KAFKAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

2-HALOJENOBENZOAT KOMPLEKSLERİNİN SENTEZİ VE ÖZELLİKLERİ

Füreya Elif ÖZBEK DOKTORA TEZİ

DANIŞMAN Prof. Dr. Hacali NECEFOĞLU

> HAZİRAN – 2011 KARS

Bu tez çalışması 2009-FEF-03 nolu proje ile Kafkas Üniversitesi Araştırma Fonu tarafından desteklenmiştir.

> KAFKAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

2-HALOJENOBENZOAT KOMPLEKSLERİNİN SENTEZİ VE ÖZELLİKLERİ

Füreya Elif ÖZBEK DOKTORA TEZİ

DANIŞMAN Prof. Dr. Hacali NECEFOĞLU

> HAZİRAN – 2011 KARS

T.C. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Doktora öğrencisi Füreya Elif ÖZBEK'nin Prof. Dr. Hacali NECEFOĞLU'nun danışmanlığında doktora tezi olarak hazırladığı "2-Halojenobenzoat Komplekslerinin Sentezi ve Özellikleri" adlı bu çalışma, yapılan tez savunması sınavı sonunda jüri tarafından Lisansüstü Eğitim Öğretim Yönetmeliği uyarınca değerlendirilerek oy $\frac{1}{2}$

24. / 0.6. . / 2011

	Adı ve Soyadı	İmza
Başkan	: Prof. Dr. Hacali NECEFOĞLU	bacas
Üye	: Prof. Dr. İsmail ÇAKMAK	they a
Üye	: Prof. Dr. Refig ABDULLA	ANY -
Üye	: Doç.Dr. Ertan ŞAHİN	
Üye	: Yrd. Doç.Dr. Ali ARSLANTAŞ	Dan

Enstitü

Müdürü

ÖNSÖZ

Bu tez çalışması, Kafkas Üniversitesi, Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Doktora Programında yapılmıştır.

Bu çalışmada Co(II), Ni(II), Mn(II) ve Zn(II) metallerinin *o*-florobenzoik asit, *o*klorobenzoik asit ve *o*-bromobenzoik asit ile biyolojik öneme sahip nikotinamid, *N,N'*-dietilnikotinamid ve izonikotinamidin 24 adet kompleksi sentezlemiş ve elemental analiz, Infrared Spektroskopisi (IR), Nükleer Manyetik Rezonans Spektroskopisi (NMR), UV-Vis Spektroskopisi ve Manyetik Duyarlılık, TG/DTA, toz X ışını difraksiyonu ve tek kristal X ışını difraksiyonu gibi çeşitli tekniklerle yapıları aydınlatılmıştır.

Lisansüstü çalışmalarım süresince bilgi ve tecrübesiyle beni yönlendiren, bilimsel çalışma disiplinini öğreten, tezimin başlangıcından sonuçlanmasına dek katkılarını esirgemeyen değerli hocam Prof. Dr. Hacali NECEFOĞLU'na teşekkürü bir borç bilirim.

Kristal yapıların aydınlatılması, dataların toplanması ve çözümünde yardımcı olan Prof. Dr. Tuncer HÖKELEK ve Doç. Dr. Ertan ŞAHİN'e minnet ve şükranlarımı sunarım.

Toz X-ışını diffraktogramlarını çeken Prof. Dr. İmameddin AMİRASLANOV'a, mangan komplekslerimin manyetik duyarlılık ölçümlerini yapan Prof.Dr. Veli KASIM'a çok teşekkür ederim.

Infrared Spektrumlarının alınmasında yardımcı olan arkadaşlarım Yrd. Doç. Dr. Mehmet Sait İZGİ ve UV spektrumlarının alınmasında yardımcı olan arkadaşım Arş. Gör. Hüseyin ERTAP'a; literatür konusunda yardımlarını gördüğüm Arş. Gör. Mehmet Emin ÇELİK'e; çalışmalarım süresince deneyimleriyle yol gösteren Dr. Vedat ADIGÜZEL ve Arş. Gör. Sevilay DEMİRCİ'ye desteklerinden ötürü teşekkür ederim.

Hayatım boyunca desteği ve duaları ile hep yanımda hissettiğim annem ve babama, anlayışı ve yardımları için eşime ve moral kaynağım olan oğlum Efe'me ne kadar teşekkür etsem azdır.

2009-FEF-03 no'lu proje ile tezime destek sağlayan Kafkas Üniversitesi Araştırma Fonu'na teşekkür ederim.

Haziran 2011

Füreya Elif ÖZBEK

İÇİNDEKİLER

	ÖNSÖZ	iii
	İÇİNDEKİLER	iv
	ÖZET	vi
	SUMMARY	vii
	ŞEKİLLER DİZİNİ	viii
	TABLOLAR DİZİNİ	xiv
	SEMBOLLER VE KISALTMALAR DİZİNİ	xvii
1.	GENEL BİLGİLER	1
	1.1 Giriş	1
2.	ÖNCEKİ ÇALIŞMALAR	2
	2.1. 2-Halojenobenzoik Asitler ve Kompleksleri	2
3.	MATERYAL VE YÖNTEM	32
	3.1. Materyal	32
	3.1.1. Kullanılan Kimyasal Maddeler	32
	3.1.2. Kullanılan Aletler	32
	3.2. Sentez ve Bulgular	34
	3.2.1. Tetraaquabis(nikotinamid- κN^{I})kobalt(II)bis(2-florobenzoat)	34
	3.2.2. Diaquabis(2-florobenzoat- κO)bis-(N,N' -dietilnikotinamid- $\kappa N'$)kobalt(II)	34
	3.2.3. Bis(μ -2-florobenzoat-1:2 κ^2 O:O')(2-florobenzoat-1 κ^2 O,O')(2-florobenzoat-	
	$2\kappa O$)dinikotinamid- $1\kappa N^{1}$, $2\kappa N^{1}$ -diçinko(II)–2-florobenzoik asid (1/1)	35
	3.2.4. Diaquabis(2-florobenzoat- κO)bis-(N,N' -dietilnikotinamid- $\kappa N'$)çinko(II)	35
	3.2.5. Tetraaquabis(nikotinamid- κN^l)nikel(II)bis(2-florobenzoat)	36
	3.2.6. Diaquabis(2-florobenzoat- κO)bis-(N,N' -dietilnikotinamid- κN^{I})nikel(II)	36
	3.2.7. Aquabis(2-florobenzoat- κ^2 -O:O')(nikotinamid- κN^l)mangan(II)	37
	3.2.8. Tetrakis(μ -2-florobenzoat- κ^2 - $O:O'$)bis(N, N' -dietilnikotinamid- $\kappa N'$)	
	mangan(II)	37
	3.2.9. Tetrakis(μ -2-florobenzoat- κ^2 - $O:O'$)bis(izonikotinamid- $\kappa N'$)kobalt(II)	37
	3.2.10. Diaquabis(2-florobenzoat- κO)bis(izonikotinamid- κN^{l})nikel(II)dihidrat	38
	3.2.11. Bis(2-florobenzoat κ^2 -O:O')bis(izonikotinamid- κN^l)çinko(II)	38
	3.2.12. Diaquabis(2-klorobenzoat- κO)bis(nikotinamid- κN^l)kobalt(II)	39
	3.2.13. Diaquabis(2-klorobenzoat- κO)bis(N, N' -dietilnikotinamid- $\kappa N'$)kobalt(II)	39
	3.2.14. Diaquabis(2-klorobenzoat κ^2 -O:O')nikel(II)	39
	3.2.15. Diaquabis(2-klorobenzoat- κO)-bis(nikotinamid- κN^{l})nikel(II)	40

	3.2.16.Diaquabis(2-klorobenzoat- κO)bis(N,N' -dietilnikotinamid- κN^l)nikel(II)	40
	3.2.17. Diaquabis(2-klorobenzoat- κO)bis(N, N' -dietilnikotinamid- κN^{l})mangan(II)	41
	3.2.18. Diaquabis(2-bromobenzoat- κO)bis-(nikotinamid- κN^{l})kobalt(II)	42
	3.2.19. Diaquabis(2-bromobenzoat- κO)bis(N,N' -dietilnikotinamid- κN^{I}) kobalt(II)	42
	3.2.20. Diaquabis(2-bromobenzoat- κO)bis(nikotinamid- κN^{l})nikel(II)	43
	3.2.21. Diaquabis(2-bromobenzoat- κO)bis(N,N' -dietilnikotinamid- $\kappa N'$)nikel(II)	44
	3.2.22. Diaquabis(2-bromobenzoat- κO)bis(N,N' -dietilnikotinamid- $\kappa N'$)mangan (II)	44
	3.2.23. Diaquabis(2-bromobenzoat- κO)bis(nikotinamid- κN^{l})çinko(II)	45
	3.2.24. Diaquabis(2-bromobenzoat- κO)bis(N, N' -dietilnikotinamid- $\kappa N'$)çinko(II)	46
4.	SPEKTROSKOPİK VERİLER	60
	4.1. IR Spektroskopisi	60
	4.2. NMR Spektroskopisi	63
	4.3. UV Görünür Bölge Spektrumu	64
5.	TARTIŞMA	65
	5.1. Spektroskopik Değerlendirme	65
	5.1.1. Metal (II) o-Florobenzoat Kompleksleri	65
	5.1.2. Metal (II) o-Klorobenzoat Kompleksleri	84
	5.1.3. Metal (II) o-Bromobenzoat Kompleksleri	98
6.	SONUÇ	116
7.	KAYNAKLAR	118
8.	EKLER	127
	ÖZGEÇMİŞ	201

ÖZET

Bu tez çalışmasında Co(II), Ni(II), Mn(II) ve Zn(II) metallerinin *o*-florobenzoik asit, *o*klorobenzoik asit ve *o*-bromobenzoik asit ile biyolojik öneme sahip nikotinamid, N,N'dietilnikotinamid ve izonikotinamidin 24 adet kompleksi sentezlemiş ve çeşitli spektroskopik yöntemler ile yapıları aydınlatılmıştır.

(1)	$[Co(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(2)
(3)	$[Zn(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(4)
(5)	$[Ni(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(6)
(7)	$[Mn_2(C_7H_4FO_2)_4(C_{10}H_{14}N_2O)_2]$	(8)
(9)	$[Ni(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)_2].2H_2O$	(10)
(11)	$[Co(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(12)
(13)	$[Ni(C_7H_4ClO_2)_2(H_2O)_2]$	(14)
(15)	$[Ni(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(16)
(17)	$[Co(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(18)
(19)	$[Ni(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(20)
(21)	$[Mn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(22)
(23)	$[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(24)
	 (1) (3) (5) (7) (9) (11) (13) (15) (17) (19) (21) (23) 	(1) $[Co(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ (3) $[Zn(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ (5) $[Ni(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ (7) $[Mn_2(C_7H_4FO_2)_4(C_{10}H_{14}N_2O)_2]$ (9) $[Ni(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)_2].2H_2O$ (11) $[Co(C_7H_4CIO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ (13) $[Ni(C_7H_4CIO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ (15) $[Ni(C_7H_4CIO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ (17) $[Co(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ (19) $[Ni(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ (21) $[Mn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ (23) $[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$

Komplekslerin yapıları elemental analiz, Infrared Spektroskopisi (IR), Nükleer Manyetik Rezonans Spektroskopisi (NMR), UV-Vis Spektroskopisi ve manyetik duyarlılık gibi çeşitli spektroskopik yöntemler kullanılarak aydınlatılmıştır. Komplekslerin termik bozunma özellikleri TG/DTA ile belirlenmiştir. 12 adet kompleksin yapısı tek kristal x ışını diffraksiyonu ile belirlenmiş ve bu kompleksler ile eş yapılı olduğu düşünülen komplekslerin toz x ışını difraksiyonu ile diffraktogram değerleri kıyaslanmıştır. Aqua ligandı içeren komplekslerin termik bozunmalarının ilk basamağı bu ligandların kaybına ilişkindir. Sonraki basamaklarda organik ligandların parçalandığı görülmektedir. Termik bozunmalar neticesinde komplekslerin metal veya metal oksitlerine bozunduğu belirlenmiştir. Neticede **8 ve 9** nolu komplekslerin kare piramidal, **3** nolu kompleksin tetrahedral, diğer komplekslerin ise oktahedral geometriye sahip oldukları belirlenmiştir.

2011, 200 sayfa

Anahtar Kelimeler Co(II), Ni(II), Mn(II) ve Zn(II) Kompleksleri, *o*-florobenzoik asit, *o*-klorobenzoik asit, *o*-bromobenzoik asit, nikotinamid, N,N'-dietilnikotinamid ve izonikotinamid.

SUMMARY

In this study, 24 new mixed complexes of Co(II), Ni(II), Mn(II) and Zn(II) with o-fluorobenzoic acid, o-chlorobenzoic acid, o-bromobenzoic acid, and with biologically active compounds such as nicotinamid, isonicotinamide, N,N'-diethylnicotinamide were synthesized:

$[Co(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$	(1)	$[Co(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(2)
$[Zn_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2] \cdot C_7H_5FO_2$	(3)	$[Zn(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(4)
$[Ni(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$	(5)	$[Ni(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(6)
$[Mn(C_7H_4FO_2)_2(C_6H_6N_2O)(H_2O)]$	(7)	$[Mn_2(C_7H_4FO_2)_4(C_{10}H_{14}N_2O)_2]$	(8)
$[Co_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2]$	(9)	$[Ni(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)_2].2H_2O$	(10)
$[Zn(C_7H_4FO_2)_2(C_6H_6N_2O)_2]$	(11)	$[Co(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(12)
$[Co(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(13)	$[Ni(C_7H_4ClO_2)_2(H_2O)_2]$	(14)
$[Ni(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(15)	$[Ni(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(16)
$[Mn(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(17)	$[Co(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(18)
$[Co(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(19)	$[Ni(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(20)
$[Ni(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(21)	$[Mn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(22)
$[Zn(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(23)	$[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(24)

The structural and spectroscopic properties of the complexes were investigated by elemental analysis, mass spectroscopy, ¹H NMR, ¹³C NMR, magnetic susceptibility, single crystal X–ray diffraction, IR and UV–Vis techniques. Thermal behaviours of the complexes were determined by simultaneous thermal analysis techniques (TG, DTG and DTA). Cyrstal and molecular structures of twelve complexes were determined by single cyrstal x-ray diffraction. Powder X-ray diffraction and diffractogram values of these 12 compounds and of those compounds that are thought to be the isostructures of the 12 compounds were compared. In the complexes, containing aqua ligands and/or lattice water molecules, the first thermal decomposition stage was attributed to endothermic dehydration in the nitrogen atmosphere. The final products of the thermal decomposition processes were metals or metal oxides. Consequently, it has been determined that complexes **8** and **9** have square-pyramidal, complex **3** has tetrahedral and the other complexes have octahedral geometrical structures.

2011, 200 pages

Key Words: Co(II), Ni(II), Mn(II) ve Zn(II) complex, *o*-fluorobenzoic acid, *o*-chlorobenzoic acid, *o*-bromobenzoic acid, nicotinamide, N,N'-diethyllnicotinamide ve isonicotinamide.

ŞEKİLLER DİZİNİ

Şekil 2.1.	[Co[C ₇ H ₃ Cl ₂ O ₂) ₂ .2imd.2H ₂ O] kompleksinin moleküler yapısı	3
Şekil 2.2.	Elektronegatiflik değişimine göre susuzlaşma sıcaklığındaki değişim	
	grafiği	4
Şekil 2.3.	$[Co(C_7H_4ClO_2)_2(C_3H_4N_2)_2(H_2O)_2]$ kompleksinin moleküler yapısı	6
Şekil 2.4.	$[Mn(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin moleküler yapısı	6
Şekil 2.5.	[Zn(C ₇ H ₄ BrO ₂) ₂ (H ₂ O) ₂] kompleksinin yapısı	7
Şekil 2.6.	[Zn(C ₇ H ₄ FO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂]·H ₂ O kompleksinin yapısı	7
Şekil 2.7.	$[Co(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin yapısı	8
Şekil 2.8.	[Co(C ₇ H ₄ ClO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin yapısı	8
Şekil 2.9.	$[Co(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin yapısı	9
Şekil 2.10.	[Sm(o-BrBA) ₃ bipy] ₂ .2H ₂ O kompleksinin TG-DTG eğrileri	9
Şekil 2.11.	Bis(2-bromobenzoato-O,O') bis(metil-3-piridilkarbamat-N)çinko(II)	10
Şekil 2.12.	Bis(2-klorobenzoato-κO)bis(1-vinilimidazol-κN ³)bakır(II)	
	kompleksinin yapısı	11
Şekil 2.13.	${[Tb(2-IBA)_3.2,2'-bipy]_2.C_2H_5OH}$ (a) kompleksinin yapısı	11
Şekil 2.14.	${[Tb(2-IBA)_3.2,2'-bipy]_2.C_2H_5OH}$ (b) kompleksinin yapısı	11
Şekil 2.15.	[Tb(2-ClBA) ₃ .2,2'-bipy] ₂ kompleksinin yapısı	12
Şekil 2.16.	[Zn(C7H4ClO2)2(C7H8N2O2)2] kompleksinin moleküler yapısı	12
Şekil 2.17.	[Sm(o-ClBA) ₃ phen] ₂ kompleksinin yapısı.	13
Şekil 2.18.	Bis(2-klorobenzoat) çinko kompleksinin yapısı	14
Şekil 2.19.	$Sm_2(C_7H_4FO_2)_6(C_{10}H_8N_2)_2$ kompleksinin yapısı	14
Şekil 2.20.	[Pb ₂ (Cl) ₂ (C ₁₀ H ₈ N ₂) ₂ (2-Cl-C ₆ H ₄ COO) ₂] kompleksinin yapısı	15
Şekil 2.21.	[Pb(C ₁₂ H ₈ N ₂)(2-F-C ₇ H ₄ O ₂)] kompeksinin yapısı	15
Şekil 2.22.	[Cd(C10H8N2)2(2-F-C6H4COO)2(H2O)] kompleksinin yapısı	16
Şekil 2.23.	[Ho(C ₁₂ H ₈ N ₂)(BrC ₇ H ₄ O ₂) ₃] ₂ kompleksinin yapısı	17
Şekil 2.24.	[Pb(C ₁₀ H ₈ N ₂) ₂ (2-F-C ₆ H ₄ COO) ₂ (H ₂ O)] kompleksinin yapısı	17
Şekil 2.25.	La ₂ (C ₁₂ H ₈ N ₂) ₂ (ClC ₇ H ₄ O ₂) ₆ kompleksinin yapısı	18
Şekil 2.26.	$[Pb(C_7H_4O_2Br)_2(C_{12}H_8N_2)_2]$. 2.5H ₂ O kompleksinin yapısı	19
Şekil 2.27.	Ba(C ₁₂ H ₈ N ₂) ₂ (FC ₇ H ₄ O ₂) ₂ (H ₂ O) ₂) kompleksinin yapısı	19
Şekil 2.28.	[Cu ₂ (C ₇ H ₄ ClO ₂) ₄ (C ₇ H ₇ N) ₂] kompleksinin yapısı	20
Şekil 2.29.	[Pb(C ₇ H ₄ FO ₂) ₂ (C ₁₂ H ₈ N ₂) ₂ (H ₂ O) _{0.5}].2H ₂ O kompleksinin yapısı	20
Şekil 2.30.	[Pb(C ₇ H ₄ FO ₂) ₂ (C ₁₂ H ₈ N ₂) ₂].2H ₂ O kompleksinin yapısı	21
Şekil 2.31.	$Pb(C_7H_4O_2F)_2(C_{10}H_8N_2)$ kompleksinin yapısı	22

Şekil 2.32.	$Zn(2-bromobenzoat)_2(fenazon)]_2ve[Zn(2-bromobenzoat)_2$	
	(tiyoüre) ₂].2H ₂ O komplekslerinin yapıları	22
Şekil 2.33.	$Cd(C_7H_4O_2F)_2(C_{12}H_8N_2)$ kompleksinin yapısı	23
Şekil 2.34.	[Cu(C ₇ H ₄ ClO ₂) ₂ (C ₅ H ₆ N ₂) ₂] kompleksinin yapısı	24
Şekil 2.35.	${[Sr(C_7H_4FO_2)_2(H_2O)_2].H_2O_n kompleksinin yapısı}$	24
Şekil 2.36.	$[Dy(2-FBA)_3 \cdot phen \cdot CH_3CH_2OH]_2$ (a) ve $[Dy(2-FBA)_3 \cdot phen]_2$ (b)	
	komplekslerinin yapıları	25
Şekil 2.37.	$[Eu(p-FBA)_3(phen)(H_2O)]_2$ (1), $[Tb(p-FBA)_3phen]_2$ (2), ve	
	[Tb(o-FBA) ₃ phen] ₂ (3) komplekslerinin yapıları	26
Şekil 2.38.	[Cu(2-Brbz) ₂ (4PM) ₂ (H ₂ O)] (1) ve [Cu(2-Brbz) ₂ (NIA) ₂].2H ₂ O (2)	
	komplekslerinin yapıları	27
Şekil 2.39.	[Zn(2-Cl-C ₆ H ₄ COO) ₂ (nad) ₂] kompleksinin yapısı	27
Şekil 2.40.	[Nd(2-FC ₆ H ₄ COO) ₃ .(2-FC ₆ H ₄ COOH).H ₂ O] ₂ kompleksinin yapısı	28
Şekil 2.41.	$[Ho(2-FBA)_3.phen.CH_3CH_2OH]_2$ (a), $[Ho(2-FBA)_3.phen]_2$ (b) ve	
	$[Ho(2-FBA)_{3.}2,2'-bpy]_2, \{[Ho(2-FBA)_{3.}2H_2O.(4,4'-bpy)\}_n$	
	komplekslerinin yapıları	29
Şekil 2.42.	[Zn(C ₇ H ₄ FO ₂) ₂ (C ₅ H ₆ N ₂) ₂] kompleksinin yapısı	30
Şekil 2.43.	$[Zn(2-Cl-OBz)_2(py)_2]$ yapısı.	30
Şekil 5.1.	$[Co(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2 \text{ kompleksinin TGA/DTA eğrileri} 68$	
Şekil 5.2.	$[Co(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{ kompleksinin TGA/DTA eğrileri } 69$	
Şekil 5.3.	[Zn ₂ (C ₇ H ₄ FO ₂) ₄ (C ₆ H ₆ N ₂ O) ₂]·C ₇ H ₅ FO ₂ kompleksinin TGA/DTA Eğrileri	69
Şekil 5.4.	[Zn(C ₇ H ₄ FO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin TGA/DTA eğrileri	70
Şekil 5.5.	[Ni(C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₄](C ₇ H ₄ FO ₂) ₂ kompleksinin TGA/DTA eğrileri	71
Şekil 5.6.	[Ni(C ₇ H ₄ FO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin TGA/DTA eğrileri	72
Şekil 5.7.	[Mn(C ₇ H ₄ FO ₂) ₂ (C ₆ H ₆ N ₂ O)(H ₂ O)] kompleksinin TGA/DTA eğrileri	72
Şekil 5.8.	$[Mn_2(C_7H_4FO_2)_4(C_{10}H_{14}N_2O)_2]$ kompleksinin TGA/DTA eğrileri	73
Şekil 5.9.	[Co(C ₇ H ₄ FO ₂) ₄ (C ₆ H ₆ N ₂ O) ₂] kompleksinin TGA/DTA eğrileri	74
Şekil 5.10.	$[Ni(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)_2].2H_2O \text{ kompleksinin TGA/DTA} eğrileri$	74
Şekil 5.11.	[Zn(C ₇ H ₄ FO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂] kompleksinin TGA/DTA Eğrileri	75
Şekil 5.12.	$[Co(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$ kompleksinin moleküler yapısı	76
Şekil 5.13.	$[Co(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$ kompleksinde hidrojen bağları	77
Şekil 5.14.	2 Kompleksin tahmini yapısı	77
Şekil 5.15.	$[Zn_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2]$ ·C ₇ H ₅ FO ₂ kompleksin moleküler yapısı	78
Şekil. 5.16.	$[Zn_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2]$ ·C ₇ H ₅ FO ₂ kompleksinin yapı diyagramı	79

Şekil 5.17.	4 kompleksinin tahmini yapısı	79
Şekil 5.18.	[Ni(C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₄](C ₇ H ₄ FO ₂) ₂ kompleksinin moleküler yapısı	80
Şekil 5.19.	6 kompleksinin tahmini yapısı	80
Şekil 5.20.	7 kompleksinin tahmini yapısı	81
Şekil 5.21.	8 kompleksinin tahmini yapısı	81
Şekil 5.22.	9 kompleksinin tahmini yapısı	82
Şekil 5.23.	10 Kompleksinin tahmini yapısı	82
Şekil 5.24.	11 kompleksinin tahmini yapısı	83
Şekil 5.25.	$[Co(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2] \text{ kompleksinin TGA/DTA eğrileri}$	85
Şekil 5.26.	$[Co(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{ kompleksinin TGA/DTA eğrileri}$	86
Şekil 5.27.	[Ni(C ₇ H ₄ ClO ₂) ₂ (H ₂ O) ₂] kompleksinin TGA/DTA Eğrileri	87
Şekil 5.28.	[Ni(C ₇ H ₄ ClO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin TGA/DTA eğrileri	87
Şekil 5.29.	[Ni(C ₇ H ₄ ClO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin TGA/DTA eğrileri	88
Şekil 5.30.	[Mn(C ₇ H ₄ ClO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin TGA/DTA eğrileri	89
Şekil 5.31.	12 kompleksinin tahmini yapısı	90
Şekil 5.32.	13 kompleksinin tahmini yapısı	90
Şekil 5.33.	14 kompleksinin tahmini yapısı	91
Şekil 5.34.	$[Ni(C_7H_4ClO_2)_2 (C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin moleküler yapısı	92
Şekil 5.35.	Kristal yapıda molekül içi O-H O ve N-H O hidrojen bağları sınırsız zincirler oluşturması	92
Şekil 5.36.	[Ni(C ₇ H ₄ ClO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin moleküler yapısı	93
Şekil 5.37.	$[Mn(C_7H_4ClO_2)_2 (C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin moleküler yapısı	94
Şekil 5.38.	12 kompleksinin kütle spektrumu	94
Şekil 5.39.	12 kompleksinin kütle spektrumunda parçalanma şeması	95
Şekil 5.40.	13 kompleksinin kütle spektrumu	96
Şekil 5.41.	12 ve 15 komplekslerinin toz x ışını diffraktogramları	96
Şekil 5.42.	13 ve 16 komplekslerinin toz x ışını diffraktogramları	97
Şekil 5.43.	$[Co(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2] \text{ kompleksinin TGA/DTA eğrileri}$	100
Şekil 5.44.	$[Co(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] kompleksinin TGA/DTA eğrileri$	101
Şekil 5.45.	[Ni(C ₇ H ₄ BrO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin TGA/DTA eğrileri	102
Şekil 5.46.	[Ni(C ₇ H ₄ BrO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin TGA/DTA eğrileri	103
Şekil 5.47.	[Mn(C ₇ H ₄ BrO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin TGA/DTA eğrileri	103
Şekil 5.48.	$[Zn(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin TGA/DTA eğrileri	104
Şekil 5.49.	$[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] kompleksinin TGA/DTA eğrileri$	105
Şekil 5.50.	18 kompleksin tahmini yapısı	106

Şekil 5.51.	$[Co(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin moleküler yapısı	107
Şekil 5.52.	Kristal yapıdaki hidrojen bağları	107
Şekil 5.53.	[Ni(C ₇ H ₄ BrO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin moleküler yapısı	108
Şekil 5.54.	$[Ni(C_7H_4BrO_2)_2 (C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin moleküler yapısı	108
Şekil 5.55.	$[Mn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin kristal yapısı	109
Şekil 5.56.	$[Zn(C_7H_4BrO_2)_2 (C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin kristal yapısı	110
Şekil 5.57.	$[Zn(C_7H_4BrO_2)_2 (C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin kristal yapısı	111
Şekil 5.58.	18 kompleksinin kütle spektrumu	111
Şekil 5.59.	19 kompleksinin kütle spektrumu	112
Şekil 5.60.	18 ve 20 komplekslerinin toz x ışını diffraktogramları	112
Şekil 5.61.	19 ve 21 komplekslerinin toz x ışını diffraktogramları	113
Şekil 5.62.	Kobalt(II) o-halojenobenzoat nikotinamid/N,N'-	
	dietilnikotinamid/izonikotinamid komplekslerinin UV-Vis spektrum	
	grafiği	114
Şekil 5.63.	Nikel(II) o-halojenobenzoat nikotinamid/N,N'-	
	dietilnikotinamid/izonikotinamid komplekslerinin UV-Vis spektrum	
	grafiği	114
Ek Şekil 1.	1 kompleksinin IR spektrumu	161
Ek Şekil 2.	2 kompleksinin IR spektrumu	161
Ek Şekil 3.	3 kompleksinin IR spektrumu	162
Ek Şekil 4.	4 kompleksinin IR spektrumu	162
Ek Şekil 5.	5 kompleksinin IR spektrumu	163
Ek Şekil 6.	6 kompleksinin IR spektrumu	163
Ek Şekil 7.	7 kompleksinin IR spektrumu	164
Ek Şekil 8.	8 kompleksinin IR spektrumu	164
Ek Şekil 9.	9 kompleksinin IR spektrumu	165
Ek Şekil 10.	10 kompleksinin IR spektrumu	165
Ek Şekil 11.	11 kompleksinin IR spektrumu	166
Ek Şekil 12.	12 kompleksinin IR spektrumu	166
Ek Şekil 13.	13 kompleksinin IR spektrumu	167
Ek Şekil 14.	14 kompleksinin IR spektrumu	167
Ek Şekil 15.	15 kompleksinin IR spektrumu	168
Ek Şekil 16.	16 kompleksinin IR spektrumu	168
Ek Şekil 17.	17 kompleksinin IR spektrumu	169
Ek Şekil 18.	18 kompleksinin IR spektrumu	169

Ek Şekil 19.	19 kompleksinin IR spektrumu	170
Ek Şekil 20.	20 kompleksinin IR spektrumu	170
Ek Şekil 21.	21 kompleksinin IR spektrumu	171
Ek Şekil 22.	22 kompleksinin IR spektrumu	171
Ek Şekil 23.	23 kompleksinin IR spektrumu	172
Ek Şekil 24.	24 kompleksinin IR spektrumu	172
Ek Şekil 25.	1 kompleksinin UV spektrumu	173
Ek Şekil 26.	2 kompleksinin UV spektrumu	173
Ek Şekil 27.	5 kompleksinin UV spektrumu	174
Ek Şekil 28.	6 kompleksinin UV spektrumu	174
Ek Şekil 29.	9 kompleksinin UV spektrumu	175
Ek Şekil 30.	10 kompleksinin UV spektrumu	175
Ek Şekil 31.	12 kompleksinin UV spektrumu	176
Ek Şekil 32.	13 kompleksinin UV spektrumu	176
Ek Şekil 33.	15 kompleksinin UV spektrumu	177
Ek Şekil 34.	16 kompleksinin UV spektrumu	177
Ek Şekil 35.	18 kompleksinin UV spektrumu	178
Ek Şekil 36.	19 kompleksinin UV spektrumu	178
Ek Şekil 37.	20 kompleksinin UV spektrumu	179
Ek Şekil 38.	21 kompleksinin UV spektrumu	179
Ek Şekil 39.	3 kompleksinin ¹ H-NMR (DMSO-d ₆) spektrumu	180
Ek Şekil 40.	3 kompleksinin ¹³ C-NMR (DMSO-d ₆) spektrumu	180
Ek Şekil 41.	4 kompleksinin ¹ H-NMR (DMSO-d ₆) spektrumu	181
Ek Şekil 42.	4 kompleksinin ¹³ C-NMR (DMSO-d ₆) spektrumu	181
Ek Şekil 43.	9 kompleksinin ¹ H-NMR (DMSO-d ₆) spektrumu	182
Ek Şekil 44.	9 kompleksinin ¹³ C-NMR (DMSO-d ₆) spektrumu	182
Ek Şekil 45.	24 kompleksinin ¹ H-NMR (DMSO-d ₆) spektrumu	183
Ek Şekil 46.	24 kompleksinin ¹³ C-NMR (DMSO-d ₆) spektrumu	183
Ek Şekil 47.	12 kompleksinin toz-xrd diyagramı	184
Ek Şekil 48.	13 kompleksinin toz-xrd diyagramı	185
Ek Şekil 49.	15 kompleksinin toz-xrd diyagramı	186
Ek Şekil 50.	16 kompleksinin toz-xrd diyagramı	187
Ek Şekil 51.	18 kompleksinin toz-xrd diyagramı	188
Ek Şekil 52.	19 kompleksinin toz-xrd diyagramı	189
Ek Şekil 53.	20 kompleksinin toz-xrd diyagramı	190

TABLOLAR DİZİNİ

Tablo 1.	$[Co(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2 \text{ kompleksinin kristal parametreleri}$	34
Tablo 2.	$[Zn_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2] \cdot C_7H_5FO_2 \text{ kompleksinin kristal parametreleri}$	35
Tablo 3.	$[Ni(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$ kompleksinin kristal parametreleri	36
Tablo 4.	Metal (II) 2-florobenzoat komplekslerinin elementel analiz verileri	38
Tablo 5.	[Ni(C ₇ H ₄ ClO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin kristal parametreleri	40
Tablo 6.	$[Ni(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{ kompleksinin kristal parametreleri}$	41
Tablo 7.	$[Mn(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{ kompleksinin kristal parametreleri}$	41
Tablo 8.	Metal (II) 2-klorobenzoat komplekslerinin elementel analiz verileri	42
Tablo 9.	$[Co(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin kristal parametreleri	43
Tablo 10.	$[Ni(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinin kristal parametreleri	43
Tablo 11.	$[Ni(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{ kompleksinin kristal parametreleri}$	44
Tablo 12.	$[Mn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{ kompleksinin kristal parametreleri}$	45
Tablo 13.	$[Zn(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2] \text{ kompleksinin kristal parametreleri}$	45
Tablo 14.	$[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2] \text{ kompleksinin kristal parametreleri}$	46
Tablo 15.	Metal (II) 2-bromobenzoat komplekslerin elementel analiz verileri	47
Tablo 16.	1 kompleksinin termik analiz verileri	48
Tablo 17.	2 kompleksinin termik analiz verileri	48
Tablo 18.	3 kompleksinin termik analiz verileri	49
Tablo 19.	4 kompleksinin termik analiz verileri	49
Tablo 20.	5 kompleksinin termik analiz verileri	50
Tablo 21.	6 kompleksinin termik analiz verileri	50
Tablo 22.	7 kompleksinin termik analiz verileri	51
Tablo 23.	8 kompleksinin termik analiz verileri	51
Tablo 24.	9 kompleksinin termik analiz verileri	52
Tablo 25.	10 kompleksinin termik analiz verileri	52
Tablo 26.	11 kompleksinin termik analiz verileri	53
Tablo 27.	12 kompleksinin termik analiz verileri	53
Tablo 28.	13 kompleksinin termik analiz verileri	54
Tablo 29.	14 kompleksinin termik analiz verileri	54
Tablo 30.	15 kompleksinin termik analiz verileri	55
Tablo 31.	16 kompleksinin termik analiz verileri	55

Tablo 32.	17 kompleksinin termik analiz verileri	56
Tablo 33.	18 kompleksinin termik analiz verileri	56
Tablo 34.	19 kompleksinin termik analiz verileri	57
Tablo 35.	20 kompleksinin termik analiz verileri	57
Tablo 36.	21 kompleksinin termik analiz verileri	58
Tablo 37.	22 kompleksinin termik analiz verileri	58
Tablo 38.	23 kompleksinin termik analiz verileri	59
Tablo 39.	24 kompleksinin termik analiz verileri	59
Tablo 40.	Metal(II) o-halojenobenzoat nikotinamid komplekslerinin IR spektrum verileri	60
Tablo 41.	Metal(II) o-halojenobenzoat N,N'-dietilnikotinamid komplekslerinin IR	
	spektrum verileri	61
Tablo 42.	Metal(II) o-halojenobenzoat izonikotinamid komplekslerinin IR	
	spektrum verileri	62
Tablo 43.	Bazı komplekslerin ¹ H-NMR spektrum verileri	63
Tablo 44.	Bazı komplekslerin ¹³ C-NMR spektrum verileri	63
Tablo 45.	Sentezlenen komplekslerin UV-görünür bölge değerleri	64
Ek Tablo 1.	1 kristalinin geometrik parametreleri	128
Ek Tablo 2.	1 kristalinin hidrojen bağı geometrisi	130
Ek Tablo 3.	3 kristalinin geometrik parametreleri	130
Ek Tablo 4.	3 kristalinin hidrojen bağı geometrisi	135
Ek Tablo 5.	5 kristalinin geometrik parametreleri	136
Ek Tablo 6.	5 kristalinin hidrojen bağı geometrisi	137
Ek Tablo 7.	15 kristalinin geometrik parametreleri	138
Ek Tablo 8.	15 kristalinin hidrojen bağı geometrisi	139
Ek Tablo 9.	16 kristalinin geometrik parametreleri	140
Ek Tablo 10.	16 kristalinin hidrojen bağı geometrisi	142
Ek Tablo 11.	17 kristalinin geometrik parametreleri	143
Ek Tablo 12.	17 kristalinin hidrojen bağı geometrisi	145
Ek Tablo 13.	19 kristalinin geometrik parametreleri	145
Ek Tablo 14.	19 kristalinin hidrojen bağı geometrisi	148
Ek Tablo 15.	20 kristalinin geometrik parametreleri	148
Ek Tablo 16.	20 kristalinin hidrojen bağı geometrisi	150
Ek Tablo 17.	21 kristalinin geometrik parametreleri	150

Ek Tablo 18.	21 kristalinin hidrojen bağı geometrisi	153
Ek Tablo 19.	22 kristalinin geometrik parametreleri	153
Ek Tablo 20.	22 kristalinin hidrojen bağı geometrisi	155
Ek Tablo 21.	23 kristalinin geometrik parametreleri	156
Ek Tablo 22.	23 kristalinin hidrojen bağı geometrisi	157
Ek Tablo 23.	24 kristalinin geometrik parametreleri	158
Ek Tablo 24.	24 kristalinin hidrojen bağı geometrisi	160
Ek Tablo 25.	12 kompleksinin toz XRD Değerleri	192
Ek Tablo 26.	13 kompleksinin toz XRD Değerleri	193
Ek Tablo 27.	15 kompleksinin toz XRD Değerleri	194
Ek Tablo 28.	16 kompleksinin toz XRD Değerleri	195
Ek Tablo 29.	18 kompleksinin toz XRD Değerleri	196
Ek Tablo 30.	19 kompleksinin toz XRD Değerleri	197
Ek Tablo 31.	20 kodlu bileşiğin toz XRD Değerleri	198
Ek Tablo 32.	21 kompleksinin toz XRD Değerleri	199

SEMBOLLER VE KISALTMALAR DİZİNİ

А	:	Absorbans
δ	:	Kimyasal kayma (ppm)
λ	:	Dalga boyu (nm)
IR	:	Infrared
NMR	:	Nükleer magnetik rezonans
UV	:	Ultraviyole
NA	:	Nikotinamid
INA	:	İzonikotinamid
DENA	:	N,N'-Dietilnikotinamid
TG	:	Termogravimetri
DTG	:	Diferansiyel Termogravimetri
DTA	:	Diferansiyel Termik Analiz
DMSO	:	Dimetilsülfoksit
den.	:	Deneysel
teo.	:	Teorik
Á	:	Angström

1. GENEL BİLGİLER

1.1. Giriş

"2-halojenobenzoat Komplekslerinin Sentezi ve Özellikleri" başlıklı bu çalışmada iki değerlikli geçiş metalleri (Co(II), Ni(II), Mn(II) ve Zn(II)), 2-halojenobenzoik asitler (2-florobenzoik asit, 2-klorobenzoik asit ve 2-bromobenzoik asit) ve biyolojik öneme sahip nikotinamid, izonikotinamid ve dietilnikotinamid kullanılarak 24 adet karışık ligand kompleksleri sentezlenmiş, yapıları elemental analiz, TG/DTA, manyetik duyarlılık, kütle analizi (MS), IR, ¹H-NMR, ¹³C-NMR, toz ve tek kristal X-ışını diffraksiyonu ve UV spektroskopik yöntemleri ile aydınlatılmıştır.

2. ÖNCEKİ ÇALIŞMALAR

2.1. 2-Halojenobenzoik Asitler ve Kompleksleri

Yukarıda açık formülü verilen bileşiklerin kapalı formülleri C₇H₅FO₂, C₇H₅ClO₂, C₇H₅BrO₂ olup, molekül ağırlıkları sırasıyla 140.11 g/mol, 156.57 g/mol, 201.03 g/mol'dür. IUPAC adları 2-florobenzoik asit, 2-klorobenzoik asit, 2-bromobenzoik asit veya *o*-florobenzoik asit, *o*-klorobenzoik asit ve *o*-bromobenzoik asit olarak geçmektedir. Beyaz kristal görünümündeki katı maddelerin erime noktaları sırasıyla 122-125°C, 138-140 °C ve 147-150 °C'dir.

Halojenobenzoatlar tıp ve endüstri alanında kullanılmaktadır. Yukarıda bahsedilen biyolojik açıdan önemli ligandların metal ve halojenlerin etkilerinin incelenmesi çok önemlidir[1].

o- ve *p*-Klorobenzoik asit ara ürün olarak kullanılan kimyasallardır ve *p*-klorotoluenlerin bir karışımının oksitlenmesiyle sentezlenebilir [2]. *o*-Floro ve *o*-klorobenzoik asit bakteri yetiştirmede enerji ve karbon kaynağı olarak kullanılmaktadır [3-5].

İmidazol ile Co(II) 2,3-, 2,5-diklorobenzoatın reaksiyon ürünleri spektroskopik ve termokimyasal özellikleri ile karakterize edilmiştir. Bileşikler monoklinik sistemde kristallenir, uzay grubu P2₁/c. Birim hücre parametreleri birinci kompleks için a=13,848(3), b=12,841(3), c=7,064(2) Å, $\beta=98,12^{\circ}, V=1243$ (4) Å³, Z=2, ikinci kompleks için ise uzay grubu P2₁/n, a=13,293(3), b=6,964(2), c=13,800(3) Å, $\beta=108,92^{\circ}$ V=1208 (4) Å³ Z=2. Kompleksler 333 K'de bir basamakta kristal sularını kaybederler ve oluşan ara ürün CoO'e bozunur [6].

Sentezlenen kompleksin yapısı aşağıda verilmiştir (Şekil 2.1.).

Şekil 2.1. [Co(C₇H₃Cl₂O₂)₂.2imd.2H₂O] kompleksinin moleküler yapısı [6].

Co(II), Ni(II), Cu(II), Zn(II) ve Cd(II) 2,5-diklorobenzoatlar hazırlanmış ve 295 K'de sudaki çözünürlükleri ve bileşimleri belirlenmiştir. Elde edilen komplekslerin IR spektrumu ve X ışını diffraktogramları kaydedilmiştir. Komplekslerde metallerin organik liganda oranı 1:2 mol'dür. 10 K.min⁻¹ ısıtma hızında ısıtıldığında Ni, Cu, Cd komplekslerinin tamamının ve Co, Zn komplekslerinin bazı hidratlaşan kompleksleri kristal su moleküllerini kaybeder ve sonra Co, Ni kompleksleri MO bileşimli metal oksitlerine bozunurlar, Cu, Cd, Zn kompleksleri gaz halindeki ürünlere bozunur. 5 K.min⁻¹ ısıtma hızında ısıtıldığında bazı Ni ve tüm Cu(II)'nin komplekslerinde kristal su moleküllerini kaybettikten sonra direkt olarak metal oksitlerine kadar bozunurlar [7].

