ formülüne sahip trans-diaquabis (*N*,*N*'- dietilnikotinamid-N¹)bis(4-nitrobenzoat-O)bakır(II) molekülü kristalografik olarak simetri merkezli tek çekirdekli bir komplekstir [75].

 $[Cu_2(C_6H_5COO)_4(C_{10}H_{14}N_2O)_2]$ formülüne sahip bileşik kristallografikal simetri merkezli iki çekrdekli bir kompleks olup, 4 adet benzoat ligandı ile köprülenmiş iki adet bakır atomu ve iki adet dietilnikotinamid ligandı içermektedir. Her bir bakır atomu etrafındaki en yakın dört oksijen atomu, *N*,*N'*-dietilnikotinamid ligandının piridin halkasındaki azot atomu tarafından kare-piramidal koordinasyona tamamlanmasıyla kare düzlem şeklini alır [76].

Şekil 4.22. [Cu(C₇H₄NO₄)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin xz düzlem projeksiyonu [75].

ZnI₂(DENA)₂ komplekslerinin kristal yapısı klor analoğunun yapısına benzemektedir. Kristal yapı birimleri kristallografik 2 ekseni üzerinde yerleşen monomerik kompleks molekülleridirler. Zn atomu deforme olmuş tetrahedronun köşelerinde yerleşen iki iyot ve iki adet monodentant DENA molekülünün N_{piridin} atomuyla koordine olmuş durumdadır. Zn-I 2,5444 (1) Å, Zn-N 2,068(7) Å uzunlukları diğer tetrahedrik Zn komplekslerindeki uygun değerlere uygunluk göstermemektedir. Bu yapıdaki tetrahedronun açı deformasyonları I-Zn-I açısının 120,89°'ye dek büyümesi ve N-Zn-N açısının 95,6°'ye dek küçülmesi molekül içi I...I itme kuvvetleriyle izah edilebilir. I...I mesafesi 4,426 Å iyodun iyon yarıçapının (4,40 Å) iki katına yakındır. DENA molekülünün geometrik parametreleri önceki komplekslerde bulunan değerlere sahiptir. C_{karbonil} atomuna bağlı atomlar hakkında aynı seyi söylemek mümkündür (bağ açıları toplamı 360°-*sp*² hibritleşme). Bu iki düzlemin C_{halka}-C_{karbonil} bağı etrafında dönme açıları 57,2° dir. N_{amid} atomuna bağlı atomlar da düzlemseldirler. Çok az primidal deformasyon vardır. Bu düzlemin komşu düzlemle C_{halka}-N_{amid} bağı boyunca dönme açısı 4,2° (Cl analoğunda 10,8 ve 7,5)' dir [77]. $[Zn(C_7H_5O_3)_4(C_{10}H_{14}N_2O)_2(H_2O)_2]$ iki çekirdekli simetri merkezine sahip çinko kompleksi, dört benzoat ligandı ve köprülenmiş şekilde birbirine bağlanmış (Zn...Zn' 6,685 Å) iki adet çinko atomu içermektedir. Her bir çinko atomu hafif bozunmuş tetrahedral koordinasyon geometrisiyle *N*,*N'*-dietilnikotinamid ligandından gelen azot ve üç ayrı oksijen atomu tarafından koordine olmuş durumdadır [78].

Şekil 4.23. [$Zn(C_7H_5O_3)_4(C_{10}H_{14}N_2O)_2(H_2O)_2$] kompleksinin *xz* düzlem projeksiyonu [78].

Khodashova ve arkadaşları ZnCl₂(DENA)₂ formüllü komplekslerin kristal yapısını çözmüşlerdir. ZnCl₂(DENA)₂ kristalleri moleküler yapıya sahiptirler. Çinko atomunun deforme olmamış tetrahedrik çevresinde iki klor ve iki monodentat DENA molekülünün hetero azot atomları bağ oluşturmuştur. İki Zn-Cl mesafesine olduğu söylenebilir. 2,211(2) ve 2,216(2) Å. Aynı şey iki Zn-N bağ uzunluğu (2,54(6) ve 2,055(6) Å) hakkında da söylenebilir. Cl-Zn-N ve N-Zn-N açıları tetrahedrik değerlere yakındırlar. 105,5–109,8°. Cl—Zn—Cl açısı ise bir o kadar büyümüş durumdadır (119,8)°. DENA moleküllerinin geometrilerinde fazla fark görülmemektedir. Her iki piridin halkası düzlemsel yapıdadır. Ama atomları ortalama düzlemden yeterince sapmaktadırlar (0,1-0,2 Å). Piridin halkalarıyla C=O düzlemleri arasındaki açılar 49 ve 86°'dir. C_{karbonil} ve

N_{amid} düzlemleri arasındaki dihedral açılar daha az farka sahiptir:1,5 ve 7,3°. N_{amid} atomları etrafında bağ koordinasyonları düzleme çok yakındırlar. Bu durumda pirimidal deformasyon olmadığını göstermektedir. N_{amid} atomları etrafındaki bağ açılarının toplamı uygun olarak 358,7° ve359,7°. N-O bağ uzunlukları farklıdır. N— C_{karbonil} 1,34(1) Å, N—C_{etil} bağ uzunlukları1,45-1,48 Å aralığındadır. Tüm bu geometrik özellikler N_{amid} atomundaki δ bağlarının tam *sp3* hibritleşmesinin olmadığının ve N— C_{karbonil} bağını kuvvetlendiren π - π karşılıklı etkileşmenin göstergesidir [79].

Sergenko ve arkadaşları kadmiyum asetatın DENA kompleksinin kristal yapısını çözmüşlerdir ve bu kristalin yapısı monomer yapıdadır. Kompleksin simetri merkezi vardır ve metal-ligand mesafeleri de standart değerlerden pratik olarak pek farklı değildir. Piridin halkaları düzlemseldirler. C_{py} - $C_{karbonil}$ ve $C_{karbonil}$ - N_{amid} bağları etrafındaki açıları 54,19° ve 7,42° dirler. Yapıda ilgi çekici özellik koordine olmuş H₂O molekülünün asetat grubunun oksijen atomlarından oluşturduğu molekül içi ve moleküller arası hidrojen bağlarıdır. O...O bağ uzunluklarının yakın olmasına (2,640 ve 2,678 Å) rağmen molekül içi bağ zayıftır ve eğilmiş durumdadır (O...H 2,1 Å ve O—H...O açısı 132°). Moleküller arası bağ ise doğrusal olup, sağlam yapıdadır (O...H 1,8 Å ve O—H..O açısı 165°) [80].

Şekil 4.24. Cd(CH₃COO)₂(DENA)₂(H₂O) kompleksinin molekül yapısı [80].

 $Cd(C_{10}H_{14}N_2O)(NCS)_2$ kompleksinin kristal yapısı Bigoli ve arkadaşları tarafından incelenerek çözülmüştür. Kompleksin kristal yapısı köprü tiyosiyanat anyonları ve DENA molekülleri ile birbirine bağlanan üç boyutla oktahedron ağlarından olusmaktadır. Cd atomu çevresindeki oktahedron kısmen doforme olmus durumdadır. Oktahedronun köşelerinde, iki NCS anyonunun iki azot, iki NCS anyonunun iki kükürt, organik ligandın bir azot (Py) ve bir oksijen (karbonil) atomları yerleşmişlerdir. İki Cd-NCS bağ uzunlukları hemen hemen biribirine eş değerdedirler. (2,295(4) ve 2,92(6) Å). Fakat Cd-N-C açıları farklılık göstermektedirler.(164,3(4) ve 253,4(4)°). Bu farklılık Cd-NSC bağ uzunluklarında (2,705(5) ve 2,621(3) Å) ve uygun açılarda(Cd-S-C 95,6(2) ve 101,8(2) °) görülmektedir. Cd ve $N_{py}\,$ arasındaki mesafe (Cd ve $N_{py}\,$ 2,355(4) Å) Cd-NCS bağı arasındaki mesafeden daha uzundur. Piridin halkasında C-C bağ uzunlukları 1,378:1,378:1,378:1,375 Å (ortalama C-N 1,333(4) À). Altı atomlu halka tam düzlemsel yapıda değildir. Karşı uçlarında N_{py} ($\Delta = +0,021$ Å) ve $C_{karbonil}$ (Δ = +0,012 Å)' e bağlı atomlar bir düzlem üzerindedir. N_{amid} ' e bağlı atomlarda ise düzlemden sapmalar vardır. Namid' in ortalama düzlemi Ckarbonil düzlemiyle 8.1° oluşturur. Piridin halkası ve amid grubu arasındaki karbon karbon bağı 1,486(5) Å. İki sp³ karbon atomnu arasındaki bağ uzunluklarına daha yakındır. (1.50 Å). C karbonil grubundaki C=O bağ uzunluğu 1,237 (5) Å. Amid azotunun oluşturduğu C-N bağ uzunlukları (Namid - C karbonil 1,341(6) Å, Namid - Cetil 1,45886) Å ve 1,478 (7) Å literatürdeki uygun değerlere uyum sağlamaktadırlar [81].

Şekil 4.25. Cd(DENA)(NCS)₂ kompleksinin molekül yapısı [81].

5. MATERYAL VE METOD

5.1. Materyal

5.1.1. Kullanılan Kimyasal Maddeler

Çalışma Kafkas Üniversitesi Fen Edebiyat Fakültesi Anorganik Kimya Araştırma Laboratuarında gerçekleştirilmiştir. Çalışmada kullanılan kimyasal maddeler Merck ve Aldrich firmalarından temin edilmiş olup, komplekslerin sentezinde; sodyum bikarbonat NaHCO₃, mangan(II)sülfat monohidrat (MnSO₄·H₂O), kobalt(II)sülfat heptahidrat (CoSO₄·7H₂O), nikel(II)sülfat heksahidrat (NiSO₄·6H₂O), bakır(II)sülfat pentahidrat (CuSO₄·5H₂O) çinko(II)sülfat monohidrat (ZnSO₄·H₂O) metal tuzları kullanılmıştır. Ligand olarak ise *p*-Metoksibenzoik asit, nikotinamid, izonikotinamid ve dietilnikotinamid kullanılmıştır.

5.1.2. Kullanılan Aletler

İnfrared (IR) Spektrometresi: MATTSON 1000 FTIR, Siirt Üniversitesi Fen Edebiyat Fakültesi Kimya Bölümü, Siirt.

Elementel Analiz: LECO CHNS 932, İnönü Üniversitesi Merkez Araştırma Laboratuarı, Malatya.

Termik Analiz: Rigaku TG 8110 termik analizatörlü TAS 100 (Azot atmosferi), Hacettepe Üniversitesi Fen Fakültesi Kimya Bölümü, Ankara.

X-Ray Tek Kristal Analizi: Bruker Kappa APEX 2 CCD, Anadolu Üniversitesi Merkez Araştırma Laboratuarı, Eskişehir.

5.2.1. [Co(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂][•]2H₂O (I) kompleksinin sentezi

Kompleks, $CoSO_4$ 7H₂O (2.81 g, 10 mmol)'nin 50 ml su içerisinde ve nikotinamidin (2.44 g, 20 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (3.48 g, 20 mmol)' ın 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde pembe renkli kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak [$Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2$]'2H₂O kompleksi olarak tanımlandı.

X-Ray		:	Şekil 7.1.		
IR (KBr)		:	Ek Şekil 2.		
Termik Analiz	(TG-DTG-DTA)	:	Ek Şekil 14.		
Elementel Ana	aliz	:	$[Co(C_8H_7O_3)_2(C_8H_7O_3)$ 2(C_8H_7O_3)	$C_{6}H_{6}N_{2}O)_{2}(H_{2}O)$	₂] [•] 2H ₂ O (677.52) için
	Teorik	:	C: 49,59	H: 5,018	N : 8,265
	Deneysel	:	C: 49,21	H:4,901	N : 8,169

5.2.2. [Ni(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂][•]2H₂O (II) kompleksinin sentezi

Kompleks, NiSO₄·6H₂O (2.63 g, 10 mmol) 'nin 50 ml su içerisinde ve nikotinamidin (2.44 g, 20 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (3.48 g, 20 mmol)' ın 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde mavi renkli kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak [Ni(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂]·2H₂O kompleksi olarak tanımlandı.

X-Ray	:	Şekil 7.2.		
IR (KBr)	:	Ek Şekil 3.		
Termik Analiz(TG-DTG-DT	A) :	Ek Şekil 15.		
Elementel Analiz	:	[Ni(C ₈ H ₇ O ₃) ₂ (C	$(H_6 N_2 O)_2 (H_2 O)_2$	2] ² H ₂ O (677.28) için
Teorik	:	C : 49,61	H: 5,315	N : 8,268
Deneysel	:	C:49,24	H: 4,852	N : 8,221

5.2.3. [Cu₂(C₈H₇O₃)₄(C₆H₆N₂O)₂(H₂O)₂] (III) kompleksinin sentezi

Kompleks, CuSO₄·5H₂O (2.50 g, 10 mmol)' nin 50 ml su içerisinde ve nikotinamidin (2.44 g, 20 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (3.48 g, 20 mmol)' ın 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde mavi renkli kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak $[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$ kompleksi olarak tanımlandı.

X-Ray	:	Şekil 7.3.		
IR (KBr)	:	Ek Şekil 4.		
Termik Analiz(TG-DTG-DTA)	:	Ek Şekil 16.		
Elementel Analiz	:	$[Cu_2(C_8H_7O_3)_4(0)]$	$C_6H_6N_2O_2(H_2C)$	0) ₂] (1011.93) için
Teorik	:	C:52,17	H : 4,348	N : 5,533
Deneysel	:	C:51,61	H:4,205	N : 5,524

5.2.4. [Zn(C₈H₇O₃)₂(C₆H₆N₂O)₂][•]H₂O (IV) kompleksinin sentezi

Kompleks, $ZnSO_4$ ·H₂O (1.80 g, 10 mmol)' nin 50 ml su içerisinde ve nikotinamidin (2.44 g, 20 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (3.48 g, 20 mmol)' in 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde renksiz kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak [$Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2$]·H₂O kompleksi olarak tanımlandı.

X-Ray	:	Şekil 7.4.		
IR (KBr)	:	Ek Şekil 5.		
Termik Analiz(TG-DTG-DTA)	:	Ek Şekil 17.		
Elementel Analiz	:	$Zn(C_8H_7O_3)_2(C$	$_{6}H_{6}N_{2}O)_{2}]H_{2}O$	(629.92) için
Teorik	:	C: 53,29	H: 4,145	N : 7,595
Deneysel	:	C: 53,34	H:4,445	N : 8,890

5.2.5. Mn[(C₈H₇O₃)₂(H₂O)₂]_n (V) kompleksinin sentezi

Kompleks, MnSO₄·H₂O (1.69 g, 10 mmol)' nin 50 ml su içerisinde ve izonikotinamidin (2.44 g, 20 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (3.48 g, 20 mmol)' ın 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde ten renginde kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak Mn[($C_8H_7O_3$)₂(H_2O)₂]_n kompleksi olarak tanımlandı.

IR (KBr)	:	Ek Şekil 6.		
Termik Analiz(TG-DTG-DTA)	:	Ek Şekil 18.		
Elementel Analiz	:	$Mn[(C_8H_7O_3)_2(H_7O_3))_2(H_7O_3)_2(H_7O_3)_2(H_7O_3)_2(H_7O_3))_2(H_7O_3)_2(H_7O_3))$	$H_2O_2]_n$ (392,93) iç	in
Teorik	:	C:48,86	H:4,58	N : —
Deneysel	:	C:48,56	H:4,427	N : —

5.2.6. [Co(C₈H₇O₃)₂(C₆H₆N₂O)(H₂O)₂] (VI) kompleksinin sentezi

Kompleks, $CoSO_4$ 7H₂O (2.81 g, 10 mmol)' nin 50 ml su içerisinde ve izonikotinamidin (2.44 g, 20 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (3.48 g, 20 mmol)' ın 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde kahverenkli kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak [$Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2$] kompleksi olarak tanımlandı.

X-Ray	:	Şekil 7.5.		
IR (KBr)	:	Ek Şekil 7.		
Termik Analiz(TG-DTG-DTA)	:	Ek Şekil 19.		
Elementel Analiz	:	$[Co(C_8H_7O_3)_2(C_8H_7O_3))$	$C_{6}H_{6}N_{2}O)(H_{2}O)_{2}$	2] (519.36) için
Teorik	:	C:50,83	H: 4.621	N : 5.391
Deneysel	:	C: 50,06	H: 4,511	N : 5,324

5.2.7. [Cu₂(C₈H₇O₃)₄(C₆H₆N₂O)₂][•]H₂O (VII) kompleksinin sentezi

Kompleks, CuSO₄·5H₂O(2.50 g, 10 mmol)' nin 50 ml su içerisinde ve izonikotinamidin (2.44 g, 20 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (3.48 g, 20 mmol)' ın 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde mavi renkli kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak $[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2]$ ·H₂O kompleksi olarak tanımlandı.

IR (KBr)	:	Ek Şekil 8.		
Termik Analiz(TG-DTG-DTA)	:	Ek Şekil 20.		
Elementel Analiz	:	$[Cu_2(C_8H_7O_3)]$	$_{4}(C_{6}H_{6}N_{2}O)_{2}].H_{2}O$ (993,92) için
Teorik	:	C:53,64	H:4,088	N : 5,583
Deneysel	:	C:52,66	H:3,870	N : 4,050

5.2.8. [Zn(C₈H₇O₃)₂(C₆H₆N₂O)₂][•]H₂O (VIII) kompleksinin sentezi

Kompleks, $ZnSO_4$ ·H₂O (1.80 g, 10 mmol)' nin 50 ml su içerisinde ve izonikotinamidin (2.44 g, 20 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (3.48 g, 20 mmol)' ın 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde renksiz kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak [Zn(C₈H₇O₃)₂(C₆H₆N₂O)₂] kompleksi olarak tanımlandı.

IR (KBr)	:	Ek Şekil 9.		
Termik Analiz(TG-DTG-DTA)	:	Ek Şekil 21.		
Elementel Analiz	:	$[Zn(C_8H_7O_3)_2(C$	$_{6}H_{6}N_{2}O)_{2}]H_{2}O$	(629.92) için
Teorik	:	C: 53,34	H: 4,445	N : 8,890
Deneysel	:	C: 54,56	H : 4,237	N : 8,911

5.2.9. $[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ (IX) kompleksinin sentezi

Kompleks, $CoSO_4$ 7H₂O (2.81 g, 10 mmol)'nin 50 ml su içerisinde ve dietilnikotinamid (7.12 g, 10 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (1.74 g, 10 mmol)' ın 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde açık pembe renkli kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak [$Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2$] kompleksi olarak tanımlandı.

IR (KBr)	:	Ek Şekil 10.		
Termik Analiz(TG-DTG-DTA)	:	Ek Şekil 22.		
Elementel Analiz	:	$[Co(C_8H_7O_3)_2(C_3)$	$_{10}H_{14}N_2O)_2(H_2O)_2$	2] (752,93) için
Teorik	:	C : 57,37	H: 6,109	N:7,437
Deneysel	:	C :56,17	H: 5,865	N : 7,385

5.2.10. $[Ni(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ (X) kompleksinin sentezi

Kompleks, NiSO₄ $^{\circ}$ 6H₂O (1.31 g, 5 mmol)' nin 50 ml su içerisinde ve dietilnikotinamid (7.12 g, 10 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (1.74 g, 10 mmol)' ın 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde açık mavi renkli kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak [Ni(C₈H₇O₃)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksi olarak tanımlandı.

IR (KBr)	:	Ek Şekil 11.		
Termik Analiz(TG-DTG-DTA)	:	Ek Şekil 23.		
Elementel Analiz	:	[Ni(C ₈ H ₇ O ₃) ₂ (C	$_{10}H_{14}N_2O)_2(H_2O)_2$] (752,69) için
Teorik	:	C:57,39	H: 6,111	N : 7,439
Deneysel	:	C :56,72	H: 5,942	N : 7,449

5.2.11. [Cu₂(C₈H₇O₃)₄(C₁₀H₁₄N₂O)₂]³H₂O (XI) kompleksinin sentezi

Kompleks, CuSO₄·5H₂O (1.25 g, 5 mmol)' nin 50 ml su içerisinde ve dietilnikotinamid (7.12 g, 10 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (1.74 g, 10 mmol)' ın 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde yeşil renkli kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak $[Cu_2(C_8H_7O_3)_4(C_{10}H_{14}N_2O)_2]$ ·3H₂O kompleksi olarak tanımlandı.

IR (KBr)	:	Ek Şekil 12.		
Termik Analiz(TG-DTG-DTA)	:	Ek Şekil 24.		
Elementel Analiz	:	$[Cu_2(C_8H_7O_3)_4(C_8H_7O_3)$ 0){A_8A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A_7)A_8A	$C_{10}H_{14}N_2O)_2]^{-3}H_2O$	С
Teorik	:	C : 54,68	H: 5,433	N:4,907
Deneysel	:	C :55,30	H: 5,038	N:7,900

5.2.12. $[Zn(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2]$ 'H₂O (XII) kompleksinin sentezi

Kompleks, ZnSO₄·H₂O (0.9 g, 5 mmol)' nin 50 ml su içerisinde ve dietilnikotinamid (7.12 g, 10 mmol) 50 ml su içerisindeki çözeltisiyle sodyum 4-metoksibenzoat (1.74 g, 10 mmol)' ın 100 ml sudaki çözeltisinin reaksiyonundan hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde renksiz kristaller oluştu. Elde edilen kristaller saf suyla yıkanıp kurutularak [Zn(C₈H₇O₃)₂(C₁₀H₁₄N₂O)₂]·H₂O kompleksi olarak tanımlandı.

IR (KBr)	:	Ek Şekil 13.		
Termik Analiz(TG-DTG-DTA)	:	Ek Şekil 25.		
Elementel Analiz	:	$[Zn(C_8H_7O_3)_2(C_{10}]$	$H_{14}N_2O_2$] $H_2O(74)$	41,37) için
Teorik	:	C: 58,27	H : 5,934	N : 7,557
Deneysel	:	C:56,50	H: 5,074	N : 7,564

6. BULGULAR

6.1. Elementel Analiz

İlk kez sentezlenen komplekslerin elementel analiz sonuçları Tablo l' de verilmiştir.

Tablo 1. Komplekslerin elementel analiz	verileri
---	----------

KOMPLEKSLER	9/	бC	%	бH	%	óΝ
	Den.	Teorik	Den.	Teorik	Den.	Teorik
$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{-2}H_2O$	49,21	49,59	4,901	5,018	8,169	8,265
$[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O$	49,24	49,61	4,852	5,315	8,221	8,268
$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$	51,61	52,17	4,205	4,348	5,524	5,533
$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]H_2O$	53,29	54,90	4,145	4,248	7,595	9,151
$[Mn(C_8H_7O_3)_2(H_2O)_2]_n$	48,56	48,86	4,427	4,580	-	-
$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2]$	50,06	50,83	4,511	4.621	5,324	5.391
$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2]^{-}H_2O$	52,66	53,12	3,870	4,225	4,050	5,634
$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]H_2O$	54,56	53,34	4,237	4,445	8,911	8,895
$[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	56,17	57,37	5,865	6,109	7,385	7,437
$[Ni(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	56,72	57,39	5,942	6,111	7,449	7,439
$[Cu_{2}(C_{8}H_{7}O_{3})_{4}(C_{10}H_{14}N_{2}O)_{2}]^{\cdot}3H_{2}O$	55,30	54,68	5,038	5,433	4,900	4,907
$[Zn(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2H_2O]$	56,50	56,88	5,074	6,057	7,564	7,374

6.2. Infrared spekrumu

Sentezlenen komplekslerin IR spektrum eğrileri Ek Şekil 2-14' de verilirken, komplekslerin IR spektrum verileri ise Tablo 2-3' de verilmiştir.

	1	2	2	4	_	(
GRUPLAR	1	2	3	4	5	0
v(OH)	3300-	3300-	3300-	3300-		3400-
V(OII)	3100	3100	3100	3100		3100
v(C=C) _{halka}	1603	1605	1600	1604	1605	1603
$v(COO^{-})_{as}$	1582	1585	1583	1556	1580	1555
<i>v</i> (COO ⁻) _s	1385	1384	1392	1380	1395	1393
Δv	197	201	191	176	185	162
v(NH)	3444	3380	3400	3332		3440
v(C-H) _{halka}	1526	1522	1526	1509	1515	1510
v(C-N) _{py}	1032	1066	1056	1029		1066
v(C-N) _{amid}	1165	1168	1172	1170		1182
v(C=O) _{amid}	1669	1672	1676	1684		1671
v(C-H) _{metil}	2993	2992	2988	2933	2988	2820
v(C-O) _{metok}	1257	1252	1250	1249	1249	1242
v(M-O)	783	784	785	784	891	787
<i>v</i> (M-N)	704	698	693	744	784	698

Tablo2. p-Metoksibenozoik asit komplekslerinin IR spektrum verileri

P						
GRUPLAR	7	8	9	10	11	12
(OII)	3330-	3400-	3400-	3400-		
V(OII)	3100	3100	3220	3120		
v(C=C) _{halka}	1604	1605	1600	1601	1603	1601
v(COO ⁻) _{as}	1557	1552	1541	1540	1530	1530
v(COO ⁻) _s	1393	1385	1388	1390	1403	1390
Δv	164	167	153	150	127	140
v(NH)	3178	3337	3340	3374		
v(C-O) _{metoksi}	1249	1250	1251	1251	1253	1250
v(C-H) _{halka}	1527	1510	1520	1522	1527	1510
v(C-N) _{py}	1025	1065	1036	1035	1056	1066
v(C-N) _{amid}	1170	1169	1169	1168	1170	1168
v(C=O) _{amid}	1691	1684	1630	1632	1629	1625
v(C-H) _{metil}	2971	2930	2920	2920	2920	2900
v(C-H) _{etil}			2988	2988	2987	2988
v(M-O)	783	779	789	786	780	784
<i>v</i> (M-N)	703	697	702	700	697	698

Tablo3. p-Metoksibenozoik asit komplekslerinin IR spektrum verileri

6.3. Termik Analiz

Komplekslerin termik analiz eğrileri (TG, DTG, DTA) Ek Şekil 15-27' de verilirken komplekslerin termik analiz verileri kısaca Tablo 4-16'de özetlenmiştir.