Co(II), Ni(II) ve Cu(II) 2,6-diklorobenzoatların oluşum şartları incelenmiştir ve 293 K'de suda kantitatif bileşimleri ve çözünürlükleri, yapılan komplekslerin IR spektrumu kaydedilmiştir ve havada termal bozunmaları araştırılmıştır. Isıtma süresince Co, Ni oksitlere ve Cu gaz halinde ürünlere bozunmadan önce M(C₇H₃O₂Cl₂).nH₂O bileşimli kompleksler iki basamakta kristal sularını kaybederler. Sonuçlar Co(II), Ni(II) ve Cu(II) 2,6-diklorobenzoatların termik parçalanmasının aşağıdaki şekilde olduğunu gösterir: [8]

$$CoL_{2}.6H_{2}O \longrightarrow CoL_{2}.3H_{2}O \longrightarrow CoL_{2} \longrightarrow Co_{3}O_{4} \longrightarrow CoO$$

NiL_{2}.6H_{2}O \longrightarrow NiL_{2}.3H_{2}O \longrightarrow NiL_{2} \longrightarrow NiO
(CuL_{2}.H_{2}O)_{2} \longrightarrow Cu_{2}L_{4}.H_{2}O \longrightarrow Cu_{2}L_{2} \longrightarrow Gaz halindeki ürünler

F. M. Musayev ve arkadaşları tarafından Mn(*p*-XC₆H₄COO)₂.2H₂O (X=H, F, Cl, Br, I) formüllü kompleksler sentezlenmiştir. Mangan (II) benzoat ve florobenzoattan farklı olarak kloro-, bromo- ve iyodobenzoat kompleksler susuzlaştıktan sonra faz değişimine uğrarlar. Komplekslerin yüksek sıcaklıklarda susuzlaşması su moleküllerinin koordine olduklarının gösterir. Bu komplekslerin susuzlaşma, erime ve bozunma sıcaklıkları halojenlerin sıra numarasına bağlı olarak değişmektedir. Şekil 2.2'de görüldüğü gibi halojenlerin elektronegatifliğinin artmasıyla susuzlaşma sıcaklığı artmaktadır.

Şekil 2.2. Elektronegatiflik değişimine göre susuzlaşma sıcaklığındaki değişim grafiği [9].

Komplekslerin termik parçalanması aşağıdaki şemada gösterilmektedir.

$$\begin{array}{cccc} \operatorname{Mn}(C_{6}H_{5}COO)_{2}.2H_{2}O & \frac{110^{\circ}C}{-2H_{2}O} & \operatorname{Mn}(C_{6}H_{5}COO)_{2} \xrightarrow{>535^{\circ}C} & \operatorname{Mn}_{2}O_{3} \\ \end{array} \\ \operatorname{Mn}(FC_{6}H_{4}COO)_{2}.2H_{2}O & \frac{110^{\circ}C}{-2H_{2}O} & \operatorname{Mn}(FC_{6}H_{4}COO)_{2} \xrightarrow{>730^{\circ}C} & \operatorname{Mn}_{3}O_{4} \\ \operatorname{Mn}(ClC_{6}H_{4}COO)_{2}.2H_{2}O & \frac{125^{\circ}C}{-2H_{2}O} & \operatorname{Mn}(ClC_{6}H_{4}COO)_{2} & \xrightarrow{205^{\circ}C} & \operatorname{Mn}(ClC_{6}H_{4}COO)_{2} & \xrightarrow{>550^{\circ}C} & \operatorname{Mn}_{3}O_{4} \\ \end{array} \\ \end{array}$$

$$\begin{array}{ccccccccccccccc} Mn(BrC_{6}H_{4}COO)_{2}.2H_{2}O & \frac{120^{\circ}C}{-2H_{2}O} & Mn(BrC_{6}H_{4}COO)_{2} & \frac{205^{\circ}C}{5} & Mn(BrC_{6}H_{4}COO)_{2} & \stackrel{>675C^{\circ}}{\longrightarrow} & Mn_{3}O_{4} \\ Mn(IC_{6}H_{4}COO)_{2}.2H_{2}O & \frac{100^{\circ}}{-2H_{2}O} & Mn(IC_{6}H_{4}COO)_{2} & \underbrace{205^{\circ}}_{K'} & Mn(IC_{6}H_{4}COO)_{2} & \underbrace{>505^{\circ}}_{K'} & Mn_{3}O_{4} + Mn_{2}O_{3} \\ K' FAZI & K'' FAZI & K'' FAZI \end{array}$$

Tüm komplekslerin termik parçalanma ürünü Mn₃O₄ ve Mn₂O₃ tür [9].

F. M. Çıragov ve arkadaşları tarafından yapılan çalışmada sulu çözeltide Co(II) (*p*-XC₆H₄COO).3H₂O (X=H, F, Cl, Br, I) formüllü kompleksler elde edilmiştir. Komplekslerin toz X ışını analizine göre $Co(C_6H_5COO)_2.3H_2O$ ve $Co(p-FC_6H_4COO)_2.3H_2O$ eş yapılı olduğunu göstermiştir.

Komplekslerin termik analizi kristal hidratların susuzlaşmasının çok aşamalı olduğunu göstermektedir. Sadece iyodobenzoat kompleksinin susuzlaşması tek basamaklıdır. Tüm komplekslerin termolizinin genel özelliği daha önce incelenmiş olan Mn(II) *p*-halojenbenzoatların termik parçalanmasına benzemektedir. Mn komplekslerinde halojenlerin elektronegatifliklerinin artmasıyla susuzlaşma sıcaklığı artmakta, komplekslerin erime ve parçalanma noktaları düşmektedir. Kobalt komplekslerinde susuzlaşma sıcaklığı bu kanuna uygun olmamakla birlikte erime ve bozunma noktaları için uygunluk söz konusudur.

Kobalt komplekslerinin yukarıdaki gibi parçalandıkları varsayılmaktadır [10].

$$Co(C_{6}H_{5}COO)_{2}.3H_{2}O \xrightarrow{50-130^{\circ}} Co(C_{6}H_{5}COO)_{2}.0,5H_{2}O \xrightarrow{130-180^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{225-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-260^{\circ}} Co(C_{6}H_{5}COO)_{2} \xrightarrow{226-2$$

 $Co(p-IC_6H_4COO)_2.3H_2O \xrightarrow{100-180^\circ} Co(p-IC_6H_4COO)_2 \xrightarrow{330-380} Co(p-IC_6H_4COO)_2 \xrightarrow{380-630^\circ} Co_3O_4$ $\xrightarrow{860-940^\circ} CoO$

Şekil 2.3. [Co(C7H4ClO2)2(C3H4N2)2(H2O)2] kompleksinin moleküler yapısı

 $[Co(C_7H_4ClO_2)_2(C_3H_4N_2)_2(H_2O)_2]$ kompleksinde merkez kobalt atomu oktahedral geometri sergilemektedir. Klorobenzoat ligandı ekvatoral düzlemde bulunmaktadır (Şekil 2.3) [11].

Şekil 2.4. [Mn(C₇H₄ClO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin moleküler yapısı

Şekil 2.4'de yapısı verilen [Mn(C₇H₄ClO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksi tümü tek dişli olan iki klorobenzoat, iki dietilnikotinamid ve iki su molekülü içermektedir. Koordinasyona giren eksen pozisyonundaki azot atomları oktahedral geometriyi tamamlamaktadır. Kristal yapıda çok sayıda molekül içi hidrojen bağı söz konusudur [12].

Şekil 2.5. [Zn(C₇H₄BrO₂)₂(H₂O)₂] kompleksinin yapısı

[Zn(C₇H₄BrO₂)₂(H₂O)₂] kompleksinde iki bromobenzoat ligandı ve iki su molekülü bulunmaktadır. Bromobenzoat oksijenleri ile çinko atomları arasındaki bağ uzunlukları yakın olan çift dişli bir ligand gibi davranır. Kompleks oktahedral geometriye sahiptir (Şekil 2.5). Su molekülleri ile karboksilat gruplarında bulunan oksijen atomları arasında hidrojen bağları oluşmaktadır [13].

Şekil 2.6. [Zn(C₇H₄FO₂)₂(C₆H₆N₂O)₂]·H₂O kompleksinin yapısı

[Zn(C₇H₄FO₂)₂(C₆H₆N₂O)₂]·H₂O kompleksi monomeriktir. Zn atomuna bağlı iki florobenzoat, iki nikotinamid ve koordine olmamış su molekülü içermektedir (Şekil 2.6). Nikotinamid molekülü tek dişli bir ligand iken, 4-florobenzoat anyonu çift dişli ligand gibi davranır. Nikotinamidlerin *cis* pozisyonunda bulunduğu oktahedral geometri sergilenmektedir. Molekül içi N-H.. O hidrojen bağları bulunmaktadır [14].

Şekil 2.7. [Co(C7H4BrO2)2(C6H6N2O)2(H2O)2] kompleksinin yapısı

[Co(C₇H₄BrO₂)₂(C₆H₆N₂O)₂(H₂O)₂] kompleksi kobalt atomuna bağlı iki su molekülü, tek dişli ligand gibi davranan iki p-bromobenzoat anyonu ve iki nikotinamid molekülünden ibarettir. Kompleks monomeriktir. Kobalt atomu etrafında bulunan ekvatoral düzlemdeki dört en yakın O atomu ile kare düzlem geometri oluşturmakta ve eksen pozisyonundaki nikotinamidin azot atomları ile oktahedral koordinasyon tamamlanmaktadır (Şekil 2.7). İki boyutlu tabakada moleküller arasında bulunan O-H₊₊₊ O ve N-H₊₊. O hidrojen bağları ile moleküller bağlanır [15].

Şekil 2.8. [Co(C7H4ClO2)2(C6H6N2O)2(H2O)2] kompleksinin yapısı

 $[Co(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$ kompleksinde kobalt atomu simetri merkezindedir ve tümü tek dişli olan iki 4-klorobenzoat anyonu, iki nikotinamid ve iki su molekülü ile oktahedral geometriye sahiptir (Şekil 2.8). Moleküller iki boyutlu tabakada moleküller arası O-H_{**} O ve N-H_{**} O hidrojen bağları ile bağlanırlar [16]. Şekil 2.9'da yapısı verilen [Co(C₇H₄FO₂)₂(C₆H₆N₂O)₂(H₂O)₂] monomerik kompleksi iki su molekülü, tek dişli ligand gibi davranan iki p-bromobenzoat ve iki nikotinamid ligandından ibarettir. Kobalt atomu etrafında bulunan ekvatoral düzlemdeki dört en yakın O atomu ile kare düzlem geometri oluşturmakta ve eksen pozisyonundaki nikotinamidin azot atomları ile oktahedral koordinasyon tamamlanmaktadır. Moleküller kristal yapıda moleküller arasın O-H_{**}.O ve N-H_{**}.O hidrojen bağları ile bağlanırlar [17].

Şekil 2.9. [Co(C7H4FO2)2(C6H6N2O)2(H2O)2] kompleksinin yapısı

Zhang ve arkadaşları [18] samaryum *o*-nitrobenzoat ve *o*-bromobenzoatın 2,2-bipiridin komplekslerini sentezlemişlerdir. Komplekslerin yapılarını sırasıyla elemental analiz, IR, UV, molar iletkenlik gibi yöntemlerle aydınlatmışlardır. Ayrıca termal bozunmalarını TG-DTG teknikleri ile incelemişlerdir. Bozunma ürününün Sm₂O₃ olduğu belirlenmiştir. Kompleksin TG-DTG eğrileri Şekil 2.10'da verilmiştir.

Şekil 2.10. [Sm(o-BrBA)₃bipy]₂.2H₂O kompleksinin TG-DTG eğrileri

Bis(2-bromobenzoato-O,O')-bis(metil-3-piridilkarbamat-N)-çinko(II) kompleksi Erdeliyova ve arkadaşları [19] tarafından sentezlenmiş ve elemental analiz, IR spektroskopisi, termik analiz, tek kristal-XRD yöntemleriyle karakterize edilmiştir. Termik analiz neticesinde oluşan ara ürünler kütle spektroskopisi ile tanımlanmıştır. Bileşiğin 165°C ye kadar kararlı olduğu, ilk olarak metil-3-piridilkarbamat ve CO₂'nin daha sonra bromobenzen grubunun uzaklaştığı ve bozunma ürününün çinko olduğu belirlenmiştir. Çinko atomunun koordinasyon çevresi metil-3-piridilkarbamat ligandlarının iki azot atomu ve şelat oluşturan 2-bromobenzoat ligandlarına ait dört oksijen atomundan oluşmaktadır. Kompleks bozulmuş oktahedral geometriye sahiptir (Şekil 2.11). Moleküller, metil-3-piridilkarbamatın NH grupları ve komşu molekülden gelen karboksilat oksijen atomları ile hidrojen bağlarıyla bağlanmaktadır.

Şekil 2.11. Bis(2-bromobenzoato-O,O')-bis(metil-3-piridilkarbamat-N)-çinko(II) kompleksinin yapısı

Zhao [20] $[Cu(C_7H_4ClO_2)_2(C_5H_6N_2)_2$ kompleksinin yapısı(Şekil 2.12) tek kristal XRD ile metodu aydınlatmıştır. Cu^{II} iyonları çevresinde iki 1-vinil-imidazol molekülü [Cu— N = 1.954 (6)Å] ve iki 2-klorobenzoat anyonu [Cu—O = 1.958 (6) [Cu—O = 1.958 (6) A °] ile kare düzlem geometri oluşmaktadır. Moleküller arası zayıf C-H...O hidrojen bağları kristal kafesin kararlılığına katkıda bulunmaktadır.

Şekil 2.12. Bis(2-klorobenzoato- κO)bis(1-vinilimidazol- κN^3)bakır(II) kompleksinin yapısı

{[Tb(2-IBA)₃. 2,2'-bipy]₂.C₂H₅OH} (1) ve [Tb(2-CIBA)₃.2,2'-bipy]₂ (2) (2-IBA=2iyodobenzoat; 2-CIBA=2-klorobenzoat; 2,2'-bipy=2,2'-bipiridin) formüllü iki yeni kompleks Li ve arkadaşları tarafından [21] sentezlenmiş, kristal yapıları X ışını difraksiyonu ile belirlenmiştir. (1) kompleksi için iki farklı birimden oluşan binükleer bir kompleks olduğu söylenebilir. Bu kompleks [Tb(2-IBA)₃. 2,2'-bipy]₂ (a), [Tb(2-IBA)₃. 2,2'-bipy]₂. (b) ve bir koordine olmamış etanolden oluşmaktadır. (a) biriminde Tb⁺³ iyonu tümü bidentat köprü oluşturmuş dört 2-iyodobenzoat anyonu ile bağlıdır. (b)'de ise Tb⁺³ iyonu bidentat-köprü ve şelat-köprü oluşturmuş dört 2-iyodobenzoat ile bağlanmıştır.

Şekil 2.13. {[Tb(2-IBA)₃. 2,2'-bipy]₂.C₂H₅OH} (a) biriminin yapısı

Şekil 2.14. {[Tb(2-IBA)₃. 2,2'-bipy]₂.C₂H₅OH} (b) biriminin yapısı

 $[Tb(2-ClBA)_3.2,2'-bipy]_2$ kompleksinde ise yapı şekil 2.15'de verilmiştir. $Tb1^{+3}$ beş 2-klorobenzoat ve 2,2-bipiridinin iki azot atomu ile koordinasyon sayısını 9 tamamlanmıştır.

Şekil 2.15. [Tb(2-ClBA)₃.2,2'-bipy]₂ kompleksinin yapısı

[Zn(C₇H₄ClO₂)₂(C₇H₈N₂O₂)₂] formüllü bileşik Maroszova ve arkadaşları [22] tarafından sentezlenmiştir. Zn¹¹ katyonu metil N-(3 piridil) karbamat ligandlarının iki azot atomu ve bidentat bağlanmış 2-klorobenzoat anyonlarının dört oksijen atomu ile koordinasyonu sonucu bozulmuş oktahedral geometriye sahiptir. Zn-O mesafeleri 2.0484 (16)–2.380 (2) Å ve Zn-N mesafesi ise 2.1012 (18) Å'dir. Moleküller N-H...O ve C-H...Cl hidrojen bağları ile bağlıdırlar. Kompleksin yapısı şekil 2.16'da verilmiştir.

Şekil 2.16. [Zn(C₇H₄ClO₂)₂(C₇H₈N₂O₂)₂] kompleksinin moleküler yapısı.

[Sm(o-ClBA)₃phen]₂ (o-ClBA=o-klorobenzoat; phen=1,10-fenantrolin) kompleksi Zhang ve arkadaşları tarafından [23] SmCl₃.6H₂O, *o*-klorobenzoik asid ve 1,10-fenantrolinin reaksiyonuyla sentezlenmiştir. Kompleksin karakterizasyonu için tek kristal X ısını difraksiyonu, elemental analiz ve TG-DTG teknikleri kullanılmıştır. Sonuçlar kristalin triklinik olduğunu göstermiştir. Birim hücre parametreleri ise a = 13.157(3) Å, b = 14.139(4) Å, c = 17.397(4) Å, $\alpha = 83.755(3)^{\circ}$, $\beta = 84.064(3)^{\circ}$, $\gamma = 73.434(3)^{\circ}$ seklindedir. Kristal kristallografik olarak iki farklı Sm(o-ClC₆H₄COO)₃(C₁₂H₈N₂) birimi içermektedir. Her bir Sm⁺³ dokuz atom ile koordine olmuştur. Bunlardan beşi iki bidentat köprü oluşturmuş ve tridentat şelat oluşturmuş karboksilat gruplarından, ikisi bir bidentat şelat oluşturmuş karboksilat grubunun oksijen atomları ve 1,10-fenantrolin molekülünün iki azot atomudur. Termal bozunma neticesinde kalan ürün Sm2O3'dir. Kompleksin yapısı şekil 2.17'de verilmiştir.

Şekil 2.17. [Sm(o-ClBA)₃phen]₂ kompleksinin yapısı

Nakacho ve arkadaşları [24] tarafından sentezlenmiş olan çinko bis(2-klorobenzoat) kompleksi monokliniktir. Birim hücre parametreleri a= 7.284, b= 10.480, c= 19.091 Å, β = 95.59'dir. Çinko atomu çevresinde karboksil gruplarının dört oksijen atomu vasıtasıyla tetrahedral koordinasyon meydana gelmektedir (Şekil 2.18).

Şekil 2.18. Çinko bis(2-klorobenzoat) kompleksinin yapısı

Sm₂(C₇H₄FO₂)₆(C₁₀H₈N₂)₂ kompleksi simetri merkezli bir dimerdir. İki merkez Sm(III) iyonu köprü oluşturmuş dört 2-florobenzoat ligandı ile bağlıdır. Her bir Sm(III) iyonu bidentat şelatlaşmış bir 2-florobenzoat ve bir 2,2-bipiridin ile de bağlıdır. Koordinasyon sayısı sekizdir. Kompleks monoklinik sistemde kristallenmiştir. Birim hücre parametreleri a= 12.189, b= 17.827, c= 13.687 Å, β = 111.091°'dir. Kompleksin yapısı Şekil 2.19'da verilmiştir [25].

Şekil 2.19. Sm₂(C₇H₄FO₂)₆(C₁₀H₈N₂)₂ kompleksinin yapısı

Zhang [26] [Pb₂(Cl)₂(C₁₀H₈N₂)₂(2-Cl-C₆H₄COO)₂] kompleksini sentezlemiştir. Şekil 2.20'de görüldüğü gibi yapıda kurşun atomları iki klor, 2,2'-bipiridinin iki azot atomu 2-klorobenzoat anyonundan gelen iki oksijen atomu ile bozulmuş oktahedral koordinasyon oluşturmaktadır. Kompleksin köprü oluşturan klor atomları 2,2'-bipiridin ve 2-klorobenzoatın karbon atomları ile zayıf hidrojen bağları oluşturmaktadır. Oluşan hidrojen bağları üç boyutlu ağda molekülleri birbirine bağlamaktadır.

Şekil 2.20. $[Pb_2(Cl)_2(C_{10}H_8N_2)_2(2-Cl-C_6H_4COO)_2]$ kompleksinin yapısı

Zhang ve arkadaşları [27] tarafından sentezlenmiş olan komplekste kurşun atomları bidentat şelatlaşmış *o*-fenantrolin ligandının iki azot atomu ile iki 2-florobenzoat anyonunun oksijen atomları ile koordine olmuştur (Şekil 2.21). Zincirler birbirine 2-florobenzoat anyonlarının F atomları ve fenantrolin H atomları arasında zayıf hidrojen bağları ile bağlanmaktadır. (C-H-F) bağ uzunlukları 3.11 Å ve 3.29 Å ve açılar 129.0 ve 154.1 °'dir. Zayıf Pb-O ve hidrojen bağ etkileşimleri bileşikleri boyutlu ağda birbirine bağlamaktadır.

Şekil 2.21. [Pb(C₁₂H₈N₂)(2-F-C₇H₄O₂)] kompeksinin yapısı

Kadmiyum *o*-florobenzoatın 2,2-bipiridin kompleksinin yapısında Cd atomu çevresindeki koordinasyon, bidentat şelat oluşturmuş 2,2-bipiridin ligandının azot atomları, iki 2-florobenzoat anyonundan ve bir aqua ligandından gelen beş oksijen atomu ve bir ile hafif bozulmuş pentagonal bipiramid geometriye tamamlanmaktadır (Şekil 2.22). Cd-N mesafeleri 2.355 Å ve 2.366 Å, Cd-O mesafeleri ise 2.321 Å 2.441 Å'dur. Koordinasyon su molekülü ile 2-florobenzoat anyonlarının oksijen atomları arasında hidrojen bağları oluşturmaktadır. Kompleks moleküller bu hidrojen bağları ile paralel zincirlerle bağlıdır. F ve O atomları arasında da zayıf hidrojen bağı etkileşimleri olmaktadır. Bu hidrojen bağları aracılığıyla moleküller üç boyutlu ağda birbirlerine bağlanmaktadır [28].

Şekil 2.22. [Cd(C₁₀H₈N₂)₂(2-F-C₆H₄COO)₂(H₂O)] kompleksinin yapısı

 $[Ho(C_{12}H_8N_2)(BrC_7H_4O_2)_3]_2$ formülüne sahip kompleks Zhang ve arkadaşları tarafından [29] sentezlenmiştir. Holmiyum atomları 1,10-fenantrolinin iki azot atomu ile bidentat şelat oluşturacak şekilde koordine olmuş ayrıca beş 2-bromobenzoik asit anyonunun altı oksijen atomu ile koordinasyonunu tamamlamaktadır. Ho-N mesafeleri 2.515 ve 2.555 Å ve Ho-O mesafeleri 2.249-2.437 Å'dur. Çift çekirdekli bu komplekste Ho-Ho¹ atomları arasında 2-bromobenzoik asid anyonlarının dört karboksil grubu köprü oluşturmaktadır (Şekil 2.23). 2-bromobenzoik asidin O atomları ile 1,10-fenantrolinin C atomları arasında zayıf hidrojen bağları bulunmaktadır.

Şekil 2.23. [Ho(C₁₂H₈N₂)(BrC₇H₄O₂)₃]₂ kompleksinin yapısı

Kurşun 2-klorobenzoat 1,10-fenenatrolin kompleksinde Pb atomu iki 1,10-fenantrolin ligandının dört N atomu ile bidentat şelat oluşturacak şekilde ve iki 2-klorobenzoat anyonunun iki O atomu oluşturduğu PbN4 O2 çevresinde Pb-N mesafeleri 2.593-2.685 Å ve Pb-O mesafeleri 2.708-2.729 Å'dur. Pb atomları ve fenantrolin ligandları azot atomları arasındaki açı 87.32°'dir. Kristal kafesinde su molekülleri karboksilat oksijen atomları ile hidrojen bağları oluşturmakta ve kristal yapının kararlılığına katkıda bulunmaktadır. Kompleksin yapısı şekil 2.24'deki gibidir[30].

Şekil 2.24. [Pb(C10H8N2)2(2-F-C6H4COO)2(H2O)] kompleksinin yapısı

 $La_2(C_{12}H_8N_2)_2(ClC_7H_4O_2)_6$ formüllü kompleks Zhang [31] tarafından sentezlenmiş ve tek kristal X-ışını diffraksiyonu yöntemiyle yapısı aydınlatılmıştır. Yapıda La atomları fenanatrolin ligandlarının N atomları ile bidentat şelat oluşturmakta ve beş 2klorobenzoat ligandının altı oksijen atomu ile koordine olmaktadır (Şekil 2.25). 2klorobenzoat anyonlarının O, Cl, C atomları arasında hidrojen bağları oluşmaktadır.

Şekil 2.25. La₂(C₁₂H₈N₂)₂(ClC₇H₄O₂)₆ kompleksinin yapısı

Zhang [32] tarafından sentezlenen kompleks $[Pb(C_7H_4O_2Br)_2(C_{12}H_8N_2)_2].2.5H_2O$ formülüne sahiptir. 1,10-fenantrolin halkasının azot atomları ile bidentat şelat oluşturan ve iki 2-bromobenzoat anyonunun iki O atomu ile koordinasyonunu tamamlamaktadır (Şekil 2.26). PbN₄O₂ çevresinde Pb-N mesafeleri 2.593-2.681 Å ve Pb-O arası bağ uzunlukları 2.714-2.757 Å, fenantrolin ligadları azot atomları ile Pb atomu arasındaki dihedral açı 83.7°'dir. Su molekülleri 2-bromobenzoat anyonunun karboksilat oksijen atomları ve brom atomu ile hidrojen bağı oluşmaktadır.

Şekil 2.26. [Pb(C7H4O2Br)2(C12H8N2)2]. 2.5H2O kompleksinin yapısı

Ba(C₁₂H₈N₂)₂(FC₇H₄O₂)₂(H₂O)₂) formüllü komplekste baryum atomları bidentat bağlanıp şelat oluşturmuş fenantrolin ligandlarının dört azot atomu ile, iki florobenzoat ve iki su molekülünden gelen dört oksijen atomu ile koordine olmuştur. Baryumun koordinasyonu kare antiprizmadır (Şekil 2.27). Ba-N bağ uzunlukları 2.856-3.010 Å aralığındadır. Ba-O bağ uzunlukları ise 2.54-2.87 Å arasında değişmektedir. Ba atomu ile azot atomları arasındaki açı 84.5°'dir. Kristal yapıda O-H...O ve C-H...F hidrojen bağları bulunmaktadır. Bağ uzunlukları O3-H3A...O2 için 2.756 Å, C13-H1...F1 için ise 3.386 Å, bağ açıları ise O3-H3A...O2 163°, C13-H13...F1 152° olarak kaydedilmiştir [33].

Şekil 2.27. Ba(C₁₂H₈N₂)₂(FC₇H₄O₂)₂(H₂O)₂) kompleksinin yapısı

Zhao tarafından [34] [Cu₂(C₇H₄ClO₂)₄(C₇H₇N)₂] formüllü kompleks sentezlenmiştir. Çift çekirdekli komplekste Cu...Cu mesafesi 2.6676'dır. Molekülde iki nötral 4vinilpiridin ligand eksen pozisyonunda bulunmakta ve dört 2-klorobenzoat anyonu iki bakır atomuna köprü oluşturmuş durumdadır. Cu^{II} iyonu klorobenzoat anyonlarının dört oksijen ile hafif bozulmuş kare piramit koordinasyona sahiptir. Piridin azot atomları ile koordinasyonunu tamamlar. Kompleksin yapısı aşağıda Şekil 2.28'de verilmiştir.

Şekil 2.28. [Cu₂(C₇H₄ClO₂)₄(C₇H₇N)₂] kompleksinin yapısı

Zhnag ve Ye tarafından [35] yapısı aydınlatılan [Pb(C₇H₄FO₂)₂(C₁₂H₈N₂)₂(H₂O)_{0.5}].2H₂O genel formüllü bileşiğinde Pb^{II} atomu bidentat şelat oluşturduğu iki 1,10-fenantrolinin dört oksijen atomu ve iki 2-florobenzoatın iki oksijen atomu ve 0.5 mol su ile koordine olmuştur (Şekil 2.29). Kristal yapıda O-H...O, C-H...F ve C-H...O hidrojen bağları komplekste moleküller birbirine bağlamaktadır. Triklinik sistemde kristallenmiş bileşiğin birim hücre parametreleri ise a= 9.833, b= 11.568, c= 15.766 Å, a= 81.11, β = 77.23, γ = 86.20° V=1727.0 Å³, tür.

Şekil 2.29. [Pb(C₇H₄FO₂)₂(C₁₂H₈N₂)₂(H₂O)_{0.5}].2H₂O kompleksinin yapısı

[Pb(C₇H₄FO₂)₂(C₁₂H₈N₂)₂].2H₂O formüllü bileşiğinin yapısı Zhang tarafından [36] aydınlatılmıştır. Pb^{II} atomu bidentat şelat oluşmuş iki fenantrolin ligandının dört azot atomu ve iki 2-florobenzoat anyonunun dört oksijen atomu ile düzensiz polihendral koordinasyon sergilemektedir (Şekil 2.30). İki fenantrolin ligandı arasındaki açı 89.9°'dir. Düzlemler arası mesafe yaklaşık olarak 3.44 Å'dür. Komşu fenantrolin ligandları arasında etkileşimler gözlenmektedir. Kristal yapıda O-H...O, O-H...F ve C-H...O hidrojen bağları kompleks molekülleri birbirine bağlamakta koordinasyona girmeyen su molekülü supramoleküler ağda bulunmaktadır. Birim hücre paramatreleri ise *a*= 11.406, *b*= 12.510, *c*=13.771 Å, *α*=95.11, *β*=114.39, *γ*=101.72°, *V*=1719.0 Å³'tür.

Şekil 2.30. $[Pb(C_7H_4FO_2)_2(C_{12}H_8N_2)_2]$.2H₂O kompleksinin yapısı

Zhang tarafından [37] sentezlenen $Pb(C_7H_4O_2F)_2(C_{10}H_8N_2)$ formüllü komplekste, her Pb atomu 2,2'-bipiridin ligandının iki azot atomu ile bidentat bağlanarak şelat oluşturmuş ve iki o-florobenzoik asid anyonlarının iki oksijen atomu ile koordine olmuştur (Şekil 2.31). PbN₂O₂ polihedronunda Pb-N= 2.521-2.637Å ve Pb-O= 2.313-2.515 Å'dur. Zincirler birbirine 2-florobenzoik asidin oksijen, flor ve 2,2'-bipiridinin H atomları arasında oluşan zayıf hidrojen bağları ile bağlanmıştır. Pb-O ve Pb...Pb ve hidrojen bağ etkileşimleri molekülleri üç boyutlu ağda birbirine bağlamaktadır.

Şekil 2.31. Pb(C7H4O2F)2(C10H8N2) kompleksinin yapısı

Krajnikova ve arkadaşları [38] tarafından sentezlenen ve yapısı şekil 2.32'de verilen $[Zn(2-bromobenzoat)_2(fenazon)]_2$ ve $[Zn(2-bromobenzoat)_2(tiyoüre)_2].2H_2O$ kompleksleri elemental analiz ve (IR, 1H ve 13C NMR, EDS) spektroskopik yöntemleri ile aydınlatılmıştır. Katı halde bileşiklerin yapıları tek kristal X ışını difraksiyonu yöntemi ile belirlenmiştir. [Zn(2-bromobenzoat)_2(phen)]_2 kompleksi triklinik sistemde kristallenmiştir. Çinko atomları iki karboksilat grubu ile birbirine bağlıdır. Kompleks bozulmuş tetrahedral geometriye sahiptir. Kompleksin kristallografik verileri *a*= 9.9410, *b*= 10.7309, *c*=12.9237 Å, *a*=93.6004, *β*=92.5898, *γ*=116.2192°, *V*=1230.26 Å³, tür. [Zn(2-bromobenzoat)_2tu)]_2. 2H_2O komplesi ise ortorombik örgüde kristallenmiştir. Bu kompleksin kristallografik verile ise *a*= 9.8595, *b*= 19.7052, *c*=12.5908 Å, *V*=2446.18 Å³, tür.

Şekil 2.32. Zn(2-bromobenzoat)₂(fenazon)]₂ ve [Zn(2-bromobenzoat)₂(tiyoüre)₂].2H₂O komplekslerinin yapıları

Lou tarafından [39] sentezlenen Cd(C₇H₄O₂F)₂(C₁₂H₈N₂) formüllü komplekste Cd atomları bidentat bağlanan fenantrolin ligandlarının iki N atomu ile ve 2-florobenzoat anyonlarının beş oksijen atomu ile koordine olmuştur. CdN₂O₅ polihedron çevresinde bağ uzunlukları Cd-N=2.368-2.373 Å ve Cd-O= 2.325-2.441 Å aralığındadır. Düzlemler arasında π - π etkileşimleri bulunmaktadır ve birbirine yakın fenantrolin ligandları arasındaki yaklaşık mesafe 3.411 Å'dur. Ayrıca 2-florobenzoatın oksijen atomları ve fenantrolin ligandlarının H atomları arasında zayıf hidrojen bağları molekülleri birbirine bağlamaktadır. Birim hücre parametreleri *a*= 22.1571, *b*= 10.2408, *c*=20.3943 Å, β =103.867 °, *V*=4492.8 Å³'tür. Kompleksin Şekil 2.33'de kompleksin yapısı verilmiştir.

Şekil 2.33. Cd(C7H4O2F)2(C12H8N2) kompleksinin yapısı

Zhao tarafından [40] sentezlenen $[Cu(C_7H_4ClO_2)_2(C_5H_6N_2)_2]$ formüllü komplekste, Cu^{II} iyonu simetri merkezindedir ve kompleks hafif bozulmuş kare düzlem geometrisini iki 1-vinil-imidazol molekülü (Cu-N= 1.954 Å) ve 2-klorobenzoat anyonu (Cu-O= 1.958 Å) ile oluşturmaktadır (Şekil 2.34). Moleküller arası C-H...O zayıf hidrojen bağları kristal yapının kararlılığına katkıda bulunmaktadır.

Şekil 2.34. [Cu(C₇H₄ClO₂)₂(C₅H₆N₂)₂] kompleksinin yapısı

Jin tarafından [41] sentezlenen kompleks { $[Sr(C_7H_4FO_2)_2(H_2O)_2].H_2O$ }_n formülüne sahiptir. Sr atomu iki florobenzoat ligandlarından ve iki su molekülünden gelen altı oksijen atomu ve bir flor atomu ile koordine olmuştur. Florobenzoat ligandları köprü oluşturmuştur. Kompleks yapıda birim hücre parametreleri *a*= 12.515, *b*= 6.8232, *c*=19.489 Å, *β*=93.71 , *V*=1660.7 Å³'tür. Polimerik zincirler O-H...O hidrojen bağları ile bağlanmaktadır. Kompleksin yapısı Şekil 2.35'de verilmiştir.

Şekil 2.35. ${[Sr(C_7H_4FO_2)_2(H_2O)_2].H_2O]_n \text{ kompleksinin yapısı}$

2-florobenzoat ve 1,10-fenantrolinin disprosyum kompleksleri Li ve arkadaşları tarafından [42] sentezlenmiş ve X ışını difraksiyonu ile karakterize edilmiştir. Triklinik sistemde kristallenen kompleksin parametreleri a= 11.233, b= 12.598, c=22.718 Å, α =81.045, β =78.213, γ =80.506°, V=3079 Å³'tür. Kompleks iki bağımsız çift çekirdekli molekülden oluşmaktadır: [Dy(2-FBA)₃·phen·CH₃CH₂OH]₂ (I) and [Dy(2-FBA)₃·phen]₂ (II). Molekül (a)'da Dy1⁺³ iyonu beş 2-florobenzoat ligadlarından gelen beş O atomu, etanolden gelen bir O atomu ve fenantrolin ligandının N atomu ile olmak üzere sekiz atomla koordine olmuştur. Florobenzoat ligandlarının ikisi köprü oluşturmuş diğerleri ise tek dişli ligand gibi davranmaktadır. (b) yapısında ise Dy2⁺³ iyonu beş 2-florobenzoat anyonun yedi O atomu ve fenantrolin ligandının iki oksijen atomu ile olmak üzere toplam dokuz atomla koordine olmuştur. Komplekslerin yapıları Şekil 2.36'da verilmiştir.

Şekil 2.36. $[Dy(2-FBA)_3 \cdot phen \cdot CH_3CH_2OH]_2$ (a) ve $[Dy(2-FBA)_3 \cdot phen]_2$ (b) komplekslerinin yapıları

 $[Eu(p-FBA)_3(phen)(H_2O)]_2$ (1), $[Tb(p-FBA)_3phen]_2$ (2), ve $[Tb(o-FBA)_3phen]_2$ (3) (p-FBA=p-florobenzoat, o-FBA=o-florobenzoat, phen=1,10-fenantrolin) bileşimli üç kompleks Xua ve arkadaşları [43] tarafından sentezlenmiş yapısal olarak karakterize edilmiştir. Komplekslerin tümü dimerik moleküllerdir. Kompleks I triklinik sistemde kristallenmiştir. Her bir Eu(III) iyonu bir 1,10-fenantrolin, bir monodentat karboksilat, bir su molekülü ve dört köprü karboksilat ile koordine olmuştur. Kompleks 2 triklinik sistemde kristallenmiştir. Tb(III) iyonu bir 1-10-fenantrolin molekülü, bir bidentat bağlanmış şelat oluşturmuş karboksilat ve dört köprü karboksilatla sekiz koordine olmuştur. Kompleks 3 ise monoklinik sistemde kristallenmiştir ve bir 1,10-fenantrolin molekülü, bir bidentat bağlanmış şelat oluşturmuş karboksilat ve dört köprü karboksilatla koordinasyon sayısı sekizdir. Komplekslerin termiki bozunmaları da incelenmiş, bozunma ürünleri Eu₂O₃ ve Tb₄O₇ olarak belirlenmiştir. Yapılar Şekil 2.37'de verilmiştir.

Şekil 2.37. [Eu(*p*-FBA)₃(phen)(H₂O)]₂ (1), [Tb(*p*-FBA)₃phen]₂ (2) ve [Tb(*o*-FBA)₃phen]₂ (3) komplekslerinin yapıları

 $[Cu(2-Brbz)_2(4PM)_2(H_2O)]$ (1) ve $[Cu(2-Brbz)_2(NIA)_2].2H_2O$ (2) (2-Brbz=2bromobenzoat anyonu, 4-PM=4-piridilmetanol ve NIA=nikotinamid] komplekslerin yapıları X ışını ve EPR yöntemleri ile Moncola ve arkadaşları [44] tarafından belirlenmiştir. Şekil 2.38'de yapıları verilen komplekslerden 1 nolu komplekste Cu⁺² katyonu monodentat 2-bromobenzoat antonlarından gelen bir çift oksijen, monodentat 4-piridilmetanol ligandlarının bir çift piridin azot atomu ve bir su molekülü ile tetragonal-piramidal koordinasyona sahiptir. 2 nolu komplekste Cu⁺² katyonu bidentat 2-bromobenzoat anyonlarının iki çift oksijen atomu, trans pozisyondaki nikotinamid ligandlarından gelen iki piridin azot atomu ile oldukça bipiramid geometriye sahiptir. Her iki komplekste de O-H...O ve C-H...O ve ayrıca 2 nolu komplekste N-H...O hidrojen bağları bulunmakta ve hidrojen bağları üç boyutlu ağ oluşmaktadır.

Şekil 2.38. $[Cu(2-Brbz)_2(4PM)_2(H_2O)]$ (1) ve $[Cu(2-Brbz)_2(NIA)_2].2H_2O$ (2) komplekslerinin yapıları

Findorakova ve arkadaşları [45] yeni bir çinko 2-klorobenzoat kompleksi sentezlemişler ve elemental analiz, infrared spektroskopisi, kütle spektroskopisi, termik analiz, X-ışını ile karakterize etmislerdir. Termal diffraksiyonu bozunma iki adımda gerçekleşmektedir. Bozunma ürünü olarak ZnO bulunmuştur. Bozunma süresince açığa çıkan gaz halindeki ürünleri kütle spektroskopisi ile belirlenmiştir. IR spektrumları çinko atomunun monodentat koordine olduğunu göstermektedir. Monoklinik sistemde kristallenen [Zn(2-Cl-C₆H₄COO)₂(nad)₂] kristalleri için birim hücre parametreleri a=10.376, b=10.100, c=12.604 Å, β=100.79°'dir. Çinko atomu 2-klorobenzoatın iki oksijeni ve nikotinamidin iki azotu ile tetrahedral koordinasyona sahiptir. Şekil 2.39'da kompleksin yapısı verilmiştir.

Şekil 2.39. [Zn(2-Cl-C₆H₄COO)₂(nad)₂] kompleksinin yapısı

Li ve arkadaşları [46], $[Nd(2-FC_6H_4COO)_3.(2-FC_6H_4COOH).H_2O]_2$ formüllü kompleksi sentezlemişler ve X ışını difraksiyonu ile karakterize etmişlerdir. Kompleks triklinik sistemde kristallenmiştir: a= 9.2747, b= 117.759, c=13.5158 Å, $\alpha=110.220$, β =93.930, γ =90.894°, V=1378.8 Å³. Nd⁺³ iyonları arasında bidentat ve tridentat köprülenen dört 2-florobenzoat grubu bulunmakta ayrıca her Nd⁺³ atomu bir 2-florobenzoat, bir 2-florobenzoik asid ve bir su molekülü ile koordine olmuştur (Şekil 2.40)

Şekil 2.40. [Nd(2-FC₆H₄COO)₃.(2-FC₆H₄COOH).H₂O]₂ kompleksinin yapısı

Li ve arkadaşları [47] holmiyum 2-florobenzoatın 1,10-fenantrolin (phen), 2,2'-bipiridin (2,2'-bpy) ve 4,4'-bipiridinin (4,4'-bpy) üç yeni kompleksini sentezlemişlerdir. Fenantrolinli komplekste bir asimetrik birimde iki ekivalent olmayan [Ho(2-FBA)₃.phen.CH₃CH₂OH]₂ ve [Ho(2-FBA)₃.phen]₂ genel formülüne sahip molekül bulunmaktadır. [Ho(2-FBA)₃.2,2'-bpy]₂ formüllü dimerik kompleks koordinasyon sayısı sekiz olan lantanid karboksilat komplekslerinden biridir. {[Ho(2-FBA)₃.2H₂O.(4,4'-bpy)}_n kompleksi ise tek boyutlu polimerik yapıdadır ve hidrojen bağları ve π - π etkileşimleri ile üç boyutlu ağ oluşturmaktadır. Kompleksler yapısı Şekil 2.41'de verilmiştir.

Wang ve arkadaşları [48] $[Zn(C_7H_4FO_2)_2(C_5H_6N_2)_2]$ kompleksini sentezlemiş ve yapısını tek kristal XRD metodu ile aydınlatmışlardır. Yapıda asimetrik birim Zn katyonu, iki 2-florobenzoat ve iki piridin-2-amin ligandından oluşmakta ve tetrahedral koordinasyon geometri sergilenmektedir. Ligandların tümü tek dişlidir. Zn-O bağ uzunlukları 1.962 ve 1.976 Å ve piridin-2-amidin azot atomları ile Zn arasındaki mesafe ise 2.069 ve 2.056 Å olarak belirlenmiştir. Yapıda N-H...O ve N-H...F hidrojen bağları bulunmaktadır. Zayıf C-H...O ve kuvvetli π - π etkileşimleri ile üç boyutlu ağda moleküller birbirine bağlanmaktadır. Yapı Şekil 2.42'deki gibidir.