Tablo 4.	[Co(C ₈ H ₇ O ₃) ₂ (C ₆ H ₆	N ₂ O) ₂ (H ₂ O) ₂] 2H	20 (I) kompleksi	inin termik analiz v	erileri	- - -	
Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sic. °C DTA max.	Uzaklaşan Grup	Ağırlık Kaybı % Deneysel – Teorik	Top.Ağırlık Kaybı% Deneysel – Teorik	Katı Bozunma ürünü	Renk
$[Co(C_8H_7O] M A = 677$	$(1)^{3} (C_{6}H_{6}N_{2}O)_{2}(H_{2}O)_{2}]^{2}$	2H ₂ O					pembe
	60 -185	106 (-) 115 (-)	$4H_2O$	10,8-10,6 41 38 - 40-29	Co(C	$(H_7O_3)_2(C_6H_6N_2O)_2$	
7	190-305	209 (-) 273 (-)			Co($C_8H_7O_3)_2$	
ω.	315-380	320 (-)		14.51			
4	390-580	408 (-) 444 (-)		17,59		C00	sivah
S	590-850	648 (-)			90,72-88,94		
Tablo 5. [$[Ni(C_8H_7O_3)_2(C_6H_6]$	N ₂ O) ₂ (H ₂ O) ₂] 2H ₂	20 (II) kompleks	inin termik analiz	/erileri		
Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sic. °C DTA max.	Uzaklaşan Grup	Ağırlık Kaybı % Deneysel – Teorik	Top.Ağırlık Kaybı% Kaı Deneysel – Teorik	ı Bozunma K ürünü	enk
$[Ni(C_8H_7O]$	3) ₂ (C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₂].2 7.28	2H ₂ O					mavi
1	70-160	127 (-)	$3.5 H_2 O$	9,52-9,30	$Ni(C_8H_7C$) ₃) ₂ (C ₆ H ₆ N ₂ O) ₂ 0.5	H_2O
c1 (165-190	179 (+)	$0.5 H_2 O$	1,80-1,46	Ni(C ₈ H ₇ C	$(3)_{2}(C_{6}H_{6}N_{2}O)_{2}$	
n 4	270-320	299 (-) 299 (-)	1.5(C,H,N,O)	4,05 32.82-33.62	Ni(C ₆ H-	O_2	
ŝ	325-430	345 (-)		31,38		7/0	
		409 (-)			89,12-88,97	NiO s	iyah

Tablo 6. [$Cu_2(C_8H_7O_3)_4(C_6H$	$[_{6}N_{2}O)_{2}(H_{2}O)_{2}]$ (III) kompleksinir	termik analiz veril	eri		
Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sic. °C DTA max.	Uzaklaşan Grup	Ağırlık Kaybı % Deneysel – Teorik	Top.Ağırlık Kaybı Deneysel – Teorik	% Katı Bozunma ürünü	Renk
$\begin{bmatrix} Cu_2(C_8H_7O) \\ M.A = 101. \\ 1 \\ 2 \end{bmatrix}$	$^{3,1}(C_6H_6N_2O)_2(H_2O)_2]$ 1,93 110 -180 190-330	157 (-) 226(-) 263(-)	2H ₂ O	3,82-3,55 72,47	Ŭ	$_{1_2}(C_8H_7O_3)_4(C_6H_6N_2O_3)_4(C_6H_6N_$	mavi)2
					82,76 -82,32	Cu ₂ O+CuO	siyah
Tablo 7. [$Zn(C_8H_7O_3)_2(C_6H_6)$	N2O)2] H2O (IV)	kompleksinin ter	mik analiz verileri			
Bileşik	Sıcaklık Aralığı °C	Max.Boz.Stc. °C DTA max.	Uzaklaşan Grup	Ağırlık Kaybı % Deneysel – Teorik	Top.Ağırlık Kaybı% Deneysel – Teorik	Katı Bozunma ürü	Renk
$\frac{Zn(C_8H_7O_3)}{M_1A = 629}$	h ₂ (C ₆ H ₆ N ₂ O) ₂]H ₂ O					If	nksiz
1 2	110-180 190-290	172 (-) 210 (-) (C 267 (-) (C	$\mathrm{H_2O}_{\mathrm{5}\mathrm{H_6N_2O})_2}$	2,43-2,85 39,02-39,87	Zn(C ₈ H ₇ O ₃) ₂ (C ₆ H ₆ N ₂ O) ₂ Zn(C ₈ H ₇ O ₃) ₂	
ω4	295-420 510-580	270 (-) 380 (-) 560 (-)		19,49 7,97			
					83,48-87,07	ZnO	siyah

Tablo 8.	[Mn(C ₈ H ₇ O ₃) ₂ (H ₂ C	O)2]n (V) komplek	csinin termik ana	ıliz verileri			
Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sic. °C DTA max.	Uzaklaşan Grup	Ağırlık Kaybı % Deneysel – Teorik	Top.Ağırlık Kayb Deneysel – Teori	% Katı Bozunm k ürünü	a Renk
$Mn(C_8H_7O)$ $M.A = 39$ 1 2 3	³ , ³ , ² (H ₂ O) ₂ J _n 2,93 65-175 260-410 415-570	140 (-) 365 (-) 458 (-)	2H ₂ O C ₈ H ₇ O ₃	9,75 - 9,16 36,86 - 38,42 21,77	2	$(C_8H_7O_3)_2$	en rengi
					72,35-70,88	MnO+ MnO ₂	siyah
Tablo 9.	$[Co(C_8H_7O_3)_2(C_6H_1)$	₆ N ₂ O)(H ₂ O) ₂] (VI) kompleksinin t	ermik analiz veri	leri		
Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sic. °C DTA max.	Uzaklaşan Grup Do	Ağırlık Kaybı % eneysel – Teorik	Top.Ağırlık Kaybı% Deneysel – Teorik	Katı Bozunma ürünü	Renk
$[[Co(C_8H_7)] M.A = 51$	$O_3)_2(C_6H_6N_2O)(H_2O)_2]$ 9.36					k.	lhverengi
0 7 J	60-170 210-260 275-285	129 (-) 142 (-) 273 (-)	$2H_2O$	6,71- 6,93 7,76 16,82	[Co(C	H ₇ O ₃) ₂ (C ₆ H ₆ N ₂ O)	
4 v	290-430 440-480	339 (-) 381 (-) 466 (-)		27,16 3,42 16,97			
9	490-640	563 (-)			83,95-85,57	CuO	siyah

Tablo 10	. [Cu ₂ (C ₈ H ₇ O ₃) ₄ (C ₆	H ₆ N ₂ O) ₂] [.] H ₂ O (V	TI) kompleksinin	ı termik analiz veril	eri		
Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sic. °C DTA max.	Uzaklaşan Grup	Ağırlık Kaybı % Deneysel – Teorik	Top.Ağırlık Kaybt% Deneysel – Teorik	Katı Bozunma ürünü	Renk
$[Cu_2(C_8H_7)]$ M A = 995	0 ₃) ₄ (C ₆ H ₆ N ₂ O) ₂]·H ₂ O 3 09						mavi
- 0 m	225-270 225-270 275-380	197 (-) 259 (-) 292 (-)	H_2O	2,65-1,81 37,28 -40,50	Cu ₂ (C ₈ Cu	$H_7O_3)_4(C_6H_6N_2O)_2$ $_2(C_8H_7O_3)_3$	
4	385- 540	359 (-)			81,99 -81,587	Cu ₂ O+CuO	siyah
Tablo 11	. [Zn(C ₈ H ₇ O ₃) ₂ (C ₆ F	H ₆ N ₂ O) ₂]·H ₂ O (VI	II) kompleksinin	termik analiz veril	eri		
Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sic. °C	Uzaklaşan Grup	Ağırlık Kaybı % Document Trovit	Top.Ağırlık Kaybı% Kat Dormosi Toput	i Bozunma – K	lenk
		DIA max.	7	neusyset — Teoring	NINGEL - ISOURA	игили	
$[Zn(C_8H_7C] M.A = 62$) ₃) ₂ (C ₆ H ₆ N ₂ O) ₂]·H ₂ O 9,92					ren	ksiz
7 1	60-120 160-290	83 (-) 233 (-) 272 (-)	H ₂ O 2, (C ₆ H ₆ N ₂ O) ₂ 3 ²	,08 - 2,85 4,08 - 39,87	[Zn(C ₈ H ₇ O ₃ [Zn(C,) ₂ (C ₆ H ₆ N ₂ O) ₂] ₈ H ₇ O ₃) ₂	
ω4	295-390 510-590	273 (-) 327 (-) 570 (-)		22,02 11,83			
					83,16 - 87,07 Z	Ou	siyah

Tablo 12.	. [Co(C ₈ H ₇ O ₃) ₂ (C	$_{10}\rm{H}_{14}\rm{N}_{2}\rm{O})_{2}\rm{(H}_{2}\rm{O})_{2}$	(IX) kompleks	iinin termik analiz v	erileri		
Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sic. °C DTA max.	Uzaklaşan Grup	Ağırlık Kaybı % Deneysel – Teorik	Top.Ağırlık Kayb Deneysel – Teori	% Katı Bozu k ürünü	ıma Renk
$[Co(C_8H_7C] M A = 75\%$	$(3)_{3})_{2}(C_{10}H_{14}N_{2}O)_{2}(H_{2}C)_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O$	[2(açık pembe
1	45 -120 135-265	91 (-) 224 (-)	$2H_2O$	3,78 - 4,78 35,52	[Co(i	$C_8H_7O_3$) ₂ ($C_{10}H_{14}$)	I ₂ O) ₂
<i>ω ₹</i>	270-440	305 (-)		32,74 1.02			
4 v	442-520 525-660	438 (-) 559 (-)		4,05 9,80			
					88,39-90,04	CoO	siyah
Tablo 1.	3. [Ni(C ₈ H ₇ O ₃) ₂ (C	$C_{10}H_{14}N_2O)_2(H_2O)_2$	[] (X) kompleks	iinin termik analiz v	erileri		
Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sic. °C U DTA max.	Jzaklaşan Grup L	Ağırlık Kaybı % Deneysel – Teorik	Top.Ağırlık Kaybı% Deneysel – Teorik	Katı Bozunma ürünü	Renk
[Ni(C ₈ H ₇ (açık mavi M A – 75	O_3) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H ₂ O	[2(C					
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	70-185 190-440	135 (-) 261 (-) 301 (-) 316 (-)	2H ₂ O	5,17 - 4,78 80,56	Ni(C	$_{8}H_{7}O_{3}$) ₂ (C ₁₀ H ₁₄ N	0) ₂
		352(-)			88,2-90,07	NiO	siyah

Tablo 14.	. [Cu ₂ (C ₈ H ₇ O ₃) ₄ ($(C_{10}H_{14}N_2O)_2]$ 3H	20 (XI) kompleks	inin termik analiz	verileri		
Bileşik	Sıcaklık Aralığı °C	C Max.Boz.Stc. °C DTA max.	Uzaklaşan Grup	Ağırlık Kaybı % Deneysel – Teorik	Top.Ağırlık Kaybı% Deneysel – Teorik	Katı Bozunma ürünü	Renk
$[Cu_2(C_8H_7C)]$	$O_{3})_{4}(C_{10}H_{14}N_{2}O)_{2}]$. 3.	H_2O					yeşil
1 1 2	+1,02 50-180 185-280	167 (-) 199 (-) (C ₈ F	$3H_2O$ 1_7O_3)($C_{10}H_{14}N_2O$) ₂	4,54 - 4,73 48,84 - 46,63	Cu ₂ (C ₅	$(H_7O_3)_4(C_{10}H_{14}N_2O)$ $Cu_2(C_8H_7O_3)_3$	2
ξ	285-490	216 (-) 292 (-) 517 (-) 807 (-)					
					87,53-86,65	$CuO + Cu_2O$	siyah
Tablo 15.	. [Zn(C ₈ H ₇ O ₃) ₂ (C	$10^{-10} H_1 H_2 O_2 H_2 O_2 H_2 O_1$	(XII) kompleksini	n termik analiz ve	rileri		
Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sic. °C DTA max.	Uzaklaşan Grup Dı	Ağırlık Kaybı % 9 neysel – Teorik	Top.Ağırlık Kaybı% Deneysel – Teorik	Katı Bozunma ürünü	Renk
$Zn (C_8H_7C)$ $M.A = 741$	$(1, 3)_{2}(C_{10}H_{14}N_{2}O)_{2}H_{2}O_{1}$	[0				renksi	z
- 7	90 -160 170-265	118 (-) 218 (-)	H ₂ O C10H14N5O	1,84 -2,40 24,14-24,04	[Z]	n $(C_8H_7O_3)_2(C_{10}H_{14})$ n $(C_8H_7O_3)_2(C_{10}H_{14})$	N ₂ O) ₂] N ₂ O)
ю	270-390	298 (-)	$C_{10}H_{14}N_2O$	25,02-24,04			I
4 1	395-440	417 (-)		10,39			
0 0	440- 530 535-640	(-) 11c 567 (-)		9,05 9,16			
					89 02 - 89 21	ZnO	siyah

7. TARTIŞMA

7.1. p-metoksibenzoat Komplekslerinin IR ve Termik Analiz Verilerinin Yorumu

İlk kez sentezlenen 12 adet *p*-metoksibenzoik asit komplekslerinde metal : *p*-metoksibenzoik asit : nikotinamid oranlarının 1 : 2 : 2, izonikotinamidli komplekslerde **VIII** nolu komplekste 1 : 2 : 2 olup diğerlerinde 1 : 2 : 1 ve dietilnikotinamidli komplekslerde ise **XI** nolu komplekste 1 : 2 : 1 olup diğerlerinde 1 : 2 : 2 oldukları bulunmuştur.

$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^{-2}H_2O$	(I)
$[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O$	(II)
$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$	(III)
$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]^{-}H_2O$	(IV)
$[Mn(C_8H_7O_3)_2(H_2O)_2]_n$	(V)
$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2]$	(VI)
$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2]$ H ₂ O	(VII)
$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ H ₂ O	(VIII)
$[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(IX)
$[Ni(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(X)
$[Cu_2(C_8H_7O_3)_4(C_{10}H_{14}N_2O)_2]^{-3}H_2O$	(XI)
$[Zn(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2]$ ·H ₂ O	(XII)

Sentezlenen bileşiklerin IR spektrumları KBr tabletleri halinde alınmış ve spektrumlarında ortaya çıkan karakteristik pikler değerlendirilerek yeni bileşiklerin yapı aydınlatılmasında kullanılmıştır, pik değerleri Tablo 2-3' de verilmiştir.

p-Metoksibenzoik asit komplekslerinin IR spektrumları Ek Şekil 2-14' de görülmektedir. *p*-Metoksibenzoik asit-nikotinamid (**I-IV**) komplekslerinde karbonil grubu (C=O) için soğurma bantları asit için 1686 cm⁻¹ (Ek Şekil 1) iken komplekslerde ise asimetrik ve simetrik COO⁻ titreşimleri 1582 cm⁻¹-1385 cm⁻¹ **I**, 1585 cm⁻¹-1384 cm⁻¹ **II**, 1583 cm⁻¹-1392 cm⁻¹ **III**, 1556 cm⁻¹-1380 cm⁻¹ **IV** alanlarında valans titreşimlere

denk geldiği görülmektedir. Asimetrik ve simetrik COO⁻ titreşimleri arasındaki fark komplekslerde 197cm⁻¹ I, 201 cm⁻¹ II, 191 cm⁻¹ III, 176cm⁻¹ IV olarak hesaplanmıştır. *p*-Metoksibenzoik asit-izonikotinamid (V-VII) komplekslerinde karbonil grubu (C=O) için asimetrik ve simetrik COO⁻ titreşimleri sırasıyla 1580 cm⁻¹-1395 cm⁻¹ V, 1555 cm⁻¹ ¹-1393 cm⁻¹ **VI**, 1557 cm⁻¹-1393 cm⁻¹ **VII**, 1552cm⁻¹-1385 cm⁻¹ **VIII** alanlarında valans titreşimlere denk geldiği görülmektedir. Komplekslerin asimetrik ve simetrik COO titreşimleri arasındaki fark 185 cm⁻¹ V, 162 cm⁻¹ VI, 164 cm⁻¹ VII, 167 cm⁻¹ VIII olarak hesaplanmıştır. *p*-Metoksibenzoik asit-dietilnikotinamid (IX-XII) komplekslerinde karbonil grubu (C=O) için asimetrik ve simetrik COO⁻ titreşimleri 1541 cm⁻¹-1388 cm⁻¹ **IX**, 1540 cm⁻¹-1390 cm⁻¹ **X**, 1530 cm⁻¹-1403 cm⁻¹ **XI**, 1530 cm⁻¹-1390 cm⁻¹ XII alanlarında valans titreşimlere denk geldiği görülmektedir. Komplekslerin asimetrik ve simetrik COO⁻ titresimleri arasındaki fark 153 cm⁻¹ **IX**, 150 cm^{-1} **X**, 127 cm^{-1} **XI**, 140 cm^{-1} **XII** olarak hesaplanmıştır.

Nikotinamid, izonikotinamid ve dietilnikotinamidin karbonil grupları sırasıyla 1669 cm⁻¹ I , 1672 cm⁻¹ II, 1676 cm⁻¹ III, 1684 cm⁻¹ IV, 1671 cm⁻¹ VI, 1691 cm⁻¹ VII, 1684 cm⁻¹ VIII, 1630 cm⁻¹ IX, 1632 cm⁻¹ X, 1629 cm⁻¹ XI, 1625 cm⁻¹ XII alanlarında kuvvetli valans titreşimlere denk geldiği görülmektedir.

Piridin halkasının C-N grubunun absorpsiyon bantları sırasıyla 1032 cm⁻¹ I, 1066 cm⁻¹ II, 1056 cm⁻¹ III, 1029 cm⁻¹ IV, 1066 cm⁻¹ VI, 1025 cm⁻¹ VII, 1065 cm⁻¹ VIII, 1036 cm⁻¹ IX, 1035 cm⁻¹ X, 1056 cm⁻¹ XI, 1066 cm⁻¹ XII alanlarında pikleri verdiği saptanmıştır.

N-H gerilme pikleri sırasıyla 3444 cm⁻¹ I, 3380 cm⁻¹ II, 3400 cm⁻¹ III, 3332 cm⁻¹ IV, 3340 cm⁻¹ VI, 3178 cm⁻¹ VII, 3337 cm⁻¹ VIII, 3340 cm⁻¹ IX, 3374 cm⁻¹ X titreşim frekanslarında ortaya çıkarken V nolu kompleksde NH₂ grubu olmadığından N-H piki doğal olarak görülmemekte, fakat XI ve XII nolu komplekslerde N-H pikleri görülmemesine rağmen elementel analiz ve termik analiz verileri bu komplekste NH₂ grubunun varlığını ortaya koymaktadır.

Komplekslerin C-H titreşim frekansları 1526 cm⁻¹ I, 1522 cm⁻¹ II, 1526 cm⁻¹ III, 1509 cm⁻¹ IV, 1515 cm⁻¹ V, 1510 cm⁻¹ VI, 1527 cm⁻¹ VII, 1510 cm⁻¹ VIII, 1520 cm⁻¹ IX, 1522 cm⁻¹ X, 1527 cm⁻¹ XI, 1510 cm⁻¹ XII alanlarında görülmektedir.

Komplekslerin asit molekülündeki CH₃ gruplarının titreşim frekansları 2820-2988 cm⁻¹ aralığında valans titreşimlerini verirler. **IX, X, XI, XII** nolu komplekslerdeki dietilnikotinamid molekülündeki C₂H₅ gruplarının titreşim frekansları 2987-2988 cm⁻¹ aralığında valans titreşimleri olarak görülmektedir. Komplekslerin aromatik halka titreşimleri 1600-1605 cm⁻¹ aralığında görülmektedir. Kompleklerin M-O absorpsiyon bantları 779-891 cm⁻¹ aralığında görülüyorken, M-N bağlanmaları 693-704 cm⁻¹ aralığında valans titreşimleri vermektedir. Kompleklerin yapısındaki suyun varlığı 3400-2800 cm⁻¹ aralığında –OH pikinin kuvvetli ve geniş bant şeklinde görülmesiyle ortaya çıkmaktadır.

Termik analiz sonuçlarına göre; komplekslerden öncelikle su moleküllerinin uzaklaştığı ve bozunmadan sonra geriye kalan ürünlerin metaller ve metal oksitlerin olduğu belirlenmiştir.

I kompleksinin DTG eğrisi incelendiğinde (Ek Şekil 15) 106, 115, 209, 273, 320, 408, 444, 648 °C maksimum sıcaklıklara karşılık gelen beş adet bozunma basamağı görülmektedir. 60-185 °C sıcaklık aralığında kompleks dört mol suyunu kaybeder (teorik:10,6-deneysel:10,8). Suyunu kaybeden kompleksin yapısındaki organik ligandların bozunması dört basamakta gerçekleşmektedir. Kompleksten bozunmalar sonucu geriye CoO kaldığı düşünülmektedir (Tablo 4).

II kompleksinin DTG eğrisi incelendiğinde (Ek Şekil 16) 127, 179, 250, 299, 345, 409 °C maksimum sıcaklıklara karşılık gelen beş adet bozunma basamağı görülmektedir. 70-160 °C sıcaklık aralığında birinci basamakta kompleks üç buçuk mol (teorik:9,30-deneysel:9,52), 170-190 °C sıcaklık aralığında ikinci basamakta yarım mol suyunu kaybeder (teorik:1,46-deneysel:1,80). Suyunu kaybeden kompleksin yapısındaki organik ligandların bozunması üç basamakta gerçekleşmektedir. Kompleksten bozunmalar sonucu geriye NiO kaldığı düşünülmektedir (Tablo 5).

III kompleksinin DTG eğrisi incelendiğinde (Ek Şekil 17) 157, 226, 263 °C maksimum sıcaklıklara karşılık gelen iki adet bozunma basamağı görülmektedir. 110-180 °C sıcaklık aralığında kompleks iki mol suyunu kaybeder (teorik:3,55-deneysel:3,82). Suyunu kaybeden kompleksin yapısındaki organik ligandların bozunması tek basmakta 180-900 °C aralığında gerçekleşir. Kompleksten bozunmalar sonucu geriye CuO ve Cu₂O kaldığı düşünülmektedir (Tablo 6).

IV kompleksinin DTG eğrisi incelendiğinde (Ek şekil 18) 172, 210, 380, 560 °C maksimum sıcaklıklara karşılık gelen dört adet bozunma basamağı görülmektedir. 118-180 °C sıcaklık aralığında kompleks bir mol suyunu kaybeder (teorik:2,85deneysel:2,43). (Kompleks X-Ray analizinde $[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ olarak tanımlanmıştır. Bu durum kompleks içerisinde iki farklı kristalin varlığını ortaya koymaktadır) Suyunu keybeden kompleksin yapısındaki organik ligandların bozunması üç basamakta gerçekleşir. Kompleksten bozunmalar sonucu geriye ZnO kaldığı düşünülmektedir (Tablo7).

V kompleksinin DTG eğrisi incelendiğinde (Ek Şekil 19) 140, 365, 458 °C maksimum sıcaklıklara karşılık gelen üç adet bozunma basamağı görülmektedir. 65-175 °C sıcaklık aralığında kompleks iki mol suyunu kaybeder (teorik:9,16-deneysel: 9,75). Sonraki iki basamakta ise kompleksin yapısındaki MOBA' in bozunması gerçekleşir. Bozunmalar sonucu kompleksten geriye MnO₂ ve MnO kaldığı düşünülmektedir (Tablo 8).

VI kompleksinin DTG eğrisi incelendiğinde (Ek Şekil 20) 129, 142, 273, 339, 381, 466, 563 °C maksimum sıcaklıklara karşılık gelen altı adet bozunma basamağı görülmektedir. İlk basamakta 60-170 °C sıcaklık aralığında kompleks iki mol suyunu kaybeder (teorik:6,93-deneysel:6,71). Sonraki beş basamakta kompleksin organik ligandlarının bozunması gerçekleşir. Kompleksten bozunmalar sonucu geriye CoO kaldığı düşünülmektedir (Tablo 9).

VII kompleksinin DTG eğrisi incelendiğinde (Ek Şekil 21) 197, 259, 292, 359, 767 °C maksimum sıcaklıklara karşılık gelen dört adet bozunma basamağı görülmektedir. İlk basamakta 180-220 °C sıcaklık aralığında kompleks bir mol suyunu kaybeder (teorik:

1,81-deneysel: 2,65). Sonraki üç basamakta kompleksin organik ligandlarının bozunması gerçekleşir. Kompleksten bozunmalar sonucu geriye CuO ve Cu₂O kaldığı düşünülmektedir (Tablo10).

VIII kompleksinin DTG eğrisi incelendiğinde (Ek Şekil 22) 83, 233, 272, 273, 327, 570 °C maksimum sıcaklıklara karşılık gelen dört bozunma basamağı görülmektedir. İlk basamakta 60-120 °C sıcaklık aralığında kompleks bir mol suyunu kaybeder (teorik:2,85-deneysel:2,08). Sonraki üç basamakta kompleksin organik ligandlarının bozunması gerçekleşir. Kompleksten bozunmalar sonucu geriye ZnO kaldığı düşünülmektedir (Tablo 11).

IX komplekisinin DTG eğrisi incelendiğinde (Ek şekil 24) 91, 224, 305, 458, 559 °C maksimum sıcaklıklara karşılık gelen beş bozunma basamağı görülmektedir. 45-120 °C sıcaklık aralığında kompleks iki mol suyunu kaybeder (teorik:4,78 -deneysel:3,78). Suyunu kaybeden kompleksin yapısındaki organik ligandların bozunması dört basamakta gerçekleşmektedir. Kompleksten geriye CoO kaldığı düşünülmektedir (Tablo 13).

X kompleksinin DTG eğrisi incelendiğinde (Ek Şekil 25) 135, 261, 301, 316, 352 °C maksimum sıcaklıklara karşılık gelen iki bozunma basamağı görülmektedir. 70-185 °C sıcaklık aralığında kompleks iki mol suyunu kaybeder (teorik:4,78-deneysel:5,17). Sonraki basamakta kompleksin organik ligandları birlikte bozunur. Kompleksten geriye NiO kaldığı düşünülmektedir (Tablo 14).

XI kompleksinin DTG eğrisi incelendiğinde (Ek şekil 26) 167, 199, 216, 292, 517, 807 °C maksimum sıcaklıklara karşılık gelen üç bozunma basamağı görülmektedir. 50-180 °C sıcaklık aralığında kompleks üç mol suyunu kaybeder (teorik: 4,73-deneysel: 4,54). Sonraki iki basamakta kompleksin yapısındaki organik ligandların bozunması gerçekleşir. Kompleksten geriye CuO, CuO₂ kaldığı düşünülmektedir (Tablo 15).