Şekil 2.42. [Zn(C₇H₄FO₂)₂(C₅H₆N₂)₂] kompleksinin yapısı

Dey ve arkadaşları [49] [Zn₂(OBz)₄(py)₂]. 0.5CH₃OH (1) and [Zn(2-Cl-OBz)₂(py)₂] (2) (OBz=benzoat; 2-Cl-OBz=2-klorobenzoat; py=piridin) komplekslerini oda sıcaklığında metanol ortamında sentezlemişler ve analitik, spektroskopik karakterizasyonu yapılmış, yapı belirlemede tek kristal X ışını diffraksiyonu yöntemi kullanılmıştır. Kompleks 1 kare piramid geometriye sahiptir. Çift çekirdekli birim 0.5 mol metanol içermektedir. Kompleks 2 de ize Zn atomu çevresinde bozulmuş tetrahedral koordinasyon bulunmaktadır. Zn-O mesafesi 2.0255 ve 2.0377Å ve Zn-N mesafesi 1.9535 ve 1.9587Å'dur. Zayıf C-H-O ve 2-klorobenzoat ve piridin arasında π - π etkileşimleri bulunmaktadır. Kompleks 2'nin Şekil 2.43'de verilmiştir.

Şekil 2. 43. [Zn(2-Cl-OBz)₂(py)₂] yapısı

 $Zn(2-BrC_6H_4COO)_2nL.xH_2O$ (L=üre, nikotinamid, N-metilnikotinamid, N,Ndietilnikotinamid, izonikotinamid, fenazon n= 0-2, x=0-2) formüllü kompleksler Krajnikova ve arkadaşları tarafından [50] sentezlenmiş, elemental analiz, IR spektroskopisi ve termal analiz ile yapıları aydınlatılmıştır. Su bulunduran komplekslerin termal bozunması dehidratasyon ile başlamaktadır. Organik ligandların termal bozunması ise karbondioksitin ve bis(2-bormofenil)ketonun yapıdan ayrılmasıyla gerçekleşmektedir. Katı ara ürünler ve termal bozunma ürünleri IR ve kütle spektroskopisi ile belirlenmiştir. Tüm kompleksler için katı bozunma ürünü ZnO'dur. Ayrıca sentezlenen komplekslerin bakteri ve mantarlara karşı antimikrobiyal özellikleride incelenmiştir. Çalışılan çinko(II) komplekslerinde karşı bakterilerin mantarlardan daha hassas olduğu anlaşılmıştır.

[Eu₂(2-BrBA)₆(2,2-bpy)₂]₂.CH₃CH₂OH.H₂O (2-BrBA= 2-bromobenzoat, 2,2-bpy=2,2bipiridin) kompleksi sentezlenmiş ve yapı tek kristal X ışını difraksiyon metodu, IR, UV, floresans spektroskopisi ile aydınlatılmıştır. Triklinik sistemde kristallenen kompleksin birim hücre parametreleri a= 1.17, b= 2.36, c=2.59 Å, a=113.266, β =101.100, γ =94.400°'dür. Asimetrik birimde iki bağımsız dinükleer molekül bulunmaktadır. İki molekül birbirine benzerdir. Her Eu(III) iyonu yedi oksijen atomu ve iki azot atomu ile olmak üzere dokuz koordine olmuştur. Karboksilat grupları bidentat şelat, bidentat köprü ve şelat-köprü olmak üzere üç farklı şekilde koordinasyonda bulunmaktadır [51].

3. MATERYAL VE YÖNTEM

3.1. Materyal

3.1.1. Kullanılan Kimyasal Maddeler

Bu çalışma Kafkas Üniversitesi Fen Edebiyat Fakültesi Anorganik Kimya Araştırma Laboratuarında gerçekleştirilmiştir. Çalışmada kullanılan *N,N'*-dietilnikotinamid Tatkim Preparat (Tataristan, Rusya Federasyonu) firmasından, diğer kimyasal maddeler Fluka, Merck, Aldrich firmalarından sağlanmıştır. Komplekslerin sentezinde, sodyum bikarbonat NaHCO₃, nikel(II)sülfat hekzahidrat (NiSO₄·6H₂O), kobalt(II)sülfat heptahidrat (CoSO₄·7H₂O), mangan(II)sülfat monohidrat (MnSO₄·H₂O), çinko(II)sülfat monohidrat (ZnSO₄·H₂O) metal tuzları kullanılmıştır. Ligand olarak ise 2-florobenzoik asit, 2-klorobenzoik asit, 2-bromobenzoik asit, nikotinamid, dietilnikotinamid ve izonikotinamid kullanılmıştır.

3.1.2. Kullanılan Aletler

Elementel Analiz: LECO CHNS 932, İnönü Üniversitesi Merkez Araştırma Laboratuarı, Malatya.

Infrared (IR) Spektrometresi: Perkin Elmer Spectrum RXI FT-IR System, Harran Üniversitesi, Fen Edebiyat Fakültesi Kimya Bölümü, Şanlıurfa.

Nükleer Magnetik Rezonans (¹H-NMR, ¹³C-NMR) Spektrometresi: Bruker 300 Mhz Ultrashield TM, İnönü Üniversitesi Merkez Araştırma Laboratuarı, Malatya.

Ultaviyole-Visible(UV-vis) Spektrometresi: Perkin Elmer Lambda 25, Kafkas Üniversitesi, Fizik Bölümü, Kars. Kütle Spektrometresi: Agilent 1100 HPLC ve buna bağlı Agilent LC/MSD SL MASS, İnönü Üniversitesi Merkez Araştırma Laboratuarı, Malatya.

Termik Analiz: Rigaku TG 8110 termik analizatörlü TAS 100 (Azot atmosferi), Hacettepe Üniversitesi Fen Fakültesi Kimya Bölümü, Ankara.

Manyetik Duyarlılık Cihazı : Sherwood Scientific Magway MSB MK1, Harran Üniversitesi, Kimya Bölümü, Şanlıurfa.

Tek kristal X Işınları Analizi: Bruker Kappa APEX 2 CCD, Anadolu Üniversitesi Merkez Araştırma Laboratuarı, Eskişehir.

Toz X Işınları Analizi: Bruker D8 ADVANCE Diffraktometresi, Azerbaycan Ulusal Akademisi, Fizik Enstitüsü, Bakü, Azerbaycan.

3.2. Sentez ve Bulgular

3.2.1. Tetraaquabis(nikotinamid- κN^{l})kobalt(II)bis(2-florobenzoat)

Sentez

Kompleks 20 ml CoSO₄.7H₂O (1,40 g, 5 mmol) çözeltisi ve 20 ml nikotinamid (1.22 g, 10 mmol) sudaki çözeltisi ile sodyum 2-florobenzoatın (1.62 g, 10mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında bekletildi, bir hafta içinde pembe kristaller oluştu. Bileşiğin kodu **1** olarak tanımlandı.

X Işınları Analizi

Tablo 1	. [Co($C_6H_6N_2$	$O_2(H_2O)$)4](C7H4F	O ₂) ₂ kompl	eksinin kristal	parametreleri
---------	--------	-------------	-------------	-----------	-------------------------------------	-----------------	---------------

Kristal Özellikleri		
Kimyasal Formül	$[Co(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$	
Molekül Ağırlığı	653.45	
Kristal Sistemi	Triklinik	
Birim Hücre Parametreleri	<i>a</i> =7.2912(2), <i>b</i> =7.4522(4),	
	<i>c</i> = 14.4853(5) Å	
	$\alpha = 82.160(2)^{\circ}, \beta = 77.275(3)^{\circ}, \gamma = 63.740(3)^{\circ}$	
Birim Hücre Hacmi	678.83 Å ³	
Boyut/Biçim/Renk	0.35 x0.25 x0.20 mm/Prizma/Pembe	

3.2.2. Diaquabis(2-florobenzoat- κO)bis-(N, N'-dietilnikotinamid- κN^{l})kobalt(II)

Sentez

Kompleks 20 ml CoSO₄.7H₂O (1,40 g, 5 mmol) çözeltisi ve 20 ml N,N'dietilnikotinamid (1.78 g, 10 mmol) sudaki çözeltisi ile sodyum 2-florobenzoatın (1.62 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında bekletildi, bir hafta içinde pembe kristaller oluştu. Bileşiğin kodu **2** olarak tanımlandı.

3.2.3. Bis(μ -2-florobenzoat-1: $2\kappa^2$ O:O')(2-florobenzoat- $1\kappa^2$ O,O')(2-florobenzoat- 2κ O)dinikotinamid- $1\kappa N^1$, $2\kappa N^1$ -diçinko(II)–2-florobenzoik asid (1/1)

Sentez

Kompleks 20 ml ZnSO₄. H_2O (0,89 g, 5 mmol) çözeltisi ve 20 ml nikotinamid (1.22 g, 10 mmol) sudaki çözeltisi ile sodyum 2-florobenzoatın (1.62 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında bir hafta içinde renksiz kristaller oluştu. Bileşiğin kodu **3** olarak tanımlandı.

X Işınları Analizi

Tablo 2. [Zn₂(C₇H₄FO₂)₄(C₆H₆N₂O)₂]·C₇H₅FO₂ kompleksinin kristal parametreleri

Kristal Özellikleri		
Kimyasal Formül	$[Zn_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2]$ ·C ₇ H ₅ FO ₂	
Molekül Ağırlığı	1071.55	
Kristal Sistemi	Monoklinik	
Birim Hücre Parametreleri	<i>a</i> =12.5143(2), <i>b</i> =16.7106(3),	
	<i>c</i> =20.6673(4) Å,	
	β=92.929(2)°	
Birim Hücre Hacmi	4316.33.Å ³	
Boyut/Renk	0.29 x0.25x0.14mm/renksiz	

3.2.4. Diaquabis(2-florobenzoat- κO)bis-(N,N'-dietilnikotinamid- κN^{1})çinko(II)

Sentez

Kompleks 20 ml ZnSO₄.H₂O (0,89 g, 5 mmol) çözeltisi ve 20 ml N,N'-dietilnikotinamid (1.78, 10 mmol) sudaki çözeltisi ile sodyum 2-florobenzoatın (1.62 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında bekletildi, on iki gün içinde renksiz kristaller oluştu. Bileşiğin kodu **4** olarak tanımlandı.

3.2.5. Tetraaquabis(nikotinamid-ĸN¹)nikel(II)bis(2-florobenzoat)

Sentez

Kompleks 20 ml NiSO₄.6H₂O (1,31 g, 5 mmol) çözeltisi ve 20 ml nikotinamid (1.22 g, 10 mmol) sudaki çözeltisi ile sodyum 2-florobenzoatın (1.62 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında beş gün içinde mavi kristaller oluştu. Bileşiğin kodu **5** olarak tanımlandı.

X ışını Analizi

Kristal Özellikleri		
Kimyasal Formül	$[Ni(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$	
Molekül Ağırlığı	653.23	
Kristal Sistemi	Triklinik	
Birim Hücre Parametreleri	<i>a</i> =7.2529(1), <i>b</i> = 7.3315(1),	
	$c= 14.3831(3)$ Å, $\alpha=82.115(2)^{\circ}$,	
	β=77.332(3)°, γ=63.740(3)°	
Birim Hücre Hacmi	668.05 Å ³	
Boyut/Biçim/Renk	0.33 x0.28x0.18 mm/Blok/Mavi	

Tablo 3. [Ni(C₆H₆N₂O)₂(H₂O)₄](C₇H₄FO₂)₂ kompleksinin kristal parametreleri

3.2.6. Diaquabis(2-florobenzoat- κO)bis-(N,N'-dietilnikotinamid- κN^{I})nikel(II)

Sentez

Kompleks 20 ml NiSO₄.6H₂O (1,31 g, 5 mmol) çözeltisi ve 20 ml N,N'dietilnikotinamid (1.78 g, 10 mmol) sudaki çözeltisi ile sodyum 2-florobenzoatın (1.62 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında bekletildi, on gün içinde mavi kristaller oluştu. Bileşiğin kodu **6** olarak tanımlandı.

3.2.7. Aquabis(2-florobenzoat κ^2 -O:O')(nikotinamid- κN^1)mangan(II)

Sentez

Kompleks 20 ml MnSO₄.H₂O (0,85 g, 5 mmol) çözeltisi ve 20 ml nikotinamid (1.22 g, 10 mmol) sudaki çözeltisi ile sodyum 2-florobenzoatın (1.62 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında beş gün içinde renksiz kristaller oluştu. Bileşiğin kodu 7 olarak tanımlandı.

3.2.8. Tetrakis(μ -2-florobenzoat- κ^2 -O:O')bis(N,N'-dietilnikotinamid- κN^1) mangan(II)

Sentez

Kompleks 20 ml MnSO₄.H₂O (0,85g, 5 mmol) çözeltisi ve 20 ml N,N'dietilnikotinamid (1.78 g, 10 mmol) sudaki çözeltisi ile sodyum 2-florobenzoatın (1.62 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında beş gün içinde renksiz kristaller oluştu. Bileşiğin kodu **8** olarak tanımlandı.

3.2.9. Tetrakis(μ -2-florobenzoat- κ^2 -O:O')bis(izonikotinamid- κN^1)kobalt(II)

Sentez

Kompleks 20 ml CoSO₄.7H₂O (1.40 g, 5 mmol) çözeltisi ve 20 ml izonikotinamid (1.22 g, 10 mmol) sudaki çözeltisi ile sodyum 2-florobenzoatın (1.62 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında beş gün içinde renksiz kristaller oluştu. Bileşiğin kodu **9** olarak tanımlandı.

3.2.10. Diaquabis(2-florobenzoat- κO)bis(izonikotinamid- κN^{l})nikel(II)dihidrat

Sentez

Kompleks 20 ml NiSO₄.6H₂O (1,31 g, 5 mmol) çözeltisi ve 20 ml izonikotinamid (1.22 g, 10 mmol) sudaki çözeltisi ile sodyum 2-florobenzoatın (1.62 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında üç gün içinde mavi kristaller oluştu. Bileşiğin kodu **10** olarak tanımlandı.

3.2.11. Bis(2-florobenzoat κ^2 -*O*:*O'*)bis(izonikotinamid- κN^1)çinko(II) Sentez

Kompleks 20 ml ZnSO₄.H₂O (0,89g, 5mmol) çözeltisi ve 20 ml izonikotinamid (1.22, 10 mmol) sudaki çözeltisi ile sodyum 2-florobenzoat(1.62 g, 10mmol) ın 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında bekletildi, beş gün içinde renksiz kristaller oluştu. Bileşiğin kodu **11** olarak tanımlandı.

Kod	Kompleksler	% C	% H	% N
Kou	Kompieksiei	Denteorik	Denteorik	Denteorik
1	$[Co(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$	47,58-47,79	4,159-4,32	8,440-8,57
2	$[Co(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	56,02-55,97	5,317-5,53	7,594-7,68
3	$[Zn_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2]$ ·C ₇ H ₅ FO ₂	53,14-52,53	3,320-3,38	9,483-5,21
4	$[Zn(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	55,90-55,48	5,309-5,48	7,691-7,61
5	[Ni(C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₄](C ₇ H ₄ FO ₂) ₂	50,28-47,81	3,714-4,32	8,816-8,38
6	$[Ni(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	55,76-55,99	5,280-5,53	7,703-7,68
7	$[Mn(C_7H_4FO_2)_2(C_6H_6N_2O)(H_2O)]$	50,29-50,75	3,278-3,41	5,863-5,92
8	$[Mn_2(C_7H_4FO_2)_4(C_{10}H_{14}N_2O)_2]$	54,77-56,37	4,249-4,34	5,304-5,48
9	$[Co_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2]$	50,98-52,30	3,03-3,07	6,009-6, 10
10	$[Ni(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)_2].2H_2O$	47,15-47,81	4,08-4,32	8,19-8,58
11	$[Zn(C_7H_4FO_2)_2(C_6H_6N_2O)_2]$	53,38-53,12	3,41-3.43	9,52-9,53

Tablo 4. Metal (II) 2-florobenzoat komplekslerinin elementel analiz verileri

3.2.12. Diaquabis(2-klorobenzoat- κO)bis(nikotinamid- κN^{l})kobalt(II)

Sentez

Kompleks 20 ml CoSO₄.7H₂O (1,40 g, 5 mmol) çözeltisi ve 20 ml nikotinamid (1.22 g, 10 mmol) sudaki çözeltisi ile sodyum 2-klorobenzoatın (1.785 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında beş gün içinde pembe kristaller oluştu. Bileşiğin kodu **12** olarak tanımlandı.

3.2.13. Diaquabis(2-klorobenzoat- κO)bis(N,N'-dietilnikotinamid- κN^{l})kobalt(II)

Sentez

Kompleks 20 ml CoSO₄.7H₂O (1,40 g, 5 mmol) çözeltisi ve 20 ml N,N'dietilnikotinamid (1.78 g, 10 mmol) sudaki çözeltisi ile sodyum 2-klorobenzoat (1.785 g, 10 mmol) in 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında bekletildi, bir hafta içinde pembe kristaller oluştu. Bileşiğin kodu **13** olarak tanımlandı.

3.2.14. Diaquabis(2-klorobenzoat κ^2 -O:O')nikel(II)

Sentez

Kompleks 20 ml NiSO₄.6H₂O (1,31 g, 5 mmol) çözeltisi ile sodyum 2-klorobenzoatın (1.785 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım oda sıcaklığında bekletildi iki hafta içinde mavi kristaller oluştu. Bileşiğin kodu **14** olarak tanımlandı.

3.2.15. Diaquabis(2-klorobenzoat- κO)-bis(nikotinamid- κN^{l})nikel(II)

Sentez

Kompleks 20 ml NiSO₄.6H₂O (1,31 g, 5 mmol) çözeltisi ve 20 ml nikotinamid (1.22 g, 10 mmol) sudaki çözeltisi ile sodyum 2-klorobenzoatın (1.785 g, 10 mmol) ın 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında üç gün içinde mavi kristaller oluştu. Bileşiğin kodu **15** olarak tanımlandı.

X Işınları Analizi

Tablo 5. [Ni(C₇H₄ClO₂)₂(C₆H₆N₂O)₂(H₂O)₂] kompleksinin kristal parametreleri

Kristal Özellikleri		
Kimyasal Formül	[Ni(C ₇ H ₄ ClO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₂]	
Molekül Ağırlığı	650.10	
Kristal Sistemi	Monoklinik	
Birim Hücre Parametreleri	<i>a</i> =7.8602(3), <i>b</i> = 17.9529(6),	
	c=9.8446(3) Å,	
	β=106.600(2)°	
Birim Hücre Hacmi	1331.31 Å ³	
Boyut/Renk	0.45 x0.30x0.25 mm/mavi	

3.2.16. Diaquabis (2-klorobenzoat- κO) bis (N, N'-dietilnikotinamid- $\kappa N'$) nikel (II)

Sentez

Kompleks 20 ml NiSO₄.6H₂O (1,31 g, 5 mmol) çözeltisi ve 20 ml N,N'-dietilnikotinamid (1.78 g, 10 mmol) sudaki çözeltisi ile sodyum 2-klorobenzoatın (1.785 g, 10 mmol) in 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında üç gün içinde mavi kristaller oluştu. Bileşiğin kodu **16** olarak tanımlandı.

X Işınları Analizi

Kristal Özellikleri		
Kimyasal Formül	$[Ni(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	
Molekül Ağırlığı	762.31	
Kristal Sistemi	Monoklinik	
Birim Hücre Parametreleri	<i>a</i> =12.7505(2), <i>b</i> =10.3565(2),	
	<i>c</i> =14.9673(3) Å, <i>β</i> =114.046(3)°	
Birim Hücre Hacmi	1804.92 Å ³	
Boyut/Renk	0.27 x0.18 x0.11 mm/Mavi	

Tablo 6. [Ni(C₇H₄ClO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin kristal parametreleri

3.2.17. Diaquabis(2-klorobenzoat- κO)bis(N,N'-dietilnikotinamid- κN^{I})mangan(II) Sentez

Kompleks 20 ml MnSO₄.H₂O (0.85 g, 5 mmol) çözeltisi ve 20 ml *N,N'*dietilnikotinamid (1.78 g, 10 mmol) sudaki çözeltisi ile sodyum 2-klorobenzoatın (1.785 g, 10 mmol) ın 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında dört gün içinde renksiz kristaller oluştu. Bileşiğin kodu **17** olarak tanımlandı.

X Işınları Analizi

Tablo 7. [Mn(C₇H₄ClO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin kristal parametreleri

Kristal Özellikleri			
Kimyasal Formül	$[Mn(C_7H_4ClO_2)_2 (C_{10}H_{14}N_2O)_2(H_2O)_2]$		
Molekül Ağırlığı	758.54		
Kristal Sistemi	Monoklinik		
Birim Hücre Parametreleri	<i>a</i> =13.2840(2), <i>b</i> =10.2499(2),		
	c=15.0023(4) Å,		
	β=114.988(3)°		
Birim Hücre Hacmi	1851.50 Å ³		
Boyut/Renk	0.46 x0.44 x0.27 mm/renksiz		

Metal(II) 2-klorobenzoatbenzoat-nikotinamid/N,N'-dietilnikotinamid				
Kod	Kod Kompleksler	% C	%Н	% N
ixou		Denteorik	Denteorik	Denteorik
12	$[Co(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	47,38-48,02	3,551-3,72	8,447-8,62
13	$[Co(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	53,32-53,55	5,107-5,29	7,401-7,35
14	$[Ni(C_7H_4ClO_2)_2(H_2O)_2]$	39,44-38,05	3,27-3,65	-
15	$[Ni(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	47,40-48,04	3,595-3,72	8,556-8,62
16	$[Ni(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	53,15-53,57	5,134-5,29	7,438-7,35
17	$[Mn(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	53,52-53,83	5,222-5,32	7,638-7,39

Tablo 8. Metal (II) 2-klorobenzoat komplekslerin elementel analiz verileri

3.2.18. Diaquabis(2-bromobenzoat-*kO*)bis-(nikotinamid-*kN*¹)kobalt(II)

Sentez

Kompleks 20 ml CoSO₄.6H₂O (1,40 g, 5 mmol) çözeltisi ve 20 ml nikotinamid (1.22 g, 10 mmol) sudaki çözeltisi ile sodyum 2-bromobenzoatın (2.23 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında iki gün içinde mavi kristaller oluştu. Bileşiğin kodu **18** olarak tanımlandı.

3.2.19. Diaquabis(2-bromobenzoat- κO)bis(N,N'-dietilnikotinamid- κN^{1}) kobalt(II)

Sentez

Kompleks 40 ml CoSO₄.7H₂O (1,40 g, 5 mmol) çözeltisi ve 20 ml N,N'dietilnikotinamid (1.78 g, 10 mmol) sudaki çözeltisi ile sodyum 2-bromobenzoatın (2.23 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında iki hafta içinde pembe kristaller oluştu. Bileşiğin kodu **19** olarak tanımlandı.

X Işınları Analizi

|--|

Kristal Özellikleri		
Kimyasal Formül	$[Co(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	
Molekül Ağırlığı	851.43	
Kristal Sistemi	Monoklinik	
Birim Hücre Parametreleri	<i>a</i> =13.0106(2), <i>b</i> =10.3513(2),	
	c=14,9580(3) Å,	
	β=114.111(1)°	
Birim Hücre Hacmi	1835.86 Å ³	
Boyut/Renk	0.31 x0.28x0.23 mm/pembe	

3.2.20. Diaquabis(2-bromobenzoat- κO)bis(nikotinamid- κN^{l})nikel(II)

Sentez

Kompleks 20 ml NiSO₄.6H₂O (1,31 g, 5 mmol) çözeltisi ve 20 ml nikotinamid (1.22 g, 10 mmol) sudaki çözeltisi ile sodyum 2-bromobenzoatın (2.23 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında iki gün içinde mavi kristaller oluştu. Bileşiğin kodu **20** olarak tanımlandı.

X Işınları Analizi

Tablo 10. [Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2] kompleksinin kristal parametreleri

Kristal Özellikleri			
Kimyasal Formül	$[Ni(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$		
Molekül Ağırlığı	739.02		
Vristal Sisterai	Monaldinile		
KIIStal Sistemi	MOHOKIIIIK		
Birim Hücre Parametreleri	a=7.8851(2) $b=18.2865(4)$		
	<i>c</i> = 9.7574 (3) Å,		
	$\beta = 106.609(2)^{\circ}$		
Dirim Hüara Haami	1249 22 & 3		
Birim Hucre Hacmi	1348.23 A		
Boyut/Bicim/Renk	0 52x0 27x0 22 mm/Blok/Mavi		
Doyud Diçilli Relik			

3.2.21. Diaquabis(2-bromobenzoat- κO)bis(N,N'-dietilnikotinamid- κN^{l})nikel(II)

Sentez

Kompleks 20 ml NiSO₄.6H₂O (1,31 g, 5 mmol) çözeltisi ve 20 ml N,N'dietilnikotinamid (1.78 g, 10 mmol) sudaki çözeltisi ile sodyum 2- bromobenzoatın (2.23 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında iki gün içinde mavi kristaller oluştu. Bileşiğin kodu **21** olarak tanımlandı.

X Işınları Analizi

Tablo 11. [Ni(C₇H₄BrO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin kristal parametreleri

Kristal Özellikleri							
Kimyasal Formül	$[Ni(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$						
Molekül Ağırlığı	851.22						
Kristal Sistemi	Monoklinik						
Birim Hücre Parametreleri	<i>a</i> =12.8506(3), <i>b</i> = 10.3448 (2),						
	<i>c</i> = 14.9418 (4) Å,						
	β=114.004(2)°						
Birim Hücre Hacmi	1814.53 Å ³						
Boyut/Biçim/Renk	0.34x0.25x0.12 mm/Blok/Mavi						

3.2.22. Diaquabis(2-bromobenzoat- κO)bis(N,N'-dietilnikotinamid- κN^{l})mangan(II)

Sentez

Kompleks 20 ml MnSO₄.H₂O (0,85 g, 5 mmol) çözeltisi ve 20 ml *N,N'*dietilnikotinamid (1.78 g, 10 mmol) sudaki çözeltisi ile sodyum 2-bromobenzoatın (2.23 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında bekletildi, iki gün içinde renksiz kristaller oluştu. Bileşiğin kodu **22** olarak tanımlandı.

X Işınları Analizi

Tablo 12.	Mn	C7H4BrO2)2($C_{10}H_1$	4N2C))2(Ή ₂ C))2]	l kom	pleksinin	kristal	parametreleri
1 4010 12.		$C/14DIO_2$	121		41 121	- 120	1120	12	Rom	prekomm	KIIStul	purumenerer

Kristal Özellikleri								
Kimyasal Formül	$[Mn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$							
Molekül Ağırlığı	847.46							
Kristal Sistemi	Monoklinik							
Birim Hücre Parametreleri	<i>a</i> =13.3012(2), <i>b</i> =10.2746(4),							
	c=15.0010(3) Å,							
	β=114.798(1)°							
Birim Hücre Hacmi	1861.21 Å ³							
Boyut/Renk	0.45 x0.40 x0.25 mm/renksiz							

3.2.23. Diaquabis(2-bromobenzoat-*кО*)bis(nikotinamid-*кN*¹)çinko(II) Sentez

Kompleks 40 ml ZnSO₄.H₂O (0,89 g, 5 mmol) çözeltisi ve 20 ml nikotinamid (1.22 g, 10 mmol) sudaki çözeltisi ile sodyum 2-bromobenzoatın (2.23 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında üç gün içinde renksiz kristaller oluştu. Bileşiğin kodu **23** olarak tanımlandı.

X ışını Analizi

Tablo 13. [Zn(C₇H₄ClO₂)₂(C₆H₆N₂O)₂(H₂O)₂] kompleksinin kristal parametreleri

Kristal Özellikleri								
Kimyasal Formül	$[Zn(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$							
Molekül Ağırlığı	745.68							
Kristal Sistemi	Monoklinik							
Birim Hücre Parametreleri	<i>a</i> =7.9111(2), <i>b</i> = 18.1684(4),							
	<i>c</i> = 9.8345(3) Å,							
	β=106.346(1)°							
Birim Hücre Hacmi	1355.80 Å ³							
Boyut/Renk	0.43 x0.33 x0.25 mm/renksiz							

3.2.24. Diaquabis(2-bromobenzoat- κO)bis(N,N'-dietilnikotinamid- κN^{I})çinko(II)

Sentez

Kompleks 20 ml ZnSO₄.H₂O (0,89 g, 5 mmol) çözeltisi ve 20 ml *N,N'*-dietilnikotinamid (1.78g , 10 mmol) sudaki çözeltisi ile sodyum 2-bromobenzoatın (2.23 g, 10 mmol) 50 ml sudaki çözeltisinin karışımından hazırlandı. Karışım süzüldü ve oda sıcaklığında bekletildi, üç gün içinde renksiz kristaller oluştu. Bileşiğin kodu **24** olarak tanımlandı.

X ışını Analizi

Tablo 14. [Zn(C₇H₄BrO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin kristal parametreleri

Kristal Özellikleri							
Kimyasal Formül	$[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$						
Molekül Ağırlığı	857.91						
Kristal Sistemi	Monoklinik						
Birim Hücre Parametreleri	<i>a</i> =13.0037(2), <i>b</i> =10.3387(2),						
	<i>c</i> =19.9365(3) Å,						
	β=114.180(1)°						
Birim Hücre Hacmi	1831.90 Å ³						
Boyut/Renk	0.40 x0.30 x0.23 mm/renksiz						

İlk kez sentezlenen komplekslerin elemental analiz sonuçları Tablo 4, 8 ve15' de verilmiştir.

	Metal(II) 2-bromobenzoatbenzoat-nikotinamid/N,N'-dietilnikotinamid										
V.J	<i>V</i>	% C	% H	% N							
Kod	Kompleksler	Denteorik	Denteorik	Denteorik							
18	$[Co(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	41,78-42,24	3,157-3,27	7,573-7,58							
19	$[Co(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	46,91-47,96	4,482-4,74	6,527-6,58							
20	$[Ni(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	41,59-42,26	3,168-3,27	7,628-7,58							
21	$[Ni(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	47,21-47,97	4,511-4,74	6,570-6,58							
22	$[Mn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	47,55-48,19	4,593-4,76	6,604-6,61							
23	$[Zn(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	41,05-41,88	3,185-3,24	7,603-7,51							
24	$[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	46,68-47,60	4,535-4,70	6,594-6,53							

Tablo 15. Metal (II) 2-bromobenzoat komplekslerin elementel analiz verileri

Toz X ışınları diyagramları Ek Şekil 47-54'de, verileri ise Ek Şekil 25-32'de verilmiştir. Tek kristal X ışınları analizine ait bağ uzunlukları ve açıları hidrojen bağı geometrisine ilişkin değerler Ek Tablo 1-24'de verilmiştir.

Termik Analiz

Tablo 16. 1 kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı °(C Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$\begin{bmatrix} Co(C_6H_6 \\ M.A = 6 \end{bmatrix}$	N ₂ O) ₂ (H ₂ O) ₄](C ₇ H ₄ F 53.45	(O ₂) ₂					pembe
1	95-140	100 (-)	3H ₂ O	8.28-8.02		$[Co(C_6H_6N_2C)]$	$(C_7H_4FO_2)_2$
2	150-190	166 (-)	H_2O	3.01-3.12			
3	200-315	212 (-)	$2(C_6H_6N_2O)$	41.99-43.42			
4	315-425			16.10			
5	425-620	588 (-)		4.79			
					87.69-88.54	CoO	siyah

Tablo 17. **2** kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
[Co(C ₇ H ₄	$FO_2)_2 (C_{10}H_{14}N_2O)_2(H_2)_2$	O) ₂]					pembe
M.A = /	29.63						
1	85-190	101 (-)	$2H_2O$	4.93-5.24		[Co(C ₇ H ₄ FO ₂	$)_{2}(C_{10}H_{14}N_{2}O)_{2}]$
2	190-310	211 (-)	$2(C_{10}H_{14}N_2O)$	51.37-48.48			
3	310-420	383 (+)		21.56			
4	425-620	595 (-)		5.68			
					89.80-89.43	CoO	siyah

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sic. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk	
$\begin{bmatrix} Zn(C_6H_6 \\ M.A = 1 \end{bmatrix}$	N ₂ O) ₂ (C ₇ H ₄ FO ₂) ₂](C ₇ H 074.22	I ₄ FO ₂) ₂					beyaz	
1 2 3	175-210 210-300 300-420	184(-) 253 (-) 371 (-)		7.90 41.27 24.24	88.34-88.33		ZnCO ₃	siyah

Tablo 18. **3** kompleksinin termik analiz verileri

Tablo 19. 4 kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma Renk ürünü	
$[Zn(C_7H_4)M.A = 7]$	FO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H '39.09	2O)2]				renksiz	
1	60-110 140-280	64 (-) 208 (-)	$2H_2O$ $2(C_1,H_1,N_2O)$	4.89-4.91		$[Zn(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2]$	
3	280-425	361 (+)	$2(C_{10}T_{14}T_{2}C)$	24.86	88.99-88.36	ZnO renksiz	

Bileşik	Sıcaklık Aralığı °	C Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma Renk ürünü	
$[Ni(C_6H_6]]$ M.A = 6	N ₂ O) ₂ (H ₂ O) ₄](C ₇ H ₄ F 553.23	O ₂) ₂				Mavi	
1	100-180	102 (-)	$4H_2O$	11.02-10.39		[Ni(C ₆ H ₆ N ₂ O) ₂ (C ₇ H ₄ F)	$O_2)_2]$
2	250-360	271 ve 293(-)	$2(C_7H_4FO_2)$	47.88-47.72			. –
3	360-425	410 (-)		10.92			
					88.84-82.21	NiO, C siyah	

Tablo 20. **5** kompleksinin termik analiz verileri

50

Tablo 21. 6 kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$[Ni(C_7H_4]]$ M.A = 7	FO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H ₂ ' 29.39	O) ₂]					mavi
1	120-170	120 (-)	2H ₂ O	4.93-4.88		[Ni(C ₇ H ₄ FO ₂)]	$[(C_{10}H_{14}N_2O)_2]$
					89.99-90.12	NiO	siyah

Bileşik	Sıcaklık Aralığı ^o	C Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma Renk ürünü
$[Mn(C_7H)] M.A = 4$	₄ FO ₂) ₂ (C ₆ H ₆ N ₂ O)(H 73.04	[₂ O)]				beyaz
1	125-175	151 (-)	H ₂ O	3.78-4.67		$[Mn(C_6H_6N_2O)(C_7H_4FO_2)_2]$
2	230-320	233 (-)	$(C_6H_6N_2O)$	26.81-24.40		$[Mn(C_7H_4FO_2)_2]$
3	320-425	373 (-)		27.63	70.02-74.05	MnO ₂ , Mn siyah

Tablo 22. 7 kompleksinin termik analiz verileri

Tablo 23. 8 kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma Renk ürünü
$[Mn_2(C_7H)]M.A = 1$	[₄ FO ₂) ₄ (C ₁₀ H ₁₄ N ₂ O) ₂] 022.18					beyaz
1 2	140-300 325-490	134 (-) 376 (-)	$\frac{2(C_{10}H_{14}N_2O)}{(C_6H_4F)_2CO+C}$	34.83 2O ₂ 39.33	-35.01 -35.75 84.63-80.14	$[Mn(C_7H_4FO_2)_4] $$Mn_2O_3 siyah $$$

Bileşik Si	ıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$\begin{bmatrix} Co(C_7H_4FO_2) \\ M A = 918 \end{bmatrix}$	$_{2}_{4}(C_{6}H_{6}N_{2}O)_{2}]$						pembe
1	220-270	262(-)	$2CO(NH_2)$	9.15-8.55			
2	270-310	283(-)	$(C_6H_4F)_2CO+CO_2$	31.55-32.97			
3	310-460	412 (-)	$2(C_6H_4N)$	27.46-27.13			
4	460-640	589 (-)		10.68			
5	700-775	708 (+)		1.94			
					82.02-84.07	Co_2O_3	siyah

Tablo 24. 9 kompleksinin termik analiz verileri

Tablo 25.	10 koi	npleksinin	termik	analiz	verileri
-----------	--------	------------	--------	--------	----------

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$[Ni(C_7H_4]]$ M.A = 6	FO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂ (H ₂ O 53.23) ₂].2H ₂ O					Mavi
1	75-150	123 (-)	$4H_2O$	10.99-9.98		$[Ni(C_6H_6N_2O)]$	$(C_7H_4FO_2)_2$
2	240-260		-	4.68			
3	260-335	268 ve 298(-)		31.84			
4	335-390	334 (-)		14.06			
5	390-525	412 (-)		15.68			
6	775-900	781 (-)		2.17			
					88.70-84.78	NiO	siyah

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$\begin{bmatrix} Zn(C_7H_4) \\ M.A = 5 \end{bmatrix}$	FO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂]. 87.85						Beyaz
1	220-270	243 (-)	C_6H_4F	13.28-12.32			
2	270-320	275 (-)	C ₆ H ₆ N ₂ O	23.96-22.68			
3	320-460	372 (-)	C ₆ H ₆ N ₂ O	31.52-34.15			
4	740-900	772 (-)		11.77			
					86.27-83.48	ZnO	siyah

Tablo 26. 11 kompleksinin termik analiz verileri

Tablo 27. 12 kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$\begin{bmatrix} Co(C_7H_2) \\ M.A = 6 \end{bmatrix}$	ClO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂ (H ₂ 550.33	2O)2]					pembe
1 2	105-160 160-390	142 (-) 188 (-)	2H ₂ O 2(Cl-C ₆ H ₄ COO)	5.52-5.30 50.48-52.30	[C	$[Co(C_6H_6N_2O)_2 (C_7H_4ClO_2)_2]$	
3	390-490	212 (-)		13.83	92.73-92.85	Co	siyah

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$\begin{bmatrix} Co(C_7H_4 \\ M A = 7 \end{bmatrix}$	$(ClO_2)_2 (C_{10}H_{14}N_2O)_2(R_{14}H_{14}N_2O)_2(R_{14}H_{14}N$	H ₂ O) ₂]					pembe
1	75-180	162 (-)	2H ₂ O	4.72-7.04		[Co(C7H4ClO2	$(C_{10}H_{14}N_{2}O)_{2}$
2	160-320	223 (-)	$2(C_{10}H_{14}N_2O)$	49.03-46.48			<u>/2(-10 14 2-)2</u>
3	320-500	377 (-)		24.18			
4	500-780			12.69			
					92.45-92.47	Co	siyah

Tablo 28. 13 kompleksinin termik analiz verileri

Tablo 29. 14 kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
[Ni(C ₇ H ₄ M.A = 4	ClO ₂) ₂ (H ₂ O) ₂] 35.91						renksiz
1	105-175	133 (-)	2H ₂ O	8.89-8.88		[Ni(C ₇ H ₄ BrO ₂) ₂]	
					85.56-92.80	Ni	siyah
Bileşik	Sıcaklık Aralığı ℃	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma Renk ürünü	
----------------------	---	-----------------------------	-----------------------	--------------------------------------	---	-------------------------------------	
$[Ni(C_7H_4]M.A = 6$	ClO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂ (H ₂ C 550.09))2]				Mavi	
1	140-180	162 (-)	$2H_2O$	5.53-4.77		$[Ni(C_6H_6N_2O)_2(C_7H_4ClO_2)_2]$	
2	180-250	231 (-)	(CONH ₂)	8.81-7.16			
3	250-325	301 (-)	$(C_6H_6N_2O)(C5H_2)$	₄ N) 35.08-34.36			
4	325-425	365 (-)		19.34			
					88.47-86.25	NiO siyah	

Tablo 30. 15 kompleksinin termik analiz verileri

Tablo 31. 16 kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup Ağırlık Kaybı % Teorik – Deneysel		Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma Renk ürünü
$[Ni(C_7H_4)]$ $M A = 7$	$ClO_2)_2(C_{10}H_{14}N_2O)_2$ 62.30	(H ₂ O) ₂]				mavi
1	100-175	143 (-)	$2H_2O$	4.72-5.68		$[Ni(C_6H_6N_2O)_2(C_7H_4ClO_2)_2]$
2	210-350	285 (-)	$2(\bar{C}_{10}H_{14}N_2O)$) 49.03-50.74		
3	350-420	370 (-)		16.08		
4	530-620	575 (-)		4.97		
					90.21-88.11	NiO siyah

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$[Mn(C_7H)]M.A = 6$	₄ ClO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H	I ₂ O) ₂]					renksiz
1	75-150	109 (-)	$2H_2O$	4.75-5.74		$[Mn(C_{10}H_{14}N)]$	$V_{2}O_{2}(C_{7}H_{4}ClO_{2})_{2}]$
2	150-295	213 (-)	$2(C_{10}H_{14}N_2O)$	49.30-42.50			
3	295-410	384 (+)		17.13			
					86.93-84.92	MnC	2+C siyah

Tablo 32. 17 kompleksinin termik analiz verileri

Tablo 33. 18 kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı	°C Max.Boz.Sic. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$\begin{bmatrix} Co(C_7H_4) \\ M.A = 7 \end{bmatrix}$	BrO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂ 39.43	e(H ₂ O) ₂]					Pembe
1	120-160	143 (-)	2H ₂ O	4.78-4.09		$[Co(C_6H_6N_2C$	$O_{2}(C_{7}H_{4}BrO_{2})_{2}]$
2	180-310	190 (-), 281(-)	$2(C_6H_6N_2O)$	34.70-39.76			
3	310-460	385 (-)		22.95	89.8	7-85.22	CoO siyah

Bileşik	Sıcaklık Aralığı °C	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$\begin{bmatrix} Co(C_7H_2) \\ M A = 8 \end{bmatrix}$	BrO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (F	H ₂ O) ₂]					Pembe
1	100-155	116 (-)	2H ₂ O	4.23-5.19		[Co(C ₇ H ₄ BrO ₂	$(C_{10}H_{14}N_{2}O)_{2}$
2	155-295	220 (-)	$(C_{10}H_{14}N_2O) + CON(C_2H_5)$	34.11-34.73			
3	345-475	401 (-)	C ₅ H ₄ N	14.52-14.19			
4	475-670	591		22.33			
					84.49-88.22	CoO	siyah

Tablo 34. 19 kompleksinin termik analiz verileri

Tablo 35. 20 kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı ⁽	C Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$[Ni(C_7H_4]]$ $M.A = 7$	BrO ₂) ₂ (C ₆ H ₆ N ₂ O) ₂ (I 38.99	H ₂ O) ₂]					Mavi
1	120-190	168 (-)	$2H_2O$	4.84-4.01		[Ni(C ₆ H ₆ N ₂ C	$(C_7H_4BrO_2)_2$
2	190-395	246 (-)		43.73		-	
3	510-810	584 (-)		19.94			
					89.9	7-86.65	NiO siyah

Bileşik	Sıcaklık Aralığı °C	C Max.Boz.Sic. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
[Ni(C ₇ H ₄ M.A = 8	BrO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (1 51.20	H ₂ O) ₂]					Mavi
1	105-195	146 (-)	$2H_2O$	4.23-5.19		[Ni(C ₇ H ₄ BrO ₂	$(C_{10}H_{14}N_2O)_2]$
2	195-330	220 (-)	$2(C_{10}H_{14}N_2O)$	43.68-42.47			
3	330-430	401 (-)		22.47			
					91.30-91.16	NiO	siyah

Tablo 36. 21 kompleksinin termik analiz verileri

Tablo 37. 22 kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı ℃	Max.Boz.Sıc. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
[Mn(C ₇ H M.A = 8	₄ BrO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (I 47.45	H ₂ O) ₂]					renksiz
1	75-140	124 (-)	$2H_2O$	4.23-5.19		[Mn(C ₇ H ₄ BrO ₂	$)_{2}(C_{10}H_{14}N_{2}O)_{2}]$
2	140-330		$2(C_{10}H_{14}N_2O)$	43.89-40.93			
3	330-420	389 (+)		21.99			
4	650-870	. /		16.65			
					91.73-90.51	MnO	siyah

Bileşik	Sıcaklık Aralığ	u ℃ Max.Boz.Sıc. ℃ DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma ürünü	Renk
$\begin{bmatrix} Zn(C_7H_4) \\ M.A = 7 \end{bmatrix}$	BrO ₂) ₂ (C ₆ H ₆ N ₂ O) 45.69	₂ (H ₂ O) ₂]					renksiz
1	95-155	97 (-)	$2H_2O$	4.83-4.57		[Zn(C ₇ H ₄ BrC	$(C_6H_6N_2O_2)_2$
2	210-340	282 (-)		40.93			
3	340-410	384 (-)		15.27			
					89.1	3-90.83	ZnO siyah

Tablo 38. 23 kompleksinin termik analiz verileri

Tablo 39. 24 kompleksinin termik analiz verileri

Bileşik	Sıcaklık Aralığı °C	C Max.Boz.Sic. °C DTA max.	Ayrılan Grup	Ağırlık Kaybı % Teorik – Deneysel	Top.Ağırlık Kaybı% Teorik – Deneysel	Katı Bozunma Renk ürünü
$[Zn(C_7H_4] M.A = 8]$	BrO ₂) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (57.90	H ₂ O) ₂]				renksiz
1	75-125	90 (-)	2H ₂ O	4.19-3.80		$[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2]$
2	125-290		$(C_{10}H_{14}N_2O)+CON(C_2H_5)$	$(3)_2$ 43.89-40.93		
3	290-330		C_5H_4N	14.36-10.74		
4	330-495			17.33		
5	495-525			20.25		
					90.55-92.90	ZnO siyah

4. SPEKTROSKOPİK VERİLER

4.1. IR Spektroskopisi

Sentezlenen komplekslerin IR Spektrum değerleri Tablo 38-40'da verilmiştir.