XII kompleksinin DTG eğrisi incelendiğinde (Ek Şekil 27) 118, 218, 298, 417, 511, 567 °C maksimum sıcaklıklara karşılık gelen altı bozunma basamağı görülmektedir. İlk

basamakta 90-160 °C sıcaklık aralığında kompleks bir mol suyunu kaybeder (teorik:2,40-deneysel:1,84). Sonraki basamaklarda kompleksin organik ligandlarının bozunması gerçekleşir. Bozunmalar sonucu kompleksten geriye ZnO kaldığı düşünülmektedir (Tablo 16).

Sulu komplekslerin dayanıklılığı aşağıdaki sıraya göre değişmektedir:

 $VII > IV > XI > III > V > X > VI \ > II > XII > I > IX > VIII$

7.2. Komplekslerin Yapıları

7.2.1. [Co(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂]⁻2H₂O (I) Kompleksi

Diaquabis(4-metoksibenzoato)bis(nikotinamid)kobalt(II)dihidrat bileşiği mononükleer bir komplekstir. Co(II) iyonu kristalografik inversiyon merkezine (tersinmiş merkez) yerleşmiştir. Asimetrik birim bir 4-metoksibenzoat (PMOB) anyonu, bir nikotinamid ligandı ve bir koordine olmamış su molekülü içerir. Bütün ligandlar monodentattır.

Dört O atomu (O1, O5 ve simetrik bağımlı atomlar, O1', O5') ekvatoryal düzlem içerisinde Co(II) iyonu etrafında hafif tahrif olmuş kare düzlem şeklini alıyorken, hafif tahrif olunmuş oktahedral koordinasyon, aksiyal pozisyondaki NA ligandının iki N atomuyla (N1, N1') tamamlanır (Şekil 7.1.). C1—O1[1.2698 (14) Å] ve C1—O2 [1.2626 (15) Å] (Ek Tablo 2) bağlarının yakın değere sahip olmaları lokalize olmuş bir ve iki bağdan ziyade karboksilat grup içerisindeki delokalize bağ düzeninin belirtileridir. Co—O bağlarının ortalama uzunluğu 2.0895 (9) Å' dur (Ek tablo 2) ve Co(II) iyonu (O1/C1/O2) karboksilat grubunun en küçük kare düzleminden 0.8407 Å sapmış durumdadır. Düzlemsel karboksilat grubuyla A benzen halkası (C2—C7) arasındaki dihedral açı 6.47 (7)°' dir. A ve B (N1/C9—C13) halkaları arasındaki dihedral açı ise 72.80(4)° ' dur. O—H...O molekül dahil hidrojen bağı koordine olmamış su molekülünü karboksilat gruplarından birine bağlamaktadır. Kristal yapıda üç boyutlu bir ağ içerisinde moleküller, molekül içi O—H...O, N—H...O ve C—H...O hidrojen bağlarıyla birbirine bağlanır (Ek Tablo3).

Şekil 7.1. $[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]$ ²H₂O kompleksinin kristal yapısı [82].

[Co(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂]⁻2H₂O kompleksinin kristal verileri: M_A = 677.52 g/mol, kristal sistemi triklinik, kristal rengi pembe, uzay grubu P1 olan bileşiğin birim hücre parametreleri *a* = 8.1568 (2) Å, *b* = 9.7502 (2) Å, *c* = 10.0700 (3) Å, *a* = 101.151 (3)°, β = 91.796 (2)°, γ = 106.043 (3)°, *V* = 752.09 (4) Å³, *Z* = 1, Mo *Ka* radyasyonu, μ = 0.64 mm⁻¹, T = 100 K [82].

7.2.2. [Ni(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂][•]2H₂O (II) Kompleksi

Diaquabis(4-metoksibenzoato-*kO*)bis(nikotinamid)nikel(II)dihidrat bileşiği

mononükleer bir komplekstir, Ni(II) iyonu simetri merkezinde yerleşmiştir. Asimetrik birim bir 4-metoksibenzoat anyonu, bir nikotinamid ligandı, bir koordine olunmuş ve bir koordine olmamış su molekülünden meydana gelmiştir. Bütün ligandlar monodentattır.

Ekvatoral düzlem içindeki dört oksijen atomu (O1, O5 ve simetrik bağımlı atomlar O1', O5') Ni(II) iyonu çevresinde hafif bozulmuş kare düzlemsel çevre oluşturuyorken, hafif bozulmuş oktahedral koordinasyon aksiyal pozisyondaki nikotinamid ligandının iki N

atomuyla (N1, N1') tamamlanır. Karboksilat grubunda C1—O1 [1.2681 (15) Å] ve C1—O2 [1.2644 (16) Å] (Ek Tablo 5) bağ uzunluklarının çok yakın değerlere sahip olması lokalize olmuş tek ve çift bağlardan ziyade delokalize olmuş bağ yapıları göstermektedir. Ni—O bağlarının ortalama uzunluğu 2.0633(9) Å' dur (Ek Tablo 5) ve Ni(II) iyonu (O1/C1/O2) karboksilat grubunun en küçük kare düzleminden 0.7794(1) Å sapmış durumdadır. Düzlemsel karboksilat grubuyla A(C2—C7) benzen halkası arasındaki dihedral açı 7.2(1)° iken, A ve B(N1/C9—C13) halkaları arasındaki dihedral açı 72.80(4)°'dir. Molekül içi O—H...O hidrojen bağı koordine olmamış su molekülünü karboksilat gruplarından birine bağlamaktadır.

Kristal yapıda moleküller arası O—H...O, N—H...O, C—H...O hidrojen bağları üç boyutlu örgü içerisinde molekülleri birbirine bağlamaktadır (Ek Tablo 6).

Şekil 7.2. $[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O$ kompleksinin kristal yapısı [83].

[Ni(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂]²H₂O kompleksinin kristal verileri: M_A = 677.28 g/mol, kristal sistemi triklinik, kristal rengi mavi, uzay grubu P1 olan bileşiğin birim hücre parametreleri a = 8.1279 (2) Å, b = 9.7006 (2) Å, c = 10.0636 (3) Å, a = 101.637 (3)°, $\beta = 91.634$ (2)°, $\gamma = 105.137$ (3)°, V = 747.42 (4) Å³, Z = 1, Mo Ka radyasyonu, $\mu = 0.72 \text{ mm}^{-1}$, T = 100 K [83].
7.2.3. [Cu₂(C₈H₇O₃)₄(C₆H₆N₂O)₂(H₂O)₂] (III) Kompleksi

Di- μ -nikotinamidbis[aquabis(4-metoksibenzoato- κO)bakır(II)] bilesiği bir kristalografik merkez çevresine yerleşmiş dimerik birimlerden ve iki Cu katyonu, dört 4metoksibenzoat anyonu, iki nikotinamid ligandı ve iki su molekülünden meydana gelmiştir. Her iki Cu(II) merkezi, tahrif olmuş kare piramidal çevre ile beş koordineli durumdadır ve iki monomerik birim simetri merkezi etrafında iki nikotinamid ligandıyla köprülenmistir. Cu1...Cu1ⁱ (simetri kodu: (i) 2 - x, -y, 1 - z) arasındaki mesafe 7.1368 (3) Å' dur. Cu—O bağları arasındaki ortalama mesafe 2.0626 (10) Å' dur (Ek Tablo 8) ve Cu atomu (O1/C1/O2) ve (O4/C9/O5) karboksilat gruplarının kare düzlemlerinden sırasıyla 0.0015 (2) ve -0.2589 (2) Å sapmış durumdadır. Düzlemsel karboksilat gruplarıyla komşu benzen halkaları A(C2-C7) ve B(C10-C15) arasındaki dihedral acı sırasıyla 1.85 (5) ve 10.16 (7)°'dir. A, B halkaları ve C(N1/C17–C21) arasındaki dihedral açılar sırasıyla A/B = 28.50 (4), A/C = 81.64 (4), B/C = 58.50 (4)°'dir. Kristal yapıda moleküller arası O-H...O ve N-H...O hidrojen bağları vasıtasıyla moleküller katmanlar oluşturuyorlar (Ek Tablo 9). Benzen halkaları arasında ve piridin halkaları arasında π - π etkileşimleri (Cg2—Cg2ⁱ ve Cg3—Cg3ⁱⁱ, [simetri kodu : (i) 2 - x, 2 - y, -z; (ii) 1 - x, 2 - y, -z; Cg2 ve Cg3 B(C10-C15) ve C(N1/C17-C21) halkalarının ağırlık merkezleridir, merkezler arasındaki mesafe sırasıyla 3.801(1) ve 3.653(1)°] yapıyı daha dayanıklı hale getirir.

[Cu₂(C₈H₇O₃)₄(C₆H₆N₂O)₂(H₂O)₂] kompleksinin kristal verileri: M_A = 1011.93 g/mol, kristal sistemi monoklinik, kristal rengi mavi, uzay grubu P2_{1/n} olan bileşiğin birim hücre parametreleri a = 14.1707 (3) Å, b = 8.4319 (2) Å, c = 18.0225 (3) Å, $\beta = 95.847$ (2)°, V = 2142.23 (8) Å³, Z = 2, Mo K α radiation, $\mu = 1.07$ mm⁻¹, T = 100 K [84]

Şekil 7.3. [$Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2$] kompleksinin kristal yapısı [84].

7.2.4. [Zn(C₈H₇O₃)₂(C₆H₆N₂O)₂] (IV) Kompleksi

Bis(4-metoksibenzoato)*kO*bis(nikotinamid)çinko(II) bileşiği monomerik bir komplekstir, onun asimetrik birimleri kristalografik olarak bağımsız üç molekül içermektedir. Zn(II) merkezleri biri monodentat, diğeri bidentat olan iki 4metoksibenzoat ligandlarının üç O atomları, nikotinamid ligandlarının N atomlarıyla koordine olmuş durumdadır. Böylece bütün bağımsız moleküller bozulmuş trigonalbipramidal geometri içerisinde beş koordinelidir.

[Zn(C₈H₇O₃)₂(C₆H₆N₂O)₂] bileşiğinde Zn—O bağlarının ortalama uzunluğu 2.1387 (12) Å' dur (Ek Tablo 14) ve Zn atomları karboksilat grubunun kare düzleminden sapmaktadırlar: Zn1 atomu (O1/C1/O2) ve (O4/C9/O5) düzlemlerinden sırasıyla -0.0684 (2) Å ve -0.1173 (2) Å, Zn2 atomu (O9/C29/O10) ve (O12/C37/O13) düzlemlerinden sırasıyla -0.0104 (2) Å ve 0.1363 (2) Å, Zn3 atomu (O17/C57/O18) ve (O20/C65/O21) düzlemlerinden sırasıyla 0.0517 (2) ve -0.0728 (2) Å sapmaktadır (Ek Tablo 13). Düzlemsel karboksilat grupları ve komşu A(C2-C7), B(C10-C15), E (C30— C35), F (C38—C43), I (C58—C63) ve J(C66—C71) benzen halkaları arasındaki dihedral açılar sırasıyla 4.72 (8), 5.90 (15), 1.88 (13), 1.44 (9), 3.66 (9) ve 9.14 (12)°, iken A, B, C (N1/C17—C21), D (N3/C23—C27), E, F, G (N5/C45—C49), H (N7/C51—C55), I, J, K (N9/C73—C77) ve L(N11/C79—C83); halkaları arasındaki dihedral açılar A/B = 83.56 (6), A/C = 20.47 (6), A/D = 79.71 (5), B/C = 82.66 (5), B/D = 14.74 (5), C/D = 74.07 (5), E/F = 80.00 (6), E/G = 69.70 (5), E/H = 21.71 (5), F/G = 10.67 (5), F/H = 77.31 (6), G/H = 66.72 (5), I/J = 79.56 (6), I/K = 24.86 (5), I/L = 83.23 (5), J/K = 71.13 (6), J/L = 5.72 (6) ve K/L = 72.72 (6) °' dir.

 $[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ kompleksinde O1—Zn1—O2, O9—Zn2—O10 ve O17— Zn3—O18 açıları sırasıyla 57.53 (5)°, 56.19 (5) ve 59.04 (4)°' dir.

Kristal yapıda molekül içi C—H...O ve moleküller arası N—H...O hidrojen bağları molekülleri üç boyutlu örgü içerisinde birbirine bağlamaktadır (Ek Tablo 15). Piridin halkaları arasında ve piridin ile benzen halkaları arasında π - π etkileşimleri {Cg4—Cg12ⁱ ve Cg4—Cg2ⁱⁱ merkezleri [simetrik kodlar: (i) x - 1, y + 1, z, (ii) 1 - x, 1 - y, 1 - z,] Cg2, Cg4 ve Cg12 B (C10—C15), D (N3/C23—C27) and L (N11/C79—C83) halkalarının ağırlık merkezidir; ağırlık merkezleri arasındaki mesafeler sırasıyla 3.7655 (9) ve 3.8453 (10) Å} yapının dengesini sağlamaktadır.

Şekil 7.4. $[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ kompleksinin kristal yapısı [85].

[Zn(C₈H₇O₃)₂(C₆H₆N₂O)₂] kompleksinin kristal verileri M_A = 611.92 g/mol, kristal sistemi triklinik, kristal rengi renksiz, uzay grubu P1 olan bileşiğin birim hücre parametreleri a = 10.6828 (2) Å, b = 16.6230 (3) Å, c = 23.8011 (4) Å, $\alpha = 77.050$ (2)°, $\beta = 85.654$ (3)°, $\gamma = 78.526$ (2)°, V = 4034.63 (13) Å³, Z = 6, Mo K α radyasyonu, $\mu = 0.97$ mm⁻¹, T = 100 K [85].

7.2.5. [Co(C₈H₇O₃)₂(C₆H₆N₂O)(H₂O)₂ (VI) Kompleksi

Diaqua(izonikotinamid)- κN^{l} (4-metoksibenzoato- $\kappa^{2}O, O'$)(4-metoksibenzoato-

 κO)kobalt(II) bileşiği monomerik bir komplekstir. Co(II) iyonu iki metoksibenzoat anyonu, bir izonikotinamid ligandı ve iki koordine olmuş su molekülü tarafından çevrelenmiş durumdadır. Metoksibenzoat anyonlarının birisi bidentat ligand olarak işlev görürken diğeri monodentattır. Komplekste ekvatoryal düzlem içerisinde dört adet O atomu (O1, O2, O5 ve O9) Co1 çevresinde büyük ölçüde bozulmuş kare düzlemsel yapı şeklindeyken, bozulmuş oktahedral koordinasyon geometrisi, eksen pozisyondaki ikinci su molekülünün oksijen (O8) atomuyla ve izonikotinamidin azot atomuyla (N1) tamamlanır. Co—O bağının ortalama uzunluğu 2.1171 (12) Å'dur (Ek Tablo 11) ve Co atomu (O1/C1/O2) ve (O4/C9/O5) karboksilat gruplarının en küçük kare düzlemsel yapısından sırasıyla -0.0061 (2) Å, -0.5367 (2) Å sapmış durumdadır (Ek Tablo 10). Düzlemsel karboksilat grubu ve komşu A(C2—C7) ve B(C9—C14) benzen halkaları arasındaki dihedral açı sırasıyla 12.12 (12)° ve 9.26 (13)°'dir (Ek Tablo 11). A, B halkaları ve C(N1/C17—C21) arasındaki dihedral açılar A/B = 78.18(14), A/C = 74.20(5) ve B/C = $6.23(5)^{\circ}$ ° dir. Monodentat koordine olmuş karboksilat grubu ve koordine olmuş su molekülü ile molekül içi hidrojen bağı sonucunda zarf biçiminde altı üyeli bir halka D(C01/O4/O5/O8/C9/H81) oluşturuyor. Bu halkada Co1 atomu diğer halka atomları düzleminden -0.5481 (2) Å sapmaktadır. O1—C01—O2 arasındaki açı 60.32 (4)° dir.

Kristal yapıda moleküller molekül içi O—H...O ve N—H...O hidrojen bağlarıyla *ab* düzlemine paralel tabaka içerisinde birbirine bağlanmış durumdadır. Kristal yapısı zayıf C—H...O hidrojen bağlarıyla daha kararlı haldedir (Ek Tablo 12). Benzen ve piridin halkaları arasında π - π etkileşimleri Cg2—Cg3ⁱ [simetri kodu: (i) x, y + 1, z Cg2 ve Cg3 B(C9—C14) ve C(N1/C17—C21) halkaların ağırlık merkezleridir] (ağırlık merkezleri arasındaki mesafe 3.6181 Å) de yapıyı sağlamlaştırmaktadır.

Şekil 7.5. $[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2$ kompleksinin kristal yapısı [86].

[Co(C₈H₇O₃)₂(C₆H₆N₂O)(H₂O)₂ kompleksinin kristal verileri: M_A = 519.36 g/mol, kristal sistemi monoklinik, kristal rengi kahverengi, uzay grubu P2₁ olan bileşiğin birim hücre parametreleri a = 8.2666 (2) Å, b = 6.8055 (2) Å, c = 20.5415 (4) Å, $\beta = 99.808$ (2)°, V = 1138.74 (5) Å³, Z = 2, Mo K α radyasyonu, $\mu = 0.81$ mm⁻¹, T = 100 K [86].

7.2.6. Diğer Komplekslerin Muhtemel Yapıları

Yapılan IR, termik ve elementel analiz sonuçlarına göre diğer komplekslerin muhtemel yapıları aydınlatılmıştır.

 $[Mn(C_8H_7O_3)_2(H_2O)_2]_n$ kompleksinin muhtemel yapısının literatüre uygun olarak [87] Şekil 7.6' da görüldüğü gibi polimerik bir yapıda olduğu tahmin edilmektedir.

Şekil 7.6. $[Mn(C_8H_7O_3)_2(H_2O)_2]_n$ kompleksinin muhtemel yapısı.

 $[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2].H_2O$ kompleksinin IR ve termik analiz verileriyle çift çekirdekli bir yapıya sahip olduğu düşünülmüştür. Molekülde iki bakır atomu iki *p*metoksibenzoat ligandı ile köprü oluşturmuş durumdadır. Bakır atomlarının izonikotinamid ve *p*-Metoksibenzoat ligandlarıyla kare piramidal geometri oluşturduğu tahmin edilmektedir.

Şekil 7.7. [Cu₂(C₈H₇O₃)₄(C₆H₆N₂O)₂].H₂O kompleksinin muhtemel yapısı.

 $[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ H₂O kompleksi iki izonikotinamid ve iki *p*-Metoksibenzoat ligandlarıyla literatüre uygun olarak [85] Şekil 7.8.'de görüldüğü gibi trigonal bipramidal geometrisi içerisinde koordine oluşturduğu düşünülmektedir.

Şekil 7.8. [Zn(C₈H₇O₃)₂(C₆H₆N₂O)₂][•]H₂O kompleksinin muhtemel yapısı.

 $[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinde Co atomu iki dietil nikotinamid ve iki *p*-Metoksibenzoat ligandlarıyla birlikte iki su molekülü tarafından çevrelenmiş durumdadır. Literatüre uygun [86] olarak kompleksin muhtemel yapısının Şekil 7.9.' da görüldüğü gibi oktehedral geometride olduğu tahmin edilmektedir.

Şekil 7.9. $[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin muhtemel yapısı.

 $[Ni(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin iki dietilnikotinamid, iki *p*-Metoksibenzoat ligantı ve koordine olmuş iki su molekülüyle oktahedral geometride olduğu düşünülmektedir.

Şekil 7.10. [Ni($C_8H_7O_3$)₂($C_{10}H_{14}N_2O$)₂(H_2O)₂] kompleksinin muhtemel yapısı.

Şekil 7.11. [Cu₂(C₈H₇O₃)₄(C₁₀H₁₄N₂O)₂]³H₂O kompleksinin muhtemel yapısı.

Şekil 7.12. [Zn($C_8H_7O_3$)₂($C_{10}H_{14}N_2O$)₂][·]H₂O kompleksinin muhtemel yapısı.

8. SONUÇLAR

Yapılan bu tez çalışmasında Mn(II), Co(II), Ni(II), Cu(II), Zn(II) metallerinin *p*metoksibenzoik asit ile biyolojik öneme sahip nikotinamid (NA) ve türevleri olan dietil nikotin amid (DENA) ve izonikotinamid (İNA) ligandları kullanılarak 12 adet yeni kompleksler sentezlendi:

$[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O$	(I)
$[Ni(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]^2H_2O$	(II)
$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$	(III)
$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ ·H ₂ O	(IV)
$[Mn(C_8H_7O_3)_2(H_2O)_2]_n$	(V)
$[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2]$	(VI)
$[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2]$ H ₂ O	(VII)
$[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ [·] H ₂ O	(VIII)
$[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(IX)
$[Ni(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(X)
$[Cu_2(C_8H_7O_3)_4(C_{10}H_{14}N_2O)_2]^{-3}H_2O$	(XI)
$[Zn(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2]$ [·] H ₂ O	(XII)

Yapılan elementel analiz, termik analiz (TG-DTG-DTA) ve IR spektroskopi verileriyle metal komplekslerinin yapıları aydınlatılmaya çalışılmıştır. X-Ray analiziyle 5 adet kompleksin kristal yapısı aydınlatılmıştır.

IR spektrum verilerine dayanılarak komplekslerde asitlerin karakteristik –COOH grubunun piki yerine $v_{as}COO^-$ ve v_sCOO^- piklerinin ortaya çıkması karboksil grubunun protonunu kaybettiğini ve metal ile bağlandığını ortaya koymaktadır. (**V**) nolu komplekste; Mn(II) metalinin izonikotinamid (İNA) kompleksinde amidin karbonil grubunun titreşim frekansında değişiklik olmadığı ve dolayısıyla amid grubundan koordinasyona katılma olmadığı görülmüştür.

Termik analiz verileriyle; termal bozunma sonucu geriye kalan ürünler ve termal kararlılık sırası belirlenmiştir. Termal analiz sonuçlarına göre komplekslerden ilk önce

su liganlarının, sonra nikotinamid, izonikotinamid ve dietilnikotin amid ligandlarının ayrıldığı daha sonra asit ligandlarının bozunmasıyla metal veya metal oksitleri kaldığı hesaplanmıştır.

9. KAYNAKLAR

- Bryan R. F. An X-Ray Study Of P-N-Alkoxybenzoic Acids .2. Crystal Structure Of Anisic Acid Journal Of The Chemical Society B-Physical Organic: 1311 (1967).
- [2] Colapietro M., Domenicano A., Structural studies of benzene derivatives. IV. Refinement of the crystal structure of *p*-methoxybenzoic acid, Acta Crystallographica Section B, B34: 3277-3280 (1978).
- [3] Fausto R., Matos-Beja A., Paixao J. A., Molecular structure and charge density analysis of *p*-methoxybenzoic acid (anisic acid), Journal of Molecular Structure, 435(3): 207-218 (2007).
- [4] Palafox M. A., GIL M., NUNEZ J. L., Spectroscopy of *p*-Methoxybenzoic Acid: An AM1 and *ab Initio* Study, Applied Spectroscopy, 48(1): 27-36 (1994).
- [5] Exner O., Fiedler P., Budesinsky M., Kulhanek J., Conformation and Steric Effects in Mono- and Dimethoxybenzoic Acids, Journal of Organic Chemistry, 64(10): 3513-3518 (1999).
- Yang J., Li J. T., Crystal structure of 2,4,6-triamino-1,3,5-triazin-4methoxybenzoate-water(1:2), [C₃H₇N₆][CH₃OC₆H₄COO].2H₂O, Z. Kristallogr. NCS224: 575-576 (2009).
- [7] Kalinowska M., Swiderski G., Lewandowski W., Effect of substituent position and lithium, sodium and potassium on the electronic structure of *o-*, *m-* and *p*methoxybenzoic acids, Polyhedron, 28(11): 2206-2218 (2009).
- [8] Thermal Decomposition of Scandium(III) Benzoate, p-methylbenzoate, pmethoxybenzoate, p-nitrobenzoate and p-chlorobenzoate in air and Nitrogen Atmospheres, Journal of Thermal Analysis, 29(6): 1299- 1307 (1984).
- [9] Kurpiel Gorgol R., Scandium(III) complexes with methylbenzoic and methoxybenzoic Acids, Polish journal of chemistry, 67(8): 1329-1337 (1993).
- [10] Antsyshkina A. S., Chyragov F. M., Poraikoshits M. A., Crytsalline-Structure of Co(*p*-CH₃OC₆H₄COO)₂.3H₂Obis-(*p*-methoxybenzoate)Co(II) Trihydrate, Koordinatsoinnaya Khimiya, 15(8): 1098-1103 (1989).

- [11] Mishra V. K, Singh R. K. P., Mishra S. K., Yadava K. L., Agarwal R. P., Stability-Constants of 4-methoxybenzoate Complexes of Hg(II), UO2(II), BE(II) and Cu(II) by Paper-Electrophoresis, National Academy Science Letters-Indiana, 9(4): 113-115 (1986).
- [12] Kharitonov Y. Y, Oleinik I. I., Knyazeva N. A, Study of Methylbenzoates and methoxybenzoates of Thallium by Oscillating Spectroscopy Methods, Zhurnal Neorganicheskoi Khimii, 31(9): 2232-2236 (1986).
- [13] Rodrigues E. C., Siqueira A. B., Ionashiro E. Y., Bannach G., Ionashiro M., Synthesis, characterization and thermal behaviour of solid-state compounds of 4methoxybenzoate with some bivalent transition metal ions, Journal of Thermal Analysis and Calorimetry, 79(2): 323-328 (2005).
- [14] Brzyska W., Karasınskı S., Thermal-decomposition of thorium(IV) salts of benzenecarboxylic acids in air atmosphere .1. thorium(IV) salts of benzoic and 4-methoxybenzoic acids, Journal of Yhermal Analysis, 39(4): 429-436 (1993).
- [15] Zhang J. J., Ren N., Chai X. Q., Wang Y. X., Non-isothermal kinetics of the first-stage decomposition reaction of the complex of samarium *p*methoxybenzoate with 1,10-phenanthroline, Rare Metals. 26(3): 292-298 (2007).
- [16] Wang Z. X., Jian F. F., Zhang Y. R., Li F. S., Fun H. K., Chinnakali K., Structure and characterization of hexakis(imidazole) cobalt(II) complexes:
 [Co(Im)₆(OBz)₂] and [Co(Im)₆(mB)₂] (Im = imidazole, OBz = benzoate, mB = *p*-methoxybenzoate), Journal of Chemical Crystallograhy, 29(8): 885-890 (1999).
- [17] Li X., Jin L. P., Wang Y. H., Lu S. Z., Zhang J. H., Crystal Structure and Luminescence of a Europium Coordination Polymer {[Eu(p-MOBA)₃·2H₂O]·0.5H₂O·0.5 (4, 4'-bipy)} ∞, Chinese Journal of Chemistry, 20(4): 352-357 (2010).
- [18] Zhang J. J., Wang R. F., Zhai X. L., Zhao J. L., Yang H. F., Determination of mechanism function and kinetic parameters of thermal decomposition of the 2,2'-dipyridine-tris(*p*-methoxybenzoate) europium (III) with non-isothermal TG and DTG curves, Chinese Journal of Inorganic Chemistry, 16(1): 103-110 (2000).

- [19] Zhang J. J., Wang R. F., Zhao J. L., Mo L. P., Zhai X. L., Ge L. G., Kinetics of thermal decomposition of [Eu-2(*p*-MOBA)₆(phen)₂] (H₂O)₂ in static air atmosphere, Rare Metals, 18(3): 182-188 (1999).
- [20] Wang R. F., Li L. S., Jin L. P., Lu S. Z., Crystal structure and luminescence of 1,10-phenanthroline-tris (4-methoxybenzoato) europium, Journal of Rars Earths, 16(2): 149-152 1998.
- [21] Wang Z. X., Zhang Y. R., Razak I. A., Raj S. S. S., Fun H. K., Li F. S., Song HC., Hexakis(imidazole-N³)nickel(II) bis(4-methoxybenzoate), Acta Cryst. C56: 161-162 (2000).
- [22] Wei G. H., Zhang LP., Ma J C., Yang J., *catena*-Poly[[bis(4-methoxybenzoato)copper(II)]-#-1,1'-(oxydiethylene)diimidazole-n²N³:N^{3'}, Acta Cryst. E63: m2866 (2007).
- [23] Gao Z. H., Wang H., He J. Y., Wang R. F., Tetrakis(#-4methoxybenzoato)bis[(4-methoxybenzoato)(1,10-phenanthroline)terbium(III), Acta Cryst. E65: m1240-m1241 (2009).
- [24] Deacon G. B., Hein S., Junk P. C., Juestel T., Lee W., Turner D. R., Structural variations in rare earth benzoate complexes Part II. Yttrium and terbium, CrystEngComm 9(11): 1110-1123 (2007).
- [25] Zhang J. J., Wang R. F., Wang S. P., Liu HM., Li JB., Bai J. H., Ren A., Preparation, thermal decomposition process and kinetics for terbium *p*methoxybenzoate ternary complex with 1,10-phenanthroline, Journal of Thermal Analysis and Calorimetry, 79(1): 181-186 (2005).
- [26] Zhao Q. H., Ma Y. P., Wang Q. H., Fang R. B., Synthesis and Crystal Structure of Cadmium(II) Complex [Cd(H₂O)(CH₃OC₆H₄COO)₂]n, Chinese Journal of Structural Chemistry, 21(5): 513-516 (2002).
- [27] Zhang J. J., Xu S. L., Ren N., Zhang H. Y., Preparation, crystal structure and mechanism of thermal decomposition of complex [Dy(p-MOBA)₃Phen]₂, Russian Journal of Coordination Chemistry, 33(8): 611-615 (2007).
- [28] Song X. Q., Cahill C., Eng G., Crystal structure of triphenyltin 4methoxybenzoate, Main Group Metal Chemistry, 25(3): 177 (2002).
- [29] Tsivadze A.Yu., Tsintsadze G., et al., Koord.Khim., pp.1-1221 (1975).

- [30] Bukowska-Strezewsta M., The crystal structure of copper(II) formate dihydrate, Acta Cryst.19: 357-362 (1965).
- [31] Kiriyama R., Ibamoto H., Matsuo K., The crystal structure of cupric formate tetrahydrate, Cu(HCO₂)₂.4H₂O, Acta Cryst.7: 482-483 (1954).
- [32] Tsintadze G.V.; Kiguradze R.A., et al., Zh.Strut.Khim., 25(6), p.82-87 (1984).
- [33] Usubaliyev B.T.; Movsumov E.M., Musaev F.N., et al, Koord.Khim., 6,7 p.1091 (1980].
- [34] Tarkhova T.N. and Ablov A.V., Kristallografiya, 13, 4, p.611 (1968).
- [35] Davey G.and Stephens F.S., J.Chem.Soc.(A), 17, p.2803 (1970).
- [36] Minacheva L.Kh.; Khodashava T.S.; Poray-Koshist M.A.; Sadikov G.G.;
 Butman L.A.; Sakharova V.G.; Tsintsadze G.V., Koord.Khim., 5(12),
 pp.1889-1995 (1979).
- [37] Davidovich R.L.; Tkachev V.V. and Atıvmyan L.O., Crystal structure of ethylenediaminediaminonium(2+)hexachlorobismuthacte(1)clihydrate, Koord.Khim., 21, p.20 (1995).
- [38] Skorsepa J.S.; Gyoryova K.and Menlik M.Diidobis (nicotinamide-N-accetateo) zinc(II), J.Tehrm.Anal., 44,Iss.1, pp169-171 (1995).
- [39] Hökelek T., Necefoğlu H., *trans*-Diaquabis(nicotinamide-N¹)bis(4nitrobenzoato-O)cobalt(II), Acta Cryst. C54:1242-1244 (1998).
- [40] Özbek F. E., Tercan B., Sahin E., Necefoğlu H., Hökelek T., Tetraaquabis(nicotinamide-*RN*¹)cobalt(II) bis(2-fluorobenzoate), Acta Cryst. E65: m341-m342 (2009).
- [41] Hökelek T., Dal H., Tercan B., Özbek F. E., Necefoğlu H., Tetraaquabis(nicotinamide-*nN*¹)nickel(II) bis(2-fluorobenzoate), Acta Cryst. E65: m1330-m1331 (2009).
- [42] Hökelek T., Yilmaz F., Tercan B., Özbek F. E., Necefoğlu H., Diaquabis(2bromobenzoato-*O*)bis(nicotinamide-*N*¹)nickel(II), Acta Cryst. E65: m768m769 (2009).
- [43] Hökelek T., Ermis E., Tercan B., Çimen E., Necefoğlu H., Bis(#-4methylbenzoato-κ²O:O')bis[aqua(4-methylbenzoato-κ²O,O')zinc(II)]-bis(#-4methylbenzoato-κ²O:O')bis[(4-methylbenzoato-κO)(nicotinamide-κN)zinc(II)]water (1/1/2), Acta Cryst. E66: m841-m842 (2010).

- [44] Hökelek T., Budak K., Sendil K. and Necefoglu H., trans-Diaquabis (4hydroxybenzoato-O)bis(nicotinamide-N)copper(II), 1998, Acta Cryst., C54, pp. 347-348 (1998).
- [45] Hökelek T., Dal H., Tercan B., Çimen E., Necefoğlu H., *catena*-Poly[[bis(4-methylbenzoato-κ²O:O')lead(II)]-μ-nicotinamide-κ²N¹:O], Acta Cryst. E66: m953-m954 (2010).
- [46] Smith G., Wermuth U. D., White J. M., Zero-, one- and two-dimensional hydrogen-bonded structures in the 1:1 proton-transfer compounds of 4,5dichlorophthalic acid with the monocyclic heteroaromatic Lewis bases 2aminopyrimidine, nicotinamide and isonicotinamide, Acta Cryst. C65: o103o107 (2009).
- [47] Lemmerer A., Báthori N. B., Bourne S. A., Chiral carboxylic acids and their effects on melting-point behaviour in co-crystals with isonicotinamide, Acta Cryst. B64: 780-790 (2008).
- [48] Oswald I. D. H., Motherwell W. D. S., Parsons S., Isonicotinamide-formamide (1/1), Acta Cryst. E61: o3161-o3163 (2005).
- [49] Oswald I. D. H., Motherwell W. D. S., Parsons S., A 1:2 co-crystal of isonicotinamide and propionic acid, Acta Cryst. E60: o2380-o2383 (2004).
- [50] Schuy A., Ruschewitz U., Poly[#4-isonicotinato-#3-nitrato-barium(II)], Acta Cryst. E62: m992-m993 (2006).
- [51] Hökelek T., Dal H., Tercan B., Aybirdi Ö., Necefoğlu H., Diaquabis[4-(dimethylamino)benzoato κO](isonicotinamide-κN¹)manganese(II). Acta Cryst.E65: 1037-1038 (2009).
- [52] Gao G. G., Liu B., Li C. B., Che G. B., Tetraaquabis(isonicotinamide-N)cobalt(II) terephthalate dihydrate, Acta Cryst. E62: m3357-m3358 (2006).
- [53] Germán-Acacio J. M., Hernández-Ortega S., Valdés-Martínez J., *trans*-Diaqua(isonicotinamide-*N*)(pyridine-2,6-dicarboxylato-*n*³*N*,*O*,*O*')cobalt(III), Acta Cryst. E63: m1057-m1058 (2007).
- [54] Hökelek T., Dal H., Tercan B., Aybirdi Ö., Necefoğlu H., Diaquabis[4-(dimethylamino)benzoato]- $\kappa^2 O, O'; \kappa O$ -(isonicotinamide- κN^l)cobalt(II), ActaCryst. E65: 627–628 (2009).

- [55] Hökelek T., Yılmaz F., Tercan B., Gürgen F., Necefoğlu H., Tetraaquabis(isonicotinamide- N^1)nickel(II) bis(4-formylbenzoate) dihydrate, Acta Cryst. E65: m1101-m1102 (2009).
- [56] Dakovic M., Popovic Z., Uncommon isonicotinamide supramolecular synthons in copper(II) complexes directed by nitrate and perchlorate anions, Acta Cryst., C65: m361-m366 (2009).
- [57] Baum G., Blake A. J., Fenske D., Hubberstey P., Julio C., Withersby M. A., (Acetonitrile)[2,6-bis(pyrazol-1-yl)pyridine](isonicotinamide)copper(II)-tetrafluoroborate-acetonitrile (1/2/2), Acta Cryst. C58: m542-m544 (2002).
- [58] Perec M., Baggio R., Di- μ -acetato-bis[(acetato- $\kappa^2 O, O'$)bis(isonicotinamide- κN)copper(II)], Acta Cryst. E66: m275-m276 (2010).
- [59] Zhou X. G., Poly[[[bis(isonicotinamide)copper(II)]-#-benzene-1,2dicarboxylato] monohydrate], Acta Cryst. E63:3166 (2007).
- [60] Li C. B., Liu B., Gao G. G., Che G. B., Hydrogen bonding and π-π stacking in di-μ-isophthalato-bis[bis(isonicotinamide)copper(II)] trihydrate, Acta Cryst. E61: m1705-m1707 (2005).
- [61] Necefoğlu H., Çimen E., Tercan B., Dal H., Hökelek T., Tetrakis(#-4methylbenzoato-²O:O')bis[(isonicotinamide-^N)copper(II)], Acta Cryst. E66: m334-m335 (2010).
- [62] Hökelek T., Dal H., Tercan B., Aybirdi Ö., Necefoğlu H., Diaquabis[4-(dimethylamino)benzoato](isonicotinamide)zinc(II), Acta Cryst. E65: 651–652 (2009).
- [63] Hökelek T., Dal H., Tercan B., Aybirdi Ö., Necefoğlu H., Bis(isonicotinamide- κN^1)bis[4-(methylamino)benzoato]zinc(II) monohydrate. Acta Cryst. E65: 1365-1366. (2009).
- [64] Kirijima R.and Ibomoto H., The crystal structure of cupric formatetetrahydrate, Cu(HCO₂)₂.4H₂O, Acta Cryst. 7, s482 (1954).
- [65] Hökelek T., Dal H., Tercan B., Özbek F. E., Necefoğlu H., Diaquabis(2-chlorobenzoato-nO)bis(N,N-diethylnicotinamide-nN¹)manganese(II), Acta Cryst. E65: m513-m514 (2009).

- [66] Hökelek T., Yılmaz F., Tercan B., Özbek F. E., Necefoğlu H., Diaquabis(2-bromobenzoato-*nO*)bis(*N*,*N*-diethylnicotinamide-*nN*¹)nickel(II), Acta Cryst. E65: m766-767 (2009).
- [67] Hökelek T., Dal H., Tercan B., Özbek F. E., Necefoğlu H., Diaquabis(2-bromobenzoato-*nO*)bis(*N*,*N*-diethylnicotinamide-*nN*¹)manganese(II), Acta Cryst. E65: m533-m534 (2009).
- [68] Hökelek T., Dal H., Tercan B., Özbek F. E., Necefoğlu H., Diaquabis(2chlorobenzoato-*nO*)bis(*N*,*N*-diethylnicotinamide-*nN*¹)nickel(II), Acta Cryst. E65: m545-m546 (2009).
- [69] Hökelek T., Dal H., Tercan B., Özbek F. E., Necefoğlu H., Diaquabis(2bromobenzoato-nO)bis(N,N-diethylnicotinamide-nN¹)zinc(II), Acta Cryst. E65: m481-m482 (2009).
- [70] Karapehlivan K., Kobalt(II) Arilkarboksilatlarının Nikotinamid ile Komplekslerinin Sentezi ve yapılarının incelenmesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Kars (1998).
- [71] Kupriel-Gorgol R. and Brzyska W., Polish Journal of Chemistry, 59, p.345 (1985).
- [72] Kupriel-Gorgol R., Polish Journal of Chemistry, 60 p.749. (1986).
- [73] Hökelek T., Dal H., Tercan B., Aybirdi Ö., Necefoğlu H., Diaquabis(*N*,*N*-diethylnicotinamide- κN^1)bis[4-(dimethylamino)benzoato- κO]cobalt(II), Acta Cryst. E65: 1051–1052 (2009).
- [74] Hökelek T., Süzen Y., Tercan B., Aybirdi Ö., Necefoğlu H., Diaquabis(N,N-diethylnicotinamide-N¹)bis[4-(dimethylamino)benzoato-O]nickel(II), Acta Cryst. E65: m1015-m1016 (2009).
- [75] Hökelek T., Budak K., Necefoğlu H., *trans*-Diaquabis(*N*,*N*-diethylnicotinamide-*N*¹)bis(4-nitrobenzoato-*O*)copper(II), Acta Cryst. C53: 1049-1051 (1997).
- [76] Kupriel-Gorgol R., Polish Journal of Chemistry, 65, p.2175 (1991).
- [77] Khakimov Kh.Kh., Azizov M.A., Kantsepolskaya K.M.; Khamrayev A.D., Zh.Struct Khim., 10/6, pp.1036-1040 (1965).
- [78] Kupriel-Gorgol R., , Polish Journal of Chemistry, 65, p.1185 (1991).
- [79] Kupriel-Gorgol R., Polish Journal of Chemistry, 67, pp. 1329-1337 (1993).

- [80] Khakimov Kh.; Azizov M.A.; Kantsepolskaya K.M.; Khamrayev A.D:Zh.Struct Khim., 10/6, pp.1036-1040 (1965).
- [81] Bigoli F., Braibanti A., Pellinghelli M. A., Tiripicchio A., The crystal and molecular structure of mono-(*N*,*N*-diethylnicotinamide)cadmium dithiocyanate, Acta Cryst. B28: 932-966 (1972).
- [82] Hökelek T., Dal H., Tercan B., Tenlik E., and Necefoğlu H., Diaquabis(4methoxybenzoato-nO¹)bis(nicotinamide-nN¹)cobalt(II) dihydrate, Acta Cryst. E66: m910-m911 (2010).
- [83] Hökelek T., Dal H., Tercan B., Tenlik E., and Necefoğlu H., Diaquabis(4methoxybenzoato-*nO*)bis(nicotinamide-*nN*¹)nickel(II) dihydrate, Acta Cryst. E66: m891-m892 (2010).
- [84] Hökelek T., Süzen Y., Tercan B., Tenlik E., and Necefoğlu H., Di-μ-nicotinamide-κ²O:N¹;κ²N¹:O-bis[aquabis(4-methoxybenzoato-κO)copper(II)],
 Acta Cryst. E66: m807-m808 (2010).
- [85] Hökelek T., Saka G., Tercan B., Tenlik E., and Necefoğlu H., Bis(4methoxybenzoato)-²O,O';^KO-bis(nicotinamide-^KN¹)zinc(II), Acta Cryst. E66: m1135-m1136 (2010).
- [86] Hökelek T., Süzen Y., Tercan B., Tenlik E., and Necefoğlu H., Diaqua(isonicotinamide-*nN*¹)(4-methoxybenzoato-*n*²O,O')(4-methoxybenzoato-*n*O)cobalt(II), Acta Cryst. E66: m784-m785 (2010).
- [87] Hökelek T., Dal H., Tercan B., Aybirdi Ö., Necefoğlu H., catena-Poly
 [[[diaquabis[4-(diethylamino)benzoato-κO]manganese(II)]-μ-aqua]dihydrate],
 Acta Cryst. E65: 747–748 (2009).

10. EKLER

Ek Şekil 9. $[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ ·H₂O kompleksinin IR spektrumu

Ek Şekil 14. [Co(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂]²H₂O kompleksinin TG-DTA eğrileri

Ek Şekil 15. [Ni(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂]⁻2H₂O kompleksinin TG-DTA eğrileri

Ek Şekil 16. [Cu₂(C₈H₇O₃)₄(C₆H₆N₂O)₂(H₂O)₂] kompleksinin TG-DTA Eğrileri

Ek şekil 17. [Zn(C₈H₇O₃)₂(C₆H₆N₂O)₂][•]H₂O kompleksinin TG-DTG-DTA eğrileri

Ek Şekil 18. Mn[(C₈H₇O₃)₂(H₂O)₂] kompleksinin TG-DTA eğrileri

Ek Şekil 19. [Co(C₈H₇O₃)₂(C₆H₆N₂O)(H₂O)₂] kompleksinin TG-DTA eğrileri

Ek Şekil 20. [Cu₂(C₈H₇O₃)₄(C₆H₆N₂O)₂][•]H₂O kompleksinin TG-DTA eğrileri

Ek Şekil 21. [Zn(C₈H₇O₃)₂(C₆H₆N₂O)₂][•]H₂O TG-DTG-DTA eğrileri

Ek Şekil 22. $[Co(C_8H_7O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin TG- DTA eğrileri

Ek Şekil 23. [Ni(C₈H₇O₃)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin TG-DTA eğrileri

Ek Şekil 24. [Cu₂(C₈H₇O₃)₄(C₁₀H₁₄N₂O)₂]³H₂O kompleksinin TG- DTA eğrileri

Ek Şekil 25. [Zn(C₈H₇O₃)₂(C₁₀H₁₄N₂O)₂][•]H₂O DENA kompleksinin TG- DTA eğrileri

	X	у	Z	Uiso*/Ue
Col	0.0000	0.0000	0.0000	0.01140 (7)
01	0.16134 (11)	0.15267 (9)	0.15761 (8)	0.01516 (17)
O2	0.02618 (12)	0.12855 (9)	0.34523 (9)	0.02010 (19)
03	0.49079 (13)	0.79361 (10)	0.49240 (10)	0.0241 (2)
O4	-0.23377 (11)	0.62299 (9)	0.11798 (9)	0.01950 (19)
05	0.16105 (11)	0.08580 (10)	-0.14044 (9)	0.01498 (17)
H51	0.180 (2)	0.174 (2)	-0.145 (2)	0.038 (5)*
H52	0.118 (2)	0.034 (2)	-0.214 (2)	0.034 (5)*
06	0.10074 (14)	-0.13088 (11)	0.39872 (10)	0.0230 (2)
H61	0.091 (3)	-0.056 (3)	0.380 (2)	0.046 (6)*
H62	0.060 (3)	-0.137 (2)	0.474 (2)	0.044 (6)*
N1	-0.15075 (13)	0.15172 (11)	-0.00112 (10)	0.01377 (19)
N2	-0.00471 (14)	0.58909 (12)	0.22425 (11)	0.0175 (2)
H21	0.028 (2)	0.680 (2)	0.2689 (18)	0.029 (4)*
H22	0.050 (2)	0.530 (2)	0.2387 (17)	0.024 (4)*
C1	0.13157 (15)	0.20178 (12)	0.27783 (11)	0.0141 (2)
C2	0.22590 (15)	0.35792 (12)	0.33911 (12)	0.0141 (2)
C3	0.35076 (16)	0.43797 (14)	0.26923 (12)	0.0181 (2)
H3	0.3764	0.3923	0.1834	0.022*
C4	0.43723 (16)	0.58247 (14)	0.32337 (13)	0.0203 (3)
H4	0.5229	0.6350	0.2755	0.024*
C5	0.39860 (16)	0.65132 (13)	0.44861 (13)	0.0177 (2)
C6	0.27348 (17)	0.57414 (14)	0.51879 (13)	0.0204 (3)
H6	0.2457	0.6207	0.6034	0.024*
C7	0.18914 (17)	0.42784 (14)	0.46397 (12)	0.0187 (2)
H7	0.1050	0.3748	0.5127	0.022*
C8	0.4554 (2)	0.87023 (15)	0.61895 (14)	0.0281 (3)
H8A	0.5296	0.9710	0.6381	0.042*
H8B	0.4770	0.8219	0.6917	0.042*
H8C	0.3352	0.8703	0.6139	0.042*
C9	-0.30977 (16)	0.09903 (13)	-0.06401 (13)	0.0179 (2)

Ek Tablo 1. $[Co(C_8H_7O_3)_2(C_6H_6N_2O)_2(H_2O)_2]$ ²H₂O kristalinin fraksiyonel atomik koordinatları ve izotropik veya equvalent izotropik yerdeğiştirme parametreleri (Å²)

H9	-0.3478	-0.0009	-0.1087	0.021*
C10	-0.42123 (16)	0.18327 (14)	-0.06690 (14)	0.0210 (3)
H10	-0.5321	0.1423	-0.1140	0.025*
C11	-0.36763 (16)	0.32850 (13)	0.00028 (13)	0.0173 (2)
H11	-0.4412	0.3888	-0.0002	0.021*
C12	-0.20437 (15)	0.38459 (12)	0.06844 (11)	0.0134 (2)
C13	-0.10001 (15)	0.29263 (12)	0.06338 (11)	0.0132 (2)
H13	0.0126	0.3314	0.1077	0.016*
C14	-0.14729 (15)	0.54226 (13)	0.14024 (12)	0.0143 (2)

Ek Tablo 2. [Co(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂][·]2H₂O kristalinin geometrik parametreleri (Å,°)

Co1—O1	2.0831 (8)	C2—C7	1.3931 (16)	
Co1—O1 ⁱ	2.0831 (8)	C3—C4	1.3817 (17)	
Co1—O5	2.0958 (9)	С3—Н3	0.9500	
Co1—O5 ⁱ	2.0958 (9)	C4—C5	1.3982 (17)	
Co1—N1	2.1706 (10)	C4—H4	0.9500	
Co1—N1 ⁱ	2.1706 (10)	C5—C6	1.3907 (18)	
O1—C1	1.2698 (14)	C6—C7	1.3935 (17)	
O2—C1	1.2626 (15)	С6—Н6	0.9500	
O3—C5	1.3603 (15)	C7—H7	0.9500	
O3—C8	1.4281 (17)	C8—H8A	0.9800	
O4—C14	1.2381 (15)	C8—H8B	0.9800	
O5—H51	0.84 (2)	C8—H8C	0.9800	
O5—H52	0.81 (2)	C9—C10	1.3865 (17)	
O6—H61	0.81 (2)	С9—Н9	0.9500	
O6—H62	0.84 (2)	C10-C11	1.3866 (17)	
N1—C9	1.3423 (15)	C10—H10	0.9500	
N1—C13	1.3433 (15)	C11—C12	1.3923 (17)	
N2—C14	1.3312 (16)	C11—H11	0.9500	

N2—H21	0.875 (19)	C12—C13	1.3921 (16)
N2—H22	0.854 (18)	C12—C14	1.5021 (16)
C1—C2	1.5000 (16)	C13—H13	0.9500
C2—C3	1.3999 (17)		
01i—Co1—O1	180.00 (6)	C3—C4—C5	120.01 (11)
O1—Co1—O5	89.63 (3)	C3—C4—H4	120.0
01i—Co1—O5	90.37 (3)	C5—C4—H4	120.0
O1—Co1—O5 ⁱ	90.37 (3)	O3—C5—C4	115.24 (11)
O5—Co1—O5 ⁱ	180.00 (5)	O3—C5—C6	124.82 (11)
01i—Co1—O5 ⁱ	89.63 (3)	C6—C5—C4	119.95 (11)
O1—Co1—N1	88.17 (3)	C5—C6—C7	119.43 (11)
Oli—Col—Nl	91.83 (3)	С5—С6—Н6	120.3
O1—Co1—N1 ⁱ	91.83 (3)	С7—С6—Н6	120.3
Oli—Col—Nl ⁱ	88.17 (3)	C2—C7—C6	121.26 (11)
O5—Co1—N1	93.31 (4)	С2—С7—Н7	119.4
O5i—Co1—N1	86.69 (4)	С6—С7—Н7	119.4
O5—Co1—N1 ⁱ	86.69 (4)	O3—C8—H8A	109.5
O5i—Co1—N1 ⁱ	93.31 (4)	O3—C8—H8B	109.5
N1i—Co1—N1	180.00 (4)	O3—C8—H8C	109.5
C1—O1—Co1	130.19 (8)	H8A—C8—H8B	109.5
С5—О3—С8	117.77 (11)	H8A—C8—H8C	109.5
Co1—O5—H51	120.1 (13)	H8B—C8—H8C	109.5
Co1—O5—H52	104.5 (13)	N1—C9—C10	123.21 (11)
H52—O5—H51	109.5 (19)	N1—C9—H9	118.4
H62—O6—H61	107 (2)	С10—С9—Н9	118.4
C9—N1—Co1	117.67 (8)	C9—C10—C11	118.68 (11)
C9—N1—C13	117.60 (10)	C9—C10—H10	120.7
C13—N1—Co1	124.61 (8)	C11—C10—H10	120.7
C14—N2—H21	119.2 (12)	C10-C11-C12	119.02 (11)
C14—N2—H22	120.4 (12)	C10-C11-H11	120.5
H22—N2—H21	120.2 (16)	C12—C11—H11	120.5
01—C1—C2	116.55 (10)	C11—C12—C14	118.57 (10)
O2—C1—O1	124.00 (11)	C13—C12—C11	118.26 (11)
O2—C1—C2	119.43 (10)	C13—C12—C14	123.14 (11)
C3—C2—C1	120.15 (10)	N1—C13—C12	123.19 (11)

C7—C2—C1	121.38 (11)	N1-C13-H13	118.4
C7—C2—C3	118.45 (11)	C12—C13—H13	118.4
С2—С3—Н3	119.6	O4—C14—N2	122.96 (11)
C4—C3—C2	120.90 (11)	O4—C14—C12	118.73 (11)
С4—С3—Н3	119.6	N2-C14-C12	118.31 (10)
O5-Co1-O1-C1	158.01 (10)	O2—C1—C2—C3	176.09 (11)
O5i—Co1—O1—C1	-21.99 (10)	O2—C1—C2—C7	-5.62 (17)
N1-Co1-O1-C1	64.69 (10)	C1—C2—C3—C4	179.13 (11)
N1i—Co1—O1—C1	-115.31 (10)	C7—C2—C3—C4	0.78 (18)
O1—Co1—N1—C9	-163.03 (9)	C1—C2—C7—C6 (11)	-178.10
01i—Co1—N1—C9	16.97 (9)	C3—C2—C7—C6	0.22 (19)
O1—Co1—N1—C13	12.88 (9)	C2—C3—C4—C5	-0.99 (19)
O1i—Co1—N1—C13	-167.12 (9)	C3—C4—C5—O3 (11)	-179.82
O5—Co1—N1—C9	107.45 (9)	C3—C4—C5—C6	0.19 (19)
O5i—Co1—N1—C9	-72.55 (9)	O3—C5—C6—C7 (12)	-179.20
O5-Co1-N1-C13	-76.64 (9)	C4—C5—C6—C7	0.79 (19)
O5i—Co1—N1—C13	103.36 (9)	C5—C6—C7—C2	-1.0 (2)
Co1-01-C1-02	31.88 (16)	N1-C9-C10-C11	-1.2 (2)
Co1—O1—C1—C2	-146.38 (8)	C9-C10-C11-C12	-0.15 (19)
C8—O3—C5—C4	179.22 (11)	C10-C11-C12-C13	1.50 (17)
C8—O3—C5—C6	-0.80 (19)	C10—C11—C12—C14 (11)	179.68
Co1—N1—C9—C10	177.21 (10)	C11—C12—C13—N1	-1.72 (17)
C13—N1—C9—C10	1.01 (18)	C14—C12—C13—N1 (10)	-179.81
Co1—N1—C13—C12	-175.45 (8)	C11—C12—C14—O4 (16)	-12.03
C9—N1—C13—C12	0.47 (17)	C11—C12—C14—N2 (11)	168.54
O1—C1—C2—C3	-5.57 (16)	C13—C12—C14—O4	166.05 (11)
O1—C1—C2—C7	172.73 (11)	C13—C12—C14—N2	-13.38 (17)

Simetri kodu: (i) -x, -y, -z.