Tablo 40. Metal(II) o-halojenobenzoat	t nikotinamid komple	ekslerinin IR spektrum	verileri
---------------------------------------	----------------------	------------------------	----------

GRUPLAR	1	3	5	7	12	15	18	20	23
<i>v</i> (OH)	3600 3000	-	3600 3000	3600 3000	3600 3000	3600 3000	3600 3000	3600 3000	3600 3000
v(C=O) _{amid}	1694	1681	1964	1672	1691	1686	1693	1682	1697
v(C=C) _{halka}	1612	1600	1612	1614	1602	1603	1626	1603	1603
v(NLH)	3375	3377	3371	3400	3368	3361	3372	3373	3372
V(IN-11)	3161	3191	3163	3298	3215	3216	3217	3218	3217
Aromatik C=C	1989	1964	1942	1953	1933	1953	1950	1980	1957
v(COO ⁻) _{as}	1594	1567	1594	1592	1576	1577	1580	1574	1574
v(COO ⁻) _s	1374	1374	1374	1406	1387	1388	1384	1385	1399
Δv	220	193	220	186	189	189	196	189	175
v(C-N) _{py}	1051	1057	1033	1050	1052	1052	1053	1055	1054
v(C-H) _{halka}	3055	3067	3057	3114	3076	3100	3072	3076	3074
<i>o-</i> disubstitue benzen	773	763	773	748	761	760	756	755	756
v(C-N) _{amid}	1156	1156	1157	1158	1142	1100	1143	1144	1144
v(C-H) _{halka}	1486	1487	1486	1485	1464	1480	1479	1479	1479
v(M-O)	651	658	614	648	648	648	642	643	652
v(M-N)					471	472	480	481	478

GRUPLAR	2	4	6	8	13	16	17	19	21	22	24
v(OH)	3439	3475	3443	-	3326	3340	3286	3317	3317	3278	3315
v(C=C) _{halka}	1612	1613	1612	1603			-	-			
v(COO ⁻) _{as}	1592	1592	1593	1570	1596	1595	1595	1595	1595	1594	1595
v(COO ⁻) _s	1394	1393	1389	1391	1395	1397	1393	1394	1394	1393	1394
Δv	198	199	204	179	201	198	202	201	201	201	201
v(NH)	-	-	-	-	-	-	-	-	-		-
v(C-H) _{halka}	1472	1471	1483	1449	1468	1460	1467	1467	1467	1473	1467
v (C-N) _{py}	1050	1052	1055	1032	1048	1048	1048	1038	1038	1937	1038
v(C-N) _{amid}	1161	1161	1161	1189	1159	1150	1159	1150	1150	1159	1152
v(C=O) _{amid}	1627	1626	1628	1636	1620	1618	1618	1618	1618	1618	1615
	2984	2984	2983	2976	2989	2989	2975	2988	2989	2987	2988
V(C-H) _{etil}	2938	2938	2938	2953	2934	2970	2933	2932	2932	2933	2938
v(M-O)	647	638	647	652	649	650	648	635	635	633	635
v(M-N)	488	490	487	-	458	460	472	460	460	459	460
<i>o-</i> disubstitue benzen	765 705	765 705	756 704	756 703	768 710	752 711	764 710	767 705	752 711	765 714	767 713

Tablo 41. Metal(II) o-halojenobenzoat N,N'-dietilnikotinamid komplekslerinin IR spektrum verileri

GRUPLAR	9	10	11	14
v(OH)			3600 3000	3600 3000
v(C=O) _{amid}	1695	1678	1694	-
v(C=C) _{halka}	1603	1614	1605	1559
	3358	3340	3360	
<i>v</i> (N-H)	3178	3195	3174	-
Aromatik C=C	2363	1953	1944	
v(COO ⁻) _{as}	1558	1591	1605	1559
v(COO ⁻) _s	1394	1396	1398	1399
Δv	164	195	207	195
v(C-N) _{py}	1066	1066	1035	-
v(C-H) _{halka}		3080	3088	
<i>o</i> - disubstitue benzen	752	762	757	740
v(C-N) _{amid}	1158	1142	1146	-
v(C-H) _{halka}	1484	1487	1488	
v(M-O)	645	657	662	694
v(M-N)		465	483	-

Tablo 42. Metal(II) o-halojenobenzoat izonikotinamid komplekslerinin IR spektrum verileri

4.2. NMR Spektroskopisi

Sentezlenen komplekslerin NMR Spektrum pik değerleri Tablo 41-42'de verilmiştir.

	CH _{3(etil)}	H ₂ O	CH _{2(etil)}	NH ₂	Aromatik H	Piridin H	СООН
2				2 16	7 20 7 08	<u> </u>	12.46-
3	-	-	-	5.40	1.29-1.98	8.00-8.90	12.32
4	1.04-1.15	2,50-2.51	3.16-3.18	-	7.16-7.86	8.60-8.68	-
			3.42-3.45				
11	-	-	-	3.46	7.15-7.51	8.31-8.78	-
24	1.03-1.14	2.50-2.51	3.15-3.17	-	7.24-7.66	7.85-8.66	-
			3.43-3.43				

Tablo 43.Bazı komplekslerin ¹H-NMR spektrum verileri (300 Mhz, DMSO-d₆, δ/ppm)

Tablo 44. Bazı komplekslerin ¹³C-NMR spektrum verileri (100 Mhz, DMSO-d₆, δ/ppm)

	CH _{3(etil)}	CH _{2(etil)}	Aromatik C	Piridin C	C=O
3	_	_	116 770-136 131	149.148-	163.059-168.952
5	-	-	110.770-150.151	159.696	
4	13.233-14.449	39.001-	116.662-135.007	147.162-	163.013-169.759
		43.418		159.656	
11	-	-	116.669-132.913	142.558-	163.011-169.751
				159.654	
24	13.224-14.448	38.969-	119.966-139.150	147.096-	167.911-172.206
		43.472		150.356	

4.3. UV Görünür Bölge Spektrumu

Sentezlenen komplekslerin UV-Görünür bölge değerleri Tablo 43'de verilmiştir.

Metal(II) 2-florobenzoatnikotinamid/N,N'-dietilnikotinamid/izonikotinamid							
Kod	Kompleksler		λ_{max} (nm)				
1	$[Co(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$	507					
2	$[Co(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	510					
5	[Ni(C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₄](C ₇ H ₄ FO ₂) ₂	392	656				
6	$[Ni(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	390	651				
10	$[Ni(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)_2].2(H_2O)$	390	654				
Metal(II) 2-klorobenzoatnikotinamid/N,N'-dietilnikotinamid							
12	$[Co(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	508					
13	$[Co(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	508					
15	$[Ni(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	390	651				
16	$[Ni(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	390	651				
	Metal(II) 2-bromobenzoatnikotinamid/N,N'-dietilnikotinamid						
18	$[Co(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	510					
19	$[Co(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	508					
20	$[Ni(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	390	651				
21	$[Ni(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	392	654				

Tablo 45. Sentezlenen komplekslerin UV-görünür bölge değerleri (λ_{max} , nm)

5. TARTIŞMA

5.1. Spektroskopik Değerlendirme

5.1.1. Metal (II) o-Florobenzoat Kompleksleri

İlk kez sentezlenen 11 adet *o*-florobenzoat komplekslerinde metal:*o*-florobenzoat:nikotinamid/izonikotinamid/N,N'-dietilnikotinamid metal ligand oranları aşağıda verilmiştir.

Yapılan elemental analiz sonuçlarına göre (Tablo 13) komplekslerin formüllerinin aşağıdaki gibi oldukları belirlenmiştir:

$[Co(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$	(1)	1:2:2
$[Co(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(2)	1:2:2
$[Zn_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2] \cdot C_7H_5FO_2$	(3)	1:2:1
$[Zn(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(4)	1:2:2
[Ni(C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₄](C ₇ H ₄ FO ₂) ₂	(5)	1:2:2
$[Ni(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(6)	1:2:2
$[Mn(C_7H_4FO_2)_2(C_6H_6N_2O)(H_2O)]$	(7)	1:2:1
$[Mn_2(C_7H_4FO_2)_4(C_{10}H_{14}N_2O)_2]$	(8)	1:2:1
$[Co_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2]$	(9)	1:2:1
$[Ni(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)_2].2H_2O$	(10)	1:2:2
$[Zn(C_7H_4FO_2)_2(C_6H_6N_2O)_2]$	(11)	1:2:2

Sentezlenen bileşiklerin IR spektrumları KBr ile tabletleri halinde alınmış ve fonksiyonel gruplara ait pikler yeni bileşiklerin yapılarının değerlendirmesinde kullanılmıştır (Tablo 40-42).

Sentezlenen komplekslerin 1700-1500 cm⁻¹ bölgesi karboksilat ve karbonil piklerinin bazı heterosiklik halka ve su bükülme pikleriyle örtüşmesinden dolayı biraz karmaşıktır. Ayrıca karakteristik bantlarda serbest organik ligandlara göre daha düşük dalga sayısına kayma eğilimlerinin gözlenmesi metal atomlarıyla etkileşimlerinden kaynaklanmaktadır.

65

Metal (II) *o*-florobenzoik asit kompleksleri nikotinamid/izonikotinamid/*N*,*N*[']dietilnikotinamid kompleksleri olmak üzere üç grupta incelenebilir. Nikotinamid komplekslerinde karbonil grubu asit için 1699 cm⁻¹'de görülürken COO⁻ asimetrik ve simetrik titreşimleri sırasıyla 1594-1374 cm⁻¹ (1), 1567-1374 cm⁻¹ (3), 1594-1374 cm⁻¹ (5) ve 1592-1406 cm⁻¹ (7)'da gözlenmiştir. Δ değerleri 220 cm⁻¹ (1), 193 cm⁻¹ (3), 220 cm⁻¹ (5), 186 cm⁻¹ (7)'dir. (3) no'lu kompleks bidentat köprü ve şelat oluşturmuş, (7) no'lu kompleks ise bidentat bağlanmıştır [65-68].

Metal(II) *o*-florobenzoat/izonikotinamid komplekslerinde asimetrik ve simetrik COO⁻ titreşimleri ise 1558-1398 cm⁻¹ (**9**), 1591-1396 cm⁻¹ (**10**), 1551-1398 cm⁻¹ (**11**)'dir. Δ değerleri sırasıyla 164 cm⁻¹, 195 cm⁻¹, 153 cm⁻¹'de görülmüştür. Δ değeri asidin sodyum tuzundan küçük olan (**9**) ve (**11**) kompleksleri bidentat köprü olarak bağlanmış ve Δ asidin sodyum tuzundan büyük olan (**10**) kompleksi ise monodentat bağlanmıştır.

Asimetrik ve simetrik COO⁻ titreşim değerleri *o*-florobenzoat *N,N'*-dietilnikotinamid kompleksleri için incelendiğinde ise 1592-1394 cm⁻¹ (**2**), 1592-1393 cm⁻¹ (**4**), 1593-1389 cm⁻¹ (**6**), 1570-1391 cm⁻¹ (**8**) olarak kaydedilmiştir. Δ değerleri asidin sodyum tuzundan büyük olan 198 cm⁻¹(**2**), 199 cm⁻¹(**4**), 204 cm⁻¹(**6**) cm⁻¹ komplekslerinin monodentat ve Δ değeri asidin sodyum tuzundan küçük olan (Δ =179 cm⁻¹) (**8**) kompleksi bidentat bağlanmıştır [69].

Literatürde nikotinamid/izonikotinamid/dietilnikotinamid amid C=O titreşimleri sırasıyla 1679 cm⁻¹, 1666 cm⁻¹, 1640 cm⁻¹ olarak kaydedilmiştir. Metal(II) *o*-florobenzoik asit kompleksleri nikotinamid/izonikotinamid/*N*,*N'*-dietilnikotinamid komplekslerinin amid gruplarına ait C=O titreşimleri 1694 cm⁻¹ (1), 1627 cm⁻¹ (2), 1678 cm⁻¹ (3), 1694 cm⁻¹ (4), 1694 cm⁻¹ (5), 1626 cm⁻¹ (6), 1672 cm⁻¹ (7), 1636 cm⁻¹ (8), 1695 cm⁻¹ (9), 1678 cm⁻¹ (10), 1694 cm⁻¹ (11) olarak gözlemlenmiştir. Bu kuvvetli valans titreşimleri amid grubunun azot ve oksijen atomlarındna koordinasyona katılma olmadığını göstermektedir. Dietilnikotinamid komplekslerinde titreşimlerin sterik etkiden dolayı sağa kaydığı düşünülmektedir [66, 70, 85-97] (Ek Şekil 1-11) . Piridin halkaları C-N grupları için absorpsiyon bantları 1033-1066 cm⁻¹'de gözlenmiştir. Nikotinamid ve izonikotinamid komplekslerinin NH₂ gruplarına ait N-H gerilme titreşimleri literatürde 3368-3163 cm⁻¹ ve 3371-3188 cm⁻¹'de kaydedilmiştir [66, 70]. Bu ligandların bulunduğu kompleksler için titreşim değerleri ise 3375-3161 cm⁻¹(1), 3377-3191 cm⁻¹ (3), 3371-3163 cm⁻¹ (5), 3400-3298 cm⁻¹ (7), 3358-3178 cm⁻¹ (9), 3340-3195 cm⁻¹ (10) ve 3360-3174 cm⁻¹ (11) alanlarında gözlenmiştir. Dietilnikotinamidli komplekslerin etil gruplarına ait alifatik C-H titreşimleri 2980-2930 cm⁻¹ arasındadır. Komplekslerin yapısındaki su moleküllerinin O-H grubundan oluşan pikler 3600-3300 cm⁻¹ aralığında kaydedilmiştir. Bu alandaki bant genişlemeleri N-H ve O-H gruplarının etkileşiminden kaynaklanmaktadır.

(3), (4) ve (11) kodlu cinko kompleksleri icin 1 H ve 13 C NMR spektrumları alınmıştır. (3) Bileşiği için ¹H NMR spektrumları incelendiğinde (Ek Şekil 39-44) aromatik benzen halkası protonları δ 7.29-7.98 ppm aralığında, piridin halkasına ait protonlara ait pikler δ8.00-8.90 ppm aralığında, florobenzoik asit COOH grubuna ait hidrojenler δ12.32-12.46 ppm aralığında gözlenmiştir. Aynı bileşik için ¹³C-NMR spektrumlarında ise benzen halkası karbon atomları için δ 116.770-136.131 ppm, piridin halkası karbonları δ149.148-159.696 ppm aralığında bulunmaktadır. C=O gruplarına ait karbon atomları δ163.059-168.952 ppm aralığında görülmüştür. (4) bileşiği için 1H NMR spektumları incelendiğinde dietilnikotinamid ligandına ait etil gruplarının CH₃ protonları δ 1.04-1.15 ppm, CH_2 protonları ise $\delta 3.16-3.18$ ppm aralığında gözlenmiştir. Benzen halkası hidrojenleri 87.16-7.86 ppm'de ve piridin halkasına ait olan protonlar 88.60-8.68 ppm aralığında kaydedilmiştir. Yapıda bulunan sudan ileri gelen pikler ise 82.50-2.51 ppm'de gözlemlenmiştir. Alınan ¹³C NMR spektrumlarında ise etil gruplarına ait CH₃ karbon atomları 13.23-14.44 ppm'de ve CH₂ gruplarına ait karbonlar δ39.001-43.418 benzen ve piridin halka karbonları için sırasıyla δ116.662-135.007ppm ve δ147.162-159.656 ppm aralıklarında, C=O gruplarının karbon atomları δ163.013-169.759ppm'de gözlenmiştir. (11) bileşiği için alınan ¹H NMR spektrumlarında aromatik benzen halkasına ait protonlar 87.15-7.51 ppm'de, piridin halkasına ait protonlar ise $\delta 8.31$ -8.78 ppm aralığında gözlenmiştir. NH₂ grubuna ait protonlar δ 3.46'da görülmüştür. Bileşiğin ¹³C NMR spektrumlarında ise benzen halkası karbon atomları δ116.669-132.913 ppm'de, piridin halkası karbon atomları δ142.558-159.654 ppm aralığında ve C=O gruplarına bağlı karbon atomları ise $\delta 163.011-169.751$ ppm aralığında kaydedilmiştir (Tablo 40-41).

Şekil 5.1. [Co(C₆H₆N₂O)₂(H₂O)₄](C₇H₄FO₂)₂ kompleksinin TGA/DTA eğrileri

Tetraaquabis(nikotinamid)kobalt(II)bis(2-florobenzoat) kompleksi TG-DTA eğrileri incelendiğinde (Şekil 5.1) beş basamaklı bir bozunma göstermiştir. Kompleks 95-150°C sıcaklık aralığında 3 mol suyunu kaybetmektedir (den. %8.023, teo. %8. 268). 150-200 °C sıcaklık aralığında ise 1 mol su kaybı daha olduğu deneysel ve teorik veriler arasındaki uyumdan da anlaşılmaktadır (den %3.125, teo. %3.006). Sonraki basamakta iki mol nikotinamid ligandı yapıdan uzaklaşmıştır (den %43.42 teo. %41.99). Başlangıçta pembe olan kompleksin parçalanması sonucu geriye siyah renkli bozunma ürünü olarak CoO kaldığı düşünülmektedir (den. %12.31 teo. %11.46) (Tablo 16).

Şekil 5.2. $[Co(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin TGA/DTA eğrileri TGA-DTA eğrileri incelendiğinde (Şekil 5.2.) kompleksin dört basamakta bozunduğu görülmektedir. 85-195°C sıcaklık aralığında kompleksin yapısındaki iki mol koordinasyon suyunun yapıdan uzaklaştığı (den. % 5.24 teo. % 4.93), 195-310°C sıcaklık aralığındaki ikinci basamakta ise yapıdan *N,N'*-dietilnikotinamid ligandlarının ayrıldığı tahmin edilmektedir. Kütle kayıplarının deneysel ve teorik veriler arasındaki uyumu da bunu desteklemektedir (den. %48.48 teo. %51.37). Pembe renkli kompleksten geriye CoO kaldığı düşünülmektedir (den. %10.20, teo.% 10.57) (Tablo 17).

Şekil 5.3. [Zn₂(C₇H₄FO₂)₄(C₆H₆N₂O)₂]·C₇H₅FO₂ kompleksinin TGA/DTA eğrileri

Yapısında su molekülü bulundurmayan kompleks 175° C de bozunmaya başlamaktadır. Üç basamakta bozunan kompleksten geriye ZnCO₃ kaldığı tahmin edilmektedir.(Şekil 5.3 ve Tablo 18)

Şekil 5.4. [Zn(C7H4FO2)2(C10H14N2O)2(H2O)2] kompleksinin TGA/DTA eğrileri

Kompleksin DTA eğrisi incelendiğinde (Şekil 5.4.) 64, 208, 361°C maksimum sıcaklıklara karşılık gelen üç basamaklı bozunma görülmektedir. 40-130°C sıcaklık aralığında yapıdan iki mol koordinasyon suyunun ayrıldığı görülmektedir. TG eğrisinde kütle kaybı teorik değer ile uyum içerisindedir (den. % 4.91, teo. %4.89). İkinci bozunma basamağı 130-270°C sıcaklık aralığındadır ve bu basamakta kompleksten N,N'-dietilnikotinamid ligandlarının ayrıldığı (den. %45.88, teo. %50.85) ve bozunmalar sonucu renksiz kompleksten geriye ZnO kaldığı düşünülmektedir (den. % 11.64, teo. %11.01). (Tablo 19)

Şekil 5.5. [Ni(C₆H₆N₂O)₂(H₂O)₄](C₇H₄FO₂)₂ kompleksinin TGA/DTA eğrileri

5 kompleksi **2** kompleksi ile eş yapılıdır. Bu kompleks daha önce belirtildiği gibi beş basamaklı bozunma göstermiştir (Şekil 5.1). Koordinasyon sularının önce üç daha sonra da bir molü yapıdan uzaklaşmıştır. Tetraaquabis(nikotinamid)nikel(II) bis(2-florobenzoat) kompleksi ise üç basamakta bozunmuştur (Şekil 5.1). Kompleks 100-180°C sıcaklık aralığında ve 102.21°C maksimum sıcaklıkta dört mol suyunu kaybetmektedir (den. %10.39, teo. %11.02). İkinci bozunma basamağında deneysel ve teorik verilere dayanarak 2-florobenzoat anyonlarının ayrıldığı düşünülmektedir. (den % 47.72, teo. %47.883). Mavi renkli kompleksin parçalanması sonucu geriye siyah renkli bozunma ürünü olarak NiO ve kömür karışımının kaldığı düşünülmektedir (den. %17.79, teo. %13.14) (Tablo 20).

Şekil 5.6. $[Ni(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin TGA/DTA eğrileri TGA-DTA eğrileri incelendiğinde (Şekil 5.6.) kompleksin iki basamakta bozunduğu görülmektedir. 90-160°C sıcaklık aralığında 127°C maksimum sıcaklıkta kompleksin yapısındaki iki mol koordinasyon suyunun yapıdan uzaklaştığı (den. % 4.88, teo. % 4.93) 160-900°C sıcaklık aralığındaki ikinci basamakta ise organik ligandların birlikte bozunmaya uğradığı ve mavi renkli kompleksten geriye NiO kaldığı düşünülmektedir (den. %9.88, teo.% 10.16) (Tablo 21).

Şekil 5.7. [Mn(C₇H₄FO₂)₂(C₆H₆N₂O)(H₂O)] kompleksinin TGA/DTA eğrileri

Kompleksin DTA eğrisi incelendiğinde (Şekil 5.7.) 151, 233, 373, 384°C mksimum sıcaklıkları görülmektedir. Kompleks üç basamakta bozunmaya uğramıştır. İlk bozunma 125-175 °C sıcaklık aralığındadır ve yapıdan bir mol su molekülü uzaklaşmaktadır (den %4.67,teo. %3.78). 175-330°C arasındaki ikinci bozunma basamağında ise kompleksin nikotinamid ligandının ayrıldığı deneysel ve hesaplanan kütle kaybından anlaşılmaktadır (den. %24.40, teo. %26.69). Sonraki basamakta 2-florobenzoat ligandlarının parçalanmaya uğradığı ve beyaz renkli kompleksten geriye metal ve oksidinin kaldığı tahmin edilmektedir (den. %25.95, teo. %29.90) (Tablo 22).

Şekil 5.8. [Mn₂(C₇H₄FO₂)₄(C₁₀H₁₄N₂O)₂] kompleksinin TGA/DTA eğrileri

 $[Mn_2(C_7H_4FO_2)_4(C_{10}H_{14}N_2O)_2]$ formülüne kompleks iki basamakta sahip 120-300°C bozunmaktadır (Sekil 5.8). sıcaklık aralığında yapıdan önce dietilnikotinamid ligandları uzaklaşmaktadır (den. %35.01, teo. %34.83). İkinci bozunma basamağında ise bir mol bis(2-florofenil)keton ve bir mol karbondiokst ayrıldığı tahmin edilmektedir (den. %35.75, teo. %39.33). Bozunmalar sonucu kompleksten geriye Mn₂O₃ kaldığı düşünülmektedir (den. %19.60, teo. %15.37) (Tablo 23).

Şekil 5.9. $[Co(C_7H_4FO_2)_4(C_6H_6N_2O)_2]$ kompleksinin TGA/DTA eğrileri DTA eğrileri incelendiğinde (Şekil 5.9.) kompleksin beş basamaklı bozunma gösterdiği görülmektedir. 220-270°C sıcaklık aralığındaki ilk bozunma basamağında yapıdan izonikotinamid gruplarının CO(NH₂)₂ grupları ayrılmaktadır (den. %8.55, teo %9.15). 270-310°C sıcaklık aralığında ise bis(2-florofenil)keton ve karbondioksit ayrılmaktadır (den. %32.97, teo. %31.55). Üçüncü bozunma basamağında yapıdan piridin grupları uzaklaşmaktadır (den. %27.13, teo. %27.46). Eflatun renkli kompleksten geriye Co₂O₃ kaldığı düşünülmektedir (den. %15.93, teo. %17.98)(Tablo24).

Şekil 5.10. [Ni(C₇H₄FO₂)₂(C₆H₆N₂O)₂(H₂O)₂].2H₂O kompleksinin TGA/DTA eğrileri

 $[Ni(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)_2].2H_2O$ kompleksi beş basamaklı bozunma göstermiştir. İlk basamakta 75-150°C sıcaklık aralığında yapıdan dört mol suyun ayrılmaktadır (Şekil 5.10). Diğer bozunma basamaklarında organik ligandların birlikte parçalandığı tahmin edilmektedir. Yeşil renkli kompleksten geriye NiO kaldığı düşünülmektedir (den. %15.22, teo. %11.32) (Tablo 25).

Şekil 5.11. [Zn(C7H4FO2)2(C6H6N2O)2] kompleksinin TGA/DTA eğrileri

DTA eğrisi incelendiğinde (Şekil 5.11.) kompleksin 220-270°C sıcaklık aralığında florobenzen grubunun ayrıldığı tahmin edilmektedir (den. %12.3, teo %13.28). İkinci ve üçüncü bozunma basamaklarındaki kütle kayıplarının birer mol izonikotinamid ligandına ait olduğu tahmin edilmektedir (ikinci basamak için den. %23.96 teo. %22.68 ve üçüncü basamak için den. %31.52, teo. %34.15) Dört basamakta bozunan kompleksten geriye ZnO kalmaktadır (den. %16.52, teo. %13.73) (Tablo 26) Liteatürde benzer yapıdaki komplekslerin parçalanmalarına rastlanmıştır [75-79].

Bileşiklerin termik analiz sonuçları incelendiğinde eş yapılı olan 1 ve 5 kodlu olan komplekslerin yaklaşık olarak aynı sıcaklıkta su moleküllerinin yapıdan uzaklaştığı ve bozunmalar sonucu metal oksitlerinin kaldığı belirlenmiştir. Yine eş yapılı olan dietilnikotinamid komplekslerinden 2, 4, 6 komplekslerinin susuzlaşma sıcaklıklarına

göre kararlılıkları 4 < 2 < 6 olarak belirlenmiş ve yine bozunma ürünü olarak geriye metal oksitler kalmıştır.

Susuzlaşan nikotinamidli komplekslerin kararlılıkları 3 < 1 < 7 < 5, Susuzlaşan dietilnikotinamidli komplekslerin kararlılıkları 4 = 8 < 6 < 2 şeklindedir. İzonikotinamid komplekslerinden yapısında su bulunan 10 kompleksi 75°C'de, su bulundurmayan 9 ve 11 komplekslerinin de aynı sıcaklıkta bozunmaya başladığı görülmüştür.

Tablo 1'de kristal verileri verilen tetraaquabis(nikotinamid)kobalt(II) bis(2florobenzoat) monomer kompleksinde (Şekil 5.12) kobalt atomu simetri merkezinde bulunmaktadır. Kompleks kobalt atomuna bağlı iki nikotinamid ligandı, dört su molekülü ve koordine olunmamış iki 2-florobenzoat anyonundan oluşmuştur. Kobalt atomu ekvator konumunda bulunan dört oksijen atomu (O4, O5, O4' ve O5') ile bozulmuş kare düzlemde bulunmaktayken eksen pozisyonunda bulunan nikotinamid ligandlarının azot atomları ile hafif bozulmuş oktahedral geometrisini tamamlamaktadır. Karboksil grupları ile komşu benzen halkaları arasındaki dihedral açı 29.8 (3) °'dir. Kristal yapıda moleküller O-H^{...}O, N-H^{...}O ve N-H^{...}F hidrojen bağları vasıtasıyla üç boyutlu ağ oluşturmaktadır (Şekil 5.13). Literatürde florobenzoatın koordine olmamış kompleksleri görülmüştür [82-84]. Benzen ve piridin halkaları arasındaki π - π etkileşimleri kristal yapıyı dengede tutmaya yardımcı olmaktadır [52].

Şekil 5.12. [Co(C₆H₆N₂O)₂(H₂O)₄](C₇H₄FO₂)₂ kompleksinin moleküler yapısı

Şekil 5.13. [Co(C₆H₆N₂O)₂(H₂O)₄](C₇H₄FO₂)₂ kompleksinde hidrojen bağları [52]

Şekil 5.14. 2 kompleksin tahmini yapısı

2 kompleksinin molekülü simetri merkezli iki 2-florobenzoat ligandı, iki N,N'dietilnikotinamid ligandı ve iki su molekülünden oluştuğu tahmin edilmektedir. Co(II) atomu çevresinde ekvator düzlemindeki dört oksijen atomu ile biraz bozulmuş kare düzlem düzeninde iken eksen pozisyonunda iki N,N'-dietilnikotinamid ligandının iki piridin azot atomu ile oktahedral geometrisini tamamlandığı düşünülmektedir (Şekil 5.14).

Tablo 2'de kristal verileri verilen $[Zn_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2]\cdot C_7H_5FO_2$ formüllü binükleer Zn(II)'den oluşan kompleks iki 2-florobenzoat anyonunun iki karboksil grupları ve florobenzoik asid ile köprü oluşturmuştur. 2 köprü oluşturan 2-florobenzoat anyonları, bir şelatlaşan florobenzoat anyonu ve bir nikotinamid molekülü Zn katyonuna koordine olmuşlardır ve bozulmuş kare piramidal geometri oluşturmuşlardır. Diğer Zn katyonu ise iki köprü ve bir tek dişli 2-florobenzoat anyonları ve bir nikotinamid molekülü ile hafif bozulmuş tetrahedral geometri oluşturmaktadır (Şekil 3.7) Yapıda koordine olmayan 2-florobenzoik asid molekülü O-H…O hidrojen bağı ile simetri merkezinde supramoleküler dimerler oluşturmaktadırlar. Moleküller arası N-H…O hidrojen bağları üç boyutlu bir ağ oluşturmaktadırlar.

Şekil 5.15. $[Zn_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2] \cdot C_7H_5FO_2$ kompleksin moleküler yapısı [53]

Şekil 5.16. [Zn₂(C₇H₄FO₂)₄(C₆H₆N₂O)₂]·C₇H₅FO₂ kompleksinin yap diyagramı

Şekil 5.17. 4 kompleksinin tahmini yapısı

2 ve 6 kompleksleri ile eş yapılı olduğu tahmin edilen 4 kodlu bileşiğin simetri merkezli iki 2-florobenzoat ligandı, iki N,N'-dietilnikotinamid ligandı ve iki su molekülünden oluşmaktadır. Zn(II) atomu çevresinde ekvator düzlemindeki dört oksijen atomu ile biraz bozulmuş kare düzlem düzeninde iken eksen pozisyonunda iki N,N'-dietilnikotinamid ligandının iki azot atomu ile oktahedral geometrisini tamamlandığı düşünülmektedir.

Tablo 3'de kristal verilerinden de görüldüğü gibi 1 kompleksi ile eş yapılı olan monomer 5 kompleksinde nikel atomu simetri merkezindedir. Kompleks nikel atomuna bağlı iki nikotinamid ligandı, dört su molekülü ve iki 2-florobenzoat molekülünden oluşmaktadır [82-84].

Şekil 5.18. [Ni(C₆H₆N₂O)₂(H₂O)₄](C₇H₄FO₂)₂ kompleksinin moleküler yapısı [54]

Şekil 5.19. 6 kompleksinin tahmini yapısı

6 kompleksinin 2 kompleksi ile eş yapılı olduğu düşünülmektedir. Yapıda nikel atomu çevresinde ekvator düzleminde ikisi 2-florobenzoat ligandı ve ikisi su molekülünden olmak üzere dört oksijen atomu ile kare düzlem geometri oluştuğu ve oktahedral koordinasyona eksen konumunda bulunan N,N'-dietilnikotinamid ligandlarının azot atomları ile tamamlandığı tahmin edilmektedir (5.19). Spektroskopik veriler de bunu doğrular niteliktedir.

Şekil. 5.20. 7 kompleksinin tahmini yapısı

7 kompleksinin molekülü iki 2-florobenzoat ligandı, bir nikotinamid ligandı ve bir su molekülü içermektedir. 2-florobenzoat anyonunun ikisi de bidentat liganddır. Mn atomu etrafında ekvator düzlemindeki karboksil gruplarının dört oksijen atomu kare düzlem düzenindeyken, nikotinamid ligandının bir azot atomu ve bir su molekülünün oksijen atomu ile oktahedral koordinasyon geometrisi tamamlanmaktadır (Şekil 5.20). Literatürde benzer yapılara rastlanmıştır [80-82].

Şekil 5.21. 8 kompleksinin tahmini yapısı

Simetri merkezli binükleer **8** kompleksinde iki Mn atomu ile 2-florobenzoat ligandının dört karboksilat grubu köprü biçimindedir. Mn atomu çevresindeki dört karboksil grubunun oksijen atomu ile bozulmuş kare planındayken dietilnikotinamid molekülünün piridin azot atomu ile bozulmuş kare piramit geometrisi tamamlanmaktadır (Şekil 5.21).

Şekil 5.22. 9 kompleksinin tahmini yapısı

Binükleer komplekste (9) iki Co atomu ile 2-florobenzoat ligandının dört karboksilat grubu köprü biçimindedir. Co atomu çevresindeki dört karboksil grubunun oksijen atomu ile bozulmuş kare piramit planındayken izonikotinamid molekülünün piridin azot atomu ile bozulmuş kare piramit geometrisi tamamlanmaktadır (Şekil 5.22). Literatürde benzer yapılara rastlanmıştır [72-74].

Şekil 5.23. 10 kompleksinin tahmini yapısı

10 kompleksinin molekülü Ni atomuna bağlı simetri merkezli iki 2-florobenzoat ligandı, iki izonikotinamid ligandı ve ikisi koordinasyon dışında kalan dört su molekülünden oluşmaktadır. Ni(II) atomu çevresinde ekvator düzlemindeki dört

oksijen atomu ile biraz bozulmuş kare düzlem düzeninde iken eksen pozisyonunda iki izonikotinamid ligandının iki piridin azot atomu ile oktahedral geometrisinin tamamlandığı düşünülmektedir (Şekil 5.23).

Şekil 5.24. 11 kompleksinin tahmini yapısı

Kompleks iki 2-florobenzoat ligandı ve iki izonikotinamid ligandı içermektedir. Florobenzoat anyonunun ikisi de bidentat liganddır. Metal atomu etrafında ekvator düzlemindeki karboksil gruplarının dört oksijen atomu kare düzlem düzenindeyken, iki izonikotinamid ligandının piridin iki azot atomu ile oktahedral koordinasyon geometrisi tamamlanmaktadır (Şekil 3.24).

7 ($\mu_{eff} = 5.16 \ \mu_B$), **17** ($\mu_{eff} = 5.17 \ \mu_B$) ve **22** ($\mu_{eff} = 5.23 \ \mu_B$) komplekslerinin oda sıcaklığında ölçülmüş manyetik süsseptibilite değerlerinden $\mu_{eff} = 2.84 \ (\chi T)^{1/2}$ bağıntısından hesaplanmış manyetik momentum değerleri birbirine yakın olup, tek çekirdekli Mn(II) (d⁵) iyonu kompleksleri için karakteristik olan spin manyetik momentumu değerinden ($\mu_s = 5.91 \ \mu_B$) daha düşüktür. Bu deneysel bulgular katı halde Mn(II) çekirdekleri arasında antiferromagnetik etkileşimin olduğunu göstertmektedir. **8** örneği için hesaplanan manyetik momentum değeri ($\mu_{eff} = 4.60 \ \mu_B$) diğer komplekslerin manyetik momentum değerlerinden daha düşüktür. Bu bulgu **8** kompleksinde daha kuvvetli çekirdekler arası antiferromagnetik etkileşim olduğuna işaret etmektedir.

5.1.2. Metal (II) o-Klorobenzoat Kompleksleri

İlk kez sentezlenen altı adet metal(II):o-klorobenzoat:nikotinamid/N,N'dietilnikotinamid komplekslerinin metal ligand oranları aşağıda verilmiştir.

$[Co(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(12)	1:2:2
$[Co(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(13)	1:2:2
$[Ni(C_7H_4ClO_2)_2(H_2O)_2]$	(14)	1:2
$[Ni(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(15)	1:2:2
$[Ni(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(16)	1:2:2
$[Mn(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(17)	1:2:2

Literatürde o-klorobenzoik asit C=O titreşimleri 1664 cm⁻¹'de gözlenmiştir [69]. Bu komplekslerin infrared spektrumları incelendiğinde (Ek Şekil 12-17) asimetrik ve simetrik COO⁻ titreşimleri 1576-1387 cm⁻¹ (**12**), 1596-1395 cm⁻¹ (**13**), 1594-1399 cm⁻¹ (**14**), 1577-1388 cm⁻¹ (**15**), 1595-1397 cm⁻¹ (**16**) ve 1595-1393 cm⁻¹ (**17**)'de gözlenmiştir. Asidin sodyum tuzu için literatürde bu pikler 1585-1396 cm⁻¹'de kaydedilmiş ve Δ değeri 189 cm⁻¹ olarak bulunmuştur. Kompleksler için Δ değerleri 215 cm⁻¹ (**12**), 201 cm⁻¹ (**13**), 160 cm⁻¹ (**14**), 189 cm⁻¹ (**15**), 198 cm⁻¹(**16**) ve 202 cm⁻¹ (**17**) olarak hesaplanmıştır. Bu değerlerden yol çıkarak bidentat bağlanan (**14**) kompleksi hariç diğer tüm komplekslerin monodentat bağlandığı belirlenmiştir [68].

Nikotinamid komplekslerinin NH₂ gruplarına ait N-H soğurma pikleri 3368-3215 cm⁻¹ (12), 3361-3216 cm⁻¹(15)'de gözlenmiştir. Dietilnikotinamid komplekslerinin etil gruplarına ait pikler 2989-2934 cm⁻¹ (13), 2989-2970 cm⁻¹ (16) ve 2975-2933 cm⁻¹ (17) aralığında kaydedilmiştir.

Komplekslerin amid gruplarına bağlı C=O pikleri ise sırasıyla 1691 cm⁻¹ (**12**), 1620 cm⁻¹(**13**), 1686 cm⁻¹(**15**), 1618 cm⁻¹(**16**), 1618 cm⁻¹(**17**) alanlarında kuvvetli pikler vermektedir. Kuvvetli bu valans titreşimleri amid grubunun koordinasyona dahil olmadığını göstermektedir.

Komplekslerin aromatik halka titreşimleri ise 1602-1626 cm⁻¹ aralığında güçlü bir bant olarak görülmüştür.

Komplekslerin yapısındaki suyun –OH grubundan dolayı oluşabilecek olan soğurma pikleri 3600-3300 cm⁻¹ aralığında kuvvetli bir bant şeklinde gözlenmiştir.

17 kodlu bileşik için manyetik moment $\mu_{eff} = 5.17 \,\mu_B$ olarak bulunmuştur.

Şekil 5.25. [Co(C7H4ClO2)2(C6H6N2O)2(H2O)2] kompleksinin TGA/DTA eğrileri

Diaquabis(2-klorobenzoat)bis(nikotinamid)kobalt(II) (Şekil 5.25) üç basamaklı bozunmaktadır. Kompleks 100-170 °C sıcaklık aralığında ilk olarak iki mol suyunu kaybetmiştir. (den. %5.30, teo. %5.54). Sonraki basamakta 2-klorobenzoat ligandlarının ayrıldığı düşünülmektedir (den. %52.50, teo. %50.48). Sonraki basamakta nikotinamid ligandının bozunmaya uğradığı ve pembe renkli kompleksin parçalanması sonucu bozunma ürünü olarak Co kaldığı düşünülmektedir (den %7.2, teo. %9.08) (Tablo 27).

Şekil 5.26. [Co(C7H4ClO2)2(C10H14N2O)2(H2O)2] kompleksinin TGA/DTA eğrileri

DTA eğrisi incelendiğinde (Şekil 5.26.) dört basamakta bozunmaya uğrayan kompleksin 75-160°C sıcaklık aralığında yapısından iki mol su ayrılmaktadır (den. %7.04, teo. %4.72) İkinci bozunma basamağı 160-320°C arasındadır. Bu basamakta kompleksten iki mol dietilnikotinamid ligandı uzaklaşır (den. %46.88, teo. %49.03). Pembe renkli kompleksten ise geriye metalin kaldığı tahmin edilmektedir (den. %92.47, teo. %92.45) (Tablo 28).

Şekil 5.27. Ni $(C_7H_4ClO_2)_2(H_2O)_2$] kompleksinin TGA/DTA eğrileri İki basamakta bozunan kompleksten 105-175°C sıcaklık aralığında iki mol su uzaklaşmaktadır (den %8.88, teo %8.89) (Şekil 5.27.). Bozunma sonucu kompleksten geriye metalin kaldığı tahmin edilmektedir (den. %92.80 teo. %85.56) (Tablo 29).

Şekil 5.28. [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] kompleksinin TGA/DTA eğrileri

Diaquabis(2-klorobenzoat)bis-(nikotinamid)nikel(II) 167, 231, 301, 365°C maksimum sıcaklıklara karşılık gelen dört basamakta bozunmaktadır (Şekil 5.28.). Kompleks 140-170°C sıcaklık aralığında ilk olarak 2 mol suyunu kaybetmiştir. (den. %4.77, teo. %5.54). 170-255°C sıcaklık aralığındaki ikinci bozunma basamağında ayrılan grup nikotinamid halkasına bağlı olan CO(NH₂)'dir. (den %8.81 teo. %7.16). Üçüncü basamakta piridin halkası ve diğer nikotinamid ligandı da bozunmaya uğramıştır Deneysel ve teorik veriler arasındaki uyumla bu desteklenmektedir (den %34.36, teo. %35.10). Mavi renkli kompleksin parçalanması sonucu siyah renkli bozunma ürünü olarak NiO kaldığı düşünülmektedir (den %11.4, teo. %13.75)(Tablo 30).