D—HA	D—H	НА	DA	D—HA
N2—H21O6ii	0.876 (19)	1.969 (19)	2.8343 (15)	169.6 (17)
O5—H51O4iii	0.841 (19)	1.868 (19)	2.6976 (13)	168.6 (19)
O5—H52O2iv	0.817 (19)	1.924 (19)	2.7064 (13)	159.8 (19)
O6—H61O2	0.81 (3)	2.10 (3)	2.9009 (14)	170 (2)
O6—H62O2v	0.84 (2)	1.97 (2)	2.8068 (14)	173.9 (19)
C4—H4…O4vi	0.95	2.59	3.4225 (16)	146
C9—H9O1iv	0.95	2.40	3.0325 (16)	124
C10—H10O5vii	0.95	2.40	3.2925 (17)	156

Ek Tablo 3. [Co(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂]²H₂O kristalinin hidrojen bağ geometrisi (Å, °)

Simetri kodu: (ii) x, y+1, z; (iii) -x, -y+1, -z; (iv) -x, -y, -z; (v) -x, -y, -z+1; (vi) x+1, y, z; (vii) x-1, y, z.

Ek Tablo 4. [Ni(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂]²H₂O kristalinin fraksiyonel atomik koordinatları ve izotropik veya equvalent izotropik yerdeğiştirme parametreleri (Å²)

	Х	У	Z	Uiso*/Ueq
Ni1	1.0000	0.5000	0.5000	0.01031 (7)
01	0.84093 (11)	0.34709 (9)	0.34598 (9)	0.01344 (18)
O2	0.97158 (13)	0.37223 (10)	0.15603 (9)	0.0186 (2)
O3	0.51173 (13)	-0.29261 (10)	0.00777 (10)	0.0227 (2)
O4	1.23447 (12)	-0.12322 (10)	0.38559 (10)	0.01808 (19)
O5	0.84001 (12)	0.41637 (10)	0.63798 (10)	0.01381 (18)
H51	0.824 (2)	0.328 (2)	0.6383 (18)	0.026 (5)*
H52	0.880 (3)	0.466 (2)	0.710 (2)	0.033 (5)*
O6	1.09929 (14)	0.36688 (11)	-0.10135 (11)	0.0217 (2)
H61	1.060 (2)	0.3618 (18)	-0.0275 (19)	0.020*
H62	1.093 (2)	0.444 (2)	-0.1194 (17)	0.020*
N1	1.15013 (13)	0.35208 (11)	0.50331 (10)	0.0123 (2)

N2	1.00731 (15)	-0.08680 (12)	0.27740 (11)	0.0164 (2)
H21	0.955 (2)	-0.027 (2)	0.2615 (17)	0.021 (4)*
H22	0.976 (2)	-0.178 (2)	0.2312 (19)	0.028 (5)*
C1	0.86838 (16)	0.29893 (13)	0.22424 (12)	0.0132 (2)
C2	0.77440 (16)	0.14302 (13)	0.16204 (12)	0.0136 (2)
C3	0.65161 (17)	0.06356 (14)	0.23287 (13)	0.0166 (3)
H3	0.6270	0.1096	0.3197	0.020*
C4	0.56565 (17)	-0.08093 (14)	0.17828 (14)	0.0186 (3)
H4	0.4811	-0.1330	0.2268	0.022*
C5	0.60317 (17)	-0.15037 (14)	0.05176 (13)	0.0166 (3)
C6	0.72616 (18)	-0.07365 (14)	-0.01936 (13)	0.0193 (3)
H6	0.7531	-0.1207	-0.1049	0.023*
C7	0.80961 (18)	0.07279 (14)	0.03580 (13)	0.0178 (3)
H7	0.8920	0.1256	-0.0138	0.021*
C8	0.5467 (2)	-0.37024 (15)	-0.11975 (15)	0.0267 (3)
H8A	0.4740	-0.4712	-0.1386	0.040*
H8B	0.6672	-0.3705	-0.1161	0.040*
H8C	0.5229	-0.3223	-0.1922	0.040*
C9	1.30962 (17)	0.40473 (14)	0.56440 (13)	0.0165 (3)
H9	1.3474	0.5053	0.6080	0.020*
C10	1.42177 (17)	0.31926 (14)	0.56686 (14)	0.0191 (3)
H10	1.5328	0.3600	0.6130	0.023*
C11	1.36869 (17)	0.17315 (14)	0.50057 (13)	0.0156 (2)
H11	1.4428	0.1119	0.5007	0.019*
C12	1.20523 (16)	0.11758 (13)	0.43385 (12)	0.0124 (2)
C13	1.09960 (16)	0.21032 (13)	0.43965 (12)	0.0124 (2)
H13	0.9867	0.1717	0.3967	0.015*
C14	1.14890 (16)	-0.04076 (13)	0.36228 (12)	0.0132 (2)

Ni1-01 C2---C7 2.0569 (9) 1.3904 (18) Ni1—O1i 2.0569 (9) C3-C4 1.3822 (18) Ni1-05 2.0697 (9) 0.95 C3—H3 Ni1—O5i 2.0697 (9) C4-C5 1.3970 (19) Ni1—N1 2.1167 (10) C4—H4 0.95 Ni1—N1i 2.1167 (10) С5—С6 1.3902 (19) 01-C1 1.2681 (15) C6--C7 1.3941 (18) O2-C1 С6—Н6 1.2644 (16) 0.95 O3—C5 1.3607 (15) С7—Н7 0.95 O3—C8 1.4274 (18) C8-H8A 0.98 O4-C14 1.2392 (15) C8—H8B 0.98 O5-H51 0.83(2)C8—H8C 0.98 O5-H52 0.79(2)C9-C10 1.3858 (18) O6—H61 0.823 (18) С9—Н9 0.95 O6—H62 0.818 (18) C10-C11 1.3867 (18) N1-C9 1.3421 (16) C10-H10 0.95 N1-C13 1.3434 (15) C11-C12 1.3913 (18) N2-C14 C11-H11 1.3324 (17) 0.95 N2-H21 0.839 (18) C12-C13 1.3910 (17) N2-H22 0.877 (19) C12—C14 1.5017 (16) C1--C2 1.5001 (17) C13—H13 0.95 C2—C3 1.3995 (18) 180.0 01i-Ni1-01 C3-C4-C5 119.95 (12) 01—Ni1—05 88.52 (4) C3-C4-H4 120.0 01i-Ni1-05 91.48 (4) C5-C4-H4 120.0 01-Ni1-05i 91.48 (4) O3-C5-C4 115.16 (12) O3—C5—C6 01i—Ni1—05i 88.52 (4) 124.95 (12) 01—Ni1—N1 88.64 (4) C6-C5-C4 119.89 (12) Oli—Nil—Nl 91.36 (4) C5-C6-C7 119.52 (12) O1-Ni1-Nli 91.36 (4) С5—С6—Н6 120.2 Oli-Nil-Nli 88.64 (4) С7—С6—Н6 120.2 O5-Ni1-O5i 180.000(1) C2—C7—C6 121.20 (12)

Ek Tablo 5. [Ni(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂]²H₂O kristalinin geometrik parametreleri (Å, °)

O5—Ni1—N1	93.21 (4)	С2—С7—Н7	119.4
O5i—Ni1—N1	86.79 (4)	С6—С7—Н7	119.4
O5—Ni1—N1i	86.79 (4)	O3—C8—H8A	109.5
O5i—Ni1—N1i	93.21 (4)	O3—C8—H8B	109.5
N1—Ni1—N1i	180.0	O3—C8—H8C	109.5
C1—O1—Ni1	130.22 (8)	H8A—C8—H8B	109.5
C5—O3—C8	117.74 (11)	H8A—C8—H8C	109.5
Ni1—O5—H51	117.6 (12)	H8B—C8—H8C	109.5
Ni1—O5—H52	104.9 (14)	N1—C9—C10	123.11 (12)
H51—O5—H52	111.1 (19)	N1—C9—H9	118.4
H62—O6—H61	108.0 (17)	С10—С9—Н9	118.4
C9—N1—Ni1	118.24 (8)	C9—C10—C11	118.69 (12)
C9—N1—C13	117.80 (11)	C9—C10—H10	120.7
C13—N1—Ni1	123.79 (8)	C11—C10—H10	120.7
C14—N2—H21	120.0 (12)	C10-C11-C12	118.98 (11)
C14—N2—H22	119.6 (12)	C10-C11-H11	120.5
H21—N2—H22	120.1 (17)	C12—C11—H11	120.5
O1—C1—C2	116.29 (11)	C11—C12—C14	118.60 (11)
O2—C1—O1	124.22 (11)	C13—C12—C11	118.44 (11)
O2—C1—C2	119.46 (11)	C13—C12—C14	122.93 (11)
C3—C2—C1	120.07 (11)	N1-C13-C12	122.95 (11)
C7—C2—C1	121.44 (12)	N1—C13—H13	118.5
С7—С2—С3	118.47 (11)	C12—C13—H13	118.5
С2—С3—Н3	119.5	O4—C14—N2	122.82 (12)
C4—C3—C2	120.95 (12)	O4—C14—C12	118.87 (11)
C4—C3—H3	119.5	N2-C14-C12	118.31 (11)
O5—Ni1—O1—C1	-160.75 (10)	C1—C2—C3—C4	-178.93 (12)
O5i—Ni1—O1—C1	19.25 (10)	C7—C2—C3—C4	-0.71 (19)
N1—Ni1—O1—C1	-67.50 (10)	C1—C2—C7—C6	177.72 (12)
N1i—Ni1—O1—C1	112.50 (10)	C3—C2—C7—C6	-0.5 (2)
O1—Ni1—N1—C9	162.56 (10)	C2—C3—C4—C5	1.2 (2)
01i—Ni1—N1—C9	-17.44 (10)	C8—O3—C5—C4	-178.85 (12)
O1—Ni1—N1—C13	-12.62 (10)	C8—O3—C5—C6	1.3 (2)
O1i—Ni1—N1—C13	167.38 (10)	C3—C4—C5—O3	179.75 (12)
O5—Ni1—N1—C9	-109.01 (10)	C3—C4—C5—C6	-0.4 (2)

O5i—Ni1—N1—C9	70.99 (10)	O3—C5—C6—C7	179.07 (13)
O5—Ni1—N1—C13	75.81 (10)	C4—C5—C6—C7	-0.7 (2)
O5i—Ni1—N1—C13	-104.19 (10)	C5—C6—C7—C2	1.2 (2)
Ni1-01-C1-02	-29.75 (18)	N1-C9-C10-C11	1.5 (2)
Ni1—O1—C1—C2	148.20 (9)	C9—C10—C11—C12	0.1 (2)
Ni1—N1—C9—C10	-176.80 (10)	C10-C11-C12-C13	-1.78 (19)
C13—N1—C9—C10	-1.33 (19)	C10-C11-C12-C14	179.97 (11)
Ni1—N1—C13—C12	174.71 (9)	C11—C12—C13—N1	2.04 (18)
C9—N1—C13—C12	-0.49 (18)	C14—C12—C13—N1	-179.79 (11)
O1—C1—C2—C3	6.12 (17)	C11—C12—C14—O4	13.48 (17)
O1—C1—C2—C7	-172.05 (12)	C11—C12—C14—N2	-167.30 (12)
O2—C1—C2—C3	-175.83 (11)	C13—C12—C14—O4	-164.68 (12)
O2—C1—C2—C7	6.00 (18)	C13—C12—C14—N2	14.53 (18)

Simetri kodu: (i) -x+2, -y+1, -z+1

Ek Tablo 6. [Ni(C₈H₇O₃)₂(C₆H₆N₂O)₂(H₂O)₂]⁻2H₂O kompleksinin hidrojen bağı geometrisi (Å, °)

D—HA	D—H	НА	DA D-	—НА
N2—H22O6ii	0.88 (2)	1.96 (2)	2.8306 (16)	170 (2)
O5—H51O4iii	0.83 (2)	1.88 (2)	2.7074 (14)	171 (2)
O5—H52O2i	0.79 (2)	1.95 (2)	2.7040 (14)	159 (2)
O5—H52O2i	0.79 (2)	1.95 (2)	2.7040 (14)	159 (2)
O6—H61O2	0.82 (2)	1.99 (2)	2.8136 (14)	174 (2)
O6—H62O2iv	0.82 (2)	2.08 (2)	2.8887 (15)	169 (2)
C9—H9O1i	0.95	2.35	2.9719 (16)	123
C10—H10O5v	0.95	2.41	3.2973 (17)	156

Simetri kodu: (ii) -x+2, -y, -z; (iii) -x+2, -y, -z+1; (i) -x+2, -y+1, -z+1; (iv) -x+2, -y+1, -z; (v) x+1, y, z.

Ek Tablo 7. $[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$ kristalinin fraksiyonel atomik koordinatları ve izotropik veya equvalent izotropik yerdeğiştirme parametreleri (Å²)

	Х	У	Z	Uiso*/Ueq
Cu1	0.832076 (11)	0.152692 (19)	0.356751 (8)	0.00986 (6)
01	0.89942 (7)	0.40998 (13)	0.27780 (5)	0.0155 (2)
O2	0.94951 (7)	0.16598 (12)	0.30792 (5)	0.01368 (19)
O3	1.28693 (8)	0.39532 (15)	0.12796 (7)	0.0251 (2)
O4	0.66614 (8)	0.34649 (13)	0.32513 (6)	0.0181 (2)
O5	0.71138 (7)	0.14541 (12)	0.40038 (5)	0.01317 (19)
O6	0.32798 (7)	0.34252 (13)	0.52920 (6)	0.0170 (2)
O7	1.10015 (7)	0.07805 (12)	0.58526 (5)	0.0153 (2)
O 8	0.77027 (8)	0.04960 (14)	0.26669 (6)	0.0167 (2)
H81	0.7200 (18)	0.008 (3)	0.2652 (13)	0.047 (7)*
H82	0.7977 (13)	-0.001 (2)	0.2360 (10)	0.017 (4)*
N1	0.88593 (8)	0.27822 (14)	0.44653 (6)	0.0118 (2)
N2	1.09767 (9)	0.27022 (17)	0.67244 (7)	0.0171 (3)
H2A	1.0823 (15)	0.365 (3)	0.6840 (12)	0.029 (5)*
H2B	1.1375 (14)	0.224 (2)	0.7019 (11)	0.022 (5)*
C1	0.95896 (9)	0.30016 (17)	0.27686 (7)	0.0125 (3)
C2	1.04648 (9)	0.32640 (17)	0.23831 (7)	0.0125 (3)
C3	1.11660 (10)	0.20966 (18)	0.23693 (8)	0.0152 (3)
Н3	1.1096	0.1132	0.2608	0.018*
C4	1.19625 (10)	0.23685 (19)	0.20030 (8)	0.0187 (3)
H4	1.2429	0.1594	0.2003	0.022*
C5	1.20666 (10)	0.38071 (19)	0.16333 (8)	0.0173 (3)
C6	1.13758 (10)	0.49779 (18)	0.16412 (8)	0.0166 (3)
H6	1.1442	0.5936	0.1396	0.020*
C7	1.05849 (10)	0.46977 (18)	0.20197 (7)	0.0153 (3)
H7	1.0126	0.5484	0.2031	0.018*
C8	1.29541 (12)	0.5321 (2)	0.08255 (9)	0.0254 (3)
H8A	1.3544	0.5279	0.0607	0.038*
H8B	1.2938	0.6258	0.1126	0.038*
H8C	1.2437	0.5346	0.0437	038*

C9	0.65288 (9)	0.25480 (17)	0.37733 (7)	0.0123 (3)
C10	0.56660 (9)	0.27358 (16)	0.41748 (7)	0.0121 (2)
C11	0.55839 (10)	0.19292 (18)	0.48349 (8)	0.0148 (3)
H11	0.6064	0.1240	0.5019	0.018*
C12	0.47980 (10)	0.21312 (18)	0.52268 (8)	0.0159 (3)
H12	0.4753	0.1586	0.5670	0.019*
C13	0.40798 (10)	0.31546 (17)	0.49503 (8)	0.0134 (3)
C14	0.41505 (10)	0.39815 (18)	0.42856 (8)	0.0156 (3)
H14	0.3669	0.4669	0.4102	0.019*
C15	0.49373 (10)	0.37730 (17)	0.39027 (8)	0.0142 (3)
H15	0.4985	0.4324	0.3461	0.017*
C16	0.32415 (10)	0.26991 (19)	0.60087 (8)	0.0190 (3)
H16A	0.2661	0.2992	0.6205	0.028*
H16B	0.3771	0.3052	0.6343	0.028*
H16C	0.3267	0.1567	0.5958	0.028*
C17	0.83872 (10)	0.40389 (17)	0.47003 (8)	0.0152 (3)
H17	0.7874	0.4437	0.4394	0.018*
C18	0.86367 (10)	0.47614 (18)	0.53812 (8)	0.0169 (3)
H18	0.8306	0.5645	0.5524	0.020*
C19	0.93883 (10)	0.41469 (17)	0.58490 (8)	0.0153 (3)
H19	0.9555	0.4591	0.6316	0.018*
C20	0.98863 (9)	0.28598 (16)	0.56074 (7)	0.0114 (2)
C21	0.96065 (9)	0.22322 (16)	0.49060 (7)	0.0117 (2)
H21	0.9953	0.1395	0.4735	0.014*
C22	1.06782 (9)	0.20324 (17)	0.60760 (7)	0.0120 (2)

Ek Tablo 8. [Cu₂(C₈H₇O₃)₄(C₆H₆N₂O)₂(H₂O)₂] kompleksinin geometrik parametreleri (Å,°)

Cu1—O2	1.9634 (10)	С6—Н6	0.9300
Cu1—O5	1.9548 (10)	С7—Н7	0.9300
Cu1—O7i	2.3655 (10)	C8—H8A	0.9600
Cu1—O8	1.9667 (10)	C8—H8B	0.9600
Cu1—N1	2.0171 (11)	C8—H8C	0.9600
01—C1	1.2540 (17)	C9—C10	1.4912 (18)
O2—C1	1.2754 (17)	C10—C15	1.4030 (19)
O3—C8	1.426 (2)	C11—C10	1.3856 (19)
O4—C9	1.2466 (17)	C11—C12	1.3886 (19)
O5—C9	1.2808 (17)	C11—H11	0.9300
O6—C13	1.3634 (17)	C12—C13	1.3876 (19)
O6—C16	1.4355 (17)	C12—H12	0.9300
O7—Cu1i	2.3655 (10)	C13—C14	1.399(2)
O8—H81	0.79 (3)	C14—C15	1.381 (2)
O8—H82	0.83 (2)	C14—H14	0.9300
N1—C17	1.3444 (18)	C15—H15	0.9300
N1—C21	1.3401 (17)	C16—H16A	0.9600
N2	1.3278 (18)	C16—H16B	0.9600
N2—H2A	0.86 (2)	C16—H16C	0.9600
N2—H2B	0.83 (2)	C17—H17	0.9300
C1—C2	1.4985 (19)	C18—C17	1.3833 (19)
C2—C7	1.394 (2)	C18—C19	1.3895 (19)
C3—C2	1.4007 (19)	C18—H18	0.9300
C3—C4	1.383 (2)	C19—H19	0.9300
С3—Н3	0.9300	C20—C19	1.3886 (19)
C4—H4	0.9300	C20—C21	1.3903 (18)
C5—O3	1.3650 (17)	C21—H21	0.9300
C5—C4	1.399 (2)	C22—O7	1.2345 (17)
C5—C6	1.391 (2)	C22—C20	1.5053 (18)
C6—C7	1.390 (2)		
O2—Cu1—O7i	85.44 (4)	H8A—C8—H8B	109.5
O2—Cu1—O8	88.96 (4)	H8A—C8—H8C	109.5

O2—Cu1—N1	93.49 (4)	H8B—C8—H8C	109.5
O5—Cu1—O2	176.73 (4)	04—C9—O5	123.30 (13)
O5—Cu1—O7i	97.41 (4)	O4—C9—C10	119.63 (12)
O5—Cu1—O8	89.07 (4)	O5—C9—C10	117.05 (12)
O5—Cu1—N1	88.22 (4)	C11—C10—C9	120.61 (12)
O8—Cu1—O7i	97.34 (4)	C11—C10—C15	118.88 (13)
O8—Cu1—N1	173.84 (5)	C15—C10—C9	120.48 (12)
N1—Cu1—O7i	88.50 (4)	C10-C11-C12	121.22 (13)
C1—O2—Cu1	112.27 (9)	C10-C11-H11	119.4
C5—O3—C8	117.64 (13)	C12—C11—H11	119.4
C9—O5—Cu1	114.26 (9)	C11—C12—H12	120.3
C13—O6—C16	116.39 (11)	C13—C12—C11	119.38 (13)
C22—O7—Cu1i	134.96 (9)	C13—C12—H12	120.3
Cu1—O8—H82	125.4 (12)	O6—C13—C12	123.72 (13)
Cu1—O8—H81	123.2 (18)	O6—C13—C14	116.04 (12)
H82—O8—H81	103 (2)	C12—C13—C14	120.24 (13)
C17—N1—Cu1	120.44 (9)	C13—C14—H14	120.1
C21—N1—Cu1	120.36 (9)	C15—C14—C13	119.77 (13)
C21—N1—C17	118.32 (12)	C15—C14—H14	120.1
C22—N2—H2A	122.8 (14)	C10—C15—H15	119.7
C22—N2—H2B	120.0 (14)	C14—C15—C10	120.51 (13)
H2B—N2—H2A	116.8 (19)	C14—C15—H15	119.7
01—C1—O2	123.25 (13)	O6—C16—H16A	109.5
01—C1—C2	119.15 (13)	O6—C16—H16B	109.5
O2—C1—C2	117.60 (12)	O6—C16—H16C	109.5
C3—C2—C1	121.78 (13)	H16A—C16—H16B	109.5
C7—C2—C1	119.50 (12)	H16A—C16—H16C	109.5
C7—C2—C3	118.72 (13)	H16B—C16—H16C	109.5
С2—С3—Н3	119.8	N1—C17—C18	122.43 (12)
C4—C3—C2	120.44 (14)	N1—C17—H17	118.8
С4—С3—Н3	119.8	C18—C17—H17	118.8
C3—C4—C5	120.11 (14)	C17—C18—C19	119.00 (13)
C3—C4—H4	119.9	C17—C18—H18	120.5
C5—C4—H4	119.9	C19—C18—H18	120.5
O3—C5—C4	115.72 (14)	C18—C19—H19	120.5

O3—C5—C6	124.15 (14)	C20-C19-C18	118.94 (12)
C6—C5—C	120.13 (13)	C20—C19—H19	120.5
С5—С6—Н6	120.4	C19—C20—C21	118.40 (12)
C7—C6—C5	119.18 (14)	C19—C20—C22	124.05 (12)
С7—С6—Н6	120.4	C21—C20—C22	117.45 (12)
С2—С7—Н7	119.3	N1-C21-C20	122.83 (13)
C6—C7—C2	121.41 (13)	N1—C21—H21	118.6
С6—С7—Н7	119.3	C20—C21—H21	118.6
O3—C8—H8A	109.5	O7—C22—N2	123.72 (13)
O3—C8—H8B	109.5	O7—C22—C20	119.57 (12)
O3—C8—H8C	109.5	N2-C22-C20	116.69 (12)
O7 ⁱ —Cu1—O2—C1	-166.69 (9)	C6—C5—O3—C8	-6.9 (2)
O8—Cu1—O2—C1	95.87 (9)	O3—C5—C4—C3	-179.07 (13)
N1—Cu1—O2—C1	-78.48 (9)	C6—C5—C4—C3	0.9 (2)
O7i—Cu1—O5—C9	-177.06 (9)	O3—C5—C6—C7	179.92 (13)
O8—Cu1—O5—C9	-79.78 (9)	C4—C5—C6—C7	0.0 (2)
N1—Cu1—O5—C9	94.69 (9)	C5—C6—C7—C2	-0.8 (2)
O2—Cu1—N1—C17	128.61 (11)	O4—C9—C10—C11	-168.45 (13)
O2—Cu1—N1—C21	-62.33 (11)	O4—C9—C10—C15	9.4 (2)
O5—Cu1—N1—C17	-48.59 (11)	O5—C9—C10—C11	9.80 (19)
O5—Cu1—N1—C21	120.47 (11)	O5—C9—C10—C15	-172.30 (12)
O7i—Cu1—N1—C17	-146.05 (11)	C9—C10—C15—C14	-178.15 (13)
O7i—Cu1—N1—C21	23.01 (10)	C11—C10—C15—C14	-0.2 (2)
Cu1—O2—C1—O1	-0.05 (16)	C12—C11—C10—C9	177.95 (13)
Cu1—O2—C1—C2	179.28 (9)	C12—C11—C10—C15	0.0 (2)
Cu1—O5—C9—O4	8.36 (17)	C10-C11-C12-C13	0.3 (2)
Cu1—O5—C9—C10	-169.82 (9)	C11—C12—C13—O6	179.65 (13)
C16—O6—C13—C12	5.6 (2)	C11—C12—C13—C14	-0.4 (2)
C16—O6—C13—C14	-174.33 (13)	O6-C13-C14-C15	-179.84 (13)
Cu1—N1—C17—C18	168.29 (11)	C12—C13—C14—C15	0.2 (2)
C21—N1—C17—C18	-1.0 (2)	C13—C14—C15—C10	0.1 (2)
Cu1—N1—C21—C20	-166.33 (10)	C19—C18—C17—N1	-1.6 (2)
C17—N1—C21—C20	3.0 (2)	C17—C18—C19—C20	2.2 (2)
O1—C1—C2—C3	178.44 (12)	C21—C20—C19—C18	-0.4 (2)
O1—C1—C2—C7	-2.31 (19)	C22—C20—C19—C18	-176.58 (13)

O2—C1—C2—C3	-0.91 (19)	C19-C20-C21-N1	-2.3 (2)
O2—C1—C2—C7	178.33 (12)	C22—C20—C21—N1	174.18 (12)
C1—C2—C7—C6	-178.58 (12)	O7—C22—C20—C19	170.96 (14)
C3—C2—C7—C6	0.7 (2)	O7—C22—C20—C21	-5.28 (19)
C4—C3—C2—C1	179.42 (13)	N2—C22—O7—Cu1 ⁱ	29.9 (2)
C4—C3—C2—C7	0.2 (2)	N2-C22-C20-C19	-7.8 (2)
C2—C3—C4—C5	-0.9 (2)	N2-C22-C20-C21	175.94 (13)
C4—C5—O3—C8	173.01 (14)	C20—C22—O7—Cu1 ⁱ	-148.77 (10)

Simetri kodu: (i) -x+2, -y, -z+1.

Ek Tablo 9. $[Cu_2(C_8H_7O_3)_4(C_6H_6N_2O)_2(H_2O)_2]$ kristalinin hidrojen bağı geometrisi (Å, °)

D—HA	D—H	НА	DA D-	—НА
N2—H2AO1ii	0.86 (2)	2.03 (2)	2.8407 (18)	158 (2)
N2—H2BO4iii	0.83 (2)	2.29 (2)	2.9897 (17)	141.4 (18)
O8—H81O1iv	0.79 (3)	1.97 (3)	2.7236 (15)	159 (3)
O8—H82O4iv	0.825 (18)	1.803 (18)	2.6052 (16)	163.9 (18)

Simetri kodu: (ii) -x+2, -y+1, -z+1; (iii) x+1/2, -y+1/2, z+1/2; (iv) -x+3/2, y-1/2, -z+1/2.

	X	У	Z	Uiso*/Ueq
Co1	0.83963 (2)	0.92738 (3)	0.717117 (8)	0.01106 (5)
01	0.87439 (13)	0.72789 (18)	0.79844 (5)	0.0132 (2)
O2	0.75818 (13)	1.01182 (18)	0.81134 (5)	0.0145 (2)
O3	0.68768 (15)	0.5746 (2)	1.08004 (5)	0.0212 (3)
O4	0.78237 (13)	0.51498 (18)	0.63163 (5)	0.0156 (2)
O5	0.95880 (13)	0.76378 (18)	0.65605 (5)	0.0146 (2)
O6	1.43741 (13)	0.13627 (18)	0.56391 (5)	0.0160 (2)
O7	1.44482 (14)	1.65456 (18)	0.77779 (5)	0.0160 (2)
08	0.60930 (14)	0.78883 (19)	0.68139 (6)	0.0147 (2)
H81	0.652 (3)	0.692 (4)	0.6668 (10)	0.024 (6)*
H82	0.564 (3)	0.750 (4)	0.7153 (12)	0.052 (7)*
09	0.72143 (15)	1.1511 (2)	0.66328 (6)	0.0177 (3)
H91	0.639 (2)	1.126 (4)	0.6396 (10)	0.024 (6)*
H92	0.749 (2)	1.277 (4)	0.6543 (9)	0.021 (5)*
N1	1.05301 (16)	1.0966 (2)	0.74674 (6)	0.0127 (3)
N2	1.62169 (17)	1.4016 (3)	0.79899 (7)	0.0175 (3)
H2A	1.643 (2)	1.290 (4)	0.8055 (9)	0.015 (5)*
H2B	1.708 (3)	1.486 (4)	0.8026 (10)	0.033 (6)*
C1	0.80942 (19)	0.8473 (3)	0.83434 (7)	0.0130 (3)
C2	0.79173 (19)	0.7843 (3)	0.90221 (7)	0.0140 (3)
C3	0.86387(19)	0.6109 (3)	0.92813 (7)	0.0172 (3)
H3	0.9323	0.5420	0.9046	0.021*
C4	0.8362 (2)	0.5378 (3)	0.98853 (7)	0.0190 (4)
H4	0.8862	0.4220	1.0056	0.023*
C5	0.7328 (2)	0.6403 (3)	1.02288 (7)	0.0172 (4)
C6	0.6650 (2)	0.8189 (3)	0.99909 (8)	0.0200 (4)
H6	0.6001	0.8901	1.0235	0.024*
C7	0.69427 (19)	0.8905 (3)	0.93914 (7)	0.0172 (4)
H7	0.6489	1.0099	0.9233	0.021*
C8	0.7330 (2)	0.3780 (3)	1.10016 (8)	0.0238 (4)
H8A	0.6763	0.3397	1.1352	0.036*

Ek Tablo 10. $[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2$ kristalinin fraksiyonel atomik koordinatları ve izotropik veya equvalent izotropik yerdeğiştirme parametreleri (Å²)

0.8493	0.3718	1.1154	0.036*
0.7038	0.2906	1.0633	0.036*
0.92278 (19)	0.5941 (2)	0.63394 (7)	0.0125 (3)
1.05374 (18)	0.4757 (2)	0.60954 (7)	0.0122 (4)
1.0197 (2)	0.2936 (3)	0.57978 (7)	0.0160 (3)
0.9117	0.2493	0.5716	0.019*
1.14209 (19)	0.1759 (3)	0.56200 (7)	0.0160 (3)
1.1168	0.0551	0.5416	0.019*
1.30388 (19)	0.2427 (3)	0.57528 (7)	0.0135 (3)
1.33919 (17)	0.4281 (3)	0.60267 (6)	0.0160 (3)
1.4464	0.4749	0.6093	0.019*
1.2158 (2)	0.5421 (3)	0.61986 (7)	0.0148 (3)
1.2406	0.6651	0.6386	0.018*
1.4086 (2)	-0.0503 (3)	0.53119 (7)	0.0191 (4)
1.5118	-0.1095	0.5271	0.029*
1.3448	-0.0312	0.4880	0.029*
1.3501	-0.1347	0.5566	0.029*
1.20276 (19)	1.0299 (3)	0.74076 (7)	0.0156 (3)
1.2125	0.9018	0.7261	0.019*
1.34326 (19)	1.1433 (3)	0.75550 (7)	0.0143 (3)
1.4452	1.0910	0.7518	0.017*
1.32986 (18)	1.3358 (2)	0.77577 (7)	0.0119 (3)
1.17472 (17)	1.4047 (3)	0.78314 (6)	0.0132 (3)
1.1614	1.5323	0.7975	0.016*
1.04258 (19)	1.2809 (3)	0.76878 (7)	0.0145 (3)
0.9402	1.3273	0.7746	0.017*
1.47067 (19)	1.4762 (2)	0.78517 (7)	0.0135 (3)
	0.8493 0.7038 0.92278 (19) 1.05374 (18) 1.0197 (2) 0.9117 1.14209 (19) 1.1168 1.30388 (19) 1.33919 (17) 1.4464 1.2158 (2) 1.2406 1.4086 (2) 1.5118 1.3448 1.3501 1.20276 (19) 1.2125 1.34326 (19) 1.2125 1.34326 (19) 1.4452 1.32986 (18) 1.17472 (17) 1.1614 1.04258 (19) 0.9402 1.47067 (19)	0.84930.37180.70380.29060.92278 (19)0.5941 (2)1.05374 (18)0.4757 (2)1.0197 (2)0.2936 (3)0.91170.24931.14209 (19)0.1759 (3)1.11680.05511.30388 (19)0.2427 (3)1.33919 (17)0.4281 (3)1.44640.47491.2158 (2)0.5421 (3)1.24060.66511.4086 (2)-0.0503 (3)1.5118-0.10951.3448-0.03121.3501-0.13471.20276 (19)1.0299 (3)1.21250.90181.34326 (19)1.1433 (3)1.44521.09101.32986 (18)1.3358 (2)1.17472 (17)1.4047 (3)1.16141.53231.04258 (19)1.2809 (3)0.94021.32731.47067 (19)1.4762 (2)	0.84930.37181.11540.70380.29061.06330.92278 (19)0.5941 (2)0.63394 (7)1.05374 (18)0.4757 (2)0.60954 (7)1.0197 (2)0.2936 (3)0.57978 (7)0.91170.24930.57161.14209 (19)0.1759 (3)0.56200 (7)1.11680.05510.54161.30388 (19)0.2427 (3)0.57528 (7)1.33919 (17)0.4281 (3)0.60267 (6)1.44640.47490.60931.2158 (2)0.5421 (3)0.61986 (7)1.24060.66510.63861.4086 (2)-0.0503 (3)0.53119 (7)1.5118-0.10950.52711.3448-0.03120.48801.3501-0.13470.55661.20276 (19)1.0299 (3)0.74076 (7)1.44521.09100.75181.32986 (18)1.3358 (2)0.77577 (7)1.17472 (17)1.4047 (3)0.78314 (6)1.16141.53230.79751.04258 (19)1.2809 (3)0.76878 (7)0.94021.32730.77461.47067 (19)1.4762 (2)0.78517 (7)

Co1—O1	2.1338 (11)	C6—C5	1.392 (3)
Co1—O2	2.2301 (11)	С6—Н6	0.9300
Co1—O5	2.0506 (11)	C7—C6	1.383 (2)
Co1—O8	2.1394 (12)	С7—Н7	0.9300
Co1—O9	2.0317 (13)	C8—H8A	0.9600
Co1—N1	2.1077 (13)	C8—H8B	0.9600
01—C1	1.276 (2)	C8—H8C	0.9600
O2—C1	1.260 (2)	С10—С9	1.502 (2)
O3—C5	1.3662 (19)	C10—C11	1.389 (2)
O3—C8	1.431 (2)	C10—C15	1.395 (2)
O4—C9	1.2729 (19)	C11—H11	0.9300
О5—С9	1.258 (2)	C12—C11	1.387 (2)
O6—C13	1.3730 (19)	C12—C13	1.395 (2)
O6—C16	1.437 (2)	С12—Н12	0.9300
O7—C22	1.237 (2)	C14—C13	1.392 (3)
O8—H81	0.83 (2)	C14—C15	1.375 (2)
O8—H82	0.89 (3)	C14—H14	0.9300
O9—H91	0.79 (2)	C15—H15	0.9300
O9—H92	0.91 (2)	C16—H16A	0.9600
N1—C17	1.344 (2)	C16—H16B	0.9600
N1—C21	1.342 (2)	C16—H16C	0.9600
N2—C22	1.333 (2)	C17—C18	1.385 (2)
N2—H2A	0.79 (2)	C17—H17	0.9300
N2—H2B	0.91 (2)	C18—H18	0.9300
C2—C1	1.489 (2)	C19—C18	1.385 (2)
C2—C3	1.387 (2)	C19—C20	1.398 (2)
C2—C7	1.398 (2)	C20—H20	0.9300
C3—C4	1.392 (2)	C21—C20	1.371 (2)
С3—Н3	0.9300	C21—H21	0.9300
C4—H4	0.9300	C22—C19	1.493 (2)
C5—C4	1.386 (2)		
O1—Co1—O2	60.32 (4)	C6—C7—H7	119.8
01—Co1—O8	88.94 (4)	O3—C8—H8A	109.5
05—Co1—O1	96.83 (4)	O3—C8—H8B	109.5

Ek Tablo 11. $[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2$ kristalinin geometrik parametreleri (Å, °)

O5—Co1—O2	156.69 (4)	O3—C8—H8C	109.5
O5—Co1—O8	92.47 (5)	H8A—C8—H8B	109.5
O5—Co1—N1	90.44 (5)	H8A—C8—H8C	109.5
O8—Co1—O2	91.64 (5)	H8B—C8—H8C	109.5
09—Co1—O1	153.01 (5)	O4—C9—C10	117.72 (14)
O9—Co1—O2	95.22 (5)	O5—C9—O4	124.05 (14)
O9—Co1—O5	108.09 (5)	O5—C9—C10	118.23 (13)
O9—Co1—O8	79.99 (5)	C11—C10—C9	121.43 (14)
O9—Co1—N1	92.80 (5)	C11—C10—C15	118.24 (15)
N1—Co1—O1	97.30 (5)	C15—C10—C9	120.23 (14)
N1—Co1—O2	88.29 (5)	C10—C11—H11	119.1
N1—Co1—O8	172.76 (5)	C12—C11—C10	121.90 (15)
C1C01	91.92 (10)	C12—C11—H11	119.1
C1—O2—Co1	87.97 (10)	C11—C12—C13	118.61 (16)
С5—О3—С8	117.25 (14)	C11—C12—H12	120.7
C9—O5—Co1	127.62 (10)	C13—C12—H12	120.7
C13—O6—C16	118.14 (12)	O6—C13—C14	115.31 (13)
Co1—O8—H81	93.8 (15)	O6—C13—C12	124.54 (15)
Co1—O8—H82	109.5 (15)	C14—C13—C12	120.15 (15)
H81—O8—H82	108 (2)	C13—C14—H14	119.9
Co1—O9—H91	117.3 (17)	C15—C14—C13	120.10 (14)
Со1—О9—Н92	134.2 (12)	C15—C14—H14	119.9
H91—O9—H92	108 (2)	C10—C15—H15	119.6
C17—N1—Co1	121.84 (11)	C14—C15—C10	120.90 (16)
C21—N1—Co1	120.64 (11)	C14—C15—H15	119.6
C21—N1—C17	117.40 (14)	O6—C16—H16A	109.5
C22—N2—H2A	125.4 (14)	O6—C16—H16B	109.5
C22—N2—H2B	118.0 (14)	O6-C16-H16C	109.5
H2A—N2—H2B	117 (2)	H16A—C16—H16B	109.5
O1—C1—C2	118.41 (15)	H16A—C16—H16C	109.5
02—C1—O1	119.79 (14)	H16B—C16—H16C	109.5
O2—C1—C2	121.77 (15)	N1—C17—C18	122.89 (16)
C3—C2—C7	118.77 (14)	N1—C17—H17	118.6
C3—C2—C1	120.01 (15)	C18—C17—H17	118.6
C7—C2—C1	121.09 (15)	C17—C18—H18	120.5

C2—C3—C4	121.42 (16)	C19—C18—C17	119.09 (15)
С2—С3—Н3	119.3	C19—C18—H18	120.5
С4—С3—Н3	119.3	C18—C19—C20	118.15 (15)
C3—C4—H4	120.6	C18—C19—C22	122.94 (15)
C5—C4—C3	118.90 (17)	C20—C19—C22	118.75 (15)
C5—C4—H4	120.6	С19—С20—Н20	120.6
O3—C5—C4	23.71 (17)	C21—C20—C19	118.87 (17)
O3—C5—C6	115.79 (15)	C21—C20—H20	120.6
C4—C5—C6	120.49 (15)	N1-C21-C20	123.53 (15)
C7—C6—C5	119.92 (16)	N1-C21-H21	118.2
С7—С6—Н6	120.0	C20—C21—H21	118.2
С5—С6—Н6	120.0	O7—C22—N2	122.40 (15)
С2—С7—Н7	119.8	O7—C22—C19	119.83 (14)
C6—C7—C2	120.36 (16)	N2-C22-C19	117.72 (15)
O2—Co1—O1—C1	0.09 (8)	C7—C2—C1—O2	10.6 (2)
O5-Co1-O1-C1	175.24 (9)	C3-C2-C1-01	8.3 (2)
08—Co1—O1—C1	-92.40 (9)	C7—C2—C1—O1	-167.51 (14)
09—Co1—O1—C1	-27.20 (15)	C1—C2—C3—C4	-173.46 (15)
N1—Co1—O1—C1	83.91 (9)	C7—C2—C3—C4	2.4 (2)
O1—Co1—O2—C1	-0.10 (8)	C1—C2—C7—C6	173.09 (15)
O5—Co1—O2—C1	-12.36 (15)	C3—C2—C7—C6	-2.8 (2)
O8—Co1—O2—C1	87.75 (9)	C2—C3—C4—C5	0.7 (3)
O9—Co1—O2—C1	167.84 (9)	O3—C5—C4—C3	175.05 (15)
N1—Co1—O2—C1	-99.50 (9)	C6—C5—C4—C3	-3.5 (2)
O1—Co1—O5—C9	60.93 (12)	C7—C6—C5—O3	-175.47 (15)
O2—Co1—O5—C9	71.64 (17)	C7—C6—C5—C4	3.2 (2)
O8—Co1—O5—C9	-28.29 (12)	C2—C7—C6—C5	0.0 (2)
O9—Co1—O5—C9	-108.57 (12)	C11—C10—C9—O4	5.9 (2)
N1—Co1—O5—C9	158.34 (12)	C11—C10—C9—O5	-174.93 (13)
O1—Co1—N1—C17	75.29 (12)	C15—C10—C9—O4	-170.39 (13)
O1—Co1—N1—C21	-108.72 (11)	C15—C10—C9—O5	8.8 (2)
O2—Co1—N1—C17	135.07 (12)	C9—C10—C11—C12	-174.61 (14)
O2—Co1—N1—C21	-48.93 (11)	C15—C10—C11—C12	1.7 (2)
O5—Co1—N1—C17	-21.65 (12)	C9—C10—C15—C14	174.66 (14)
O5—Co1—N1—C21	154.35 (11)	C11—C10—C15—C14	-1.7 (2)

O9-Co1-N1-C17	-129.79 (12)	C13—C12—C11—C10	0.8 (2)
O9—Co1—N1—C21	46.21 (12)	C11—C12—C13—O6	175.92 (14)
Co1-01-C1-02	-0.17 (14)	C11—C12—C13—C14	-3.3 (2)
Co1-01-C1-C2	177.95 (12)	C15—C14—C13—O6	-175.95 (13)
Co1-02-C1-01	0.16 (14)	C15—C14—C13—C	12 3.3 (2)
Co1—O2—C1—C2	-177.89 (13)	C13—C14—C15—C10	-0.8 (2)
C8—O3—C5—C4	-8.5 (2)	N1-C17-C18-C19	-1.6 (2)
C8—O3—C5—C6	170.10 (14)	C20-C19-C18-C	17 2.6 (2)
Co1-05-C9-04	19.3 (2)	C22-C19-C18-C17	-172.69 (13)
Co1	-159.84 (9)	C18—C19—C20—C21	-1.3 (2)
C16—O6—C13—C12	5.3 (2)	C22—C19—C20—C21	174.22 (13)
C16—O6—C13—C14	-175.44 (13)	N1—C21—C20—C19	-1.2 (2)
Co1—N1—C17—C18	175.31 (11)	O7—C22—C19—C18	151.80 (15)
C21—N1—C17—C18	-0.8 (2)	N2—C22—C19—C18	-25.7 (2)
Co1—N1—C21—C20	-173.91 (11)	O7—C22—C19—C20	-23.5 (2)
C17—N1—C21—C20	2.3 (2)	N2-C22-C19-C20	158.99 (13)
C3—C2—C1—O2	-173.63 (14)		

Ek Tablo 12. [Co(C₈H₇O₃)₂(C₆H₆N₂O)(H₂O)₂ kristalinin hidrojen bağı geometrisi (Å, °)

D—HA	D—H	HA	DA	D—HA
N2—H2A…O2 ⁱ	0.79 (3)	2.11 (3)	2.877 (2)	164.0 (17)
N2—H2BO1 ⁱⁱ	0.91 (3)	2.16 (3)	3.050 (2)	167 (2)
O8—H81O4	0.83 (3)	1.84 (3)	2.6577 (17)	167 (3)
О8—H82…О7 ^{ііі}	0.89 (2)	1.86 (3)	2.7427 (16)	172 (2)
O9—H91…O6 ^{iv}	0.786(19)	2.078 (19)	2.8384 (16)	163 (2)
O9—H92…O4 ^v	0.91 (3)	1.72 (3)	2.6307 (18)	174.1 (15)
C8—H8A…O 7 ^{vi}	0.96	2.53	3.466 (2)	166
C16—H16BO4 ^{vii}	0.96	2.52	3.4752 (18)	171

Simetri kodu: (i) x +1, y, z; (ii) x +1, y+1, z; (iii) x -1, y-1, z; (iv) x - 1, y + 1, z; (v) x, y+1, z; (vi) -x + 2, y-3/2, -z+2, -x+2, y-1/2, -z+1.

Zn1	0.313492 (18)	0.366125 (12)	0.622308 (9)	0.01588 (6)
Zn2	0.352863 (19)	0.301859 (12)	1.053489 (9)	0.01722 (6)
Zn3	0.976026 (18)	1.016176 (12)	0.288848 (9)	0.01588 (6)
01	0.39085 (11)	0.33289 (7)	0.72375 (5)	0.0209 (3)
O2	0.22139 (11)	0.30695 (8)	0.68818 (5)	0.0208 (3)
O3	0.15524 (12)	0.13733 (8)	0.95436 (5)	0.0250 (3)
O4	0.17745 (11)	0.52611 (8)	0.62504 (5)	0.0216 (3)
O5	0.37345 (11)	0.47164 (7)	0.59757 (5)	0.0208 (3)
06	0.43183 (11)	0.84998 (7)	0.52950 (5)	0.0204 (3)
O7	0.25931 (12)	0.53514 (9)	0.40279 (6)	0.0322 (4)
08	0.47812 (11)	0.03835 (7)	0.61971 (6)	0.0224 (3)
09	0.45314 (11)	0.36051 (8)	0.99141 (5)	0.0223 (3)
O10	0.27624 (11)	0.35992 (8)	0.94883 (5)	0.0222 (3)
011	0.59603 (11)	0.54610 (8)	0.73967 (5)	0.0232 (3)
012	0.47687 (12)	0.14356 (8)	1.04057 (5)	0.0236 (3)
013	0.28361 (11)	0.19987 (7)	1.07052 (5)	0.0214 (3)
O14	0.20753 (11)	-0.17617 (7)	1.12763 (6)	0.0227 (3)
015	0.20039 (12)	0.63532 (8)	1.02430 (6)	0.0291 (3)
016	0.40959 (12)	0.11180 (8)	1.26802 (6)	0.0282 (3)
017	1.04363 (11)	0.97596 (8)	0.38711 (5)	0.0210 (3)
O18	0.87293 (11)	0.95390 (8)	0.35102 (5)	0.0212 (3)
O19	0.78586 (12)	0.80368 (8)	0.61939 (5)	0.0224 (3)
O20	0.85139 (11)	1.17047 (7)	0.30187 (5)	0.0217 (3)
O21	1.04437 (11)	1.11930 (7)	0.26900 (5)	0.0208 (3)
O22	1.09807 (11)	1.49966 (7)	0.21544 (6)	0.0240 (3)
O23	0.92177 (12)	1.20096 (8)	0.07362 (6)	0.0262 (3)
O24	1.12752 (11)	0.68778 (7)	0.28666 (6)	0.0232 (3)
N1	0.19882 (13)	0.37139 (9)	0.55429 (6)	0.0171 (3)
N2	0.06975 (16)	0.53483 (11)	0.36749 (7)	0.0219 (4)
H2A	0.0786 (17)	0.5760 (12)	0.3421 (8)	0.019 (5)*
H2B	-0.0003 (18)	0.5187 (11)	0.3709 (8)	0.018 (5)*
N3	0.48010 (13)	0.28705 (9)	0.60648 (6)	0.0158 (3)

Ek Tablo 13. $[Zn(C_8H_7O_3)_2(C_6H_6N_2O)_2]$ kristalinin fraksiyonel atomik

koordinatları ve izotropik veya equvalent izotropik yerdeğiştirme parametreleri (Å 2)