Şekil 5.29. [Ni(C₇H₄ClO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin TGA/DTA eğrileri DTA eğrisi incelendiğinde 143, 285, 370 ve 575°C maksimum sıcaklıklara karşılık gelen dört basamaklı bir bozunma göstermiştir (Şekil 5.29.) Kompleks 100-190°C sıcaklık aralığında 143°C'deki maksimum sıcaklıkla iki mol koordinasyon suyunu kaybetmiştir. (den. %5.67, teo. %4.72). İkinci bozunma basamağında iki mol N,N'dietilnikotinamid ligandı yapıdan uzaklaşmıştır (den %50.74, teo. %49.03). Başlangıçta mavi olan kompleksin parçalanması sonucu geriye siyah renkli bozunma ürünü olarak NiO kaldığı düşünülmektedir (den. %11.89, teo. %9.79) (Tablo 31).

Şekil 5.30. [Mn(C₇H₄ClO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin TGA/DTA eğrileri

Diaquabis(2-klorobenzoat)bis-(N,N'-dietilnikotinamid)mangan(II) 109, 213, 384°C maksimum sıcaklıklara karşılık gelen üç basamaklı bir bozunma göstermiştir (Şekil 5.30). Kompleks 80-130°C'de sıcaklık aralığında iki mol suyunu kaybetmiştir. (den. %5.74, teo. %4.68). İkinci bozunma basamağında iki mol N,N'-dietilnikotinamid ligandının yapıdan ayrıldığı düşünülmektedir (den %42.50, teo. %48.63). Renksiz kompleksin parçalanması sonucu siyah renkli bozunma ürünü olarak MnO₂ kaldığı düşünülmektedir (den. %15.07, teo. %11.46) (Tablo 32).

Metal(II) o-klorobenzoat nikotinamid komplekslerinin susuzlaşma sıcaklıklarına göre kararlılıkları 12 < 16, dietilnikotinamid komplekslerinin susuzlaşma sıcaklıkları 13 = 17 < 16 olarak belirlenmiştir.

Şekil 5.31. 12 kompleksinin tahmini yapısı

Şekil 5.32. 13 kompleksinin tahmini yapısı

12 ve 13 kompleksleri benzer yapıdadır. Kobalt atomu çevresinde ekvator düzleminde ikisi 2-klorobenzoat ligandı ve ikisi su molekülünden olmak üzere dört oksijen atomu ile kare düzlem geometri oluşmakta ve oktahedral koordinasyona eksen konumunda bulunan nikotinamid//*N*,*N*'-dietilnikotinamid ligandlarının azot atomları ile tamamlandığı tahmin edilmektedir. Spektroskopik veriler de bunu doğrular niteliktedir.

Şekil 5.33. 14 kompleksinin tahmini yapısı

2-klorobenzoat anyonunun ikiside bidentat liganddır. Ni atomu etrafında ekvator düzlemindeki karboksil gruplarının dört oksijen atomu kare düzlem düzenindeyken, iki su molekülünün oksijen atomu ile oktahedral koordinasyon geometrisi tamamlanmaktadır (Şekil 5.33).

Tablo 5'de kristal verileri verilen diaquabis(2-klorobenzoat)bis-(nikotinamid-)nikel(II) kompleksinde nikel atomu simetri merkezinde bulunmaktadır. Komplekste iki klorobenzoat, iki nikotinamid ve iki su molekülünden oluşmaktadır. Tüm ligandlar tek dişlidir. Nikel atomu ekvator düzleminde bulunan dört oksijen atomu (O1, O4, O1' ve O4') ile bozulmuş kare düzlemde bulunmaktayken eksen pozisyonunda bulunan nikotinamid ligandlarının azot atomları ile bozulmuş oktahedral geometrisini tamamlamaktadır. Molekül içi O-H^{...}O hidrojen bağları su molekülleri ile klorobenzoat ligandlarını bağlamaktadır. Ni-O bağ uzunluğu 2.1246 (16) Å'dur. Karboksil grupları ve benzen halkası arasındaki açı 29.48° ve benzen ve piridin halkaları arasındaki açı 83.16°'dir. Kristal yapıda molekül içi O-H^{...}O ve N-H^{...}O hidrojen bağları sınırsız zincirler oluşturmaktadır (Şekil 5.34 ve 5.35).

Şekil 5.34. [Ni(C7H4ClO2)2 (C6H6N2O)2(H2O)2] kompleksinin moleküler yapısı

Şekil 5.35. Kristal yapıda molekül içi O-H^{...}O ve N-H^{...}O hidrojen bağları sınırsız zincirler oluşturması [55]

Diaquabis(2-klorobenzoat)bis-(*N*,*N*'-dietilnikotinamid-)nikel(II) kompleksinde nikel atomu simetri merkezinde bulunmaktadır. Yapısı belirlenen bu komplekste iki 2-klorobenzoat, iki dietilnikotinamid ve iki su molekülü bulunmaktadır. Tüm ligandlar tek dişlidir. Nikel atomu ekvator konumunda bulunan dört oksijen atomu (O1, O4, O1' ve O4') ile hafif bozulmuş kare düzlemde bulunmakta ve eksen pozisyonunda bulunan dietilnikotinamid ligandlarının azot atomları ile hafif bozulmuş oktahedral geometrisini tamamlamaktadır (Şekil 5.36). Karboksil grupları ile benzen halkası arasındaki açı 87.36° iken piridin ve benzen halkaları arasındaki açı 41.90°'dir. Kompleksin kristal özellikleri Tablo 6'da verilmiştir.

Şekil. 5.36. [Ni(C₇H₄ClO₂)₂ (C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin moleküler yapısı [56]

Kristal verileri Tablo 7'de bulunan **17** kompleksinde mangan atomu simetri merkezinde bulunmaktadır. Kompleks mangan atomuna bağlı bulunan iki klorobenzoat, iki N,N'dietilnikotinamid ligandı ve iki su molekülünden oluşmaktadır. Tüm ligandlar tek dişlidir. Mangan atomu ekvator konumunda bulunan dört oksijen atomu (O1, O4, O1' ve O4') ile bozulmuş kare düzlemde bulunmaktayken eksen pozisyonunda bulunan N,N'-dietilnikotinamid ligandlarının azot atomları ile bozulmuş oktahedral geometrisini tamamlamaktadır (Şekil 5.37). Karboksil grupları ile benzen halkası arasındaki açı 77.9° iken piridin ve benzen halkaları arasındaki açı 45.94°'dir. Mn-O bağ uzunluğu 2.161 (1)Å'dur.

Şekil 5.37. [Mn(C₇H₄ClO₂)₂ (C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin moleküler yapısı [57]

Şekil 5.38. 12 kompleksinin kütle spektrumu

12 kompleksi için kütle spektrumlarına (Şekil 5.38) ilişkin değerler Şekil 5.39'de şematik olarak verilmiştir. Şemayı kısaca yorumlayacak olursak m/z 648 molekül ağırlığına ilişkin piktir. İlk aşamada kristal yapıdaki su moleküllerinin uzaklaştığı ardından sırasıyla nikotinamid ligandına ait karboksamid grupları ve piridin halkalarının ayrıldığını görmekteyiz. Daha sonra diğer nikotinamid ligandında kütle kayıpları aynı grupların sırayla ayrıldığını göstermektedir. Bundan sonraki kütle kayıplarının ise benzen halkasına bağlı olan klor atomlarına ait olduğu tahmin edilmektedir [64].

Şekil 5.39. 12 kompleksinin kütle spektrumunda parçalanma şeması

Şekil 5.40. 13 kompleksinin kütle spektrumu

13 kompleksinin kütle spektrumunda molekül ağırlığına ilişkin pik 761.6'da görülmüştür.

Şekil 5.41. 12 ve 15 komplekslerinin toz X ışını diffraktogramları.

Counts

Şekil 5.42. 13 ve 16 komplekslerinin toz X ışını diffraktogramları.

Metal(II) o-klorobenzoat nikotinamid komplekslerinden 12 ile 15 no'lu ve dietilnikotinamid komplekslerinden 13 ile 16 no'lu komplekslerinin toz X ışını verileri mukayese edildiğinde eş yapılı oldukları düşünülmektedir (Şekil 5.41 ve 5.42).

5.1.3 Metal (II) o-Bromobenzoat Kompleksleri

Metal(II):*o*-bromobenzoat:nikotinamid/N,N'-dietilnikotinamid için yedi adet kompleks sentezlenmiştir. Aşağıda da görüldüğü üzere komplekslerin tümünde metal ligand oranları 1:2:2 olarak belirlenmiştir.

$[Co(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(18)	1:2:2
$[Co(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(19)	1:2:2
$[Ni(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(20)	1:2:2
$[Ni(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(21)	1:2:2
$[Mn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(22)	1:2:2
$[Zn(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(23)	1:2:2
$[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(24)	1:2:2

Nikotinamid kompleksleri olan **18**, **20**, **23** kompleksleri ve *N*,*N'*-dietilnikotinamid kompleksleri olan **19**, **21**, **22**, **24** kompleksleri eş yapılıdır ve ayrıca nikotinamid ve *N*,*N'*-dietilnikotinamid kompleksleri benzer yapıda bulunmaktadır. Komplekslerin tümü metal(II) atomları çevresinde iki *o*-bromobenzoat, iki su molekülü ve iki nikotinamid/N,N'-dietilnikotinamid ile oktahedral koordinasyon sergilemektedir.

o-bromobenzoik asit C=O titreşimi 1684 cm⁻¹'de görülmekteyken, **o**-bromobenzoat sodyum tuzu için COO⁻ asimetrik ve simetrik titreşimler arasındaki fark (Δ değeri) 168 cm⁻¹ olarak hesaplanmıştır. Kompleksler için COO⁻ asimetrik ve simetrik titreşimler sırasıyla 1580-1384 cm⁻¹ (**18**), 1595-1394 cm⁻¹ (**19**), 1574-1387 cm⁻¹ (**20**), 1595-1397 cm⁻¹ (**21**), 1594-1393 cm⁻¹ (**22**), 1574-1394 cm⁻¹ (**23**), 1595-1394 cm⁻¹ (**24**) olarak gözlenmiştir. Δ değerleri ise 196 cm⁻¹ (**18**), 201 cm⁻¹ (**19**), 189 cm⁻¹ (**20**), 201 cm⁻¹ (**21**), 201 cm⁻¹ (**22**), 175 cm⁻¹ (**23**), 201 cm⁻¹ (**24**) olarak hesaplanmıştır. Δ _{COO-kompleks} Δ _{COO-sodyum o-bromobenzoat} olması komplekslerin tümünün monodentat bağlandığını göstermektedir ki bu da diğer spektroskopik yöntemlerden elde edilen sonuçlarla uyum içerisindedir. Amid gruplarının C=O absorpsiyon pikleri ise nikotinamid kompleksleri için 1693 cm⁻¹ (**18**), 1682 cm⁻¹ (**20**) ve 1697 cm⁻¹ 'de(**23**); N,N'-dietilnikotinamid kompleksleri için ise 1618 cm⁻¹ (**19**), 1618 cm⁻¹ (**21**), 1615 cm⁻¹ (**24**) 'de

kaydedilmiştir. Bu valans titreşimlerinin kuvvetli olması amid grubundan koordinasyona bir katılma olmadığını göstermektedir [85-97].

Metal(II) o-bromobenzoat nikotinamid komplekslerinden **18** ile **20** no'lu ve dietilnikotinamid komplekslerinden **19** ile **21** no'lu komplekslerinin toz x-ışını difftraktogram değerleri mukayese edildiğinde eş yapılı olduğu düşünülmektedir. Bu tek kristal x-ışınları analizi ile doğrulanmaktadır.

Nikotinamid komplekslerinin NH₂ gruplarına ait N-H soğurma pikleri 3372-3217 cm⁻¹ (18), 3373-3216 cm⁻¹(20), 3372-3217 cm⁻¹ (23)'de gözlenmiştir. Dietilnikotinamid komplekslerinin etil gruplarına ait pikler 2988-2932 cm⁻¹(19), 2988-2932 cm⁻¹ (21) ve 2987-2973 cm⁻¹ (22), 2988-2933 cm⁻¹ (24) aralığında kaydedilmiştir (Ek Şekil 18-24).

24 nolu bileşik için ¹H ve ¹³C NMR spektrumları alınmıştır. Bileşiğin ¹H NMR spektrumları incelendiğinde (Ek Şekil 45-46) dietilnikotinamid ligandına bağlı etil grubunun CH₃ protonları δ 1.03-1.13 ppm'de, CH₂ protonları ise δ 3.43-3.45'de kaydedilmiştir. Aromatik halka protonları için pikler δ 7.24-7.66 ppm'de ve piridin halkaları için pikler δ 7.85-8.66 ppm'de gözlenmiştir. Aynı bileşiğin ¹³C NMR spektrum sonuçlarına bakıldığında etil grubu CH₃ karbon atomlarının δ 13.22-14.44 pmm'de ve CH₂ karbon atomlarının δ 38.96-43.47 ppm'de görülmektedir. C=O karbon atomları δ 167.91-172.20 ppm'de, piridin halkası δ 147.096-150.356 ppm'de benzen halkası karbon atomlarının δ 119.96-139.15 ppm'de kaydedildiği görülmektedir (Tablo 41-42). **22** kodlu bileşik için manyetik moment $\mu_{eff} = 5.23 \mu_{\rm B}$ olarak bulunmuştur.

Şekil 5.43. [Co(C7H4BrO2)2(C6H6N2O)2(H2O)2] kompleksinin TGA/DTA eğrileri

TGA-DTA eğrileri incelendiğinde (Şekil 5.43) 144, 190, 281, 385°C maksimum sıcaklıklara karşılık gelen üç basamaklı bozunduğu görülmektedir. 120-160°C sıcaklık aralığındaki ilk basamakta kompleksin koordinasyon suyunu kaybetmektedir (den. %4.09, teo. %4.78). 160-310°C sıcaklık aralığında 190 ve 281°C maksimum sıcaklıklarda kompleksten nikotinamid ligandları ayrılmaktadır (den. % 34.70, teo.%39.76). Pembe renkli kompleksten geriye metal oksidi ve kömür kaldığı düşünülmektedir (den. % 14.78, teo.%11.64) (Tablo 33).

Şekil 5.44. [Co(C₇H₄BrO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin TGA/DTA eğrileri

Diaquabis(2-bromobenzoat)bis(N,N'-dietilnikotinamid)kobalt(II) kompleksi 116, 220, 401, 591°C maksimum sıcaklıklara karşılık gelen dört basamaklı bozunma göstermiştir (Şekil 5.44.). 90-155°C sıcaklık aralığında kompleksten iki mol su ligandı yapıdan ayrılmıştır. (den. %5.19, teo. %4.23). 155-295°C sıcaklık aralığındaki ikinci bozunma basamağında bir mol N,N'-dietilnikotinamid ligandı ve diğer N,N'-dietilnikotinamid ligandının CO(N(C₂H₅)₂) grubunun ayrıldığı düşünülmektedir. (den %34.73, teo. %31.11). Üçüncü basamaktaki kütle kaybı bir önceki bozunmayı doğrular niteliktedir. 295-475°C sıcaklık aralığında diğer piridin halkasının ayrıldığı teorik ve deneysel veriler de ile desteklenmektedir (den. %14.19, teo. %14.52). Pembe renkli kompleksten geriye kompleksin parçalanması sonucu bozunma ürünü olarak CoO kaldığı düşünülmektedir (den %11.78, teo. %8.79) (Tablo 34)

Şekil 5.45. [Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2] kompleksinin TGA/DTA eğrileri

TGA-DTA eğrilerine bakıldığında (Şekil 5.45.) kompleksin üç basamakta bozunduğu görülmektedir. 120-190°C arasındaki ilk bozunma iki mol suyun yapıdan ayrıldığını göstermektedir (den. %4.01, teo.% 4.87). Diğer bozunma basamaklarındaki kütle kayıplarına bakıldığında 2-bromobenzoat ve nikotinamid ligandlarının birlikte bozunduğu düşünülmektedir. Mavi renkli kompleksten geriye metal oksidin kaldığı düşünülmektedir (den. %13.35, teo.%10.03) (Tablo 35).

Şekil 5.46. [Ni(C7H4BrO2)2(C10H14N2O)2(H2O)2] kompleksinin TGA/DTA eğrileri

Kompleks üç basamakta bozunmaktadır (Şekil 5.46.). İlk bozunma basamağı 105-195°C (den %6.20, teo. %4.23). 195-330°C sıcaklık aralığındaki iki basamakta N,N'-dietilnikotinamid ligandlarının ayrıldığı tahmin edilmektedir. TG eğrisindeki ağırlık kaybı teorik değerlerle uyuşmaktadır (den. % 42.47, teo. %43. 68) Mavi renkli kompleksten geriye NiO kalmıştır (den. % 8.84, teo. %8.70) (Tablo 36).

Şekil 5.47. [Mn(C₇H₄BrO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin TGA/DTA eğrileri

Kompleksin TG-DTA eğrisi incelendiğinde (Şekil 5.47) dört basamakta bozunduğu görülmüştür. 80-150°C sıcaklık aralığındaki ilk basamakta iki mol koordinat suyunu kaybetmektedir (den. %4.41, teo. %4.25). İkinci basamakta yapıdan N,N'-dietilnikotinamid ligandlarının ayrıldığı düşünülmektedir. (den. %40.93, teo. % 43.89). Renksiz kompleksten geriye bozunma neticesinde MnO kaldığı düşünülmektedir (den. %9.49, teo. %8.27) (Tablo 37).

Termik Analiz

Şekil 5.48. [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] kompleksinin TGA/DTA eğrileri

DTA eğrisi incelendiğinde (Şekil 5.48.) 97, 177, 282, 384°C maksimum sıcaklıklarına karşılık gelen üç basamaklı bozunma göstermiştir. İlk basamakta 95-155°C sıcaklık aralığında iki mol koordinasyon suyu yapıdan ayrılmıştır (den. %4.57, teo. %4.83). Organik ligandların sonraki basamaklarda birlikte bozunduğu düşünülmektedir. Başlangıçta renksiz olan kompleksten geriye bozunma neticesinde ZnO kalmıştır (den. %9.16, teo. %10.86) (Tablo 38).

Şekil 5.49. [Zn(C7H4BrO2)2(C10H14N2O)2(H2O)2] kompleksinin TGA/DTA eğrileri

Kompleks bes basamaklı bozunma sergilemektedir. DTA eğrisine bakıldığında (Sekil 5.49) 90, 223, 436°C maksimum sıcaklığa denk gelen beş basamaklı bozuma görülmektedir. İlk basamakta 75-125°C sıcaklık aralığındadır. Kompleks bu basamakta iki mol koordinasyon suyunu kaybeder (den. %3.80 teo. %4.19). İkinci bozunma basamağı 125-390°C sıcaklık aralığındadır. Bir mol N,N'-dietilnikotinamid ve diğer N,N'-dietilnikotinamidin CON(C₂H₅)₂ grubunun bu basamakta yapıdan uzaklaştığı tahmin edilmektedir (den. %33.54, teo. %33.86). Bu bozunmayı bir sonraki bozunma basamağındaki kütle kaybının deneysel ve teorik miktarlar arasındaki uyumu da destelenmektedir. Sonraki basamakta piridin halkasının yapıdan uzaklastığı düşünülmektedir (den.%10.743, teo.1%4.36). Renksiz kompleksten geriye ZnO kaldığı düşünülmektedir (den. % 7.10, teo %9.45) (Tablo 39). Literatürde bromobenzoik asidin metal komplekslerinin benzer şekilde parçalandığı görülmektedir [71]

Sulu nikotinamid komplekslerin dayanıklılığı aşağıdaki sıraya göre değişmektedir:

23 < 18 = 20

Sulu dietilnikotianmid komplekslerin dayanıklılığı aşağıdaki sıraya göre değişmektedir: 24 = 22 < 21 < 19 Susuz nikotinamid komplekslerin termal kararlılıkları ise aşağıdaki sıraya göre değişmektedir:

18 < 20 < 23

Susuz dietilnikotinamid komplekslerin termal kararlılıkları ise aşağıdaki sıraya göre değişmektedir: 24 < 22 < 19 < 21.

20 kompleksi ile **18** kodlu maddenin aynı kristal yapıda olduğu iki maddenin elemental analiz, termik analiz, infrared spektrumlarının benzerliği ile desteklenmektedir. Ayrıca bileşiğin kütle spektrumu da molekül ağırlığı değerini bize vermektedir.Kompleksin tahmini yapısı Şekil 5.50'de verilmiştir.

Şekil. 5.50. 18 kompleksin tahmini yapısı

 $[Co(C_7H_4BrO_2)_2(C_{10}H_{14}-N_2O)_2(H_2O)_2]$ formüllü Co^{II} iyonu simetri merkezindedir. Asimetrik birim 2-bromobenzoat anyonu, bir *N,N'*-dietilnikotinamid ligandı ve bir su molekülünden oluşmaktadır (Şekil 5.51). Tüm ligandlar monodentant bağlanmıştır. Co^{II} iyonu çevresindeki ekvatoral düzlemde bulunan dört oksijen atomu hafif bozulmuş kare düzlem geometri sergilemekte ve yapı hafif bozulmuş oktahedral geometriye *N,N'*dietilnikotinamid ligandının piridin azot atomları ile tamamlanmaktadır. Karboksilat grubu ve bağlı olduğu benzen halkası arasındaki dihedral açı 84.7(1)°'dir. Piridin ve benzen halkaları arasındaki dihedral açı ise 43.64(6)°'dir. Kristal yapıda O-H^{...}O ve C-H^{...}O hidrojen bağları üç boyutlu ağ içinde molekülleri birbirine bağlamaktadır (Şekil 5.52). Kompleksin kristal verileri Tablo 9'da verilmiştir.

Şekil 5.51. [Co(C7H4BrO2)2(C10H14N2O)2(H2O)2] kompleksinin moleküler yapısı

Şekil 5.52. Kristal yapıdaki hidrojen bağları [58]

Kristal verileri Tablo 10'da verilen Ni($C_7H_4ClO_2$)₂ ($C_6H_6N_2O$)₂(H_2O)₂] formülüne sahip simetri merkezli kompleks tümü monodentant olan iki 2-bromobenzoat ligandı, iki nikotinamid ligandı ve iki su molekülünden meydana gelmiştir. Nikel atomu çevresindeki dört oksijen atomu ile bozulmuş kare düzlemindeyken nikotinamid ligandlarının piridin azot atomları ile bozulmuş oktahedral geometrisini tamamlamaktadır (Şekil 5.53). Karboksilat grubu ve komşu benzen halkası arasındaki dihedral açı 30.81°, piridin ve benzen halkaları arasındaki dihedral açı ise 84.66°'dir. Kristal yapıda O-H^{...}O ve N-H^{...}O hidrojen bağlarıyla moleküller birbirine bağlıdır. Ayrıca zayıf C-H^{...} π etkileşimleri bulunmaktadır.

Şekil 5.53. [Ni(C₇H₄BrO₂)₂ (C₆H₆N₂O)₂(H₂O)₂] kompleksinin moleküler yapısı [59]

 $[Ni(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinde Ni^{II} iyonu simetri merkezinde bulunmaktadır. Asimetrik birim bir 2-bromobenzoat ligand, bir *N,N'*-dietilnikotinamid ligandı ve bir su molekülünden oluşmaktadır. Ni^{II} iyonu etrafında ekvator düzlemde bulunan dört oksijen atomu hafif bozulmuş kare düzlem planındayken, eksen posizyonunda bulunan *N,N'*-dietilnikotinamid ligandlarının iki azot atomu ile hafif bozulmuş oktahedral geometriye tamamlanmaktadır (Şekil 5.54). Benzen halkası ve bağlı olan karboksil grubu arasındaki dihedral açı 87.73°, piridin ve benzen halkaları arasındaki dihedral açı 42.48° 'dir. O-H…O hidrojen bağlarıyla moleküller (101) düzlemine paralel iki boyutlu ağ biçiminde birbirine bağlıdır. Ayrıca C-H…O hidrojen bağları da gözlenmiştir. Kompleksin kristal verileri Tablo 11'de verilmiştir.

Şekil 5.54. [Ni(C₇H₄BrO₂)₂ (C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin moleküler yapısı [60]

[Mn(C₇H₄BrO₂)₂(C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinde mangan atomu simetri merkezinde bulunmaktadır. Molekül iki 2-bromobenzoat, iki *N*,*N'*-dietilnikotinamid ligandı ve iki su molekülünde oluşmaktadır. Ligandların tümü monodentanttır. Mangan atomu etrafında bulunan ekvator düzlemindeki dört oksijen atomu hafif bozulmuş kare düzlem geometri oluşturmakta ve eksen pozisyonundaki *N*,*N'*-dietilnikotinamid ligandlarının piridin azot atomları ile koordinasyon hafif bozulmuş oktahedral geometriye tamamlanmaktadır (Şekil 5.55). Karboksil grubu ve komşu benzen halkaları arasındaki açı 79.95, piridin ve benzen halkaları arasındaki dihedral açı ise 45.66°'dir. Kristal yapıda molekül içi O-H[…]O hidrojen bağları ile bağlanan moleküller sınırsız zincirler oluşturmaktadır. Kompleksin kristal verileri Tablo 12'de verilmiştir.

Şekil 5.55. [$Mn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2$] kompleksinin kristal yapısı [61]

[Zn(C₇H₄BrO₂)₂ (C₆H₆N₂O)₂(H₂O)₂] kompleksinde çinko atomu simetri merkezindedir. Molekül iki 2-bromobenzoat, iki nikotinamid ve iki koordinasyon suyundan oluşmaktadır ve tüm ligandlar monodentanttır. Çinko atomu etrafında ekvator düzleminde bulunan dört oksijen atomu kare düzlem geometri oluşturmakta ve eksen pozisyonundaki nikotinamid ligandlarının iki azot atomu ile hafif bozulmuş oktahedral geometri tamamlanmaktadır (Şekil 5.56). Karboksilat grubu ve komşu benzen halkaları arasındaki dihedral açı 31.14 ° iken piridin ve benzen halkaları arasında ise dihedral açı 83.54 °'dir. Kristal yapıda O-H^{...}O ve N-H^{...}O hidrojen bağları ile bağlanan moleküller sınırsız zincirler oluşturmaktadır. Zayıf C-H^{\dots} π etkileşimi bulunmaktadır. Kompleksin kristal verileri Tablo 13'de verilmiştir.

Şekil 5.56. [Zn(C₇H₄BrO₂)₂ (C₆H₆N₂O)₂(H₂O)₂] kompleksinin kristal yapısı [62]

Kristal verileri Tablo 14'de verilen $[Zn(C_7H_4BrO_2)_2 (C_{10}H_{14}N_2O)_2(H_2O)_2]$ formüllü komplekste çinko atomu simetri merkezinde bulunmaktadır. Asimetrik birim bir 2bromobenzoat, bir *N*,*N*'-dietilnikotinamid ligandı ve bir koordinasyon su molekülünden oluşmaktadır. Çinko atomu etrafında ekvator düzleminde bulunan dört oksijen atomu hafif bozulmuş kare düzlem geometri oluşturmuştur. Kompleks hafif bozulmuş oktahedral geometriye eksen pozisyonundaki *N*,*N*'-dietilnikotinamid ligandlarının iki azot atomu ile tamamlanmaktadır (Şekil 5.57). Karboksil grubu ve komşu benzen halkası arasındaki dihedral açı 85.51°, piridin ve benzen halkaları arasındaki ise 44.07°'dir. Kristal yapıda O-H...O hidrojen bağlarıyla bağlı moleküller sınırsız zincirler oluşturmaktadır.

Şekil. 5.57. Zn(C₇H₄BrO₂)₂ (C₁₀H₁₄N₂O)₂(H₂O)₂] kompleksinin kristal yapısı [64]

Şekil 5.58. 18 kompleksinin kütle spektrumu

Şekil 5.58'de 18 kompleksinin kütle spektrumunda m/z 739.8 piki molekül ağırlığına ilişkin piktir.

Şekil 5.59. 19 Kompleksinin kütle spektrumu

Kompleksin kütle spektrumunda molekül ağırlığına ilişkin pik 852.1 de gözlenmiştir (Şekil 5.59).

Şekil 5.60. 18 ve 20 komplekslerinin toz X ışını diffraktogramları

Şekil 5.61. 19 ve 21 komplekslerinin toz X ışını diffraktogramları

Komplekslerin diffraktrogram verileri mukayese edildiğinde **18** ile **20** kodlu nikotinamid komplekslerinin ve **19** ile **21** kodlu komplekslerin eş yapılı oldukları düşünülmektedir (Şekil 5.60 ve 5.61). Ayrıca **18** ve **19** kodlu komplekslerinin kütle spektrumlarında görülen molekül ağırlığı pikleri de bunu doğrulamaktadır.

Şekil 5.62 .Kobalt(II) *o*-halojenobenzoat nikotinamid/*N*,*N'*dietilnikotinamid/izonikotinamid komplekslerinin UV-Vis spektrum grafiği

Şekil 5.63. Nikel(II) *o*-halojenobenzoat nikotinamid/*N*,*N*'dietilnikotinamid/izonikotinamid komplekslerinin UV-Vis spektrum grafiği

Oktahedral d^7 yapılı kobalt (II) komplekslerinde, görünür bölgede 562 nm' de tek pik gözlenmekte olup beklenen üç pikten ilkinin 319 nm' deki yüksek şiddetli ve yayvan ligant geçişinin altında kaldığı, diğer *d-d* geçişinin ise IR bölgeye kaydığı

düşünülmektedir. Oktahedral d⁸ yapılı nikel(II) komplekslerinde görünür bölgede 369 nm ve 610 nm de iki pik gözlenmekte olup beklenen üç pikten ilkinin 302 nm' deki yüksek şiddetli ve yayvan ligant geçişinin altında kaldığı düşünülmektedir. d¹⁰ yapılı çinko(II) komplekslerinin UV-Vis spektrumları alındığında beklenildiği gibi görünür bölgede hiçbir pik gözlenmemiştir (Şekil 5.62, Şekil 5.63 ve Ek Şekil 25-38).

6. SONUÇ

Bu çalışmada Zn(II) ve Co(II), Mn(II), Ni(II) metallerinin *o*-floro/ *o*-kloro *ve o*bromobenzoik asit ve biyolojik öneme sahip nikotinamid (NA) ve türevleri [dietilnikotinamid (DENA) ve izonikotinamid (İNA)] ile 24 adet yeni kompleksleri sentezlendi:

$[Co(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$	(1)	$[Co(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(2)
$[Zn_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2] \cdot C_7H_5FO_2$	(3)	$[Zn(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(4)
$[Ni(C_6H_6N_2O)_2(H_2O)_4](C_7H_4FO_2)_2$	(5)	$[Ni(C_7H_4FO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(6)
$[Mn(C_7H_4FO_2)_2(C_6H_6N_2O)(H_2O)]$	(7)	$[Mn_2(C_7H_4FO_2)_4(C_{10}H_{14}N_2O)_2]$	(8)
$[Co_2(C_7H_4FO_2)_4(C_6H_6N_2O)_2]$	(9)	$[Ni(C_7H_4FO_2)_2(C_6H_6N_2O)_2(H_2O)_2].2H_2O$	(10)
$[Zn(C_7H_4FO_2)_2(C_6H_6N_2O)_2]$	(11)	$[Co(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(12)
$[Co(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(13)	$[Ni(C_7H_4ClO_2)_2(H_2O)_2]$	(14)
$[Ni(C_7H_4ClO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(15)	$[\mathrm{Ni}(\mathrm{C_7H_4ClO_2})_2(\mathrm{C_{10}H_{14}N_2O})_2(\mathrm{H_2O})_2]$	(16)
$[Mn(C_7H_4ClO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(17)	$[Co(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(18)
$[Co(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(19)	$[Ni(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(20)
$[Ni(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(21)	$[Mn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(22)
$[Zn(C_7H_4BrO_2)_2(C_6H_6N_2O)_2(H_2O)_2]$	(23)	$[Zn(C_7H_4BrO_2)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$	(24)

Bulgular ve tartışma kısmında metal komplekslerin yapıları, kütle spektrum (MS) değerleri, elementel analiz, termik analiz verileri (TG-DTG-DTA), IR, UV, NMR, spektroskopik verileri ile aydınlatılmaya çalışılmıştır. Elde edilen sonuçlar önerilen yapıları desteklemektedir. Tek kristal X ışınları analizi ile on iki kompleksin kristal yapısı aydınlatılmıştır. Toz X ışınları analizinde difraktogrram değerlerinden sekiz kompleksin eş yapılı olduğu belirlenmiştir.

Komplekslerin IR spektrumlarında asitlere ait karakteristik –COOH grubunun piki yerine, $v_{as}COO^{-}$ ve $v_{s}COO^{-}$ piklerinin olması karboksil grubunun protonunu kaybettiği ve metal ile bağlandığını göstermiştir. Nikotinamid ve türevleri bulunan komplekslerde amidin karbonil grubunun titreşim frekanslarında pek değişiklik olmadığı dolayısıyla amid grubundan koordinasyona katılma olmadığı görülmüştür. Sudan ileri gelen bantlar ise susuz **3**, **8**, **9**, **11** kompleksleri hariç, diğerlerinde 3000-3650 cm⁻¹ aralığında görülmüştür.

Komplekslerin UV spektrumlarında görünür bölgede *d-d* geçişlerine ait bir veya iki absorbsiyon bandı görülmüştür.

Komplekslerin ¹H-NMR ve ¹³C-NMR spektrumlarında karakteristik gruplara ait pikler uygun bölgelerde görülmüştür.

Mangan komplekslerinin ölçülen manyetik moment değerlerinden antiferromanyetik olduğu belirlenmiştir.

Termik analiz sonuçlarına göre birkaç basamakta bozunan komplekslerin yapısından önce su molekülünün ayrıldığı daha sonra organik ligandların parçalandığı görülmüştür. Komplekslerin metal veya oksitlerine parçalandığı görülmüştür.

Neticede **8 ve 9** nolu komplekslerin kare piramidal, **3** nolu komplekslerin tetrahedral, diğer komplekslerin ise oktahedral geometriye sahip oldukları belirlenmiştir. Kristal yapısı aydınlatılan komplekslerden **1** ve **5** kompleksleri triklinik **3**, **15**, **16**, **17**, **19**, **20**, **21**, **22**, **23**, **24** kompleksleri monoklinik sistemde kristallenmiştir.

7. KAYNAKLAR

[1] Lewandowski, W., Kalinowska, M. and Lewandoska, H., "The influence of halogens of biologically important ligands: spectroscopic study of halogenobenzoic acids, halogenobenzoates and 5-halogenouracils", Inorganica Chimica Acta, 358, 2155-2166 (2005).

[2] Lashanizadegan, A., Newsham, M.T. and Tavare, S.N., "Seperation of chlorobenzoic acids by dissociation extractive crystalization", Chemical Engineering Science, 56, 2335-2346 (2001),.

[3] Hartmann, J., Reineke, W. and Knackmuss, H.-J., "Metabolism of 3-Chloro-, 4-Chloro-, and 3,5-Dichlorobenzoate by a Pseudomonad", Applied And Environmental Microbiology, 37, 421-428 (1979).

[4] Kalpit, A., Vora, C.S., and Vinod V. M., "Degradation of 2-Fluorobenzoate by a Pseudomonad", Current Microbiology, 17, 249-254 (1988).

[5] Hickey, W. J. and Focht, D. D., "Degradation of Mono-, Di-, and Trihalogenated Benzoic Acids by Pseudomonas aeruginosa JB2", Applied And Environmental Microbiology, 56, 3842-3850, (1990).

[6] Wolodkiewicz, W. and Glowiak T., "Preparation, structure and thermal decomposition of Co(II) complexes with 2,3- and 2,5-dichlorobenzoic acid and imidazole", Monatshefte für Chemie, 131, 711-719 (2000).

[7] Wolodkiewicz, W. and Brzyska, W., "Preparation, properties and thermal decomposition of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) complexes of 2,5-dichlorobenzoic acid", Journal of Thermal Analysis Calorimetry, 55, 639-651 (1999).

[8] Brzyska W. and Wolodkiewicz W., "Properties and thermal decomposition in air atmosphere of complexes of Co(II), Ni(II), Cu(II) with 2,6-dichlorobenzoic acid", Thermochimica Acta, 242, 131-140 (1994).

[9] Musayev N.; Çıragov M.; Gambarov G. ve Mamedov S., "Mangan(II) benzoatlar ve onun p- halojenobenzoatlarının termik bozunması", Koordinasyon Kimyası, 12, 493-498 (1986) (Rusça)

[10] Çıragov M.; Musayev N.; Gambarov G. ve Mamedov S., "Kobalt(II) phalojenobenzoatların sentezi ve fizikokimyasal olarak incelenmesi", İnorganik Kimya Dergisi, 31, 1773-1780 (1986). (Rusça) [11] T.-G. Xu and D.-J. Xu, "Diaquabis(4-chlorobenzoato- κ O)bis(1H-imidazole- κ N³)cobalt(II)", Acta Cryst, E60, 1669-1671 (2004)

[12] Hökelek T., Çaylak N. ve Necefoglu H., "Diaquabis(4-chlorobenzoato-MO)bis(N,N-diethylnicotinamide-MN1)manganese(II)", Acta Cryst, E64, 505-506 (2008).

[13] Hökelek T., Çaylak N. ve Necefoglu H., "Diaquabis(4-bromobenzoators2O,O')zinc(II)", Acta Cryst, E64, 458-459 (2008).

[14] Hökelek T., Çaylak N. ve Necefoglu H., "Bis(4-fluorobenzoato-#2O,O')bis(nicotinamide-#N1)zinc(II) monohydrate", Acta Cryst, E64, 460-461 (2008).

[15] Hökelek T., Çaylak N. ve Necefoglu H., "Diaquabis(4-bromobenzoato-^{RO})bis(nicotinamide-RN1)cobalt(II)", Acta Cryst, E63, 1873-1874(2007).

[16] Çaylak N., Hökelek T., Öztürkkan F. E. and H. Necefoglu, "Diaquabis(4chlorobenzoato-raO)bis(nicotinamide-raN)cobalt(II)", Acta Cryst., E63, 1344-1346 (2007).

[17] Çaylak N., Hökelek T. and Necefoglu H., "Diaquabis(4-fluorobenzoato-MO)bis(nicotinamide-MN1)cobalt(II)", Acta Cryst., E63, 1341-1343 (2007).

[18] Zhang H.Y., Zhang J.J., Ren N., Bai J.B., Wang S.P. and Wang R.F., "Synthesis and Thermal Decomposition Kinetics of the Complexes [Sm(*o*-NBA)₃bipy]₂·2H₂O and [Sm(*o*-BrBA)₃bipy]₂·2H₂O", International Journal of Chemical Kinetics, 40, 607–616 (2008)

[19] Erdelyiova A, Gyoryova K., Gyepes R., Halas L. and Kovarova J., "Synthesis, spectral, thermal and structural study of bis(2-bromobenzoato-O,O0)-bis(methyl-3-pyridylcarbamate-N)-zinc(II)", Polyhedron, 28 131–137 (2009)

[20] Zhao J., "Bis(2-chlorobenzoato-кО)bis(1-vinylimidazole-кN³)copper(II)", Acta Cryst. E64, m1321 (2008).

[21] Li X., Ju Y.L., and Li Y.Q., "Synthesis, crystal structure and properties of two terbium complexes with 2,2'-bipyridine", Journal of Coordination Chemistry, 61: 5, 692-704 (2007)

[22] Maroszova J., Findorakova L., Gyoryva K., Moncola J. and Melnik M., "Bis(2chlorobenzoato-κ2O,O')bis[methyl N-(3 pyridyl)carbamato-κN]zinc(II)", Acta Cryst. E63, 1520. (2007). [23] Zhang J.J., Ren N, Wang Y.X., Xu S.L., Wang R.B. and Wang S.P., "Synthesis, Crystal Structure and Thermal Decomposition Mechanism of a Samarium o-Chlorobenzoate Complex with 1,10-Phenanthroline", J. Braz. Chem. Soc., 17, 1355-1359 (2006).

[24] Nakacho Y., Misawa T., Fujiwara T., Wakahara A. and Tomita K., "The Crystal And Molecular Structure of Zinc Complex of 2-Chlorobenzoic Acid 1. Molecular structure of bis(2-chlorobenzoato)zinc(II)", Bulletin of The Chemical Society of Japan, 49, 58-61 (1976).

[25] Li X. and Zou Y.Q., "Crystal Structure of bis(2,2'-bipyridine)tetrakis(2-fluorobenzoato-O,O')-bis(2-fluorobenzoato)disamarium(III)", Z.Kristallogr, 219, 419-420 (2004).

[26] Zhang B.S., "Crystal Structure of $bis[\mu-chloro(2,2'-bipyridine-N,N')(\mu-2-chlorobenzoato)lead(II)]$, [Pb(Cl)(C₁₀H₈N₂)(ClC₆H₄COO)]₂", Z. Kristallogr. , 220 (2005) 73-74.

[27] Zhang B.S., Zeng X.R, Yu Y.Y., Fang X.N. and Huang C.F., "Crystal Structure of (1,10-phenanthroline-N,N)bis(2-fluorobenzoato)lead(II), Pb(FC₆H₄COO)₂(C₁₂H₈N₂)",
Z. Kristallogr., 220, 75-76 (2005).

[28] Zhang B.S., Zeng X.R., Fang X.N. and Huang C.F., "Crytal structure of aqua(2,2-bipyridine-N,N)bis(2-fluoro-benzoato)cadmium(II), Cd(H₂O)(C₁₀H₈N₂)(C₇H₄FO₂)₂", Z. Kristallogr. 220 141-142 (2005).

[29] Zhang B.S., Zhu X.C., Yu Y.Y., Chen L., Chen Z.B. and Hu. Y.M, "Crystal Structure of bis[1,10-phenantroline-N,N'] (2-bromobenzoato)-bis(μ-2-bromobenzoato) holmium (III)], [Ho(C₁₂H₈N₂)(BrC₇H₄O₂)₃]₂", Z., Kristallogr. 220, 211-212 (2005).

[30] Guo H.M., Zhang B.S. and Wang Y.H., "Crystal Structure of bis (1,10phenantromline-N,N')bis(2-chlorobenzoato)-lead(II) hydrate (1:2.5), $[Pb(C_7H_4O_2Cl)_2(C_{12}H_8N_2)_2].2.5 H_2O$ ", Z. Kristallog., 221, 352-354 (2006).

[31] Zhang B.S., "Crystal Structure of bis(1,10-phenantroline-N,N)bis(2-chlorobenzoato)tetrakis(-2-chlorobenzoato) dilanthanum(III)", Z.Kristallogr., 221, 191-194 (2006).

[32] Zhang B.S., "Crystal Structure of bis(1,10-phennatroline-N,N)bis(2-bromobenzoato)lead(II)hydrate(1:2.5), [Pb $(C_7H_4O_2Br)_2(C_{12}H_8N_2)_2$].2.5 H₂O", Z. Kristallogr., 221, 511-513 (2006).

120

[33] Zhang B.S., "Crystal structure of diaquabis(2-fluorobenzoato- κ O)bis(1,10-phenantroline- κ^2 N,N)(barium(II), Ba(H₂O)₂(C₇H₄FO₂)₂(C₁₂H₈N₂)₂", Z. Kristallogr., 225, 87-88 (2010).

[34] Zhao J., "Tetrakis(μ -2-chlorobenzoato- κ^2 O:O')-bis[(4-vinylpyridine- κ N)copper(II)]", Acta Cryst., E64, 1336 (2008).

[35] Zhang B.S. and Ye S.F., "Hemiaquabis(2-fluorobenzoato- κ 2O,O')-bis(1,10-phenanthroline- κ ²N,N')lead(II)dihydrate", Acta Cryst., E65, 936–937 (2009).

[36] Zhang B.S., "Bis(2-fluorobenzoato- κ^2 O,O')bis(1,10-phenanthroline- κ^2 N,N')lead(II) dihydrate", Acta Cryst. E65, 1167–1168 (2009).

[37] Zhang B.S., "Crystal Structure of (2,2'-bipyridine-N,N)bis(2-fluorobenoztao)lead(II), Pb(C₇H₄O₂F)₂(C₁₀H₈N₂)", Z. Kristallogr. 221, 355-356 (2006).

[38] Krajnikova A., Gyepes R., Gyoryova K., Subrt J. and Imrich J., "Preparation, Crystal Structure and Spectroscopic Properties of Dimeric [Zn(2bromobenzoato)₂(phenazone)]₂ and Monomeric[Zn(2bromobenzoato)₂(thiourea)₂].2H₂O", J.Chem. Crystallogr., DOI: 10.1007/s10870-011-0041-7, Online FirstTM, (2011).

[39] Lou Q.Z., "Crystal Structure of (1,10-phenantroline-N,N')-bis(2-fluorobenzoato)cadmium(II), Cd(C₇H₄O₂F)₂(C₁₂H₈N₂)", Z. Kristallogr., 222, 105-106, (2007).

[40] Zhao J., "Bis(2-chlorobenzoato-κO)bis(1-vinylimidazole-κN³)copper(II)", Acta Cryst. E64, m1321 (2008).

[41] Jin Z.N., "catena-Poly[[[diaqua(2-fluorobenzoato κ^2 O,O')strontium]- μ_3 -2-fluorobenzoato κ 5O:O,O':O',F] monohydrate]", Acta Cryst. E67, m440 (2011).

[42] Li, X., Zhang, Z.Y., and Song, H.B., "Synthesis and crystal structure of a new dysprosium(III) complex with 2-fluorobenzoato and 1,10-phenanthroline", Journal of Chemical Crystallography, 36, 2, (2006).

[43] Xua, L.J.; Wanga, S.P.; Wanga, R.F. and Zhangb J.J., "Synthesis, structures and properties of ternary rare earth complexes with fluorobenzoic acid and 1,10-phenanthroline", Journal of Coordination Chemistry, 61, 237–250, (2008).

[44] Moncola, J.; Maroszovaa, J.; Komana, M.; Melnika, M.; Valkob, M.; Mazurb, M. and Lisc, T., "Self-assembly of hydrogen-bonded supramolecular structures of two

copper(II) 2-bromobenzoate complexes with 4-pyridylmethanol and nicotinamide", Journal of Coordination Chemistry , 61, 3740–3752 (2008),.

[45] Findorakova L.; Gyoryovaa K.; Melnik M.; Koman M.; Faten A. and Nour E.D., "Preparation, thermal decomposition, and crystal structure of Zn(II) 2-chlorobenzoate complex with nicotinamide", Journal of Coordination Chemistry, 63, 3348–3355(2010).

[46] Li, X., Zou, Y. Q. ve Song, H.B., "Synthesis and Crystal Structure of Complex [Nd(2-FC₆H₄COO)₃.(2-FC₆H₄COOH).H₂O]₂", J. Chem Crystallogr, 37, 555–559 (2007).

[47] Li X., Zhang Z.Y., Song H.B., "Synthesis, crystal structure and properties of three new holmium 2-fluorobenzoato complexes", Journal of Molecular Structure 751, 33–40 (2005).

[48] Wang J.Q, Zhang Y.W and Cheng L. "Bis(2-fluorobenzoato-κO)bis(pyridin-2amine-κN¹)zinc(II)", Acta Cryst. E65, 950 (2009).

[49] Dey D., Roy S., Purkayastha R.N. D., Pallepogu R., Male L. and Mckee V., "Syntheses, characterization, and crystal structures of two zinc(II) carboxylates containing pyridine", Journal of Coordination Chemistry, 64, 1165–1176 (2011).

[50] Krajnikova A., Gyoryova K., Hudecova D., Kovarova J. and Vargova Z., "Thermal decomposition and antimicrobial activity of zinc(II) 2-bromobenzoates with organic ligands", J Therm Anal Calorim, DOI: 10.1007/s10973-010-1161-6 (2010).

[51] Qiu, X., Zhang, Y. ve Li, X., Synthesis, crystal structure and fluorescence of an new a europium complex with 2-bromobenzoate and 2,2-bipyridine, Journal of Rare Earths, 27, 797 (2009).

[52] Ozbek, F.E., Tercan, B., Sahin, E., Necefoglu, H. ve Hokelek, T.,
"Tetraaquabis(nicotinamide-#N)-cobalt(II)bis(2-fluorobenzoate)", Acta Cryst., E65, 341–342 (2009)

[53] Hökelek, T., Yılmaz, F., Tercan, F, Özbek, FE ve Necefoğlu, H, "Bis(2-fluorobenzoato-1:2-O:O)-(2-fluorobenzoato-O,O) (2-fluorobenzoato-O)dinicotinamide-N1-N1-dizinc(II)-fluorobenzoicacid (1/1)", Acta Crystallographica Section E-Structure Reports Online, E65, 1608-1609 (2009). [54] Hökelek, T., Dal, H., Tercan, B., Özbek, F.E. ve Necefoğlu, H., "Tetraaquabis(nicotinamide-kappa N-1) bis(2-fluorobenzoate)nickel(II)", Acta Crystallographica Section E-Structure Reports Online, E65, 1330-1331 (2009)

[55] Hokelek, T., Dal, H., Tercan, B., Ozbek, F.E. ve Necefoglu, H., "Diaquabis(2chlorobenzoato-#O)bis(nicotinamide-#N1)nickel(II)", Acta Cryst., E65, 466–467 (2009).

[56] Hokelek, T., Tercan, B., Dal, H. ve Ozbek, F.E., "Diaquabis(2-chlorobenzoato-MO)bis(N,N-diethylnicotinamide-mN1)nickel(II)", Acta Cryst., E65, 545–546 (2009).

[57] Hokelek, T., Dal, H., Tercan, B., Ozbek, F.E. ve Necefoglu, H., "Diaquabis(2chlorobenzoato-*m*O)bis(N,N-diethylnicotinamide-*m*N1) manganese(II)", Acta Cryst., E65, 513–514 (2009).

[58] Hokelek, T., Saka, G., Tercan, B., Ozturkkan, F.E. ve Necefoglu, H., "Diaquabis(2bromobenzoato-#O)bis(N,N-diethylnicotinamide-#N1)cobalt(II)", Acta Cryst., E66, 1132–1133 (2010).

[59] Hokelek, T., Yilmaz, F., Tercan, B., Ozbek, F.E. ve Necefoglu H. "Diaquabis(2-bromobenzoato-kappa O)bis(nicotinamide-kappa N-1) nickel(II), Acta Crystallographica Section E-Structure Reports Online, 65, 768 (2009).

[60] Hokelek, T., Yilmaz, F., Tercan, B., Ozbek, F.E. ve Necefoglu, H., Diaquabis(2bromobenzoato-kappa O)bis(N,N-diethylnicotinamide-kappa N-1)nickel(II)", Acta Crystallographica Section E-Structure Reports Online, 65, 766 (2009)

[61] Hokelek, T., Dal, H., Tercan, B., Ozbek, F.E. ve Necefoglu, H.,"(2bromobenzoato-kappa O)bis(N,N-diethylnicotinamide-kappa N-1)manganese(II)", Acta Crystallographica Section E-Structure Reports Online, 65, 664 (2009).

[62] Hokelek T., Dal H, Tercan B, Ozbek F.E. ve Necefoglu H., "Diaquabis(2bromobenzoato-kappa O)bis(nicotinamide-kappa N-1)zinc(II)", Acta Crystallographica Section E-Structure Reports Online, 65, 607(2009).

[63] Hokelek, T., Dal, H., Tercan B, Ozbek F.E. ve Necefoglu, H., "Diaquabis(2bromobenzoato-kappa O)bis(N,N-diethylnicotinamide-kappa N-1)zinc(II)", Acta Crystallographica Section E-Structure Reports Online, 65, 481 (2009.

[64] Smith M.R., "Understanding Mass Spectra: A Basic Approach" John Wiley&Sons. Inc., ISBN 0-471-42949-X., Canada, 2005. [65] Maistralis, G., Koutsodimou, A. ve Katsaros, N., "Transition metal orotic acid complexes", Transition Metal Chemistry, 25, 166, (2000).

[66] Bayari S., Ataç A. ve Yurdakul S., "Coordination behaviour of nicotinamide an infrared spectroscopic study", Journal of Molecular Structure, 655, 163, (2003).

[67] Silverstein, R.M. ve Webster, F.X., "Spectroscopic Identification of Organic Compunds", John Wiley&Sons. Inc., ISBN0-471-13457-0., Canada, 1997.

[68] Nakamoto K., "Infrared and Raman Spectra of Inorganic and Coordination Compounds", Wiley, New York, chapter 3 (1986)

[69] Regulska, E., Swislocka, R. and Lewandowski, W., "Theoretical and experimental study of alkali metal o-amino-, o-halogeno-, o-hydroxy-, o-methoxy- and o-nitrobenzoates", Journal of Molecular Structure, 984, 194–203(2010).

[70] Filho, O. T., Pinheiro, J.C., da Costa, E.B., Kondo, R.T. and Souza, R.A., Nogueira V.M., Mauro A.E. "Theoretical and experimental study of the infrared spectrum of isonicotinamide", Journal of Molecular Structure: Theochem, 763, 175–179, (2006)

[71] Patnaik, P. "Handbook of Inorganic Chemical", ISBN 0-07049439-8, McGraw Hill Publishing, New York (2002).

[72] Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. ve Necefoğlu H., "Tetrakis[μ -4(diethylamino)benzoato- κ^2 O:O']bis[(N,N-diethylnicotinamide- κ N¹)zinc(II)]", Acta Crystal., E65, 955-956 (2009).

[73] Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi Ö. ve Necefoğlu H., "Tetrakis[μ -4-(methylamino)benzoato- κ^2 O:O']bis[(N,N-diethylnicotinamide-N¹)zinc(II)] dihydrate", Acta Cryst. E65: 1328-1329 (2009).

[74] Hökelek, T., Saglam, E.G., Tercan, B., Aybirdi, Ö. ve Necefoglu, H., "Tetrakis[#-4-(diethylamino)benzoato- κ^2 O:O']bis[(N,N-diethylnicotinamide-

^{*n*}N¹)cobalt(II)]", Acta Cryst. E67, 28-29 (2011).

[75] Chi ,W.P., Zhang, M. and Wang, H., "Aquabis(2-nitrobenzoato-*mO*)bis(pyridine-*mN*)copper(II)", Acta Cryst. E62, 1134-1135 (2006).

[76] Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. ve Necefoğlu, H., "Bis(isonicotinamide- κN^1) bis[4-(methylamino)benzoato]zinc(II) monohydrate", Acta Cryst. E65: 1365-1366. (2009).

[77] Köse, D.A., Kaya, A. ve Necefoğlu, H., "Synthesis And Characterization of

bis(*N*,*N*-Diethylnicotinamide) *m*-Hydroxybenzoate Complexes of Co(II), Ni(II), Cu(II) and Zn(II)", Russian Journal of Coordination Chemistry, 33, 422-427 (2007).

[78] Necefoğlu, H., Hökelek, T., Ersanlı, C.C. ve Erdönmez, A. "Bis(4-Hydroxybenzoato κO)bis(Nicotinamide- κN) Zinc(II)", Acta Crystallographica, 58: 758 (2002).

[79] Tercan, B., Hökelek, T., Aybirdi, Ö. ve Necefoğlu, H., "Bis[4-(methylamino) benzoato- κO]bis(nicotinamide- κN)zinc(II)", Acta Cryst. E65: 109–110 (2009).

[80] Zhang, K.L., Lin, J.G., Wan, Y.Q., Xu, W.L. and Chen, J.T, "Aquabis(2-nitrobenzoato- κ O)(1,10-phenanthroline- κ^2 N,N')zinc(II)", Acta Cryst., C60, m454-m456 (2004).

[81] Yin, X., "Aquabis(3-fluorobenzoato-κO)(1,10-phenanthroline-κ²N,N')copper(II)",
 Acta Cryst. E67, m564-m565 (2011).

[82] Necefoglu, H., Çimen, E., Tercan, B., Süzen, Y. ve Hökelek, T. "Aquabis(isonicotinamide- κN^1)bis(4-methylbenzoato)- $\kappa O; \kappa^2 O, O'$ -cadmium(II) monohydrate", Acta Cryst. E66, 392-393 (2010).

[83] Zhang, B.-S., Qiu, J.-P., Liu, L.H.and Xu, W., "Tetraaqua(2,2'-bipyridine- $\kappa^2 N, N'$) magnesium(II) bis(4-fluorobenzoate)", *Acta Cryst.* E66, 1624 (2010).

[84] Liu, Z.-D., Tan, M.-Y. and Zhu, H.-L., "Diaquabis(ethylenediamine- $\kappa^2 N, N$) copper(II) bis(4-fluorobenzoate)", *Acta Cryst.* E60, 1081-1083 (2004).

[85] Köse, D. A., Gökçe, G., Gökçe, S., Uzun, İ., "Bis(*N*,*N*-Diethylnicotinamide)*p*chlorobenzoate Complexes of Ni(II), Zn(II) and Cd(II)", Synthesis and Characterization, Journal of Thermal Analysis and Calorimetry, 95, 247–251 (2009).

[86] Hökelek, T. and Necefoğlu, H., "trans-Diaquabis(nicotinamide)bis(*p*-hydroxybenzoato) cobalt(II)", Acta Cryst., C55: 1438-1440 (1999).

[87] Hökelek, T. ve Necefoğlu, H., "trans-Diaquabis(nicotinamide)bis(*p*-nitrobenzoato)cobalt(II)", Acta Cryst., C54: 1242-1244 (1998).

[88] Hökelek, T. ve Necefoğlu, H., "Crystal structure of [triaqua(salicylato)(nicotinamide)zinc(II)] salicylate", Analytical Sciences, 17: 1241 (2001).

[89] Necefoğlu, H., İçbudak, H., Köse, D. A. ve Uyanık, A., "Thermal Behaviour of the nicotinamide adducts of Co(II), Ni(II), Cu(II) and Zn(II) Arylcarboxylates", Challenges for Coord. Chem. in the New Centry, Slovak Technical University pres.

Bratislava, 427-432 (2001).

[90] Köse D. A., "Bakır(II), Nikel(II), Kobalt(II) ve Çinko(II) Asetilsalisilatların Nikotinamid ve Dietilnikotinamid Komplekslerinin Sentezi ve Yapılarının İncelenmesi" (Yüksek Lisans Tezi), Kafkas Üniversitesi Fen Bilimleri Enstitüsü, (2001).

[91] Kaya A. A., "Bakır(II), Nikel(II), Kobalt(II) ve Çinko(II) 3-Hidroksibenzoatların Nikotinamid ve Dietilnikotinamid Komplekslerinin Sentezi ve Özellikleri" (Yüksek Lisans Tezi), Kafkas Üniversitesi Fen Bilimleri Enstitüsü, (2004).

[92] Necefoglu, H., Aybirdi, Ö., Tercan, B., Süzen, Y., Hökelek, T., "Tetraaquabis[4-(methylamino)benzoato-*m*O] nickel(II)", Acta Cryst. E66, 585-586 (2010).

[93] Köse, D. A., Zümreoğlu-Karan, B., Şahin, O. and Büyükgüngör, O., "Transition metal(II) complexes of vitamin B13 with monodentate orotate(1⁻) ligands", J. Mol. Struct, 789, 147 (2006).

[94] Necefoglu, H. ve Hökelek T., "Nicotinamide Adducts of Cobalt(II) Arylcarboxylates", Acta Cryst. (2000). A56 (Supplement), s412.

[95] Aybirdi, Ö., "*p*-Aminobenzoik asit türevlerinin komplekslerinin sentezi ve özellikleri" (Doktora Tezi), Kafkas Üniversitesi, Fen Bilimleri Enstitüsü (2010).

[96] Öztürkkan, F.E., "Kobalt p-Halojenobenzoatların Nikotinamid ve N,N'-Dietilnikotinamid Komplekslerinin Sentezi ve Özellikleri", (Yüksek Lisans Tezi) Kafkas Üniversitesi, Fen Bilimleri Enstitüsü (2005)

[97] Öztürkkan, F.E., Köse, D.A., Necefoglu, H. ve Uzun, İ, "Synthesis and Characterization of bis(N,N-Diethylnicotinamide) p-Halogenobenzoate Complexes of Co(II), Asian J. Chem., 19, 4880-4888 (2007).
8. EKLER

Co1—O4 ⁱ	2.143 (3)	C2—C1	1.387 (4)
Co1—O4	2.143 (3)	C2—C3	1.390 (5)
Co1—O5 ⁱ	2.075 (3)	С3—Н3	0.9300
Co1—O5	2.075 (3)	C4—C3	1.375 (5)
Co1—N1	2.145 (3)	C4—H4	0.9300
Co1—N1 ⁱ	2.145 (3)	C5—C4	1.381 (5)
F1—C13	1.348 (4)	С5—Н5	0.9300
01—C6	1.232 (4)	C6—C2	1.499 (5)
O2—C7	1.244 (4)	С7—С8	1.505 (5)
O3—C7	1.270 (4)	С8—С9	1.399 (5)
O4—H41	0.91 (5)	C8—C13	1.384 (5)
O4—H42	0.90 (3)	C9—C10	1.379 (5)
O5—H51	0.90 (4)	С9—Н9	0.9300
O5—H52	0.91 (2)	C10—H10	0.9300
N1—C1	1.342 (4)	C11—C10	1.377 (6)
N1—C5	1.342 (4)	C11—H11	0.9300
N2—C6	1.330 (5)	C12—C11	1.378 (6)
N2—H21	0.87 (2)	C12—C13	1.376 (5)
N2—H22	0.87 (2)	C12—H12	0.9300
C1—H1	0.9300		
O4 ⁱ —Co1—O4	180.0	С2—С3—Н3	120.6
O4 ⁱ —Co1—N1	86.31 (10)	C4—C3—C2	118.7 (3)
O4—Co1—N1	93.69 (10)	С4—С3—Н3	120.6
O4 ⁱ —Co1—N1 ⁱ	93.69 (10)	C3—C4—C5	119.3 (3)
O4—Co1—N1 ⁱ	86.31 (10)	C3—C4—H4	120.3
O5 ⁱ —Co1—O4 ⁱ	91.75 (12)	С5—С4—Н4	120.3
O5—Co1—O4 ⁱ	88.25 (12)	N1C5C4	123.0 (3)
O5 ⁱ —Co1—O4	88.25 (12)	N1—C5—H5	118.5
O5—Co1—O4	91.75 (12)	С4—С5—Н5	118.5
O5 ¹ —Co1—O5	180.0	O1—C6—N2	123.5 (3)
O5 ⁱ —Co1—N1	92.59 (11)	O1—C6—C2	119.1 (3)
O5—Co1—N1	87.41 (11)	N2—C6—C2	117.3 (3)
$O5^{i}$ —Co1—N1 ⁱ	87.41 (11)	O2—C7—O3	124.3 (3)
$O5-Co1-N1^{i}$	92.59 (11)	O2—C7—C8	119.3 (3)
N1—Co1—N1 ⁱ	180.000 (1)	O3—C7—C8	116.3 (3)
Co1—O4—H41	124 (3)	С9—С8—С7	119.6 (3)
Co1—O4—H42	101 (4)	C13—C8—C7	123.9 (3)
H41—O4—H42	106 (3)	C13—C8—C9	116.5 (3)
Co1—O5—H51	136 (3)	С8—С9—Н9	119.2

Ek Tablo 1. (1) kristalinin geometrik parametreleri (Å, °)

Co1—O5—H52	116 (3)	С10—С9—С8	121.5 (3)
H51—O5—H52	107 (3)	С10—С9—Н9	119.2
C1—N1—Co1	121.3 (2)	С9—С10—Н10	120.1
C5—N1—C1	117.3 (3)	C11—C10—C9	119.7 (4)
C5—N1—Co1	121.1 (2)	C11-C10-H10	120.1
C6—N2—H21	118 (3)	C10-C11-C12	120.4 (4)
C6—N2—H22	122 (3)	C10-C11-H11	119.8
H21—N2—H22	118 (4)	C12—C11—H11	119.8
N1—C1—C2	123.3 (3)	C11—C12—H12	120.6
N1—C1—H1	118.3	C13—C12—C11	118.8 (4)
C2—C1—H1	118.3	С13—С12—Н12	120.6
C1—C2—C3	118.4 (3)	F1—C13—C12	117.1 (3)
C1—C2—C6	122.5 (3)	F1—C13—C8	119.8 (3)
C3—C2—C6	119.1 (3)	C12—C13—C8	123.0 (4)
O4 ⁱ —Co1—N1—C1	-51.9 (3)	O1—C6—C2—C3	-19.9 (5)
O4—Co1—N1—C1	128.1 (3)	N2-C6-C2-C1	-20.0 (5)
O4 ⁱ —Co1—N1—C5	135.3 (3)	N2—C6—C2—C3	161.2 (3)
O4—Co1—N1—C5	-44.7 (3)	02—C7—C8—C9	-149.0 (3)
O5 ⁱ —Co1—N1—C1	39.7 (3)	O2—C7—C8—C13	30.0 (5)
O5—Co1—N1—C1	-140.3 (3)	O3—C7—C8—C9	29.2 (4)
O5 ⁱ —Co1—N1—C5	-133.1 (3)	O3—C7—C8—C13	-151.7 (3)
O5-Co1-N1-C5	46.9 (3)	C7—C8—C9—C10	178.3 (3)
Co1—N1—C1—C2	-172.2 (3)	C13—C8—C9—C10	-0.8 (5)
C5—N1—C1—C2	0.9 (5)	C7—C8—C13—F1	4.5 (5)
Co1—N1—C5—C4	172.4 (3)	C7—C8—C13—C12	-178.5 (4)
C1—N1—C5—C4	-0.8 (5)	C9—C8—C13—F1	-176.4 (3)
C3—C2—C1—N1	-0.8 (5)	C9—C8—C13—C12	0.5 (6)
C6-C2-C1-N1	-179.5 (3)	C8—C9—C10—C11	1.1 (6)
C1—C2—C3—C4	0.5 (5)	C12—C11—C10—C9	-1.2 (7)
C6—C2—C3—C4	179.3 (3)	C11—C12—C13—F1	176.4 (4)
C5—C4—C3—C2	-0.4 (5)	C11—C12—C13—C8	-0.6 (7)
N1-C5-C4-C3	0.5 (6)	C13—C12—C11—C10	1.0 (7)
O1—C6—C2—C1	158.9 (4)		

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
N2—H21···O1 ⁱⁱ	0.87 (2)	2.04 (3)	2.902 (5)	171 (4)
N2—H22…F1 ⁱⁱⁱ	0.87 (2)	2.54 (4)	2.916 (5)	107 (2)
N2—H22···O2 ⁱⁱⁱ	0.87 (2)	2.26 (3)	3.116 (5)	172 (4)
O4—H41…O3	0.91 (5)	2.06 (4)	2.885 (4)	151 (4)
O4—H42···O3 ^{iv}	0.90 (3)	1.86 (5)	2.761 (4)	178 (5)
O5—H51···O2 ^v	0.90 (4)	1.80 (4)	2.695 (4)	172 (4)
O5—H52···O3 ^{vi}	0.91 (2)	1.95 (4)	2.798 (4)	156 (4)

Ek Tablo 2. (1) kristalinin hidrojen bağı geometrisi (Å, °)

Simetri Kodları: (ii) -x, -y+1, -z+2; (iii) x-1, y, z; (iv) -x+1, -y+2, -z+1; (v) -x+2, -y+1, -z+1; (vi) x, y-1, z.

Ek Tablo 3. (3) kristalinin geometrik parametreleri (Å, °)

Zn1—O1	2.296 (3)	С13—Н13	0.9300
Zn1—O2	2.006 (3)	C14—C13	1.402 (7)
Zn1—O5	1.958 (3)	C14—H14	0.9300
Zn1—O7	2.005 (3)	C16—C15	1.496 (6)
Zn1—N1	2.068 (4)	C16—C17	1.389 (6)
Zn2—O3	1.995 (3)	C16—C21	1.387 (7)
Zn2—O6	1.975 (3)	C18—C17	1.375 (6)
Zn2—O8	1.940 (3)	C18—C19	1.378 (7)
Zn2—N3	2.021 (4)	C18—H18	0.9300
F1—C3	1.338 (5)	C19—C20	1.378 (7)
F3—C17	1.353 (6)	С19—Н19	0.9300
F5—C43	1.331 (5)	С20—Н20	0.9300
01—C1	1.250 (5)	C21—C20	1.384 (7)
O2—C1	1.276 (5)	C21—H21	0.9300
O3—C8	1.276 (5)	C22—C23	1.479 (6)
O4—C8	1.237 (5)	C24—C23	1.406 (6)
O5—C15	1.256 (5)	C24—H28'	0.9300
O6—C15	1.266 (5)	C25—C24	1.403 (6)
O7—C22	1.261 (5)	С25—Н25	0.9300
O8—C22	1.259 (5)	C26—C25	1.367 (7)
O9—C34	1.231 (5)	C26—C27	1.378 (7)
O10—C40	1.240 (5)	С26—Н26	0.9300
O11—C47	1.225 (6)	C27—C28	1.398 (6)
O12—C47	1.301 (6)	С27—Н27	0.9300
O12—H121	0.92 (8)	C28—C23	1.398 (6)
N1—C29	1.335 (6)	C28—H28	0.9300
N1—C33	1.353 (5)	C29—C30	1.387 (6)

N2—C34	1.335 (6)	С29—Н29	0.9300
N2—H2A	0.82 (5)	C31—C30	1.392 (6)
N2—H2B	0.84 (6)	C31—C32	1.380 (7)
N3—C35	1.335 (6)	C31—H31	0.9300
N3—C39	1.349 (5)	С32—Н32	0.9300
N4—C40	1.324 (6)	C33—C32	1.374 (6)
N4—H4A	0.81 (5)	С33—Н33	0.9300
N4—H4B	0.92 (7)	C34—C30	1.494 (6)
C2—C1	1.494 (6)	С35—Н35	0.9300
С2—С3	1.379 (6)	C36—C35	1.382 (6)
С2—С7	1.394 (6)	C36—C37	1.391 (6)
C3—C4	1.379 (7)	C36—C40	1.504 (6)
С4—Н4	0.9300	C37—C38	1.382 (6)
C5—C4	1.379 (7)	С37—Н37	0.9300
С5—Н5	0.9300	С38—Н38	0.9300
C6—C5	1.378 (7)	C39—C38	1.380 (6)
С6—Н6	0.9300	С39—Н39	0.9300
С7—С6	1.380 (6)	C41—C46	1.374 (8)
С7—Н7	0.9300	C41—H41	0.9300
С8—С9	1.490 (6)	C42—C41	1.377 (7)
C9—C14	1.407 (6)	С42—Н42	0.9300
С10—С9	1.398 (6)	C43—C42	1.379 (7)
C10—C11	1.398 (7)	C44—C43	1.391 (7)
C10—H14'	0.9300	C44—C47	1.479 (7)
C11—H11	0.9300	C45—C44	1.395 (6)
C12—C11	1.363 (7)	C45—C46	1.371 (7)
С12—Н12	0.9300	C45—H45	0.9300
C13—C12	1.372 (7)	C46—H46	0.9300
O2—Zn1—O1	60.92 (12)	C19—C18—H18	120.4
O2—Zn1—N1	100.57 (14)	C18—C19—C20	120.1 (5)
O5—Zn1—O1	95.98 (12)	C18—C19—H19	120.0
O5—Zn1—O2	150.56 (13)	C20—C19—H19	120.0
O5—Zn1—O7	106.60 (12)	C19—C20—C21	119.6 (5)
O5—Zn1—N1	97.64 (13)	C19—C20—H20	120.2
O7—Zn1—O1	154.68 (12)	C21—C20—H20	120.2
O7—Zn1—O2	93.94 (12)	C16—C21—H21	119.0
07—Zn1—N1	97.05 (13)	C20—C21—C16	121.9 (5)
N1—Zn1—O1	91.04 (13)	C20—C21—H21	119.0
O3—Zn2—N3	112.33 (15)	O7—C22—C23	117.3 (4)
O6—Zn2—O3	97.28 (12)	O8—C22—O7	124.9 (4)
O6—Zn2—N3	106.36 (14)	O8—C22—C23	117.7 (4)

O8—Zn2—O3	129.40 (14)	C24—C23—C22	122.2 (4)
O8—Zn2—O6	107.39 (13)	C28—C23—C22	121.5 (4)
O8—Zn2—N3	102.19 (14)	C28—C23—C24	116.2 (4)
C1—O1—Zn1	82.8 (3)	С23—С24—Н28'	119.2
C1—O2—Zn1	95.3 (3)	C25—C24—C23	121.6 (4)
C8—O3—Zn2	102.6 (3)	C25—C24—H28'	119.2
C15—O5—Zn1	140.1 (3)	С24—С25—Н25	120.3
C15—O6—Zn2	125.3 (3)	C26—C25—C24	119.4 (4)
C22—O7—Zn1	143.0 (3)	С26—С25—Н25	120.3
C22—O8—Zn2	122.4 (3)	C25—C26—C27	121.6 (4)
C47—O12—H121	109 (4)	С25—С26—Н26	119.2
C29—N1—Zn1	120.9 (3)	С27—С26—Н26	119.2
C29—N1—C33	117.7 (4)	C26—C27—C28	118.4 (4)
C33—N1—Zn1	121.4 (3)	С26—С27—Н27	120.8
C34—N2—H2A	120 (4)	С28—С27—Н27	120.8
C34—N2—H2B	115 (4)	C23—C28—C27	122.8 (4)
H2A—N2—H2B	124 (5)	С23—С28—Н28	118.6
C35—N3—Zn2	119.5 (3)	С27—С28—Н28	118.6
C35—N3—C39	118.0 (4)	N1-C29-C30	123.9 (4)
C39—N3—Zn2	122.4 (3)	N1—C29—H29	118.0
C40—N4—H4A	122 (4)	С30—С29—Н29	118.0
C40—N4—H4B	114 (4)	C29—C30—C31	117.7 (4)
H4A—N4—H4B	124 (5)	C29—C30—C34	117.4 (4)
01—C1—O2	120.7 (4)	C31—C30—C34	124.9 (4)
O1—C1—C2	122.0 (4)	С30—С31—Н31	120.6
O2—C1—C2	117.3 (4)	C32—C31—C30	118.7 (4)
C3—C2—C1	123.7 (4)	С32—С31—Н31	120.6
C3—C2—C7	116.8 (4)	С31—С32—Н32	120.0
C7—C2—C1	119.5 (4)	C33—C32—C31	120.1 (4)
F1—C3—C2	120.1 (4)	С33—С32—Н32	120.0
F1—C3—C4	117.1 (4)	N1—C33—C32	121.9 (4)
C4—C3—C2	122.8 (4)	N1—C33—H33	119.1
С3—С4—Н4	120.5	С32—С33—Н33	119.1
C5—C4—C3	118.9 (5)	O9—C34—N2	122.5 (4)
С5—С4—Н4	120.5	O9—C34—C30	119.3 (4)
С4—С5—Н5	120.0	N2—C34—C30	118.3 (4)
C6—C5—C4	120.1 (5)	N3—C35—C36	123.8 (4)
С6—С5—Н5	120.0	N3—C35—H35	118.1
C5—C6—C7	119.9 (5)	С36—С35—Н35	118.1
С5—С6—Н6	120.1	C35—C36—C37	117.9 (4)
С7—С6—Н6	120.1	C35—C36—C40	116.4 (4)
С2—С7—Н7	119.3	C37—C36—C40	125.7 (4)

С6—С7—С2	121.4 (4)	С36—С37—Н37	120.6
С6—С7—Н7	119.3	C38—C37—C36	118.8 (4)
O3—C8—C9	118.7 (4)	С38—С37—Н37	120.6
O4—C8—O3	121.1 (4)	С37—С38—Н38	120.1
O4—C8—C9	120.2 (4)	C39—C38—C37	119.8 (4)
С10—С9—С8	125.0 (4)	С39—С38—Н38	120.1
C14—C9—C10	115.9 (4)	N3—C39—C38	121.8 (4)
С14—С9—С8	119.1 (4)	N3—C39—H39	119.1
С9—С10—Н14'	118.9	С38—С39—Н39	119.1
С11—С10—С9	122.3 (4)	O10-C40-N4	122.8 (4)
C11—C10—H14'	118.9	O10—C40—C36	118.3 (4)
C10-C11-H11	120.3	N4—C40—C36	118.9 (4)
C12—C11—C10	119.4 (5)	C42—C41—H41	119.9
С12—С11—Н11	120.3	C46—C41—C42	120.2 (5)
C11—C12—C13	121.5 (5)	C46—C41—H41	119.9
C11—C12—H12	119.3	C41—C42—C43	119.2 (5)
C13—C12—H12	119.3	C41—C42—H42	120.4
C12—C13—C14	118.9 (5)	C43—C42—H42	120.4
C12—C13—H13	120.6	F5—C43—C42	117.0 (5)
C14—C13—H13	120.6	F5—C43—C44	121.0 (4)
C9—C14—C13	122.2 (4)	C42—C43—C44	122.0 (4)
C9—C14—H14	118.9	C43—C44—C45	117.1 (5)
C13—C14—H14	118.9	C43—C44—C47	125.3 (4)
O5—C15—O6	125.5 (4)	C45—C44—C47	117.6 (4)
O5—C15—C16	118.4 (4)	C44—C45—H45	119.4
O6—C15—C16	116.1 (4)	C46—C45—C44	121.3 (5)
C17—C16—C15	124.3 (4)	C46—C45—H45	119.4
C21—C16—C15	119.2 (4)	C41—C46—H46	119.9
C21—C16—C17	116.4 (4)	C45—C46—C41	120.3 (5)
F3—C17—C16	120.6 (4)	C45—C46—H46	119.9
F3—C17—C18	116.6 (4)	O11—C47—O12	122.8 (5)
C18—C17—C16	122.8 (5)	O11—C47—C44	120.5 (4)
C17—C18—C19	119.1 (5)	O12—C47—C44	116.7 (5)
C17—C18—H18	120.4		
O2—Zn1—O1—C1	-3.1 (3)	C2—C7—C6—C5	0.0 (7)
O5—Zn1—O1—C1	-163.8 (3)	O3—C8—C9—C10	-7.4 (7)
O7—Zn1—O1—C1	-10.6 (4)	O3—C8—C9—C14	171.5 (4)
N1—Zn1—O1—C1	98.4 (3)	O4—C8—C9—C10	171.3 (4)
O1—Zn1—O2—C1	3.0 (2)	O4—C8—C9—C14	-9.7 (7)
O5—Zn1—O2—C1	45.1 (4)	C10-C9-C14-C13	0.8 (7)
O7—Zn1—O2—C1	179.9 (3)	C8—C9—C14—C13	-178.3 (5)

N1—Zn1—O2—C1	-82.2 (3)	C11—C10—C9—C14	-0.7 (7)
O1—Zn1—O5—C15	125.1 (5)	С11—С10—С9—С8	178.3 (5)
O2—Zn1—O5—C15	89.0 (5)	C9—C10—C11—C12	0.1 (8)
O7—Zn1—O5—C15	-43.3 (5)	C13—C12—C11—C10	0.4 (8)
N1—Zn1—O5—C15	-143.1 (5)	C14—C13—C12—C11	-0.4 (8)
O1—Zn1—O7—C22	-91.5 (5)	C9—C14—C13—C12	-0.3 (8)
O2—Zn1—O7—C22	-98.0 (5)	C17—C16—C15—O5	-17.1 (7)
O5—Zn1—O7—C22	60.6 (5)	C17—C16—C15—O6	163.6 (4)
N1—Zn1—O7—C22	160.8 (5)	C21—C16—C15—O5	163.9 (4)
O1—Zn1—N1—C29	-118.6 (3)	C21—C16—C15—O6	-15.4 (6)
O1—Zn1—N1—C33	60.8 (3)	C15—C16—C17—F3	-0.8 (7)
O2—Zn1—N1—C29	-58.0 (3)	C15—C16—C17—C18	-178.8 (5)
O2—Zn1—N1—C33	121.4 (3)	C21—C16—C17—F3	178.2 (4)
O5—Zn1—N1—C29	145.2 (3)	C21—C16—C17—C18	0.2 (7)
O5—Zn1—N1—C33	-35.4 (3)	C17—C16—C21—C20	-0.8 (7)
O7—Zn1—N1—C29	37.3 (3)	C15—C16—C21—C20	178.3 (5)
O7—Zn1—N1—C33	-143.2 (3)	C19—C18—C17—F3	-177.8 (5)
O8—Zn2—O3—C8	53.8 (3)	C19—C18—C17—C16	0.3 (8)
O6—Zn2—O3—C8	173.4 (3)	C17—C18—C19—C20	-0.3 (9)
N3—Zn2—O3—C8	-75.5 (3)	C18—C19—C20—C21	-0.3 (9)
O3—Zn2—O6—C15	-50.5 (4)	C16—C21—C20—C19	0.9 (9)
O8—Zn2—O6—C15	84.8 (4)	O7—C22—C23—C24	-162.1 (4)
N3—Zn2—O6—C15	-166.4 (3)	O7—C22—C23—C28	13.1 (6)
O3—Zn2—O8—C22	29.6 (4)	O8—C22—C23—C24	16.2 (6)
O6—Zn2—O8—C22	-85.8 (3)	O8—C22—C23—C28	-168.5 (4)
N3—Zn2—O8—C22	162.5 (3)	C25—C24—C23—C28	-1.8 (6)
O3—Zn2—N3—C35	-57.3 (3)	C25—C24—C23—C22	173.8 (4)
O3—Zn2—N3—C39	117.9 (3)	C26—C25—C24—C23	1.4 (7)
O6—Zn2—N3—C35	48.0 (3)	C27—C26—C25—C24	0.3 (7)
O6—Zn2—N3—C39	-136.8 (3)	C25—C26—C27—C28	-1.6 (7)
O8—Zn2—N3—C35	160.4 (3)	C26—C27—C28—C23	1.1 (7)
O8—Zn2—N3—C39	-24.3 (4)	С27—С28—С23—С24	0.5 (6)
Zn1—01—C1—02	5.0 (4)	C27—C28—C23—C22	-175.1 (4)
Zn1—O1—C1—C2	-172.5 (4)	N1-C29-C30-C31	0.5 (7)
Zn1—02—C1—01	-5.7 (5)	N1-C29-C30-C34	-178.9 (4)
Zn1—O2—C1—C2	171.9 (3)	C32—C31—C30—C29	-0.8 (6)
Zn2—O3—C8—O4	-5.4 (5)	C32—C31—C30—C34	178.7 (4)
Zn2—O3—C8—C9	173.4 (3)	C30—C31—C32—C33	-0.1 (6)
Zn1	-11.4 (8)	N1-C33-C32-C31	1.3 (7)
Zn1	169.4 (3)	N2-C34-C30-C29	-172.6 (4)
Zn2—O6—C15—O5	-3.1 (6)	N2-C34-C30-C31	8.0 (7)
Zn2—O6—C15—C16	176.2 (3)	O9—C34—C30—C29	6.7 (7)

Zn1—07—C22—O8	-12.9 (7)	O9—C34—C30—C31	-172.8 (4)
Zn1—07—C22—C23	165.3 (3)	C37—C36—C35—N3	1.1 (6)
Zn2—O8—C22—O7	16.4 (6)	C40—C36—C35—N3	-177.4 (4)
Zn2—O8—C22—C23	-161.8 (3)	C35—C36—C37—C38	-0.6 (6)
Zn1—N1—C29—C30	-180.0 (3)	C40—C36—C37—C38	177.9 (4)
C33—N1—C29—C30	0.6 (6)	C35—C36—C40—O10	-0.5 (6)
Zn1—N1—C33—C32	179.1 (3)	C37—C36—C40—O10	-179.0 (4)
C29—N1—C33—C32	-1.5 (6)	C35—C36—C40—N4	179.2 (4)
Zn2—N3—C35—C36	175.3 (3)	C37—C36—C40—N4	0.7 (7)
C39—N3—C35—C36	-0.2 (6)	C36—C37—C38—C39	-0.8 (6)
Zn2—N3—C39—C38	-176.6 (3)	N3—C39—C38—C37	1.8 (7)
C35—N3—C39—C38	-1.3 (6)	C42—C41—C46—C45	-0.4 (8)
C3—C2—C1—O1	-6.1 (7)	C43—C42—C41—C46	-0.1 (8)
C3—C2—C1—O2	176.3 (4)	F5—C43—C42—C41	179.6 (4)
C7—C2—C1—O1	171.4 (4)	C44—C43—C42—C41	0.8 (7)
C7—C2—C1—O2	-6.2 (6)	C45—C44—C43—F5	-179.7 (4)
C1—C2—C3—F1	-7.9 (7)	C45—C44—C43—C42	-0.9 (7)
C1—C2—C3—C4	174.4 (5)	C47—C44—C43—F5	0.5 (7)
C7—C2—C3—F1	174.6 (4)	C47—C44—C43—C42	179.2 (4)
C7—C2—C3—C4	-3.2 (7)	C43—C44—C47—O11	-176.7 (5)
C1—C2—C7—C6	-175.2 (4)	C43—C44—C47—O12	3.8 (7)
С3—С2—С7—С6	2.5 (7)	C45—C44—C47—O11	3.5 (7)
F1—C3—C4—C5	-176.5 (4)	C45—C44—C47—O12	-176.0 (4)
C2—C3—C4—C5	1.3 (8)	C46—C45—C44—C43	0.5 (7)
C6—C5—C4—C3	1.4 (8)	C46—C45—C44—C47	-179.7 (5)
C7—C6—C5—C4	-2.0 (8)	C44—C45—C46—C41	0.2 (8)

Ek Tablo 4. (3) kristalinin hidrojen bağı geometrisi (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H··· A
N2—H2A····O1 ⁱ	0.82 (5)	2.39 (5)	3.056 (6)	140 (5)
N2—H2B…O10 ⁱⁱ	0.84 (6)	2.03 (5)	2.863 (6)	176.4 (5)
N4—H4A…O4 ⁱⁱⁱ	0.81 (5)	2.11 (5)	2.825 (5)	149 (5)
N4—H4B····O9 ^{iv}	0.92 (7)	1.96 (7)	2.874 (6)	176 (7)
O12—H121…O11 ^v	0.92 (8)	1.71 (8)	2.626 (5)	174 (6)

Simetri Kodları: (i) -x, y+1/2, -z+1/2; (ii) x, y+1, z; (iii) -x+1, y-1/2, -z+1/2; (iv) x, y-1, z; (v) -x+1, -y+2, -z.