N4	0.69315 (16)	0.00035 (10)	0.61994 (7)	0.0200 (4)
H4A	0.7647 (18)	0.0139 (11)	0.6166 (8)	0.016 (5)*
H4B	0.6860 (18)	-0.0506 (13)	0.6320 (8)	0.025 (6)*
N5	0.19293 (13)	0.38451 (9)	1.07177 (6)	0.0170 (3)
N6	-0.01415 (17)	0.67577 (11)	1.03019 (8)	0.0244 (4)
H6A	-0.0070 (19)	0.7202 (13)	1.0129 (9)	0.030 (6)*
H6B	-0.086 (2)	0.6600 (12)	1.0391 (9)	0.030 (6)*
N7	0.47047 (13)	0.28584 (9)	1.12176 (6)	0.0176 (3)
N8	0.60015 (16)	0.10780 (11)	1.30460 (7)	0.0208 (4)
H8D	0.5895 (18)	0.0675 (12)	1.3282 (9)	0.026 (6)*
H8E	0.6731 (19)	0.1242 (12)	1.3019 (8)	0.026 (6)*
N9	0.85885 (13)	1.02845 (9)	0.22012 (6)	0.0168 (3)
N10	0.72992 (16)	1.20652 (11)	0.03746 (7)	0.0223 (4)
H10A	0.6560 (19)	1.1910 (12)	0.0412 (8)	0.027 (6)*
H10B	0.7391 (19)	1.2516 (13)	0.0144 (9)	0.029 (6)*
N11	1.13843 (13)	0.93611 (9)	0.26882 (6)	0.0153 (3)
N12	1.34124 (16)	0.64813 (10)	0.27654 (7)	0.0224 (4)
H12A	1.333 (2)	0.5981 (14)	0.2854 (9)	0.044 (7)*
H12B	1.418 (2)	0.6591 (12)	0.2761 (9)	0.029 (6)*
C1	0.29193 (16)	0.30146 (10)	0.73072 (8)	0.0170 (4)
C2	0.25311 (16)	0.25679 (10)	0.78890 (8)	0.0171 (4)
C3	0.13826 (16)	0.22777 (10)	0.79820 (8)	0.0175 (4)
H3	0.0854	0.2353	0.7674	0.021*
C4	0.10110 (17)	0.18752 (11)	0.85301 (8)	0.0192 (4)
H4	0.0238	0.1687	0.8588	0.023*
C5	0.18076 (17)	0.17579 (11)	0.89893 (8)	0.0192 (4)
C6	0.29574 (17)	0.20519 (11)	0.89017 (8)	0.0217 (4)
H6	0.3485	0.1978	0.9210	0.026*
C7	0.33092 (17)	0.24513 (11)	0.83587 (8)	0.0199 (4)
H7	0.4076	0.2647	0.8303	0.024*
C8	0.04683 (19)	0.09769 (13)	0.96477 (8)	0.0313 (5)
H8A	0.0421	0.0703	1.0047	0.047*
H8B	0.0545	0.0568	0.9413	0.047*
H8C	-0.0293	0.1392	0.9553	0.047*
C9	0.28465 (16)	0.53433 (11)	0.60331 (7)	0.0166 (4)

C10	0.31871 (16)	0.61930 (10)	0.58207 (7)	0.0153 (4)
C11	0.43776 (16)	0.62713 (11)	0.55511 (7)	0.0169 (4)
H11	0.4943	0.5795	0.5488	0.020*
C12	0.47221 (16)	0.70479 (11)	0.53776 (7)	0.0168 (4)
H12	0.5514	0.7094	0.5195	0.020*
C13	0.38835 (16)	0.77638 (11)	0.54759 (7)	0.0164 (4)
C14	0.26949 (16)	0.76976 (11)	0.57452 (8)	0.0177 (4)
H14	0.2134	0.8174	0.5813	0.021*
C15	0.23561 (16)	0.69100 (11)	0.59123 (8)	0.0184 (4)
H15	0.1559	0.6864	0.6088	0.022*
C16	0.34915 (17)	0.92627 (11)	0.53688 (8)	0.0229 (4)
H16A	0.3944	0.9721	0.5256	0.034*
H16B	0.3214	0.9211	0.5766	0.034*
H16C	0.2762	0.9367	0.5133	0.034*
C17	0.21054 (16)	0.42806 (11)	0.50529 (8)	0.0178 (4)
H17	0.2712	0.4618	0.5031	0.021*
C18	0.13687 (16)	0.43897 (11)	0.45768 (8)	0.0174 (4)
C19	0.04810 (17)	0.38722 (11)	0.46058 (8)	0.0191 (4)
H19	-0.0024	0.3923	0.4294	0.023*
C20	0.03620 (17)	0.32754 (11)	0.51122 (8)	0.0202 (4)
H20	-0.0216	0.2916	0.5141	0.024*
C21	0.11107 (16)	0.32237 (11)	0.55697 (8)	0.0189 (4)
H21	0.1007	0.2836	0.5910	0.023*
C22	0.16008 (17)	0.50751 (11)	0.40618 (8)	0.0206 (4)
C23	0.48424 (16)	0.20469 (10)	0.61163 (7)	0.0159 (4)
H23	0.4084	0.1843	0.6200	0.019*
C24	0.59610 (16)	0.14823 (11)	0.60509 (7)	0.0155 (4)
C25	0.70925 (16)	0.17920 (11)	0.59214 (7)	0.0169 (4)
H25	0.7861	0.1433	0.5873	0.020*
C26	0.70518 (16)	0.26460 (11)	0.58660 (7)	0.0184 (4)
H26	0.7795	0.2866	0.5778	0.022*
C27	0.59038 (16)	0.31657 (11)	0.59423 (7)	0.0169 (4)
H27	0.5887	0.3736	0.5909	0.020*
C28	0.58516 (17)	0.05697 (11)	0.61515 (7)	0.0169 (4)
C29	0.38364 (17)	0.37940 (10)	0.94675 (8)	0.0177 (4)

C30	0.43568 (16)	0.42607 (10)	0.89192 (7)	0.0160 (4)
C31	0.36663 (17)	0.44726 (11)	0.84179 (8)	0.0188 (4)
H31	0.2860	0.4337	0.8430	0.023*
C32	0.41565 (16)	0.48819 (11)	0.79010 (8)	0.0188 (4)
H32	0.3682	0.5024	0.7570	0.023*
C33	0.53688 (17)	0.50788 (10)	0.78834 (7)	0.0163 (4)
C34	0.60823 (16)	0.48612 (10)	0.83812 (7)	0.0175 (4)
H34	0.6895	0.4988	0.8368	0.021*
C35	0.55725 (16)	0.44565 (10)	0.88937 (7)	0.0165 (4)
H35	0.6047	0.4313	0.9225	0.020*
C36	0.52520 (18)	0.57312 (12)	0.68812 (8)	0.0254 (4)
H36A	0.5777	0.5979	0.6571	0.038*
H36B	0.4508	0.6139	0.6939	0.038*
H36C	0.4995	0.5257	0.6786	0.038*
C37	0.36803 (17)	0.13662 (11)	1.06136 (8)	0.0189 (4)
C38	0.32856 (16)	0.05274 (11)	1.07873 (7)	0.0167 (4)
C39	0.41094 (17)	-0.01964 (11)	1.07027 (8)	0.0203 (4)
H39	0.4922	-0.0159	1.0541	0.024*
C40	0.37452 (17)	-0.09777 (11)	1.08548 (8)	0.0210 (4)
H40	0.4304	-0.1457	1.0792	0.025*
C41	0.25362 (17)	-0.10318 (11)	1.11019 (7)	0.0181 (4)
C42	0.16967 (17)	-0.03088 (11)	1.11905 (8)	0.0194 (4)
H42	0.0888	-0.0347	1.1357	0.023*
C43	0.20675 (16)	0.04611 (11)	1.10317 (7)	0.0188 (4)
H43	0.1502	0.0942	1.1088	0.023*
C44	0.29057 (18)	-0.25313 (11)	1.12221 (8)	0.0251 (4)
H44A	0.2447	-0.2987	1.1335	0.038*
H44B	0.3620	-0.2630	1.1466	0.038*
H44C	0.3207	-0.2494	1.0828	0.038*
C45	0.19034 (17)	0.46750 (11)	1.05576 (7)	0.0171 (4)
H45	0.2657	0.4857	1.0415	0.021*
C46	0.08131 (17)	0.52752 (11)	1.05929 (7)	0.0178 (4)
C47	-0.03127 (17)	0.49980 (11)	1.08085 (7)	0.0204 (4)
H47	-0.1066	0.5380	1.0838	0.025*
C48	-0.02866 (18)	0.41400 (12)	1.09786 (8)	0.0234 (4)

H48	-0.1024	0.3941	1.1128	0.028*
C49	0.08380 (17)	0.35845 (11)	1.09249 (7)	0.0202 (4)
H49	0.0842	0.3011	1.1036	0.024*
C50	0.09297 (17)	0.61805 (11)	1.03675 (8)	0.0198 (4)
C51	0.45678 (16)	0.22669 (11)	1.16912 (8)	0.0177 (4)
H51	0.3920	0.1962	1.1705	0.021*
C52	0.53452 (16)	0.20865 (10)	1.21624 (7)	0.0167 (4)
C53	0.62936 (16)	0.25576 (11)	1.21433 (8)	0.0188 (4)
H53	0.6828	0.2458	1.2452	0.023*
C54	0.64308 (17)	0.31808 (11)	1.16553 (8)	0.0213 (4)
H54	0.7051	0.3508	1.1636	0.026*
C55	0.56339 (17)	0.33059 (11)	1.12013 (8)	0.0191 (4)
H55	0.5742	0.3714	1.0872	0.023*
C56	0.50987 (17)	0.13816 (11)	1.26563 (8)	0.0179 (4)
C57	0.94215 (16)	0.94761 (10)	0.39389 (8)	0.0166 (4)
C58	0.89959 (16)	0.90683 (10)	0.45261 (7)	0.0152 (4)
C59	0.78302 (16)	0.88017 (10)	0.46149 (7)	0.0157 (4)
H59	0.7322	0.8861	0.4302	0.019*
C60	0.74133 (16)	0.84458 (10)	0.51674 (7)	0.0166 (4)
H60	0.6633	0.8268	0.5224	0.020*
C61	0.81757 (16)	0.83602 (10)	0.56327 (7)	0.0172 (4)
C62	0.93411 (16)	0.86335 (11)	0.55479 (8)	0.0195 (4)
H62	0.9846	0.8580	0.5861	0.023*
C63	0.97440 (16)	0.89826 (11)	0.49998 (8)	0.0178 (4)
H63	1.0523	0.9163	0.4945	0.021*
C64	0.67921 (18)	0.76180 (12)	0.62958 (8)	0.0271 (5)
H64A	0.6727	0.7362	0.6698	0.041*
H64B	0.6908	0.7193	0.6072	0.041*
H64C	0.6024	0.8018	0.6186	0.041*
C65	0.95912 (17)	1.18050 (11)	0.27986 (7)	0.0177 (4)
C66	0.99348 (16)	1.26563 (11)	0.26387 (7)	0.0169 (4)
C67	0.90216 (17)	1.33733 (11)	0.26628 (7)	0.0181 (4)
H67	0.8189	1.3319	0.2785	0.022*
C68	0.93296 (16)	1.41685 (11)	0.25075 (8)	0.0189 (4)
H68	0.8709	1.4643	0.2523	0.023*

C69	1.05760 (17)	1.42473 (11)	0.23278 (8)	0.0180 (4)
C70	1.15106 (17)	1.35321 (11)	0.23154 (8)	0.0198 (4)
H70	1.2349	1.3586	0.2206	0.024*
C71	1.11896 (16)	1.27463 (11)	0.24661 (8)	0.0188 (4)
H71	1.1813	1.2272	0.2453	0.023*
C72	1.00517 (17)	1.57534 (11)	0.21247 (9)	0.0245 (4)
H72A	1.0469	1.6229	0.2015	0.037*
H72B	0.9628	1.5753	0.2495	0.037*
H72C	0.9435	1.5786	0.1844	0.037*
C73	0.87123 (16)	1.08805 (11)	0.17289 (7)	0.0169 (4)
H73	0.9327	1.1208	0.1723	0.020*
C74	0.79723 (16)	1.10346 (11)	0.12490 (8)	0.0172 (4)
C75	0.70755 (17)	1.05289 (11)	0.12522 (8)	0.0205 (4)
H75	0.6567	1.0610	0.0936	0.025*
C76	0.69568 (17)	0.98979 (11)	0.17394 (8)	0.0219 (4)
H76	0.6377	0.9545	0.1750	0.026*
C77	0.77072 (17)	0.98031 (11)	0.22049 (8)	0.0198 (4)
H77	0.7602	0.9393	0.2533	0.024*
C78	0.82090 (17)	1.17471 (11)	0.07594 (8)	0.0193 (4)
C79	1.13973 (16)	0.85400 (10)	0.27480 (7)	0.0156 (4)
H79	1.0632	0.8348	0.2844	0.019*
C80	1.24907 (16)	0.79606 (11)	0.26748 (7)	0.0156 (4)
C81	1.36362 (16)	0.82537 (11)	0.25309 (7)	0.0173 (4)
H81	1.4392	0.7884	0.2480	0.021*
C82	1.36265 (17)	0.91065 (11)	0.24646 (8)	0.0193 (4)
H82	1.4377	0.9316	0.2366	0.023*
C83	1.24980 (16)	0.96386 (11)	0.25458 (7)	0.0177 (4)
H83	1.2500	1.0209	0.2501	0.021*
C84	1.23519 (17)	0.70559 (11)	0.27787 (7)	0.0172 (4)

			(1,)
Zn1—O1	2.5181 (12)	C21—H21	0.9300
Zn1—O2	1.9631 (12)	C23—N3	1.339 (2)
Zn1—O5	1.9392 (12)	C23—C24	1.387 (2)
Zn1—N1	2.0793 (15)	С23—Н23	0.9300
Zn1—N3	2.0561 (14)	C25—C24	1.393 (2)
Zn2—O9	1.9523 (12)	C25—C26	1.388 (2)
Zn2—O10	2.5931 (12)	C25—H25	0.9300
Zn2—O13	1.9317 (12)	C26—H26	0.9300
Zn2—N5	2.0536 (15)	C27—C26	1.378 (2)
Zn2—N7	2.0669 (14)	С27—Н27	0.9300
Zn3—O17	2.4085 (12)	C28—C24	1.509 (2)
Zn3—O18	1.9987 (12)	C29—C30	1.491 (2)
Zn3—O21	1.9436 (12)	C30—C35	1.394 (2)
Zn3—N9	2.0840 (14)	C31—C30	1.391 (2)
Zn3—N11	2.0613 (14)	C31—C32	1.386 (2)
O2—C1	1.284 (2)	С31—Н31	0.9300
O3—C5	1.364 (2)	С32—Н32	0.9300
O3—C8	1.423 (2)	C33—C32	1.393 (2)
O4—C9	1.240 (2)	C33—C34	1.397 (2)
О5—С9	1.287 (2)	С34—Н34	0.9300
O6—C13	1.363 (2)	C35—C34	1.384 (2)
O6—C16	1.432 (2)	С35—Н35	0.9300
O7—C22	1.227 (2)	C36—O11	1.428 (2)
O8—C28	1.234 (2)	С36—Н36А	0.9600
O9—C29	1.287 (2)	C36—H36B	0.9600
O10—C29	1.247 (2)	C36—H36C	0.9600
O11—C33	1.3653 (19)	C37—C38	1.497 (2)
O12—C37	1.245 (2)	C38—C39	1.387 (2)
O13—C37	1.289 (2)	C38—C43	1.399 (2)
O14—C41	1.367 (2)	С39—Н39	0.9300
O14—C44	1.430 (2)	C40—C39	1.392 (2)
O15—C50	1.236 (2)	C40—C41	1.389 (2)
O16—C56	1.228 (2)	C40—H40	0.9300

Ek Tablo 14. [Zn(C₈H₇O₃)₂(C₆H₆N₂O)₂] kristalinin geometrik parametreleri (Å, °)

O17—C57	1.251 (2)	C41—C42	1.396 (2)
O18—C57	1.279 (2)	C42—H42	0.9300
O19—C64	1.428 (2)	C43—C42	1.378 (2)
O20—C65	1.254 (2)	C43—H43	0.9300
O21—C65	1.282 (2)	C44—H44A	0.9600
O22—C69	1.366 (2)	C44—H44B	0.9600
O22—C72	1.431 (2)	C44—H44C	0.9600
O23—C78	1.234 (2)	C45—H45	0.9300
O24—C84	1.235 (2)	C46—C45	1.386 (2)
N1—C17	1.340 (2)	C46—C47	1.394 (2)
N1—C21	1.348 (2)	C46—C50	1.507 (2)
N2—C22	1.326 (2)	C47—H47	0.9300
N2—H2A	0.821 (19)	C48—C49	1.379 (2)
N2—H2B	0.836 (19)	C48—C47	1.388 (2)
N3—C27	1.352 (2)	C48—H48	0.9300
N4—C28	1.330 (2)	C49—H49	0.9300
N4—H4A	0.832 (18)	C51—C52	1.389 (2)
N4—H4B	0.85 (2)	C51—H51	0.9300
N5—C45	1.341 (2)	C52—C53	1.391 (2)
N5—C49	1.345 (2)	С53—Н53	0.9300
N6—C50	1.333 (2)	C54—C53	1.392 (2)
N6—H6A	0.78 (2)	C54—C55	1.380 (2)
N6—H6B	0.86 (2)	C54—H54	0.9300
N7—C51	1.340 (2)	С55—Н55	0.9300
N7—C55	1.347 (2)	C56—C52	1.511 (2)
N8—C56	1.333 (2)	C57—C58	1.490 (2)
N8—H8D	0.79 (2)	C59—C58	1.389 (2)
N8—H8E	0.87 (2)	C59—C60	1.395 (2)
N9—C77	1.350 (2)	С59—Н59	0.9300
N10—C78	1.333 (2)	С60—Н60	0.9300
N10—H10A	0.87 (2)	C61—O19	1.368 (2)
N10—H10B	0.84 (2)	C61—C60	1.389 (2)
N11—C79	1.338 (2)	C62—C61	1.394 (2)
N11—C83	1.353 (2)	C62—C63	1.378 (2)
N12—C84	1.332 (2)	С62—Н62	0.9300

N12—H12A	0.83 (2)	C63—C58	1.396 (2)
N12—H12B	0.87 (2)	С63—Н63	0.9300
C1—01	1.254 (2)	C64—H64A	0.9600
C1—C2	1.489 (2)	C64—H64B	0.9600
C2—C3	1.391 (2)	C64—H64C	0.9600
C2—C7	1.399 (2)	C65—C66	1.492 (2)
С3—Н3	0.9300	C66—C71	1.399 (2)
C4—C5	1.392 (2)	C67—C66	1.391 (2)
C4—C3	1.394 (2)	С67—Н67	0.9300
C4—H4	0.9300	C68—C67	1.388 (2)
C6—C5	1.395 (2)	C68—C69	1.390 (2)
C6—C7	1.376 (2)	С68—Н68	0.9300
С6—Н6	0.9300	C70—C69	1.396 (2)
С7—Н7	0.9300	C70—C71	1.379 (2)
C8—H8A	0.9600	С70—Н70	0.9300
C8—H8B	0.9600	C71—H71	0.9300
C8—H8C	0.9600	С72—Н72А	0.9600
C9—C10	1.496 (2)	С72—Н72В	0.9600
C10—C11	1.397 (2)	С72—Н72С	0.9600
C11—C12	1.378 (2)	C73—N9	1.339 (2)
C11—H11	0.9300	C73—C74	1.386 (2)
С12—Н12	0.9300	С73—Н73	0.9300
C13—C12	1.394 (2)	C74—C75	1.393 (2)
C13—C14	1.391 (2)	C74—C78	1.510 (2)
C14—C15	1.392 (2)	С75—Н75	0.9300
C14—H14	0.9300	C76—C75	1.395 (2)
C15—C10	1.386 (2)	C76—C77	1.379 (2)
С15—Н15	0.9300	С76—Н76	0.9300
C16—H16A	0.9600	С77—Н77	0.9300
C16—H16B	0.9600	С79—С80	1.385 (2)
C16—H16C	0.9600	С79—Н79	0.9300
C17—H17	0.9300	C80—C81	1.397 (2)
C18—C17	1.387 (2)	C80—C84	1.504 (2)
C18—C19	1.390 (2)	C81—H81	0.9300
C18—C22	1.517 (2)	C82—C81	1.389 (2)
C19—C20	1.394 (2)	C82—C83	1.375 (2)
-------------	------------	---------------	-------------
C19—H19	0.9300	C82—H82	0.9300
C20—C21	1.377 (2)	С83—Н83	0.9300
C20—H20	0.9300		
O1—Zn1—O2	57.53 (5)	C31—C30—C35	118.79 (16)
O2—Zn1—N1	101.78 (5)	C35—C30—C29	120.46 (15)
O2—Zn1—N3	108.48 (5)	C30—C31—H31	119.4
O2—Zn1—C1	29.07 (5)	C32—C31—C30	121.29 (16)
O5—Zn1—O2	139.19 (5)	C32—C31—H31	119.4
O5—Zn1—N1	100.95 (5)	C31—C32—C33	119.24 (16)
O5—Zn1—N3	98.11 (5)	С31—С32—Н32	120.4
O5—Zn1—C1	119.75 (5)	С33—С32—Н32	120.4
N1—Zn1—C1	130.84 (6)	O11—C33—C32	124.34 (16)
N3—Zn1—N1	104.19 (6)	O11—C33—C34	115.38 (15)
N3—Zn1—C1	96.55 (5)	C32—C33—C34	120.24 (16)
O9—Zn2—O10	56.19 (5)	C35—C34—C33	119.60 (16)
O9—Zn2—N5	109.00 (5)	С35—С34—Н34	120.2
O9—Zn2—N7	99.89 (5)	С33—С34—Н34	120.2
O13—Zn2—O9	137.57 (6)	С30—С35—Н35	119.6
O13—Zn2—N5	99.17 (6)	C34—C35—C30	120.83 (16)
O13—Zn2—N7	103.00 (5)	С34—С35—Н35	119.6
N5—Zn2—N7	104.55 (6)	O11—C36—H36A	109.5
O17—Zn3—C57	29.18 (5)	O11—C36—H36B	109.5
O18—Zn3—O17	59.04 (4)	O11—C36—H36C	109.5
O18—Zn3—N9	98.24 (5)	H36A—C36—H36B	109.5
O18—Zn3—N11	109.87 (5)	H36A—C36—H36C	109.5
O18—Zn3—C57	29.86 (5)	H36B—C36—H36C	109.5
O21—Zn3—O17	96.15 (5)	O12—C37—O13	122.84 (17)
O21—Zn3—O18	140.66 (5)	O12—C37—C38	121.36 (16)
O21—Zn3—N9	102.61 (5)	O13—C37—C38	115.78 (16)
O21—Zn3—N11	97.49 (5)	C39—C38—C37	120.88 (16)
O21—Zn3—C57	119.88 (6)	C39—C38—C43	118.66 (16)
N9—Zn3—O17	157.26 (5)	C43—C38—C37	120.45 (16)
N9—Zn3—C57	128.09 (6)	C38—C39—C40	121.34 (17)
N11—Zn3—O17	86.98 (5)	С38—С39—Н39	119.3

N11—Zn3—N9	102.99 (5)	С40—С39—Н39	119.3
N11—Zn3—C57	99.72 (5)	C39—C40—H40	120.4
C1—O2—Zn1	102.95 (10)	C41—C40—C39	119.14 (17)
C5—O3—C8	117.49 (14)	C41—C40—H40	120.4
C9—O5—Zn1	111.31 (11)	O14—C41—C40	124.63 (16)
C13—O6—C16	118.41 (14)	O14—C41—C42	115.19 (16)
C29—O9—Zn2	105.34 (11)	C40—C41—C42	120.18 (17)
C33—O11—C36	117.70 (14)	C41—C42—H42	120.0
C37—O13—Zn2	111.31 (11)	C43—C42—C41	119.93 (17)
C41—O14—C44	118.14 (14)	C43—C42—H42	120.0
C57—O17—Zn3	81.06 (10)	C42—C43—C38	120.74 (17)
C57—O18—Zn3	99.02 (10)	C42—C43—H43	119.6
C61—O19—C64	117.23 (14)	C38—C43—H43	119.6
C65—O21—Zn3	109.51 (11)	O14—C44—H44A	109.5
C69—O22—C72	118.16 (14)	O14—C44—H44B	109.5
C17—N1—Zn1	118.23 (12)	O14—C44—H44C	109.5
C17—N1—C21	117.89 (15)	H44A—C44—H44B	109.5
C21—N1—Zn1	123.86 (12)	H44A—C44—H44C	109.5
C22—N2—H2B	124.0 (13)	H44B—C44—H44C	109.5
C22—N2—H2A	116.6 (13)	N5-C45-C46	123.50 (16)
H2B—N2—H2A	118.4 (18)	N5—C45—H45	118.3
C23—N3—Zn1	121.31 (12)	C46—C45—H45	118.3
C23—N3—C27	118.34 (15)	C45—C46—C47	117.95 (17)
C27—N3—Zn1	120.21 (11)	C45—C46—C50	116.88 (16)
C28—N4—H4A	122.3 (12)	C47—C46—C50	125.11 (16)
C28—N4—H4B	116.6 (13)	C46—C47—H47	120.7
H4A—N4—H4B	120.4 (18)	C48—C47—C46	118.69 (17)
C45—N5—Zn2	119.73 (12)	C48—C47—H47	120.7
C45—N5—C49	118.06 (15)	C47—C48—H48	120.2
C49—N5—Zn2	121.60 (12)	C49—C48—C47	119.64 (17)
C50—N6—H6A	115.9 (15)	C49—C48—H48	120.2
C50—N6—H6B	119.0 (14)	N5—C49—C48	122.15 (17)
H6B—N6—H6A	124 (2)	N5—C49—H49	118.9
C51—N7—Zn2	118.84 (12)	C48—C49—H49	118.9
C51—N7—C55	118.26 (15)	O15—C50—N6	123.07 (18)

C55—N7—Zn2	122.87 (12)	O15—C50—C46	118.91 (16)
C56—N8—H8E	123.6 (13)	N6-C50-C46	118.00 (17)
C56—N8—H8D	115.9 (15)	N7—C51—C52	123.23 (16)
H8E—N8—H8D	119.6 (19)	N7—C51—H51	118.4
C73—N9—Zn3	117.99 (12)	C52—C51—H51	118.4
C73—N9—C77	118.04 (15)	C51—C52—C53	118.03 (16)
C77—N9—Zn3	123.97 (12)	C51—C52—C56	116.96 (15)
C78—N10—H10A	122.7 (13)	C53—C52—C56	125.01 (16)
C78—N10—H10B	115.6 (14)	C52—C53—C54	119.05 (16)
H10A—N10—H10B	119.6 (19)	С52—С53—Н53	120.5
C79—N11—C83	118.10 (15)	С54—С53—Н53	120.5
C79—N11—Zn3	120.99 (11)	С53—С54—Н54	120.5
C83—N11—Zn3	120.61 (11)	C55—C54—C53	119.09 (17)
C84—N12—H12B	123.2 (13)	С55—С54—Н54	120.5
C84—N12—H12A	116.8 (15)	N7—C55—C54	122.33 (16)
H12B—N12—H12A	117.9 (19)	N7—C55—H55	118.8
O1—C1—Zn1	73.24 (10)	С54—С55—Н55	118.8
O1—C1—O2	121.19 (16)	O16—C56—N8	123.52 (17)
01—C1—C2	120.57 (16)	O16—C56—C52	119.29 (16)
O2—C1—Zn1	47.98 (8)	N8—C56—C52	117.19 (16)
O2—C1—C2	118.23 (15)	O17—C57—Zn3	69.76 (10)
C2—C1—Zn1	166.13 (13)	O17—C57—O18	120.86 (16)
C3—C2—C1	121.20 (16)	O17—C57—C58	120.06 (16)
C3—C2—C7	118.62 (16)	O18—C57—Zn3	51.12 (8)
C7—C2—C1	120.16 (16)	O18—C57—C58	119.07 (15)
C2—C3—C4	120.98 (16)	C58—C57—Zn3	170.01 (12)
С2—С3—Н3	119.5	C59—C58—C57	120.79 (15)
С4—С3—Н3	119.5	C59—C58—C63	119.04 (16)
С3—С4—Н4	120.3	C63—C58—C57	120.11 (15)
C5—C4—C3	119.36 (16)	C58—C59—C60	120.75 (16)
С5—С4—Н4	120.3	С58—С59—Н59	119.6
O3—C5—C4	124.87 (16)	С60—С59—Н59	119.6
O3—C5—C6	114.99 (16)	С59—С60—Н60	120.3
C4—C5—C6	120.13 (17)	C61—C60—C59	119.34 (16)
С5—С6—Н6	120.1	С61—С60—Н60	120.3