Ī	Ni1—O4	2.0925 (10)	C2—C3	1.3913 (19)
	Ni1—O4 ⁱ	2.0925 (10)	C2—C6	1.5012 (18)
	Ni1—O5	2.0658 (10)	C3—C4	1.3871 (19)
	Ni1—O5 ⁱ	2.0658 (10)	С3—Н3	0.9300
	Ni1—N1	2.0834 (11)	C4—C5	1.3841 (19)
	Ni1—N1 ⁱ	2.0834 (11)	C4—H4	0.9300
	O1—C6	1.2346 (17)	С5—Н5	0.9300
	O2—C13	1.2507 (17)	C7—C12	1.383 (2)
	O3—C13	1.2728 (16)	С7—С8	1.3894 (19)
	O4—H4A	0.887 (16)	С7—Н9'	0.9300
	O4—H4B	0.887 (16)	С8—С9	1.3963 (19)
	O5—H5B	0.887 (16)	C8—C13	1.5088 (18)
	O5—H5A	0.887 (15)	C9—C10	1.383 (2)
	N1-C1	1.3427 (17)	С9—Н9	0.9300
	N1—C5	1.3474 (18)	C10-C11	1.386 (2)
	N2—C6	1.3350 (18)	C10—H10	0.9300
	N2—H2A	0.8600	C11—C12	1.387 (2)
	N2—H2B	0.8600	C11—H11	0.9300
	C1—C2	1.3924 (18)	C12—H12	0.9300
	C1—H1	0.9300		
	O4—Ni1—O4 ⁱ	180.0	C4—C3—C2	118.59 (12)
	O5—Ni1—O4	90.92 (4)	С4—С3—Н3	120.7
	O5 ⁱ —Ni1—O4	89.08 (4)	С2—С3—Н3	120.7
	$O5-Ni1-O4^{i}$	89.08 (4)	C5—C4—C3	119.22 (13)
	O5 ⁱ —Ni1—O4 ⁱ	90.92 (4)	С5—С4—Н4	120.4
	O5 ⁱ —Ni1—O5	180.0	C3—C4—H4	120.4
	O5 ⁱ —Ni1—N1	87.25 (4)	N1C5C4	122.81 (13)
	O5—Ni1—N1	92.75 (4)	N1—C5—H5	118.6
	O5 ⁱ —Ni1—N1 ⁱ	92.75 (4)	C4—C5—H5	118.6
	O5—Ni1—N1 ⁱ	87.25 (4)	O1—C6—N2	123.50 (13)
	N1-Ni1-04	86.98 (4)	O1—C6—C2	119.09 (13)
	N1 ⁱ —Ni1—O4	93.02 (4)	N2—C6—C2	117.41 (12)
	N1—Ni1—O4 ⁱ	93.02 (4)	С12—С7—С8	122.85 (13)
	N1 ⁱ —Ni1—O4 ⁱ	86.98 (4)	С12—С7—Н9'	118.6
	N1—Ni1—N1 ⁱ	180.000 (1)	С8—С7—Н9'	118.6
	C1—N1—C5	117.73 (12)	С7—С8—С9	116.63 (12)
	C1—N1—Ni1	121.30 (9)	C7—C8—C13	123.60 (12)
	C5—N1—Ni1	120.73 (9)	C9—C8—C13	119.76 (12)
	C6—N2—H2A	120.0	С10—С9—С8	121.97 (13)
	C6—N2—H2B	120.0	С10—С9—Н9	119.0
	H2A—N2—H2B	120.0	С8—С9—Н9	119.0

Ek Tablo 5. (5) kristalinin geometrik parametreleri (Å, °)

Ni1—O4—H4A	122.6 (16)	C9—C10—C11	119.44 (14)
Ni1—O4—H4B	106.3 (15)	С9—С10—Н10	120.3
H4A—O4—H4B	106 (2)	C11—C10—H10	120.3
Ni1—O5—H5B	115.1 (15)	C10-C11-C12	120.41 (14)
Ni1—O5—H5A	133.2 (15)	C10—C11—H11	119.8
H5B—O5—H5A	106 (2)	С12—С11—Н11	119.8
N1—C1—C2	123.02 (12)	C7—C12—C11	118.69 (14)
N1—C1—H1	118.5	С7—С12—Н12	120.7
С2—С1—Н1	118.5	С11—С12—Н12	120.7
C3—C2—C1	118.63 (12)	O2—C13—O3	124.22 (12)
C3—C2—C6	118.92 (12)	O2—C13—C8	119.65 (12)
C1—C2—C6	122.44 (12)	O3—C13—C8	116.10 (12)
O5 ⁱ —Ni1—N1—C1	-139.82 (11)	C3—C4—C5—N1	0.2 (2)
O5—Ni1—N1—C1	40.18 (11)	C3—C2—C6—O1	-19.6 (2)
O4—Ni1—N1—C1	-50.59 (10)	C1—C2—C6—O1	159.27 (13)
O4 ⁱ —Ni1—N1—C1	129.41 (10)	C3—C2—C6—N2	161.24 (13)
O5 ⁱ —Ni1—N1—C5	45.93 (11)	C1—C2—C6—N2	-19.8 (2)
O5—Ni1—N1—C5	-134.07 (11)	С12—С7—С8—С9	0.3 (2)
O4—Ni1—N1—C5	135.16 (11)	C12—C7—C8—C13	-178.58 (13)
O4 ⁱ —Ni1—N1—C5	-44.84 (11)	C7—C8—C9—C10	-0.7 (2)
C5—N1—C1—C2	0.8 (2)	C13—C8—C9—C10	178.17 (12)
Nil—Nl—Cl—C2	-173.61 (10)	C8—C9—C10—C11	1.0 (2)
N1—C1—C2—C3	-0.7 (2)	C9—C10—C11—C12	-0.8 (2)
N1—C1—C2—C6	-179.57 (12)	C8—C7—C12—C11	-0.1 (2)
C1—C2—C3—C4	0.3 (2)	C10—C11—C12—C7	0.4 (2)
C6—C2—C3—C4	179.22 (12)	C7—C8—C13—O2	28.4 (2)
C2—C3—C4—C5	-0.1 (2)	C9—C8—C13—O2	-150.41 (13)
C1—N1—C5—C4	-0.6 (2)	C7—C8—C13—O3	-153.53 (13)
Ni1—N1—C5—C4	173.85 (10)	C9—C8—C13—O3	27.64 (18)

Ek Tablo 6. (5) kristalinin hidrojen bağı geometrisi (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	<i>D</i> —H… <i>A</i>
N2—H2A···O1 ⁱⁱ	0.86	2.03	2.8875 (17)	171
N2—H2B····O2 ⁱⁱⁱ	0.86	2.23	3.0654 (16)	164
O4—H4A···O3 ⁱ	0.887 (16)	2.01 (3)	2.8372 (15)	155 (2)
O4—H4B····O3 ^{iv}	0.887 (16)	1.87 (2)	2.7288 (15)	163 (2)
O5—H5A···O2 ⁱⁱⁱ	0.887 (16)	1.82 (2)	2.7001 (15)	175 (3)
O5—H5B···O3 ^v	0.887 (15)	1.94 (2)	2.7774 (15)	157 (2)
C10—H10····O2 ⁱⁱⁱ	0.93	2.52	3.339 (2)	147
C12—H12…F1 ^{vi}	0.93	2.51	3.4314 (19)	173

Simetri Kodları: (ii) -x, -y+1, -z+2; (iii) x-1, y, z; (i) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x+1, -y+2, -z+1; (vi) -x+1, -y+2, -z+2.

Ni1—O1 ⁱ	2.1017 (16)	С3—Н3	0.9300
Ni1—O1	2.1017 (16)	C4—C3	1.383 (3)
Ni1—O4	2.1520 (16)	C4—C5	1.395 (3)
Ni1—O4 ⁱ	2.1520 (16)	C4—H4	0.9300
Ni1—N1 ⁱ	2.1217 (18)	C5—C6	1.381 (3)
Ni1—N1	2.1217 (18)	С5—Н5	0.9300
Cl1—C7	1.740 (2)	С6—Н6	0.9300
01—C1	1.267 (3)	C7—C2	1.404 (3)
O2—C1	1.258 (3)	С7—С6	1.393 (3)
O3—C13	1.246 (3)	С8—С9	1.384 (3)
O4—H41	0.85 (3)	С8—Н8	0.9300
O4—H42	0.850 (18)	С9—Н9	0.9300
N1—C8	1.350 (3)	С10—С9	1.382 (3)
N1—C12	1.335 (3)	С10—Н10	0.9300
N2—C13	1.329 (3)	C11—C10	1.390 (3)
N2—H21	0.79 (3)	C11—C12	1.389 (3)
N2—H22	0.84 (3)	C11—C13	1.492 (3)
C1—C2	1.508 (3)	C12—H12	0.9300
C2—C3	1.396 (3)		
O1 ⁱ —Ni1—O1	180.00 (5)	C4—C3—C2	122.0 (2)
O1 ⁱ —Ni1—O4	88.18 (6)	С4—С3—Н3	119.0
01—Ni1—O4	91.82 (6)	C3—C4—C5	119.7 (2)
O1 ⁱ —Ni1—O4 ⁱ	91.82 (6)	С3—С4—Н4	120.2
$O1$ — $Ni1$ — $O4^{i}$	88.18 (6)	С5—С4—Н4	120.2
O4—Ni1—O4 ⁱ	180.00 (9)	C4—C5—H5	120.1
O1 ⁱ —Ni1—N1 ⁱ	90.24 (7)	C6—C5—C4	119.9 (2)
O1—Ni1—N1 ⁱ	89.76 (7)	С6—С5—Н5	120.1
O1 ⁱ —Ni1—N1	89.76 (7)	C5—C6—C7	119.7 (2)
O1—Ni1—N1	90.24 (7)	С5—С6—Н6	120.2
N1 ⁱ —Ni1—N1	180.00 (14)	С7—С6—Н6	120.2
N1 ⁱ —Ni1—O4	91.44 (7)	C2—C7—Cl1	122.46 (19)
N1—Ni1—O4	88.56 (7)	C6—C7—Cl1	115.85 (18)
N1 ⁱ —Ni1—O4 ⁱ	88.56 (7)	С6—С7—С2	121.7 (2)
N1—Ni1—O4 ⁱ	91.44 (7)	N1-C8-C9	122.3 (2)
Ni1—O4—H41	98 (2)	N1—C8—H8	118.8
Ni1—O4—H42	122 (2)	С9—С8—Н8	118.8
H41—O4—H42	107 (3)	С8—С9—Н9	120.5
C1—O1—Ni1	123.37 (14)	С10—С9—С8	119.1 (2)
C8—N1—Ni1	122.93 (16)	С10—С9—Н9	120.5
C12—N1—Ni1	119.06 (14)	C9-C10-C11	119.3 (2)
C12—N1—C8	117.97 (19)	C9—C10—H10	120.4

Ek Tablo 7. (15) kristalinin geometrik parametreleri (Å, °)

C13—N2—H21	121 (2)	С11—С10—Н10	120.4
C13—N2—H22	118 (2)	C10-C11-C13	124.3 (2)
H22—N2—H21	118 (3)	C12—C11—C10	117.9 (2)
O1—C1—C2	117.6 (2)	C12—C11—C13	117.80 (19)
O2—C1—O1	124.4 (2)	N1-C12-C11	123.4 (2)
O2—C1—C2	117.89 (19)	N1—C12—H12	118.3
C3—C2—C1	118.8 (2)	С11—С12—Н12	118.3
C3—C2—C7	116.9 (2)	O3—C13—N2	122.2 (2)
C7—C2—C1	124.1 (2)	O3—C13—C11	119.9 (2)
С2—С3—Н3	119.0	N2-C13-C11	117.9 (2)
04—Ni1—O1—C1	-35.17 (18)	C1—C2—C3—C4	172.0 (2)
04 ⁱ —Ni1—O1—C1	144.83 (18)	С7—С2—С3—С4	-2.5 (3)
N1 ⁱ —Ni1—O1—C1	56.26 (18)	C5—C4—C3—C2	-0.3 (3)
N1—Ni1—O1—C1	-123.74 (18)	C3—C4—C5—C6	2.5 (3)
O1 ⁱ —Ni1—N1—C8	136.61 (18)	C4—C5—C6—C7	-1.7 (3)
01—Ni1—N1—C8	-43.39 (18)	Cl1—C7—C2—C1	10.4 (3)
O1 ⁱ —Ni1—N1—C12	-45.66 (17)	Cl1—C7—C2—C3	-175.42 (16)
01—Ni1—N1—C12	134.34 (17)	C6—C7—C2—C1	-170.8 (2)
O4—Ni1—N1—C12	42.53 (17)	С6—С7—С2—С3	3.4 (3)
O4 ⁱ —Ni1—N1—C12	-137.47 (17)	Cl1—C7—C6—C5	177.53 (17)
O4—Ni1—N1—C8	-135.20 (18)	C2—C7—C6—C5	-1.3 (3)
O4 ⁱ —Ni1—N1—C8	44.80 (18)	N1-C8-C9-C10	0.6 (4)
Ni1-01-C1-02	22.1 (3)	С11—С10—С9—С8	0.2 (4)
Ni1—01—C1—C2	-154.02 (15)	С12—С11—С10—С9	-0.7 (3)
Ni1—N1—C8—C9	176.99 (17)	С13—С11—С10—С9	177.3 (2)
C12—N1—C8—C9	-0.8 (3)	C10-C11-C12-N1	0.5 (3)
Ni1—N1—C12—C11	-177.65 (17)	C13-C11-C12-N1	-177.6 (2)
C8—N1—C12—C11	0.2 (3)	C10-C11-C13-O3	-173.6 (2)
O1—C1—C2—C3	28.5 (3)	C10-C11-C13-N2	4.8 (4)
O1—C1—C2—C7	-157.4 (2)	C12—C11—C13—O3	4.4 (3)
O2—C1—C2—C3	-147.9 (2)	C12—C11—C13—N2	-177.1 (2)
O2—C1—C2—C7	26.2 (3)		

Ek Tablo 8. (15) kristalinin hidrojen bağı geometrisi (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O4—H41…O2	0.84 (4)	1.82 (3)	2.630 (2)	161 (3)
O4—H42…O3 ⁱⁱ	0.85 (3)	2.09 (3)	2.887 (2)	156 (3)
N2—H21…O2 ⁱⁱⁱ	0.79 (3)	2.13 (3)	2.865 (3)	156 (3)
N2—H22···O3 ^{iv}	0.84 (3)	2.16 (3)	2.934 (3)	153 (3)
C9—H9···Cg1 ⁱⁱⁱ	0.93	2.88	3.596 (2)	135

Simetri Kodları: (ii) –*x*, –*y*, –*z*; (iii) *x*, *y*, *z*+1; (iv) –*x*, –*y*, –*z*+1.

Ni1—O1 ⁱ	2.0336 (10)	С7—С2	1.390 (2)
Ni1—O1	2.0336 (10)	С7—С6	1.386 (2)
Ni1—O4	2.0867 (10)	C8—C9	1.387 (2)
Ni1—O4 ⁱ	2.0867 (10)	С8—Н8	0.93
Ni1—N1 ⁱ	2.1181 (12)	С9—Н9	0.93
Ni1—N1	2.1181 (12)	C10—C9	1.379 (2)
Cl1—C7	1.7466 (17)	C10—H10	0.93
01—C1	1.2616 (17)	C11—C10	1.392 (2)
O2—C1	1.2435 (18)	C11—C12	1.384 (2)
O3—C13	1.2429 (17)	C12—H12	0.93
O4—H41	0.820 (15)	C13—N2	1.3369 (18)
O4—H42	0.854 (15)	C13—C11	1.501 (2)
N1—C8	1.3405 (19)	C14—H14A	0.97
N1—C12	1.3452 (18)	C14—H14B	0.97
N2—C14	1.470 (2)	C15—C14	1.522 (3)
N2—C16	1.4728 (19)	C15—H15A	0.96
C2—C3	1.392 (2)	C15—H15B	0.96
C2—C1	1.510 (2)	C15—H15C	0.96
C3—C4	1.394 (2)	C16—H16A	0.97
С3—Н3	0.93	C16—H16B	0.97
С4—Н4	0.93	C17—C16	1.519 (2)
C5—C4	1.382 (3)	C17—H17A	0.96
С5—Н5	0.93	C17—H17B	0.96
C6—C5	1.380 (2)	С17—Н17С	0.96
С6—Н6	0.93		
O1 ⁱ —Ni1—O1	180.0	С6—С7—С2	121.94 (15)
O1 ⁱ —Ni1—O4	93.00 (4)	C6—C7—Cl1	119.13 (13)
01—Ni1—O4	87.00 (4)	N1—C8—C9	122.93 (14)
O1 ⁱ —Ni1—O4 ⁱ	87.00 (4)	N1—C8—H8	118.5
O1—Ni1—O4 ⁱ	93.00 (4)	С9—С8—Н8	118.5
O1 ⁱ —Ni1—N1 ⁱ	90.70 (4)	С8—С9—Н9	120.3
O1—Ni1—N1 ⁱ	89.30 (4)	С10—С9—С8	119.41 (14)
O1 ⁱ —Ni1—N1	89.30 (4)	С10—С9—Н9	120.3
O1—Ni1—N1	90.70 (4)	C9—C10—C11	118.10 (13)
O4—Ni1—O4 ⁱ	180.0	С9—С10—Н10	121.0
O4—Ni1—N1 ⁱ	92.55 (4)	C11—C10—H10	121.0
O4 ⁱ —Ni1—N1 ⁱ	87.45 (4)	C10-C11-C13	118.90 (13)
O4—Ni1—N1	87.45 (4)	C12—C11—C10	119.09 (13)
O4 ⁱ —Ni1—N1	92.55 (4)	C12—C11—C13	121.91 (13)
N1 ⁱ —Ni1—N1	180.00 (7)	N1-C12-C11	122.94 (13)
C1-01-Ni1	127.35 (9)	N1—C12—H12	118.5

Ek Tablo 9. (16) kristalinin geometrik parametreleri (Å, °)

Ni1—O4—H41	104.4 (15)	С11—С12—Н12	118.5
Ni1—O4—H42	125.8 (15)	O3—C13—N2	122.60 (13)
H41—O4—H42	109 (2)	O3—C13—C11	118.39 (13)
C8—N1—Ni1	122.58 (10)	N2-C13-C11	119.01 (13)
C8—N1—C12	117.45 (12)	N2-C14-C15	112.80 (15)
C12—N1—Ni1	119.97 (9)	N2-C14-H14A	109.0
C13—N2—C14	124.98 (13)	N2-C14-H14B	109.0
C13—N2—C16	118.44 (12)	C15—C14—H14A	109.0
C14—N2—C16	116.10 (12)	C15—C14—H14B	109.0
01—C1—C2	114.14 (12)	H14A—C14—H14B	107.8
O2—C1—O1	127.09 (14)	C14—C15—H15A	109.5
O2—C1—C2	118.77 (13)	C14—C15—H15B	109.5
C3—C2—C1	121.41 (14)	C14—C15—H15C	109.5
C7—C2—C1	120.65 (14)	H15A—C15—H15B	109.5
С7—С2—С3	117.87 (14)	H15A—C15—H15C	109.5
C2—C3—C4	120.80 (16)	H15B—C15—H15C	109.5
С2—С3—Н3	119.6	N2-C16-C17	111.60 (13)
С4—С3—Н3	119.6	N2-C16-H16A	109.3
С3—С4—Н4	120.1	N2-C16-H16B	109.3
C5—C4—C3	119.74 (16)	С17—С16—Н16А	109.3
С5—С4—Н4	120.1	C17—C16—H16B	109.3
C6—C5—C4	120.52 (15)	H16A—C16—H16B	108.0
С6—С5—Н5	119.7	C16—C17—H17A	109.5
C4—C5—H5	119.7	С16—С17—Н17В	109.5
C5—C6—C7	119.08 (16)	С16—С17—Н17С	109.5
С5—С6—Н6	120.5	H17A—C17—H17B	109.5
С7—С6—Н6	120.5	H17A—C17—H17C	109.5
C2—C7—Cl1	118.94 (12)	H17B—C17—H17C	109.5
04—Ni1—O1—C1	172.55 (12)	C1—C2—C3—C4	-174.81 (14)
O4 ⁱ —Ni1—O1—C1	-7.45 (12)	C7—C2—C3—C4	2.0 (2)
N1 ⁱ —Ni1—O1—C1	-94.85 (12)	C2—C3—C4—C5	-0.2 (2)
N1—Ni1—O1—C1	85.15 (12)	C6—C5—C4—C3	-1.3 (3)
O1 ⁱ —Ni1—N1—C8	58.61 (11)	C7—C6—C5—C4	0.8 (3)
01—Ni1—N1—C8	-121.39 (11)	Cl1—C7—C2—C1	-5.36 (19)
O1 ⁱ —Ni1—N1—C12	-121.15 (11)	Cl1—C7—C2—C3	177.78 (12)
01—Ni1—N1—C12	58.85 (11)	C6—C7—C2—C1	174.35 (14)
O4—Ni1—N1—C8	151.65 (11)	С6—С7—С2—С3	-2.5 (2)
O4 ⁱ —Ni1—N1—C8	-28.35 (11)	Cl1—C7—C6—C5	-179.16 (12)
O4—Ni1—N1—C12	-28.11 (11)	C2—C7—C6—C5	1.1 (2)
O4 ⁱ —Ni1—N1—C12	151.89 (11)	N1—C8—C9—C10	1.6 (2)
Ni1-01-C1-02	-9.8 (2)	С11—С10—С9—С8	1.1 (2)
Ni1-01-C1-C2	170.38 (9)	С12—С11—С10—С9	-2.7 (2)

Ni1—N1—C8—C9	177.78 (11)	C13—C11—C10—C9	-179.11 (13)
C12—N1—C8—C9	-2.5 (2)	C10-C11-C12-N1	1.8 (2)
Ni1—N1—C12—C11	-179.49 (11)	C13—C11—C12—N1	178.16 (13)
C8—N1—C12—C11	0.7 (2)	O3—C13—N2—C14	-174.33 (15)
C13—N2—C14—C15	-110.16 (17)	O3—C13—N2—C16	-2.5 (2)
C16—N2—C14—C15	77.88 (18)	C11—C13—N2—C14	5.4 (2)
C13—N2—C16—C17	-90.03 (17)	C11—C13—N2—C16	177.22 (12)
C14—N2—C16—C17	82.48 (17)	O3—C13—C11—C10	61.59 (19)
C3—C2—C1—O1	85.51 (18)	O3—C13—C11—C12	-114.75 (16)
C3—C2—C1—O2	-94.30 (19)	N2-C13-C11-C10	-118.19 (15)
C7—C2—C1—O1	-91.23 (17)	N2-C13-C11-C12	65.48 (19)
C7—C2—C1—O2	88.96 (19)		

Ek Tablo 10. (16) kristalinin hidrojen bağı geometrisi (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A		
$O4$ — $H41$ ··· $O2^{i}$	0.82 (2)	1.86 (2)	2.6267 (17)	155 (2)		
O4—H42···O3 ⁱⁱ	0.85 (2)	1.93 (2)	2.7826 (15)	172 (2)		
Simetri Kodları: (i) $-x$, $-y+1$, $-z$; (ii) $-x+1/2$, $y-1/2$, $-z+1/2$.						

Mn1—O1	2.1233 (10)	С6—Н6	0.9300
Mn1—O1 ⁱ	2.1233 (10)	С7—С2	1.386 (2)
Mn1—O4 ⁱ	2.1987 (10)	С7—С6	1.386 (2)
Mn1—O4	2.1987 (10)	С8—С9	1.3859 (19)
Mn1—N1 ⁱ	2.2980 (12)	С8—Н8	0.9300
Mn1—N1	2.2980 (12)	C9—C10	1.3828 (19)
Cl1—C7	1.7464 (16)	С9—Н9	0.9300
01—C1	1.2595 (18)	С10—Н10	0.9300
O2—C1	1.2375 (18)	C11—C10	1.3920 (19)
O3—C13	1.2435 (17)	C11—C12	1.3875 (19)
O4—H41	0.896 (12)	C12—H12	0.9300
O4—H42	0.890 (15)	C13—C11	1.4991 (18)
N1—C8	1.3420 (18)	C14—C15	1.523 (3)
N1—C12	1.3419 (17)	C14—H14A	0.9700
N2—C13	1.3355 (19)	C14—H14B	0.9700
N2—C14	1.466 (2)	C15—H15A	0.9600
N2—C16	1.4742 (18)	C15—H15B	0.9600
C2—C1	1.512 (2)	C15—H15C	0.9600
C2—C3	1.394 (2)	C16—C17	1.519 (2)
C3—C4	1.392 (2)	C16—H16A	0.9700
С3—Н3	0.9300	C16—H16B	0.9700
C4—C5	1.385 (3)	C17—H17A	0.9600
C4—H4	0.9300	C17—H17B	0.9600
С5—Н5	0.9300	C17—H17C	0.9600
C6—C5	1.384 (2)		
$O1$ — $Mn1$ — $O1^{i}$	180.00 (8)	C6—C7—Cl1	118.68 (13)
$O1-Mn1-O4^{1}$	90.28 (4)	C6—C7—C2	122.05 (15)
$O1^{i}$ —Mn1— $O4^{i}$	89.72 (4)	N1—C8—C9	122.86 (13)
01—Mn1—O4	89.72 (4)	N1—C8—H8	118.6
O1 ¹ —Mn1—O4	90.28 (4)	С9—С8—Н8	118.6
$O1-Mn1-N1^{1}$	89.75 (4)	С8—С9—Н9	120.3
$O1^{i}$ —Mn1—N1 ⁱ	90.25 (4)	С10—С9—С8	119.35 (13)
O1—Mn1—N1	90.25 (4)	С10—С9—Н9	120.3
$O1^{1}$ —Mn1—N1	89.75 (4)	C9—C10—C11	118.26 (13)
$O4^{i}$ —Mn1—O4	180.00 (6)	С9—С10—Н10	120.9
$O4^{1}$ —Mn1—N1 ¹	86.76 (4)	C11—C10—H10	120.9
$O4$ — $Mn1$ — $N1^{1}$	93.24 (4)	C12—C11—C10	118.82 (13)
$O4^{1}$ —Mn1—N1	93.24 (4)	C12—C11—C13	121.82 (12)
O4—Mn1—N1	86.76 (4)	C10—C11—C13	119.15 (12)
$N1^{1}$ — $Mn1$ — $N1$	180.00 (10)	N1-C12-C11	123.10 (13)

Ek Tablo 11. (17) kristalinin geometrik parametreleri (Å, °)

$M_{rel} = 0.4 \text{II}.41$	105 2 (15)	N1 C12 U12	110 5
Mn1—04—H41	105.2 (15)	NI-CI2-HI2	118.5
Mn1—04—H42	125.6 (14)	CI1-CI2-HI2	118.5
H41—O4—H42	105.1 (19)	03—C13—N2	122.25 (12)
Cl—Ol—Mnl	129.29 (9)	O3—C13—C11	118.14 (13)
C8—N1—Mn1	123.24 (9)	N2—C13—C11	119.60 (12)
C12—N1—Mn1	119.15 (9)	N2—C14—C15	112.51 (16)
C12—N1—C8	117.59 (12)	N2—C14—H14A	109.1
C13—N2—C14	124.89 (12)	N2—C14—H14B	109.1
C13—N2—C16	118.42 (12)	C15—C14—H14A	109.1
C14—N2—C16	116.32 (13)	C15—C14—H14B	109.1
O1—C1—C2	114.28 (12)	H14A—C14—H14B	107.8
O2—C1—O1	126.65 (14)	C14—C15—H15A	109.5
O2—C1—C2	119.07 (13)	C14—C15—H15B	109.5
C3—C2—C1	120.47 (14)	C14—C15—H15C	109.5
C7—C2—C1	121.43 (13)	H15A—C15—H15B	109.5
С7—С2—С3	117.99 (14)	H15A—C15—H15C	109.5
С2—С3—Н3	119.6	H15B—C15—H15C	109.5
C4—C3—C2	120.76 (16)	N2—C16—C17	111.28 (13)
С4—С3—Н3	119.6	N2—C16—H16A	109.4
С3—С4—Н4	120.1	N2—C16—H16B	109.4
C5—C4—C3	119.78 (15)	C17—C16—H16A	109.4
С5—С4—Н4	120.1	C17—C16—H16B	109.4
С4—С5—Н5	119.8	H16A—C16—H16B	108.0
C6-C5-C4	120.42 (15)	C16—C17—H17A	109.5
С6—С5—Н5	119.8	C16—C17—H17B	109.5
C_{5} C_{5} C_{6} C_{7}	119.0	C16—C17—H17C	109.5
C5-C6-H6	120.5	H17A (17 H17B)	109.5
$C_{3} = C_{0} = H_{0}$	120.5	H17A = C17 = H17C	109.5
$C^{2} = C^{2} = C^{11}$	120.3	$\frac{1117A}{C17} = \frac{117C}{U17C}$	109.5
C2C7C11	119.20 (11)	пі/в—сі/—пі/с	109.5
O1—Mn1—N1—C8	-112.21 (12)	C3—C2—C1—O1	75.74 (18)
O1 ⁱ —Mn1—N1—C8	67.79 (12)	C3—C2—C1—O2	-104.05 (18)
01—Mn1—N1—C12	66.18 (11)	C7—C2—C1—O1	-100.36 (17)
O1 ⁱ —Mn1—N1—C12	-113.82 (11)	C7—C2—C1—O2	79.85 (19)
O4 ⁱ —Mn1—O1—C1	2.94 (12)	C1—C2—C3—C4	-175.23 (15)
O4—Mn1—O1—C1	-177.06 (12)	C7—C2—C3—C4	1.0 (2)
O4 ⁱ —Mn1—N1—C8	-21.92 (12)	C2—C3—C4—C5	0.5 (3)
O4—Mn1—N1—C8	158.08 (12)	C3—C4—C5—C6	-1.1 (3)
O4 ⁱ —Mn1—N1—C12	156.47 (11)	C7—C6—C5—C4	0.3 (3)
O4—Mn1—N1—C12	-23.53 (11)	C6—C7—C2—C1	174.34 (14)
N1 ⁱ —Mn1—O1—C1	-83.82 (12)	C6—C7—C2—C3	-1.8 (2)
N1—Mn1—O1—C1	96.18 (12)	Cl1—C7—C2—C1	-4.3 (2)

Mn1—01—C1—02	-16.0 (2)	Cl1—C7—C2—C3	179.50 (12)
Mn1—O1—C1—C2	164.20 (9)	C2—C7—C6—C5	1.2 (2)
Mn1—N1—C8—C9	177.23 (11)	Cl1—C7—C6—C5	179.86 (13)
C12—N1—C8—C9	-1.2 (2)	N1—C8—C9—C10	0.0 (2)
Mn1—N1—C12—C11	-177.57 (11)	C8—C9—C10—C11	1.5 (2)
C8—N1—C12—C11	0.9 (2)	C12—C11—C10—C9	-1.7 (2)
C14—N2—C13—O3	-175.90 (15)	C13—C11—C10—C9	-176.41 (13)
C16—N2—C13—O3	-3.2 (2)	C10-C11-C12-N1	0.5 (2)
C14—N2—C13—C11	4.1 (2)	C13—C11—C12—N1	175.09 (13)
C16—N2—C13—C11	176.82 (12)	O3—C13—C11—C10	62.17 (19)
C13—N2—C14—C15	-108.92 (18)	O3—C13—C11—C12	-112.38 (16)
C16—N2—C14—C15	78.20 (18)	N2-C13-C11-C10	-117.81 (15)
C13—N2—C16—C17	-90.68 (17)	N2-C13-C11-C12	67.64 (19)
C14—N2—C16—C17	82.69 (17)		

Ek Tablo 12. (17) kristalinin hidrojen bağı geometrisi (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H…A	
O4—H41…O2 ⁱ	0.90 (2)	1.83 (2)	2.666 (2)	154 (2)	
O4—H42···O3 ⁱⁱ	0.89 (2)	1.86 (2)	2.729 (1)	166 (2)	
Simetri Kodları: (i) $-x+1$, $-y$, $-z$; (ii) $-x+3/2$, $y-1/2$, $-z+1/2$.					

Ek Tablo 13. (19) kristalinin geometrik parametreleri (Å, °)

Br1—C3	1.9053 (18)	C6—C7	1.388 (3)
Co1—O2	2.0559 (12)	С6—Н6	0.9300
Co1—O2 ⁱ	2.0559 (12)	С7—Н7	0.9300
Co1—O4 ⁱ	2.1272 (13)	С8—Н8	0.9300
Co1—N1 ⁱ	2.1783 (14)	С9—С8	1.384 (2)
01—C1	1.242 (2)	C9—C10	1.393 (3)
O2—C1	1.264 (2)	C9—C13	1.503 (2)
O3—C13	1.244 (2)	C10-C11	1.388 (2)
O4—Co1	2.1272 (13)	С10—Н10	0.9300
O4—H41	0.82 (3)	C11—H11	0.9300
O4—H42	0.78 (3)	C12—C11	1.385 (2)
N1—C12	1.340 (2)	С12—Н12	0.9300
N1—C8	1.345 (2)	C14—C15	1.516 (3)
N1—Co1	2.1783 (14)	C14—H14A	0.9700
N2—C13	1.334 (2)	C14—H14B	0.9700
N2—C14	1.470 (2)	C15—H15A	0.9600

N2—C16	1.474 (2)	C15—H15B	0.9600
C2—C1	1.510(2)	C15—H15C	0.9600
C2—C7	1.395 (2)	C16—C17	1.518 (3)
C3—C2	1.384 (3)	C16—H16A	0.9700
C3—C4	1.395 (3)	C16—H16B	0.9700
C4—C5	1.381 (3)	C17—H17A	0.9600
C4—H4	0.9300	С17—Н17В	0.9600
С5—Н5	0.9300	С17—Н17С	0.9600
C6—C5	1.386 (3)		
O2—Co1—O2 ⁱ	180.00 (5)	C6—C7—C2	120.88 (18)
O2—Co1—O4	87.71 (5)	С6—С7—Н7	119.6
O2 ⁱ —Co1—O4	92.29 (5)	N1—C8—C9	123.11 (17)
O2—Co1—O4 ⁱ	92.29 (5)	N1—C8—H8	118.4
O2 ⁱ —Co1—O4 ⁱ	87.71 (5)	С9—С8—Н8	118.4
O2—Co1—N1	90.60 (5)	C8—C9—C10	119.13 (15)
O2 ⁱ —Co1—N1	89.40 (5)	C8—C9—C13	122.05 (16)
O2—Co1—N1 ⁱ	89.40 (5)	C10—C9—C13	118.68 (15)
O2 ⁱ —Co1—N1 ⁱ	90.60 (5)	С9—С10—Н10	121.1
O4 ⁱ —Co1—O4	180.00 (7)	C11—C10—C9	117.90 (16)
O4—Co1—N1	87.18 (5)	C11-C10-H10	121.1
O4 ⁱ —Co1—N1	92.82 (5)	C10-C11-H11	120.4
O4—Co1—N1 ⁱ	92.82 (5)	C12-C11-C10	119.25 (18)
O4 ⁱ —Co1—N1 ⁱ	87.18 (5)	C12—C11—H11	120.4
N1 ⁱ —Co1—N1	180.00 (13)	N1-C12-C11	123.24 (16)
C1—O2—Co1	128.18 (12)	N1—C12—H12	118.4
Co1—O4—H41	121.8 (17)	C11—C12—H12	118.4
Co1—O4—H42	100.9 (18)	O3—C13—N2	122.44 (15)
H42—O4—H41	109 (2)	O3—C13—C9	118.27 (15)
C8—N1—Co1	119.70 (12)	N2—C13—C9	119.29 (15)
C12—N1—Co1	122.99 (11)	N2-C14-C15	112.75 (18)
C12—N1—C8	117.32 (15)	N2-C14-H14A	109.0
C13—N2—C14	125.02 (15)	N2-C14-H14B	109.0
C13—N2—C16	118.37 (15)	C15—C14—H14A	109.0
C14—N2—C16	116.09 (14)	C15—C14—H14B	109.0
O1—C1—O2	126.67 (17)	H14A—C14—H14B	107.8
O1—C1—C2	118.94 (15)	C14—C15—H15A	109.5
O2—C1—C2	114.40 (16)	C14—C15—H15B	109.5
C3—C2—C1	121.13 (16)	C14—C15—H15C	109.5
C3—C2—C7	117.86 (17)	H15A—C15—H15B	109.5
C7—C2—C1	120.95 (16)	H15A—C15—H15C	109.5
C2—C3—Br1	119.59 (14)	H15B—C15—H15C	109.5

C2—C3—C4	122.13 (17)	N2—C16—C17	111.41 (16)
C4—C3—Br1	118.26 (14)	N2—C16—H16A	109.3
C3—C4—H4	120.6	N2—C16—H16B	109.3
C5—C4—C3	118.71 (19)	C17—C16—H16A	109.3
С5—С4—Н4	120.6	C17—C16—H16B	109.3
C4—C5—C6	120.46 (18)	H16A—C16—H16B	108.0
C4—C5—H5	119.8	C16—C17—H17A	109.5
С6—С5—Н5	119.8	C16—C17—H17B	109.5
C5—C6—C7	119.88 (18)	С16—С17—Н17С	109.5
С5—С6—Н6	120.1	H17A—C17—H17B	109.5
С7—С6—Н6	120.1	Н17А—С17—Н17С	109.5
С2—С7—Н7	119.6	H17B—C17—H17C	109.5
O4—Co1—O2—C1	-175.42 (14)	C3—C2—C1—O1	-86.0 (2)
O4 ⁱ —Co1—O2—C1	4.58 (14)	C3—C2—C1—O2	94.2 (2)
N1—Co1—O2—C1	-88.27 (14)	C7—C2—C1—O1	96.9 (2)
N1 ⁱ —Co1—O2—C1	91.73 (14)	C7—C2—C1—O2	-82.9 (2)
Co1-02-C1-01	12.3 (3)	C1—C2—C7—C6	175.44 (17)
Co1—O2—C1—C2	-167.89 (11)	С3—С2—С7—С6	-1.8 (3)
C8—N1—Co1—O2	-61.76 (13)	Br1—C3—C2—C1	4.6 (2)
C8—N1—Co1—O2 ⁱ	118.24 (13)	Br1—C3—C4—C5	179.62 (15)
C8—N1—Co1—O4	25.92 (13)	Br1—C3—C2—C7	-178.19 (14)
C8—N1—Co1—O4 ⁱ	-154.08 (13)	C2—C3—C4—C5	-1.4 (3)
C12—N1—Co1—O2	118.37 (14)	C4—C3—C2—C1	-174.33 (17)
C12—N1—Co1—O2 ⁱ	-61.63 (14)	C4—C3—C2—C7	2.9 (3)
C12—N1—Co1—O4	-153.95 (14)	C3—C4—C5—C6	-1.2 (3)
C12—N1—Co1—O4 ⁱ	26.05 (14)	C7—C6—C5—C4	2.2 (3)
Co1—N1—C8—C9	179.40 (13)	C5—C6—C7—C2	-0.7 (3)
Co1—N1—C12—C11	-178.31 (13)	C10—C9—C8—N1	-1.4 (3)
C8—N1—C12—C11	1.8 (3)	C13—C9—C8—N1	-177.05 (15)
C12—N1—C8—C9	-0.7 (2)	C8—C9—C10—C11	2.4 (3)
C14—N2—C13—O3	174.95 (18)	C13—C9—C10—C11	178.18 (15)
C14—N2—C13—C9	-4.8 (3)	C8—C9—C13—O3	114.69 (19)
C16—N2—C13—O3	3.6 (3)	C8—C9—C13—N2	-65.5 (2)
C16—N2—C13—C9	-176.22 (15)	C10—C9—C13—O3	-61.0 (2)
C13—N2—C14—C15	110.3 (2)	C10—C9—C13—N2	118.79 (19)
C13—N2—C16—C17	88.6 (2)	C9—C10—C11—C12	-1.4 (3)
C16—N2—C14—C15	-78.2 (2)	N1-C12-C11-C10	-0.8(3)
C14—N2—C16—C17	-83.5 (2)		~ (~)
	(-)		

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O4—H41…O3 ⁱⁱ	0.82 (3)	1.94 (3)	2.757 (2)	174 (3)
O4—H42…O1 ⁱ	0.78 (3)	1.90 (3)	2.644 (2)	159 (2)
C4—H4···O1 ⁱⁱⁱ	0.93	2.56	3.184 (3)	125
C10—H10····O2 ^{iv}	0.93	2.44	3.368 (2)	174
С12—Н12…О3 ^v	0.93	2.33	3.259 (2)	179
C16—H16A…O3 ^{vi}	0.97	2.57	3.506 (2)	163
C16—H16B…O1 ⁱⁱ	0.97	2.52	3.460 (3)	164

Ek Tablo 14. (19) kristalinin hidrojen bağı geometrisi (Å, °)

Simetri Kodları: (ii) -x+3/2, y+1/2, -z+1/2; (i) -x+1, -y, -z; (iii) -x+1/2, y+1/2, -z+1/2; (iv) -x+3/2, y-1/2, -z+1/2; (v) x-1/2, -y-1/2, z-1/2; (vi) -x+2, -y, -z+1.