C7—C6—C5	119.87 (17)	O19—C61—C60	124.66 (16)
С7—С6—Н6	120.1	O19—C61—C62	115.07 (15)
С2—С7—Н7	119.5	C60—C61—C62	120.25 (16)
C6—C7—C2	121.04 (17)	С61—С62—Н62	120.1
С6—С7—Н7	119.5	C63—C62—C61	119.86 (16)
O3—C8—H8A	109.5	С63—С62—Н62	120.1
O3—C8—H8B	109.5	С58—С63—Н63	119.6
O3—C8—H8C	109.5	C62—C63—C58	120.74 (16)
H8A—C8—H8B	109.5	С62—С63—Н63	119.6
H8A—C8—H8C	109.5	O19—C64—H64A	109.5
H8B—C8—H8C	109.5	O19—C64—H64B	109.5
04—C9—O5	123.06 (16)	H64A—C64—H64B	109.5
O4—C9—C10	121.34 (16)	O19—C64—H64C	109.5
O5—C9—C10	115.60 (15)	H64A—C64—H64C	109.5
С11—С10—С9	120.26 (15)	H64B—C64—H64C	109.5
С15—С10—С9	120.76 (16)	O20—C65—O21	122.42 (16)
C15—C10—C11	118.91 (16)	O20—C65—C66	121.08 (16)
C10—C11—H11	119.7	O21—C65—C66	116.49 (16)
C12—C11—C10	120.66 (16)	C67—C66—C71	118.74 (16)
C12—C11—H11	119.7	C67—C66—C65	120.88 (16)
C11—C12—C13	119.96 (17)	C71—C66—C65	120.38 (16)
C11—C12—H12	120.0	С66—С67—Н67	119.4
C13—C12—H12	120.0	C68—C67—C66	121.24 (17)
O6—C13—C12	115.50 (15)	С68—С67—Н67	119.4
O6-C13-C14	124.33 (16)	C67—C68—C69	119.25 (16)
C14—C13—C12	120.18 (16)	С67—С68—Н68	120.4
C13—C14—C15	119.16 (16)	С69—С68—Н68	120.4
C13—C14—H14	120.4	O22—C69—C68	124.29 (16)
C15—C14—H14	120.4	O22—C69—C70	115.54 (16)
C10—C15—C14	121.13 (17)	C68—C69—C70	120.16 (16)
C10—C15—H15	119.4	С69—С70—Н70	120.0
C14—C15—H15	119.4	C71—C70—C69	119.99 (17)
O6—C16—H16A	109.5	C71—C70—H70	120.0
O6—C16—H16B	109.5	C66—C71—H71	119.7
O6—C16—H16C	109.5	C70—C71—C66	120.59 (16)

H16A—C16—H16B	109.5	C70—C71—H71	119.7
H16A—C16—H16C	109.5	O22—C72—H72A	109.5
H16B—C16—H16C	109.5	O22—C72—H72B	109.5
N1—C17—C18	123.41 (16)	O22—C72—H72C	109.5
N1—C17—H17	118.3	H72A—C72—H72B	109.5
С18—С17—Н17	118.3	H72A—C72—H72C	109.5
C17—C18—C19	118.21 (16)	H72B—C72—H72C	109.5
C17—C18—C22	116.65 (15)	N9—C73—C74	123.42 (16)
C19—C18—C22	125.14 (16)	N9—C73—H73	118.3
C18—C19—C20	118.71 (17)	С74—С73—Н73	118.3
C18—C19—H19	120.6	C73—C74—C75	118.29 (16)
С20—С19—Н19	120.6	C73—C74—C78	116.66 (16)
С19—С20—Н20	120.4	C75—C74—C78	125.05 (16)
C21—C20—C19	119.23 (17)	C74—C75—C76	118.54 (17)
C21—C20—H20	120.4	С74—С75—Н75	120.7
N1-C21-C20	122.51 (16)	С76—С75—Н75	120.7
N1—C21—H21	118.7	С75—С76—Н76	120.3
C20—C21—H21	118.7	C77—C76—C75	119.37 (17)
O7—C22—N2	123.73 (17)	С77—С76—Н76	120.3
O7—C22—C18	118.95 (16)	N9—C77—C76	122.30 (17)
N2-C22-C18	117.31 (16)	N9—C77—H77	118.8
N3—C23—C24	123.22 (16)	С76—С77—Н77	118.8
N3—C23—H23	118.4	O23—C78—N10	123.34 (17)
C24—C23—H23	118.4	O23—C78—C74	119.05 (16)
C23—C24—C25	118.11 (16)	N10-C78-C74	117.61 (16)
C23—C24—C28	116.50 (15)	N11—C79—C80	123.44 (16)
C25—C24—C28	125.34 (16)	N11—C79—H79	118.3
C24—C25—H25	120.6	С80—С79—Н79	118.3
C26—C25—C24	118.80 (16)	C79—C80—C81	117.96 (16)
C26—C25—H25	120.6	C79—C80—C84	116.83 (15)
C25—C26—H26	120.2	C81—C80—C84	125.17 (16)
C27—C26—C25	119.64 (16)	C80—C81—H81	120.6
C27—C26—H26	120.2	C82—C81—C80	118.84 (16)
N3—C27—C26	121.90 (16)	C82—C81—H81	120.6
N3—C27—H27	119.1	C81—C82—H82	120.3

С26—С27—Н27	119.1	C83—C82—C81	119.44 (16)
O8—C28—N4	123.41 (17)	C83—C82—H82	120.3
O8—C28—C24	119.13 (15)	N11—C83—C82	122.22 (16)
N4-C28-C24	117.44 (16)	N11—C83—H83	118.9
O9—C29—C30	117.64 (15)	С82—С83—Н83	118.9
O10—C29—O9	121.72 (16)	O24—C84—N12	123.03 (17)
O10—C29—C30	120.64 (16)	O24—C84—C80	119.32 (16)
C31—C30—C29	120.68 (16)	N12-C84-C80	117.64 (16)
O5—Zn1—O2—C1	-58.62 (13)	C1—C2—C7—C6	178.95 (16)
N1—Zn1—O2—C1	178.80 (10)	C3—C2—C7—C6	0.6 (3)
N3—Zn1—O2—C1	69.30 (11)	C5—C4—C3—C2	-0.4 (3)
O2—Zn1—O5—C9	-48.85 (14)	C3—C4—C5—O3	-179.89 (16)
N1—Zn1—O5—C9	73.99 (12)	C3—C4—C5—C6	0.9 (3)
N3—Zn1—O5—C9	-179.76 (11)	C7—C6—C5—O3	-179.91 (16)
C1—Zn1—O5—C9	-77.39 (12)	C7—C6—C5—C4	-0.6 (3)
O2—Zn1—N1—C17	160.84 (12)	C5—C6—C7—C2	-0.1 (3)
O2—Zn1—N1—C21	-17.59 (15)	O4—C9—C10—C11	-176.73 (16)
O5—Zn1—N1—C17	14.96 (13)	O4—C9—C10—C15	6.4 (3)
O5—Zn1—N1—C21	-163.47 (14)	O5—C9—C10—C11	3.4 (2)
N3—Zn1—N1—C17	-86.41 (13)	O5—C9—C10—C15	-173.43 (15)
N3—Zn1—N1—C21	95.16 (14)	C9—C10—C11—C12	-177.03 (15)
C1—Zn1—N1—C17	161.61 (11)	C15—C10—C11—C12	-0.1 (3)
C1—Zn1—N1—C21	-16.81 (17)	C10—C11—C12—C	13 0.6 (3)
O2—Zn1—N3—C23	38.12 (14)	O6-C13-C12-C11	179.24 (15)
O2—Zn1—N3—C27	-137.51 (12)	C14—C13—C12—C11	-0.5 (3)
O5—Zn1—N3—C23	-173.27 (13)	O6—C13—C14—C15	-179.87 (16)
O5—Zn1—N3—C27	11.10 (13)	C12—C13—C14—C15	-0.2 (3)
N1—Zn1—N3—C23	-69.74 (13)	C13—C14—C15—C10	0.7 (3)
N1—Zn1—N3—C27	114.64 (13)	C14—C15—C10—C9	176.34 (16)
C1—Zn1—N3—C23	65.34 (13)	C14—C15—C10—C11	-0.6 (3)
C1—Zn1—N3—C27	-110.29 (13)	C19—C18—C17—N1	-1.4 (3)
O2—Zn1—C1—O1	-178.16 (17)	C22-C18-C17-N1	178.48 (16)
O2—Zn1—C1—C2	7.0 (5)	C17—C18—C19—C20	0.7 (3)
O5—Zn1—C1—O1	-38.16 (11)	C22—C18—C19—C20	-179.14 (17)

O5—Zn1—C1—O2	140.01 (10)	C17—C18—C22—O7	17.5 (3)
O5—Zn1—C1—C2	147.1 (5)	C17—C18—C22—N2	-161.67 (17)
N1—Zn1—C1—O1	-179.72 (9)	C19—C18—C22—O7	-162.65 (18)
N1—Zn1—C1—O2	-1.56 (13)	C19—C18—C22—N2	18.1 (3)
N1—Zn1—C1—C2	5.5 (5)	C18—C19—C20—C21	0.9 (3)
N3—Zn1—C1—O1	65.10 (10)	C19—C20—C21—N1	-2.0 (3)
N3—Zn1—C1—O2	-116.74 (11)	C24—C23—N3—C27	0.1 (2)
N3—Zn1—C1—C2	-109.7 (5)	C24—C23—N3—Zn1	-175.63 (12)
O13—Zn2—O9—C29	62.59 (13)	N3—C23—C24—C25	-0.4 (3)
N5—Zn2—O9—C29	-66.21 (12)	N3-C23-C24-C28	177.12 (15)
N7—Zn2—O9—C29	-175.47 (11)	C26—C25—C24—C23	0.2 (2)
O9—Zn2—O13—C37	47.40 (14)	C26—C25—C24—C28	-177.09 (16)
N5—Zn2—O13—C37	179.12 (12)	C24—C25—C26—C27	0.3 (3)
N7—Zn2—O13—C37	-73.52 (12)	N3-C27-C26-C25	-0.7 (3)
O9—Zn2—N5—C45	-19.92 (14)	O8—C28—C24—C23	10.9 (2)
O9—Zn2—N5—C49	151.00 (13)	O8—C28—C24—C25	-171.69 (17)
O13—Zn2—N5—C45	-167.74 (12)	N4—C28—C24—C23	-167.57 (16)
O13—Zn2—N5—C49	3.18 (14)	N4-C28-C24-C25	9.8 (3)
N7—Zn2—N5—C45	86.16 (13)	O9—C29—C30—C31	178.91 (16)
N7—Zn2—N5—C49	-102.92 (13)	O9—C29—C30—C35	2.1 (2)
O9—Zn2—N7—C51	-160.13 (13)	O10—C29—C30—C31	-1.3 (3)
O9—Zn2—N7—C55	17.74 (15)	O10—C29—C30—C35	-178.18 (16)
O13—Zn2—N7—C51	-16.11 (14)	C29—C30—C35—C34	177.52 (16)
O13—Zn2—N7—C55	161.75 (13)	C31—C30—C35—C34	0.6 (3)
N5—Zn2—N7—C51	87.12 (13)	C32—C31—C30—C29	-177.86 (16)
N5—Zn2—N7—C55	-95.01 (14)	C32—C31—C30—C35	-1.0 (3)
O18—Zn3—O17—C57	-0.80 (10)	C30—C31—C32—C33	0.5 (3)
O21—Zn3—O17—C57	146.61 (10)	O11—C33—C32—C31	178.25 (16)
N9—Zn3—O17—C57	0.99 (18)	C34—C33—C32—C31	0.3 (3)
N11—Zn3—O17—C57	-116.18 (10)	O11—C33—C34—C35	-178.77 (15)
O17—Zn3—O18—C57	0.78 (9)	C32—C33—C34—C35	-0.7 (3)
O21—Zn3—O18—C57	-56.88 (13)	C30—C35—C34—C33	0.2 (3)
N9—Zn3—O18—C57	-178.52 (10)	O12—C37—C38—C39	-2.3 (3)
N11—Zn3—O18—C57	74.39 (11)	O12—C37—C38—C43	178.60 (16)
O17—Zn3—O21—C65	-90.17 (11)	O13—C37—C38—C39	179.20 (16)

O18—Zn3—O21—C65	-43.40 (15)	O13—C37—C38—C43	0.1 (2)
N9—Zn3—O21—C65	76.90 (12)	C37—C38—C39—C40	-179.05 (16)
N11—Zn3—O21—C65	-177.93 (11)	C43—C38—C39—C40	0.1 (3)
C57—Zn3—O21—C65	-72.15 (12)	C37—C38—C43—C42	179.77 (16)
O17—Zn3—N9—C73	158.69 (12)	C39—C38—C43—C42	0.6 (3)
O17—Zn3—N9—C77	-20.9 (2)	C41—C40—C39—C38	-0.7 (3)
O18—Zn3—N9—C73	160.23 (12)	C39—C40—C41—O14	-179.09 (16)
O18—Zn3—N9—C77	-19.33 (14)	C39—C40—C41—C4	2 0.6 (3)
O21—Zn3—N9—C73	13.80 (13)	O14—C41—C42—C43	179.81 (15)
O21—Zn3—N9—C77	-165.76 (13)	C40—C41—C42—C43	0.1 (3)
N11—Zn3—N9—C73	-87.07 (13)	C38—C43—C42—C41	-0.7 (3)
N11—Zn3—N9—C77	93.37 (14)	C47—C46—C45—N5	0.2 (3)
C57—Zn3—N9—C73	159.30 (11)	C50-C46-C45-N5	-177.00 (15)
C57—Zn3—N9—C77	-20.27 (17)	C45—C46—C47—C48	0.3 (3)
O17—Zn3—N11—C79	84.93 (13)	C50—C46—C47—C48	177.26 (16)
O17—Zn3—N11—C83	-88.69 (13)	C45—C46—C50—O15	-10.4 (2)
O18—Zn3—N11—C79	29.46 (14)	C45—C46—C50—N6	168.43 (17)
O18—Zn3—N11—C83	-144.16 (12)	C47—C46—C50—O15	172.62 (17)
O21—Zn3—N11—C79	-179.26 (12)	C47—C46—C50—N6	-8.6 (3)
O21—Zn3—N11—C83	7.12 (13)	C49—C48—C47—C46	-0.8 (3)
N9—Zn3—N11—C79	-74.41 (13)	C47—C48—C49—N5	0.8 (3)
N9—Zn3—N11—C83	111.97 (13)	N7—C51—C52—C53	1.4 (3)
C57—Zn3—N11—C79	58.58 (13)	N7—C51—C52—C56	-178.01 (16)
C57—Zn3—N11—C83	-115.05 (13)	C51—C52—C53—C54	-0.5 (3)
O17—Zn3—C57—O18	-178.63 (17)	C56—C52—C53—C54	178.83 (16)
O18—Zn3—C57—O17	178.63 (17)	C55—C54—C53—C52	-0.9 (3)
O21—Zn3—C57—O17	-39.13 (11)	C53—C54—C55—N7	1.5 (3)
O21—Zn3—C57—O18	142.24 (10)	O16—C56—C52—C51	-14.7 (3)
N9—Zn3—C57—O17	-179.52 (9)	O16—C56—C52—C53	165.98 (18)
N9—Zn3—C57—O18	1.86 (13)	N8-C56-C52-C51	165.20 (17)
N11—Zn3—C57—O17	65.40 (10)	N8—C56—C52—C53	-14.1 (3)
N11—Zn3—C57—O18	-113.23 (10)	017—C57—C58—C59	175.59 (16)
Zn1—O2—C1—O1	2.06 (19)	O17—C57—C58—C63	-1.6 (2)
Zn1—O2—C1—C2	-178.09 (12)	O18—C57—C58—C59	-3.6 (2)

C8—O3—C5—C4	7.7 (3)	O18—C57—C58—C63	179.17 (15)
C8—O3—C5—C6	-173.03 (16)	C60—C59—C58—C57	-177.83 (15)
Zn1—O5—C9—O4	3.7 (2)	C60—C59—C58—C63	-0.6 (2)
Zn1—O5—C9—C10	-176.46 (11)	C58—C59—C60—C61	0.1 (3)
C16—O6—C13—C12	178.37 (15)	C60—C61—O19—C64	12.2 (2)
C16—O6—C13—C14	-2.0 (2)	C62—C61—O19—C64	-169.53 (16)
Zn2—O9—C29—O10	-0.3 (2)	O19—C61—C60—C59	178.68 (16)
Zn2—O9—C29—C30	179.44 (12)	C62—C61—C60—C59	0.5 (3)
C36—O11—C33—C32	4.8 (2)	C63—C62—C61—O19	-178.98 (15)
C36—O11—C33—C34	-177.21 (15)	C63—C62—C61—C60	-0.6 (3)
Zn2—O13—C37—O12	-4.3 (2)	C61—C62—C63—C58	0.1 (3)
Zn2—O13—C37—C38	174.17 (11)	C62—C63—C58—C57	177.72 (16)
C44—O14—C41—C40	2.5 (3)	C62—C63—C58—C59	0.5 (3)
C44—O14—C41—C42	-177.25 (15)	O21—C65—C66—C67	170.90 (16)
Zn3—O17—C57—O18	1.24 (15)	O21—C65—C66—C71	-9.7 (2)
Zn3—O17—C57—C58	-177.97 (15)	O20—C65—C66—C67	-8.0 (3)
Zn3—O18—C57—O17	-1.50 (18)	O20—C65—C66—C71	171.43 (16)
Zn3—O18—C57—C58	177.72 (13)	C65—C66—C71—C70	179.70 (16)
Zn3—O21—C65—O20	2.3 (2)	C67—C66—C71—C70	-0.9 (3)
Zn3—O21—C65—C66	-176.59 (11)	C68—C67—C66—C65	-179.13 (16)
С72—О22—С69—С68	-3.6 (3)	C68—C67—C66—C71	1.4 (3)
C72—O22—C69—C70	176.33 (16)	C69—C68—C67—C66	-0.4 (3)
C21—N1—C17—C18	0.4 (3)	C67—C68—C69—O22	178.65 (16)
Zn1—N1—C17—C18	-178.16 (13)	C67—C68—C69—C70	-1.3 (3)
Zn1—N1—C21—C20	179.77 (13)	C71—C70—C69—O22	-178.09 (16)
C17—N1—C21—C20	1.3 (3)	C71—C70—C69—C68	1.8 (3)
Zn1—N3—C27—C26	176.25 (13)	C69—C70—C71—C66	-0.8 (3)
C23—N3—C27—C26	0.5 (2)	C74—C73—N9—C77	0.9 (3)
Zn2—N5—C45—C46	171.01 (13)	C74—C73—N9—Zn3	-178.69 (13)
C49—N5—C45—C46	-0.2 (3)	N9—C73—C74—C75	-1.7 (3)
Zn2—N5—C49—C48	-171.37 (14)	N9—C73—C74—C78	178.28 (16)
C45—N5—C49—C48	-0.3 (3)	C73—C74—C75—C76	0.6 (3)
Zn2—N7—C51—C52	177.20 (13)	C78—C74—C75—C76	-179.40 (16)
C55—N7—C51—C52	-0.8 (3)	C73—C74—C78—O23	18.3 (3)

Zn2—N7—C55—C54	-178.59 (13)	C73—C74—C78—N10	-161.14 (17)
C51—N7—C55—C54	-0.7 (3)	C75—C74—C78—O23	-161.71 (18)
Zn3—N9—C77—C76	-179.39 (13)	C75—C74—C78—N10	18.8 (3)
C73—N9—C77—C76	1.0 (3)	C77—C76—C75—C74	1.2 (3)
Zn3—N11—C79—C80	-173.43 (13)	C75—C76—C77—N9	-2.1 (3)
C83—N11—C79—C80	0.4 (2)	N11—C79—C80—C81	0.0 (3)
Zn3—N11—C83—C82	173.53 (13)	N11—C79—C80—C84	177.85 (15)
C79—N11—C83—C82	-0.3 (2)	C79—C80—C81—C82	-0.4 (2)
Zn1—C1—C2—C3	-11.2 (6)	C84—C80—C81—C82	-178.06 (16)
Zn1—C1—C2—C7	170.4 (4)	C79—C80—C84—O24	7.0 (2)
O1—C1—C2—C3	174.56 (16)	C79—C80—C84—N12	-173.62 (16)
O1—C1—C2—C7	-3.8 (3)	C81—C80—C84—O24	-175.31 (17)
O2—C1—C2—C3	-5.3 (2)	C81—C80—C84—N12	4.1 (3)
O2—C1—C2—C7	176.36 (15)	C83—C82—C81—C80	0.5 (3)
C1—C2—C3—C4	-178.65 (16)	C81—C82—C83—N11	-0.1 (3)
C7—C2—C3—C4	-0.3 (3)		

D—HA	D—H	НА	DA	D—HA
N2—H2AO24i	0.82 (2)	2.16 (2)	2.966 (2)	168.8 (2)
N2—H2BO4ii	0.84 (2)	2.16 (2)	2.991 (2)	176.6 (2)
N4—H4AO17iii	0.83 (2)	2.08 (2)	2.903 (2)	169.4 (2)
N4—H4BO16iv	0.85 (2)	2.59 (2)	3.152 (2)	125.0 (2)
N4—H4BO19v	0.85 (2)	2.52 (2)	3.225 (2)	141.3 (2)
N6—H6AO23vi	0.78 (2)	2.40 (2)	3.073 (2)	146 (2)
N6—H6BO10vii	0.86 (2)	2.11 (2)	2.959 (2)	170.3 (2)
N8—H8DO8iv	0.79 (2)	2.13 (2)	2.909 (2)	166 (2)
N8—H8EO20viii	0.87 (2)	2.19 (2)	3.058 (2)	174.8 (2)
N10—H10AO12ix	0.87 (2)	2.21 (2)	3.077 (2)	172 (2)
N10—H10BO15vi	0.84 (2)	2.10 (2)	2.917 (2)	162.8 (2)
N12—H12AO11iii	0.83 (2)	2.55 (2)	3.268 (2)	145 (2)
N12—H12BO1iii	0.87 (2)	2.07 (2)	2.940 (2)	171.9 (2)
C4—H4O14x	0.93	2.45	3.331 (2)	158
C19—H19O4ii	0.93	2.36	3.175 (2)	146
C25—H25O17iii	0.93	2.41	3.284 (2)	157
C27—H27O7xi	0.93	2.47	3.214 (2)	138
C34—H34O22xii	0.93	2.51	3.329 (2)	148
C35—H35O15xiii	0.93	2.45	3.304 (2)	152
C47—H47O10vii	0.93	2.27	3.146 (2)	156
C53—H53O20viii	0.93	2.31	3.172 (2)	154
C59—H59O8xi	0.93	2.58	3.390 (2)	146
С60—Н60О6	0.93	2.42	3.282 (2)	153
C75—H75…O12 ^{ix}	0.93	2.39	3.212 (2)	147
С81—Н81О1ііі	0.93	2.44	3.306 (2)	156

Ek Tablo 15. [Zn(C₈H₇O₃)₂(C₆H₆N₂O)₂] kristalinin hidrojen bağı geometrisi (Å,°)

Simetri kodu: (i) x-1, y, z; (ii) -x, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y, -z+2; (v) x, y-1, z; (vi) -x+1, -y+2, -z+1; (vii) -x, -y+1, -z+2; (viii) x, y-1, z+1; (ix) x, y+1, z-1; (x) -x, -y, -z+2; (xi) -x+1, -y+1, -z+1; (xii) -x+2, -y+2, -z+1; (xiii) -x+1, -y+1, -z+2.

ÖZGEÇMİŞ

: Erdinç TENLİK
: Iğdır
: 28.05.1984
: Bekar
: İngilizce

Egitim Durumu (Kurum ve Yıl)

Lise	: Iğdır Lisesi (Yabancı Dil Ağırlıklı Lise)-2003
Lisans	: Kafkas Üniversitesi Fen Edebiyat Fakültesi Kimya Bölümü-2008

Çalıştığı Kurum/Kurumlar ve Yıl

Türkiye Halk Bankası A.Ş. (2008-)

Yayınları (SCI ve diğer)

- Hökelek T., Dal H., Tercan B., Tenlik E., and Necefoğlu H., Diaquabis(4methoxybenzoato-*nO*¹)bis(nicotinamide-*nN*¹)cobalt(II) dihydrate, Acta Cryst. E66: m910-m911 (2010).
- Hökelek T., Dal H., Tercan B., Tenlik E., and Necefoğlu H., Diaquabis(4methoxybenzoato-*nO*)bis(nicotinamide-*N*¹)nickel(II) dihydrate, Acta Cryst. E66: m891-m892 (2010).
- Hökelek T., Süzen Y., Tercan B., Tenlik E., and Necefoğlu H., Di-#-nicotinamideκ²O:N¹;κ²N¹:O-bis[aquabis(4-methoxybenzoato-κO)copper(II)], Acta Cryst. E66: m807-m808 (2010).
- Hökelek T., Saka G., Tercan B., Tenlik E., and Necefoğlu H., Bis(4methoxybenzoato)-κ²O,O';κO-bis(nicotinamide-κN¹)zinc(II), Acta Cryst. E66: m1135-m1136 (2010).
- Hökelek T., Süzen Y., Tercan B., Tenlik E., and Necefoğlu H., Diaqua(isonicotinamide-*N*¹)(4-methoxybenzoato-*r*²O,O')(4-methoxybenzoato*rO*)cobalt(II), Acta Cryst. E66: m784-m785 (2010).