Br1—C3	1.896 (2)	C3—C4	1.390 (3)
Ni1—O1 ⁱ	2.0806 (16)	C4—C5	1.383 (4)
Ni1—O1 2.0806 (16)		С4—Н4	0.9300
Ni1—O4	2.1012 (17)	C5—C6	1.382 (4)
Ni1—O4 ⁱ	2.1012 (17)	С5—Н5	0.9300
Ni1—N1	2.068 (2)	C6—C7	1.390 (3)
Ni1—N1 ⁱ	2.068 (2)	С6—Н6	0.9300
01—C1	1.260 (3)	С7—Н7	0.9300
O2—C1	1.258 (3)	С8—Н8	0.9300
O3—C13	1.241 (3)	С9—С8	1.377 (3)
O4—H41	0.86 (4)	С9—Н9	0.9300
O4—H42 0.83 (4) C10-		С10—С9	1.391 (3)
N1—C8	1.347 (3)	С10—Н10	0.9300
N1—C12 1.337 (3)		C11—C10	1.383 (3)
N2—H21	0.82 (4)	C11—C12	1.390 (3)
N2—H22	0.79 (4)	С12—Н12	0.9300
C1—C2	1.513 (3)	C13—N2	1.327 (3)
С2—С7	1.394 (3)	C13—C11	1.505 (3)
C3—C2	C3—C2 1.400 (4)		
O1 ⁱ —Ni1—O1	180.000 (1)	C4—C3—Br1	115.24 (18)
01—Ni1—O4	87.40 (7)	C4—C3—C2	121.6 (2)
O1 ⁱ —Ni1—O4	92.60 (7)	С3—С4—Н4	120.2
O1 ⁱ —Ni1—O4 ⁱ	87.40 (7)	C5—C4—C3	119.7 (2)
$O1$ — $Ni1$ — $O4^{i}$	92.60 (7)	C5—C4—H4	120.2
O4—Ni1—O4 ⁱ	180.00 (10)	С4—С5—Н5	119.9
N1—Ni1—O1	89.60 (7)	C6—C5—C4	120.2 (2)
N1 ⁱ —Ni1—O1	90.40 (7)	С6—С5—Н5	119.9

Ek Tablo 15. (20) kristalinin geometrik parametreleri (Å, °)

N1—Ni1—O1 ⁱ	90.40 (7)	C5—C6—C7	119.5 (2)
N1 ⁱ —Ni1—O1 ⁱ	89.60 (7)	С5—С6—Н6	120.3
N1—Ni1—O4	87.68 (7)	С7—С6—Н6	120.3
N1 ⁱ —Ni1—O4	92.32 (7)	С2—С7—Н7	119.0
N1—Ni1—O4 ⁱ	92.32 (7)	C6—C7—C2	122.0 (2)
N1 ⁱ —Ni1—O4 ⁱ	87.68 (7)	С6—С7—Н7	119.0
N1—Ni1—N1 ⁱ	180.00 (10)	N1—C8—C9	123.0 (2)
C1—O1—Ni1	122.99 (15)	N1—C8—H8	118.5
Ni1—O4—H41	95 (3)	С9—С8—Н8	118.5
Ni1—O4—H42	124 (2)	C8—C9—C10	118.8 (2)
H42—O4—H41	105 (4)	С8—С9—Н9	120.6
C8—N1—Ni1	122.66 (15)	С10—С9—Н9	120.6
C12—N1—Ni1	119.53 (16)	С9—С10—Н10	120.6
C12—N1—C8	117.8 (2)	С11—С10—С9	118.8 (2)
C13—N2—H21	121 (3)	С11—С10—Н10	120.6
C13—N2—H22	118 (2)	C10-C11-C12	118.7 (2)
H21—N2—H22	118 (3)	C10—C11—C13	124.0 (2)
O1—C1—C2	117.8 (2)	C12—C11—C13	117.3 (2)
O2—C1—O1	124.7 (2)	N1-C12-C11	123.0 (2)
O2—C1—C2	117.4 (2)	N1—C12—H12	118.5
C3—C2—C1	124.1 (2)	C11—C12—H12	118.5
C7—C2—C1	118.8 (2)	O3—C13—N2	122.8 (2)
С7—С2—С3	117.0 (2)	O3—C13—C11	119.9 (2)
C2—C3—Br1	123.11 (17)	N2-C13-C11	117.2 (2)
04—Ni1—01—C1	-145.89 (18)	C1—C2—C7—C6	-172.5 (2)
O4 ⁱ —Ni1—O1—C1	34.11 (18)	С3—С2—С7—С6	2.3 (4)
N1—Ni1—O1—C1	-58.20 (18)	Br1—C3—C2—C1	-10.9 (3)
N1 ⁱ —Ni1—O1—C1	121.80 (18)	Br1—C3—C2—C7	174.53 (17)
01—Ni1—N1—C8	137.00 (19)	C4—C3—C2—C1	171.3 (2)
O1 ⁱ —Ni1—N1—C8	-43.00 (19)	C4—C3—C2—C7	-3.2 (4)
01—Ni1—N1—C12	-44.08 (18)	Br1—C3—C4—C5	-176.67 (19)
O1 ⁱ —Ni1—N1—C12	135.92 (18)	C2—C3—C4—C5	1.2 (4)
O4—Ni1—N1—C12	43.33 (18)	C3—C4—C5—C6	1.7 (4)
O4 ⁱ —Ni1—N1—C12	-136.67 (18)	C4—C5—C6—C7	-2.6 (4)
O4—Ni1—N1—C8	-135.59 (19)	C5—C6—C7—C2	0.5 (4)
O4 ⁱ —Ni1—N1—C8	44.41 (19)	C10—C9—C8—N1	0.7 (4)
Ni1—01—C1—O2	-19.9 (3)	С11—С10—С9—С8	0.2 (4)
Ni1-01-C1-C2	155.74 (16)	C12—C11—C10—C9	-0.9 (4)
Ni1—N1—C8—C9	178.11 (19)	C13—C11—C10—C9	176.4 (2)
C12—N1—C8—C9	-0.8 (4)	C10-C11-C12-N1	0.8 (4)
Ni1—N1—C12—C11	-178.89 (18)	C13—C11—C12—N1	-176.7 (2)

C8—N1—C12—C11	0.1 (4)	O3—C13—C11—C10	-173.8 (2)
O1—C1—C2—C3	156.0 (2)	O3—C13—C11—C12	3.5 (4)
O1—C1—C2—C7	-29.6 (3)	N2-C13-C11-C10	4.7 (4)
O2—C1—C2—C3	-28.0 (4)	N2-C13-C11-C12	-178.0 (2)
O2—C1—C2—C7	146.4 (2)		

Simetri Kodları: (i) -x+1, -y+1, -z+1.

Ek Tablo 16. (20) kristalinin hidrojen bağı geometrisi (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N2—H21···O2 ⁱⁱ	0.82 (4)	2.09 (4)	2.864 (3)	156 (4)
N2—H22…O3 ⁱⁱⁱ	0.79 (4)	2.22 (4)	2.951 (3)	153 (4)
$O4$ — $H41$ ··· $O2^{i}$	0.86 (4)	1.77 (4)	2.612 (2)	165 (5)
O4—H42···O3 ^{iv}	0.83 (4)	2.09 (4)	2.886 (2)	162 (3)
C9—H9····Cg1 ^v	0.93	2.89	3.617 (3)	136

Simetri Kodları: (ii) -x+1, -y+1, -z; (iii) -x+2, -y+1, -z; (i) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1; (v) -x, -y, -z+1.

Ek Tablo 17. (21) kristalinin geometrik parametreleri (Å, °)

Br1—C3	1.906 (2)	С7—Н7	0.93
Ni1—01	2.0359 (14)	C8—N1	1.341 (3)
Ni1—O1 ⁱ	2.0359 (14)	С8—Н8	0.93
Ni1—O4	2.0818 (15)	С9—С8	1.387 (3)
Ni1—O4 ⁱ	2.0818 (15)	С9—Н9	0.93
Ni1—N1	2.1207 (17)	С10—С9	1.384 (3)
Ni1—N1 ⁱ	2.1207 (17)	C10—H10	0.93
01—C1	1.267 (3)	C11—C10	1.392 (3)
O2—C1	1.240 (3)	C11—C12	1.382 (3)
O3—C13	1.243 (2)	C11—C13	1.499 (3)
O4—H41	0.80 (3)	C12—N1	1.344 (3)
O4—H42	0.78 (3)	С12—Н12	0.93
N2—C13	1.334 (3)	C14—C15	1.519 (3)
N2—C14	1.471 (3)	C14—H14A	0.97
N2—C16	1.473 (3)	C14—H14B	0.97
C2—C1	1.510 (3)	C15—H15A	0.96
C2—C7	1.387 (3)	C15—H15B	0.96
C3—C2	1.387 (3)	С15—Н15С	0.96
C3—C4	1.392 (3)	C16—C17	1.518 (4)
C4—C5	1.379 (3)	C16—H16A	0.97
С4—Н4	0.93	C16—H16B	0.97

С5—Н5	0.93	С17—Н17А	0.96
С6—С5	1.381 (4)	С17—Н17В	0.96
С6—С7	1.393 (3)	С17—Н17С	0.96
С6—Н6	0.93		
01 —Ni1— 01^{i}	180.00 (7)	С2—С7—Н7	119.6
01—Ni1—O4	87.20 (6)	С6—С7—Н7	119.6
O1 ⁱ —Ni1—O4	92.80 (6)	N1—C8—C9	122.93 (19)
O1—Ni1—O4 ⁱ	92.80 (6)	N1—C8—H8	118.5
O1 ⁱ —Ni1—O4 ⁱ	87.20 (6)	С9—С8—Н8	118.5
01—Ni1—N1	89.27 (6)	С8—С9—Н9	120.4
O1 ⁱ —Ni1—N1	90.73 (6)	С10—С9—С8	119.3 (2)
O1—Ni1—N1 ⁱ	90.73 (6)	С10—С9—Н9	120.4
O1 ⁱ —Ni1—N1 ⁱ	89.27 (6)	C9-C10-C11	118.11 (19)
O4 ⁱ —Ni1—O4	180.00 (9)	С9—С10—Н10	120.9
04—Ni1—N1	92.52 (6)	С11—С10—Н10	120.9
O4 ⁱ —Ni1—N1	87.48 (6)	C10-C11-C13	118.60 (18)
O4—Ni1—N1 ⁱ	87.48 (6)	C12—C11—C10	119.01 (19)
O4 ⁱ —Ni1—N1 ⁱ	92.52 (6)	C12—C11—C13	122.28 (18)
N1 ⁱ —Ni1—N1	180.00 (16)	N1-C12-C11	123.15 (19)
C1-O1-Ni1	127.15 (13)	N1—C12—H12	118.4
Ni1—O4—H41	123 (2)	С11—С12—Н12	118.4
Ni1—O4—H42	99 (2)	O3—C13—N2	122.44 (18)
H41—O4—H42	112 (3)	O3—C13—C11	118.57 (18)
C8—N1—Ni1	122.69 (14)	N2—C13—C11	118.99 (18)
C8—N1—C12	117.44 (18)	N2-C14-C15	111.57 (18)
C12—N1—Ni1	119.87 (14)	N2—C14—H14A	109.3
C13—N2—C14	118.61 (17)	N2—C14—H14B	109.3
C13—N2—C16	124.98 (18)	C15—C14—H14A	109.3
C14—N2—C16	115.85 (18)	C15—C14—H14B	109.3
O1—C1—C2	114.11 (18)	H14A—C14—H14B	108.0
O2—C1—O1	126.8 (2)	C14—C15—H15A	109.5
O2—C1—C2	119.06 (19)	C14—C15—H15B	109.5
C3—C2—C1	120.77 (19)	C14—C15—H15C	109.5
C7—C2—C1	121.2 (2)	H15A—C15—H15B	109.5
С7—С2—С3	118.0 (2)	H15A—C15—H15C	109.5
C2—C3—Br1	119.46 (17)	H15B—C15—H15C	109.5
C2—C3—C4	121.9 (2)	N2-C16-C17	112.8 (2)
C4—C3—Br1	118.60 (18)	N2—C16—H16A	109.0
С3—С4—Н4	120.6	N2—C16—H16B	109.0
C5—C4—C3	118.8 (2)	C17—C16—H16A	109.0
С5—С4—Н4	120.6	C17—C16—H16B	109.0

C5—C6—C7	119.8 (2)	H16A—C16—H16B	107.8
С5—С6—Н6	120.1	С16—С17—Н17А	109.5
С7—С6—Н6	120.1	С16—С17—Н17В	109.5
C4—C5—C6	120.6 (2)	С16—С17—Н17С	109.5
С4—С5—Н5	119.7	H17A—C17—H17B	109.5
С6—С5—Н5	119.7	H17A—C17—H17C	109.5
С2—С7—С6	120.8 (2)	H17B—C17—H17C	109.5
04 ⁱ —Ni1—O1—C1	8.54 (17)	C1—C2—C7—C6	175.5 (2)
04—Ni1—O1—C1	-171.46 (17)	С3—С2—С7—С6	-1.8 (3)
N1 ⁱ —Ni1—O1—C1	-84.02 (17)	Br1—C3—C2—C1	5.0 (3)
N1—Ni1—O1—C1	95.98 (17)	Br1—C3—C2—C7	-177.63 (16)
01—Ni1—N1—C8	58.46 (17)	C4—C3—C2—C1	-174.6 (2)
O1 ⁱ —Ni1—N1—C8	-121.54 (17)	C4—C3—C2—C7	2.7 (3)
01—Ni1—N1—C12	-120.53 (16)	Br1—C3—C4—C5	179.28 (18)
O1 ⁱ —Ni1—N1—C12	59.47 (16)	C2—C3—C4—C5	-1.1 (4)
O4 ⁱ —Ni1—N1—C8	151.29 (17)	C3—C4—C5—C6	-1.5 (4)
O4—Ni1—N1—C8	-28.71 (17)	С5—С6—С7—С2	-0.7 (4)
O4 ⁱ —Ni1—N1—C12	-27.70 (16)	С7—С6—С5—С4	2.4 (4)
04—Ni1—N1—C12	152.30 (16)	C9—C8—N1—C12	-2.1 (3)
Ni1-01-C1-02	10.3 (3)	C9—C8—N1—Ni1	178.91 (16)
Ni1-01-C1-C2	-169.71 (13)	C10—C9—C8—N1	1.1 (3)
C14—N2—C13—O3	-3.5 (3)	С11—С10—С9—С8	1.4 (3)
C14—N2—C13—C11	176.21 (18)	С12—С11—С10—С9	-2.8 (3)
C16—N2—C13—O3	-174.5 (2)	С13—С11—С10—С9	-179.0 (2)
C16—N2—C13—C11	5.1 (3)	C10-C11-C12-N1	1.9 (3)
C13—N2—C14—C15	-88.5 (2)	C13—C11—C12—N1	177.95 (19)
C16—N2—C14—C15	83.4 (2)	C10—C11—C13—O3	61.2 (3)
C13—N2—C16—C17	-110.3 (2)	C10-C11-C13-N2	-118.5 (2)
C14—N2—C16—C17	78.4 (2)	C12—C11—C13—O3	-114.9 (2)
C3—C2—C1—O2	-88.9 (3)	C12—C11—C13—N2	65.5 (3)
C7—C2—C1—O2	93.8 (3)	C11—C12—N1—C8	0.5 (3)
C3—C2—C1—O1	91.1 (2)	C11—C12—N1—Ni1	179.58 (16)
C7—C2—C1—O1	-86.2 (2)		

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O4—H41…O3 ⁱⁱ	0.80 (3)	1.97 (3)	2.770 (2)	176 (4)
O4—H42…O2 ⁱ	0.78 (4)	1.88 (4)	2.623 (3)	161 (3)
C4—H4···O2 ⁱⁱⁱ	0.93	2.54	3.172 (3)	126
C8—H8…O3 ⁱⁱ	0.93	2.31	3.241 (3)	177
C10—H10····O1 ^{iv}	0.93	2.47	3.392 (3)	172
C14—H14A…O2 ^v	0.97	2.50	3.448 (3)	166
C14—H14B…O3 ^{vi}	0.97	2.55	3.483 (3)	161
Simatri Kadları: (ij) x+1/2	1/2 = 1/2 (i)	_v⊥1 _v _ v :	(iii) $-x \pm 1/2$	1/2 = -1/2

Ek Tablo 18. (21) kristalinin hidrojen bağı geometrisi (Å, °)

Simetri Kodları: (ii) x+1/2, -y+1/2, z+1/2; (i) -x+1, -y, -z; (iii) -x+1/2, y+1/2, -z+1/2; (iv) x-1/2, -y+1/2, z-1/2; (v) x-1/2, -y-1/2, z-1/2; (vi) -x, -y, -z-1.

Ek Tablo 19. (22) kristalinin geometrik parametreleri (Å, °)

Br1—C7	1.8999 (18)	С6—Н6	0.9300
Mn1—O1	2.1238 (10)	С7—С2	1.392 (2)
Mn1—O1 ⁱ	2.1238 (10)	С7—С6	1.388 (2)
Mn1—O4	2.1987 (11)	С8—С9	1.386 (2)
Mn1—O4 ⁱ	2.1987 (11)	С8—Н8	0.9300
Mn1—N1 ⁱ	2.3014 (13)	С9—Н9	0.9300
Mn1—N1	2.3014 (13)	С10—С9	1.382 (2)
01—C1	1.2611 (17)	C10—C11	1.391 (2)
O2—C1	1.2396 (19)	C10—H10	0.9300
O3—C13	1.2444 (18)	C11—C12	1.385 (2)
O4—H41	0.870 (15)	С12—Н12	0.9300
O4—H42	0.89 (2)	C13—C11	1.496 (2)
N1—C8	1.3407 (19)	C14—C15	1.519 (2)
N1—C12	1.339 (2)	C14—H14A	0.9700
N2—C13	1.3362 (19)	C14—H14B	0.9700
N2—C14	1.471 (2)	C15—H15A	0.9600
N2—C16	1.465 (2)	C15—H15B	0.9600
C2—C1	1.514 (2)	C15—H15C	0.9600
C2—C3	1.388 (2)	C16—H16A	0.9700
С3—Н3	0.9300	C16—H16B	0.9700
C4—C3	1.384 (2)	C17—C16	1.518 (3)
C4—C5	1.391 (3)	C17—H17A	0.9600
C4—H4	0.9300	C17—H17B	0.9600
С5—Н5	0.9300	C17—H17C	0.9600
C6—C5	1.380 (3)		
O1—Mn1—O1 ⁱ	180.00 (5)	C6—C7—Br1	118.70 (13)
O1—Mn1—O4	89.60 (4)	C6—C7—C2	121.48 (17)
O1 ⁱ —Mn1—O4	90.40 (4)	N1—C8—C9	122.84 (14)

O1—Mn1—O4 ⁱ	90.40 (4)	N1—C8—H8	118.6
O1 ⁱ —Mn1—O4 ⁱ	89.60 (4)	С9—С8—Н8	118.6
O1—Mn1—N1 ⁱ	90.07 (4)	С8—С9—Н9	120.4
O1 ⁱ —Mn1—N1 ⁱ	89.93 (4)	С10—С9—С8	119.22 (14)
O1—Mn1—N1	89.93 (4)	С10—С9—Н9	120.4
O1 ⁱ —Mn1—N1	90.07 (4)	C9—C10—C11	118.39 (14)
O4—Mn1—O4 ⁱ	180.00 (6)	С9—С10—Н10	120.8
O4—Mn1—N1 ⁱ	86.81 (4)	С11—С10—Н10	120.8
O4 ⁱ —Mn1—N1 ⁱ	93.19 (4)	C10—C11—C13	119.12 (13)
O4—Mn1—N1	93.19 (4)	C12—C11—C10	118.64 (14)
O4 ⁱ —Mn1—N1	86.81 (4)	C12—C11—C13	122.03 (13)
N1 ⁱ —Mn1—N1	180.00 (7)	N1-C12-C11	123.30 (14)
C1—O1—Mn1	129.08 (10)	N1—C12—H12	118.4
Mn1—O4—H41	123.9 (14)	C11—C12—H12	118.4
Mn1—O4—H42	103.8 (16)	O3—C13—N2	122.04 (14)
H41—O4—H42	106.6 (19)	O3—C13—C11	118.24 (13)
C8—N1—Mn1	123.27 (10)	N2-C13-C11	119.71 (13)
C12—N1—Mn1	119.15 (10)	N2-C14-C15	111.35 (14)
C12—N1—C8	117.58 (13)	N2-C14-H14A	109.4
C13—N2—C14	118.59 (13)	N2-C14-H14B	109.4
C13—N2—C16	124.83 (14)	C15—C14—H14A	109.4
C16—N2—C14	116.15 (13)	C15—C14—H14B	109.4
O1—C1—C2	114.36 (13)	H14A—C14—H14B	108.0
O2—C1—O1	126.53 (14)	C14—C15—H15A	109.5
O2—C1—C2	119.11 (13)	C14—C15—H15B	109.5
C3—C2—C1	120.67 (14)	C14—C15—H15C	109.5
C3—C2—C7	118.09 (14)	H15A—C15—H15B	109.5
C7—C2—C1	121.15 (15)	H15A—C15—H15C	109.5
С2—С3—Н3	119.5	H15B—C15—H15C	109.5
C4—C3—C2	121.09 (16)	N2-C16-C17	112.52 (16)
С4—С3—Н3	119.5	N2—C16—H16A	109.1
C3—C4—C5	119.76 (17)	N2—C16—H16B	109.1
C3—C4—H4	120.1	C17—C16—H16A	109.1
C5—C4—H4	120.1	C17—C16—H16B	109.1
C6—C5—C4	120.18 (16)	H16A—C16—H16B	107.8
С6—С5—Н5	119.9	C16—C17—H17A	109.5
C4—C5—H5	119.9	C16—C17—H17B	109.5
C5—C6—C7	119.34 (16)	C16—C17—H17C	109.5
С5—С6—Н6	120.3	H17A—C17—H17B	109.5
С7—С6—Н6	120.3	H17A—C17—H17C	109.5
C2—C7—Br1	119.80 (12)	H17B—C17—H17C	109.5

01—Mn1—N1—C12	-114.25 (11)	C3—C2—C1—O1	-77.81 (19)
O1 ⁱ —Mn1—N1—C12	65.75 (11)	C3—C2—C1—O2	101.89 (19)
O4—Mn1—N1—C12	156.15 (11)	C7—C2—C1—O1	98.69 (18)
O4 ⁱ —Mn1—N1—C12	-23.85 (11)	C7—C2—C1—O2	-81.6 (2)
O1—Mn1—N1—C8	66.53 (12)	C1—C2—C3—C4	175.46 (14)
O1 ⁱ —Mn1—N1—C8	-113.47 (12)	С7—С2—С3—С4	-1.1 (2)
O4—Mn1—N1—C8	-23.07 (12)	С5—С4—С3—С2	-1.0 (2)
O4 ⁱ —Mn1—N1—C8	156.93 (12)	C3—C4—C5—C6	2.0 (3)
O4—Mn1—O1—C1	179.20 (13)	C7—C6—C5—C4	-0.8 (2)
O4 ⁱ —Mn1—O1—C1	-0.80 (13)	Br1C7C2C1	4.3 (2)
N1 ⁱ —Mn1—O1—C1	-94.00 (13)	Br1C7C2C3	-179.13 (11)
N1—Mn1—O1—C1	86.00 (13)	C6—C7—C2—C1	-174.25 (14)
Mn1-01-C1-02	15.7 (2)	С6—С7—С2—С3	2.3 (2)
Mn1-01-C1-C2	-164.62 (10)	Br1C7C6C5	-179.91 (12)
Mn1—N1—C8—C9	178.27 (11)	C2—C7—C6—C5	-1.4 (2)
C12—N1—C8—C9	-1.0 (2)	N1—C8—C9—C10	-0.3 (2)
Mn1—N1—C12—C11	-178.48 (11)	С11—С10—С9—С8	1.8 (2)
C8—N1—C12—C11	0.8 (2)	C10-C11-C12-N1	0.7 (2)
C14—N2—C13—O3	-3.8 (2)	C13—C11—C12—N1	175.36 (13)
C14—N2—C13—C11	175.90 (13)	C9—C10—C11—C12	-1.9 (2)
C16—N2—C13—O3	-175.90 (15)	C9—C10—C11—C13	-176.78 (13)
C16—N2—C13—C11	3.8 (2)	O3—C13—C11—C10	61.46 (19)
C13—N2—C14—C15	-89.33 (17)	O3—C13—C11—C12	-113.21 (16)
C13—N2—C16—C17	-109.22 (18)	N2-C13-C11-C10	-118.22 (16)
C14—N2—C16—C17	78.48 (18)	N2—C13—C11—C12	67.11 (19)
C16—N2—C14—C15	83.48 (18)		

Ek Tablo 20.	(22) krista	linin hidrojen	bağı geo	metrisi (Å, °)
--------------	-------------	----------------	----------	----------------

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
O4—H41···O3 ⁱⁱ	0.87 (2)	1.86 (2)	2.7207 (16)	168 (2)
$O4$ — $H42$ ··· $O2^{i}$	0.89 (2)	1.83 (2)	2.6658 (19)	155 (2)
· · · · · · · · · · · · · · · · · · ·	. 1 / 0 / (1) 1			

Simetri Kodları: (ii) x+1/2, -y+1/2, z+1/2; (i) -x+1, -y, -z.

Br1—C7	1.8950 (18)	C4—C3	1.380 (3)
Zn1—O1 ⁱ	2.1182 (13)	C4—H4	0.9300
Zn1—O1	2.1182 (13)	C5—C4	1.390 (3)
Zn1—O4 ⁱ	2.1647 (12)	C5—C6	1.380 (3)
Zn1—O4	2.1647 (12)	С5—Н5	0.9300
Zn1—N1	2.1124 (14)	С6—Н6	0.9300
Zn1—N1 ⁱ	2.1124 (14)	C7—C2	1.400 (3)
01—C1	1.267 (2)	С7—С6	1.392 (3)
O2—C1	1.256 (2)	С8—С9	1.384 (2)
O3—C13	1.242 (2)	С8—Н8	0.9300
O4—H41	0.83 (3)	С10—С9	1.393 (2)
O4—H42	0.869 (16)	C10—C11	1.378 (3)
N1—C8	1.335 (2)	C10—H10	0.9300
N1—C12	1.347 (2)	C11—C12	1.387 (3)
N2—H21	0.83 (2)	C11—H11	0.9300
N2—H22	0.86 (3)	С12—Н12	0.9300
C1—C2	1.507 (3)	C13—N2	1.331 (2)
C2—C3	1.399 (2)	С13—С9	1.494 (2)
С3—Н3	0.9300		
O1 ⁱ —Zn1—O1	180.0	C4—C3—C2	121.78 (17)
01—Zn1—O4	88.11 (5)	С4—С3—Н3	119.1
O1 ⁱ —Zn1—O4	91.89 (5)	C3—C4—C5	119.88 (17)
$O1$ — $Zn1$ — $O4^{i}$	91.89 (5)	C3—C4—H4	120.1
$O1^{i}$ —Zn1— $O4^{i}$	88.11 (5)	C5—C4—H4	120.1
O4 ⁱ —Zn1—O4	180.0	C4—C5—H5	120.0
N1—Zn1—O1	89.59 (5)	C6—C5—C4	119.94 (17)
$N1^{i}$ —Zn1—O1	90.41 (5)	С6—С5—Н5	120.0
$N1$ — $Zn1$ — $O1^{i}$	90.41 (5)	C5—C6—C7	119.62 (17)
$N1^{i}$ —Zn1—O1 ⁱ	89.59 (5)	С5—С6—Н6	120.2
N1—Zn1—O4	88.09 (5)	С7—С6—Н6	120.2
$N1^{i}$ —Zn1—O4	91.91 (5)	C2—C7—Br1	123.15 (14)
N1—Zn1— $O4^{i}$	91.91 (5)	C6—C7—Br1	115.13 (14)
$N1^{i}$ —Zn1—O4 ⁱ	88.09 (5)	C6—C7—C2	121.70 (16)
$N1$ — $Zn1$ — $N1^{1}$	180.000 (1)	N1—C8—C9	123.40 (15)
Zn1—O4—H42	120.3 (18)	N1—C8—H8	118.3
Zn1—O4—H41	99 (2)	С9—С8—Н8	118.3
H42—O4—H41	106 (2)	C8—C9—C10	117.95 (17)
C1—O1—Zn1	122.52 (11)	C8—C9—C13	117.85 (15)
C8—N1—Zn1	119.62 (11)	C10—C9—C13	124.15 (15)
C8—N1—C12	117.94 (15)	C9—C10—H10	120.3

Ek Tablo 21. (23) kristalinin geometrik parametreleri (Å, °)

C12—N1—Zn1	122.42 (12)	С11—С10—С9	119.46 (16)
C13—N2—H21	117.7 (18)	С11—С10—Н10	120.3
C13—N2—H22	118.2 (17)	C10-C11-C12	118.67 (16)
H21—N2—H22	121 (2)	С10—С11—Н11	120.7
01—C1—C2	117.73 (15)	С12—С11—Н11	120.7
O2—C1—O1	124.27 (17)	N1-C12-C11	122.55 (17)
O2—C1—C2	117.91 (15)	N1—C12—H12	118.7
C3—C2—C1	118.66 (17)	C11—C12—H12	118.7
C3—C2—C7	116.98 (16)	O3—C13—N2	122.19 (18)
C7—C2—C1	124.19 (16)	O3—C13—C9	120.18 (16)
С2—С3—Н3	119.1	N2—C13—C9	117.61 (16)
O4 ⁱ —Zn1—O1—C1	36.30 (14)	C1—C2—C3—C4	-172.78 (16)
O4—Zn1—O1—C1	-143.70 (14)	C7—C2—C3—C4	2.7 (3)
N1—Zn1—O1—C1	-55.59 (14)	C5—C4—C3—C2	0.1 (3)
N1 ⁱ —Zn1—O1—C1	124.41 (14)	C6—C5—C4—C3	-2.3 (3)
O1 ⁱ —Zn1—N1—C8	134.53 (14)	C4—C5—C6—C7	1.6 (3)
01—Zn1—N1—C8	-45.47 (14)	Br1—C7—C2—C1	-10.0 (2)
O1 ⁱ —Zn1—N1—C12	-44.44 (14)	Br1—C7—C2—C3	174.80 (12)
01—Zn1—N1—C12	135.56 (14)	C6—C7—C2—C1	171.77 (16)
O4 ⁱ —Zn1—N1—C8	-137.35 (14)	С6—С7—С2—С3	-3.4 (2)
O4—Zn1—N1—C8	42.65 (14)	Br1-C7-C6-C5	-177.00 (13)
$O4^{i}$ —Zn1—N1—C12	43.68 (14)	C2—C7—C6—C5	1.4 (3)
O4—Zn1—N1—C12	-136.32 (14)	N1-C8-C9-C10	1.1 (3)
Zn1—01—C1—02	-22.3 (2)	N1-C8-C9-C13	-176.47 (16)
Zn1—O1—C1—C2	154.15 (12)	С11—С10—С9—С8	-1.2 (3)
Zn1—N1—C8—C9	-178.88 (14)	C11—C10—C9—C13	176.27 (18)
C12—N1—C8—C9	0.1 (3)	C9-C10-C11-C12	0.0 (3)
Zn1—N1—C12—C11	177.59 (15)	C10-C11-C12-N1	1.3 (3)
C8—N1—C12—C11	-1.4 (3)	O3—C13—C9—C8	4.0 (3)
O1—C1—C2—C3	-30.2 (2)	O3—C13—C9—C10	-173.46 (18)
O1—C1—C2—C7	154.63 (17)	N2—C13—C9—C8	-177.63 (18)
O2—C1—C2—C3	146.41 (17)	N2-C13-C9-C10	4.9 (3)
O2—C1—C2—C7	-28.7 (3)		

Ek Tablo 22. (23) kristalinin hidrojen bağı geometrisi (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N2—H21…O2 ⁱⁱ	0.83 (2)	2.10 (2)	2.870 (2)	155 (2)
O4—H41…O2 ⁱ	0.83 (3)	1.84 (3)	2.6339 (19)	159 (3)
C11—H11···Cg1 ⁱⁱⁱ	0.93	2.87	3.600 (3)	136

Simetri Kodları: (ii) -x+2, -y+1, -z+1; (i) -x+2, -y+1, -z+2; (iii) -x+1, -y, -z.

Zn1—O1 ⁱ	2.0600 (12)	С6—Н6	0.9300
Zn1—O1	2.0600 (12)	C7—C2	1.390 (2)
Zn1—O4	2.1269 (12)	С7—С6	1.389 (3)
Zn1—N1	2.1962 (14)	C8—C9	1.387 (2)
Zn1—O4 ⁱ	2.1269 (12)	С8—Н8	0.9300
Zn1—N1 ⁱ	2.1962 (14)	С9—Н9	0.9300
Br1—C7	1.903 (2)	С10—С9	1.380 (2)
01—C1	1.263 (2)	С10—Н10	0.9300
O2—C1	1.240 (2)	C11—C10	1.397 (2)
O3—C13	1.241 (2)	C11—C12	1.383 (2)
O4—Zn1	2.1269 (12)	C11—C13	1.502 (2)
O4—H41	0.885 (16)	С12—Н12	0.9300
O4—H42	0.869 (15)	C13—N2	1.338 (2)
N1—Zn1	2.1962 (14)	C14—C15	1.522 (2)
N1—C8	1.339 (2)	C14—H14A	0.9700
N1—C12	1.340 (2)	C14—H14B	0.9700
N2—C14	1.470 (2)	C15—H15A	0.9600
N2—C16	1.463 (2)	C15—H15B	0.9600
C2—C1	1.511 (2)	C15—H15C	0.9600
C2—C3	1.384 (3)	C16—C17	1.518 (3)
С3—Н3	0.9300	C16—H16A	0.9700
C4—C3	1.391 (3)	C16—H16B	0.9700
C4—C5	1.384 (3)	C17—H17A	0.9600
C4—H4	0.9300	C17—H17B	0.9600
С5—Н5	0.9300	С17—Н17С	0.9600
C6—C5	1.387 (3)		
$O1^{i}$ —Zn1—O1	180.00 (5)	C6—C7—Br1	118.47 (14)
$O1^{i}$ —Zn1— $O4^{i}$	87.69 (5)	С6—С7—С2	121.96 (19)
$O1$ — $Zn1$ — $O4^{i}$	92.31 (5)	N1-C8-C9	123.00 (16)
$O1^{i}$ —Zn1—O4	92.31 (5)	N1—C8—H8	118.5
01—Zn1—O4	87.69 (5)	С9—С8—Н8	118.5
O4 ⁱ —Zn1—O4	180.00 (7)	С8—С9—Н9	120.4
$O1^{i}$ —Zn1—N1 ⁱ	90.56 (5)	С10—С9—С8	119.27 (17)
O1—Zn1—N1 ⁱ	89.44 (5)	С10—С9—Н9	120.4
O1 ⁱ —Zn1—N1	89.44 (5)	C9-C10-C11	118.05 (16)
O1—Zn1—N1	90.56 (5)	С9—С10—Н10	121.0
O4 ⁱ —Zn1—N1 ⁱ	87.31 (5)	C11—C10—H10	121.0
O4—Zn1—N1 ⁱ	92.69 (5)	C10-C11-C13	118.64 (15)
O4 ⁱ —Zn1—N1	92.69 (5)	C12—C11—C10	118.91 (16)
O4—Zn1—N1	87.31 (5)	C12—C11—C13	122.28 (15)

Ek Tablo 23. (24) kristalinin geometrik parametreleri (Å, °)

N1 ⁱ —Zn1—N1	180.00 (14)	N1-C12-C11	123.12 (16)
C1—O1—Zn1	127.79 (11)	N1—C12—H12	118.4
Zn1-04-H41	126.9 (17)	С11—С12—Н12	118.4
Zn1—O4—H42	98.8 (17)	O3—C13—N2	122.56 (16)
H42—O4—H41	106 (2)	O3—C13—C11	118.34 (15)
C8—N1—Zn1	122.85 (11)	N2-C13-C11	119.10 (16)
C8—N1—C12	117.59 (15)	N2-C14-C15	111.29 (15)
C12—N1—Zn1	119.56 (11)	N2—C14—H14A	109.4
C13—N2—C14	118.24 (15)	N2—C14—H14B	109.4
C13—N2—C16	125.02 (15)	C15—C14—H14A	109.4
C16—N2—C14	116.24 (14)	C15—C14—H14B	109.4
O1—C1—C2	114.26 (15)	H14A—C14—H14B	108.0
O2—C1—O1	126.75 (16)	C14—C15—H15A	109.5
O2—C1—C2	118.99 (15)	C14—C15—H15B	109.5
C3—C2—C1	121.12 (16)	C14—C15—H15C	109.5
C3—C2—C7	118.06 (17)	H15A—C15—H15B	109.5
C7—C2—C1	120.76 (17)	H15A—C15—H15C	109.5
C2—C3—C4	120.98 (18)	H15B—C15—H15C	109.5
С2—С3—Н3	119.5	N2-C16-C17	112.98 (18)
С4—С3—Н3	119.5	N2—C16—H16A	109.0
C3—C4—H4	120.1	N2—C16—H16B	109.0
C5—C4—C3	119.8 (2)	C17—C16—H16A	109.0
C5—C4—H4	120.1	C17—C16—H16B	109.0
C4—C5—C6	120.33 (18)	H16A—C16—H16B	107.8
С4—С5—Н5	119.8	С16—С17—Н17А	109.5
С6—С5—Н5	119.8	C16—C17—H17B	109.5
С5—С6—С7	118.77 (18)	С16—С17—Н17С	109.5
С5—С6—Н6	120.6	H17A—C17—H17B	109.5
С7—С6—Н6	120.6	H17A—C17—H17C	109.5
C2—C7—Br1	119.57 (14)	H17B—C17—H17C	109.5
O4 ⁱ —Zn1—O1—C1	5.89 (14)	C1—C2—C3—C4	175.41 (16)
O4—Zn1—O1—C1	-174.11 (14)	C7—C2—C3—C4	-1.6 (3)
N1 ⁱ —Zn1—O1—C1	93.18 (14)	C5—C4—C3—C2	-0.7 (3)
N1—Zn1—O1—C1	-86.82 (14)	C3—C4—C5—C6	2.1 (3)
Zn1—O1—C1—O2	11.8 (3)	C7—C6—C5—C4	-1.1 (3)
Zn1—O1—C1—C2	-168.33 (11)	Br1—C7—C2—C1	4.8 (2)
$C8-N1-Zn1-O1^{i}$	-61.43 (14)	Br1—C7—C2—C3	-178.23 (13)
C8—N1—Zn1—O1	118.57 (14)	C6—C7—C2—C1	-174.44 (16)
C8—N1—Zn1—O4 ⁱ	26.23 (14)	C6—C7—C2—C3	2.6 (3)
C8—N1—Zn1—O4	-153.77 (14)	Br1—C7—C6—C5	179.54 (14)
$C12$ — $N1$ — $Zn1$ — $O1^{i}$	117.92 (13)	C2—C7—C6—C5	-1.2 (3)

C12—N1—Zn1—O1	-62.08 (13)	N1—C8—C9—C10	-0.6 (3)
C12—N1—Zn1—O4 ⁱ	-154.42 (13)	С11—С10—С9—С8	-1.6 (3)
C12—N1—Zn1—O4	25.58 (13)	C12—C11—C10—C9	2.5 (3)
Zn1—N1—C8—C9	-178.82 (13)	C13—C11—C10—C9	177.93 (16)
C12—N1—C8—C9	1.8 (3)	C10-C11-C12-N1	-1.3 (3)
Zn1—N1—C12—C11	179.78 (13)	C13—C11—C12—N1	-176.57 (16)
C8—N1—C12—C11	-0.8 (2)	C10-C11-C13-O3	-61.1 (2)
C13—N2—C14—C15	88.7 (2)	C10-C11-C13-N2	118.94 (18)
C16—N2—C14—C15	-83.6 (2)	C12—C11—C13—O3	114.20 (19)
C13—N2—C16—C17	109.9 (2)	C12—C11—C13—N2	-65.8 (2)
C14—N2—C16—C17	-78.4 (2)	O3—C13—N2—C14	3.5 (2)
C3—C2—C1—O1	-83.7 (2)	O3—C13—N2—C16	175.04 (17)
C3—C2—C1—O2	96.2 (2)	C11—C13—N2—C14	-176.49 (14)
C7—C2—C1—O1	93.2 (2)	C11—C13—N2—C16	-4.9 (3)
C7—C2—C1—O2	-86.9 (2)		

Ek Tablo 24. (24) kristalinin hidrojen bağı geometrisi (Å, °)

$0.4 - H.41 \cdots 0.3^{ii}$ 0.88 (2) 1.88 (2)	27510(10)	1(0(0))
0.00(2) $1.00(2)$	2./318(18)	168 (3)
O4—H42···O2 ⁱ $0.87(2)$ $1.81(2)$	2.640 (2)	158 (2)

Simetri Kodları: (ii) -x+3/2, y+1/2, -z+1/2; (i) -x+1, -y, -z.

Ek Şekil 1. 1 Kompleksinin IR Spektrumu

Ek Şekil 2. 2 Kompleksinin IR Spektrumu

Ek Şekil 3. 3 Kompleksinin IR Spektrumu

Ek Şekil 4. 4 Kompleksinin IR Spektrumu

Ek Şekil 5. 5 Kompleksinin IR Spektrumu

Ek Şekil 6. 6 Kompleksinin IR Spektrumu

Ek Şekil 8. 8 Kompleksinin IR Spektrumu

Ek Şekil 9. 9 Kompleksinin IR Spektrumu

Ek Şekil 10. 10 Kompleksinin IR Spektrumu

Ek Şekil 11. 11 Kompleksinin IR Spektrumu

Ek Şekil 12. 12 Kompleksinin IR Spektrumu

Ek Şekil 13. 13 Kompleksinin IR Spektrumu

Ek Şekil 14. 14 Kompleksinin IR Spektrumu

Ek Şekil 15. 15 Kompleksinin IR Spektrumu

Ek Şekil 16. 16 Kompleksinin IR Spektrumu

Ek Şekil 18. 18 Kompleksinin IR Spektrumu

Ek Şekil 19. 19 Kompleksinin IR Spektrumu

Ek Şekil 20. 20 Kompleksinin IR Spektrumu

Ek Şekil 22. 22 Kompleksinin IR Spektrumu

Ek Şekil 23. 23 Kompleksinin IR Spektrumu

Ek Şekil 24. 24 Kompleksinin IR Spektrumu

Ek Şekil 25. 1 Kompleksinin UV Spektrumu

Ek Şekil 26. 2 Kompleksinin UV Spektrumu

Ek Şekil 27. 5 Kompleksinin UV Spektrumu

Ek Şekil 28. 6 Kompleksinin UV Spektrumu

Ek Şekil 30. 10 Kompleksinin UV Spektrumu

Ek Şekil 31. 12 Kompleksinin UV Spektrumu

Ek Şekil 32. 13 Kompleksinin UV Spektrumu

Ek Şekil 33. 15 Kompleksinin UV Spektrumu

Ek Şekil 34. 16 Kompleksinin UV Spektrumu

Ek Şekil 35. 18 Kompleksinin UV Spektrumu

Ek Şekil 36. 19 Kompleksinin UV Spektrumu

Ek Şekil 37. 20 Kompleksinin UV Spektrumu

Ek Şekil 38. 21 Kompleksinin UV Spektrumu

NMR Spektrumları

Ek Şekil 42. 4 kompleksinin ¹³C-NMR (DMSO-d₆) spektrumu

EF12_13C Decoupled

Ek Şekil 45. **24** kompleksinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 46. 24 kompleksinin ¹³C-NMR (DMSO-d₆) spektrumu

Toz X ışını Analiz Spektrumları

Ek Şekil 47. 12 Kompleksinin toz-xrd diyagramı

Ek Şekil 48. 13 Kompleksinin toz-xrd diyagramı

Ek Şekil 49. 15 Kompleksinin toz-xrd diyagramı

Ek Şekil 50. 16 Kompleksinin toz-xrd diyagramı

Ek Şekil 51. 18 Kompleksinin toz-xrd diyagramı

Ek Şekil 52. 19 Kompleksinin toz-xrd diyagramı

Ek Şekil 53. 20 Kompleksinin toz-xrd diyagramı

Ek Şekil 54. 21 Kompleksinin toz-xrd diyagramı

1				
	Açı	d değeri	Pik şiddeti	Pik Şiddet
	20°	Angstrom	Miktarı	Yüzdesi %
1	5.553	15.90237	148	9.4
2	9.627	9.17992	1579	100
3	10.517	8.40454	197	12.4
4	12.703	6.96274	1021	64.6
5	13.683	6.46625	282	17.8
6	16.014	5.52993	485	30.7
7	16.956	5.22498	330	20.9
8	18.66	4.75128	258	16.3
9	19.37	4.57893	391	24.8
10	21.055	4.21596	498	31.6
11	21.489	4.1319	529	33.5
12	22.67	3.91912	691	43.7
13	23.707	3.75	779	49.3
14	25.935	3.4327	244	15.5
15	26.969	3.30343	413	26.2
16	27.772	3.20973	246	15.6
17	30.658	2.91386	424	26.8
18	31.828	2.80933	315	20
19	36.197	2.4796	163	10.3
20	37.184	2.41605	172	10.9
21	48.723	1.86742	120	7.6

Ek Tablo 25. 12 kodlu bileşiğin toz XRD Değerleri

	Açı	d değeri	Pik şiddeti	Pik Şiddet
	20°	Angstrom	Miktarı	Yüzdesi %
1	5.49	16.08365	123	9.1
2	7.467	11.82895	1355	100
3	10.636	8.31072	480	35.4
4	11.242	7.86439	280	20.7
5	11.625	7.60613	578	42.7
6	14.649	6.04229	277	20.4
7	15.05	5.88214	436	32.2
8	15.867	5.58094	236	17.4
9	17.003	5.21049	177	13.1
10	18.126	4.89021	108	8
11	18.591	4.76893	422	31.1
12	19.367	4.57943	203	14.9
13	20.258	4.38001	177	13.1
14	20.759	4.2754	501	37
15	22.115	4.0162	200	14.8
16	22.644	3.92368	405	29.9
17	24.222	3.67147	646	47.7
18	25.507	3.48942	216	15.9
19	26.065	3.41594	115	8.5
20	26.993	3.30048	281	20.8
21	28.446	3.13513	225	16.6
22	29.025	3.07389	142	10.5
23	29.699	3.00572	116	8.6
24	30.999	2.88255	127	9.4
25	32.608	2.74388	155	11.5
26	34.413	2.60396	119	8.8
27	35.123	2.55295	87.6	6.5
28	37.111	2.42065	142	10.5
29	38.352	2.34508	120	8.8
30	39.414	2.28433	138	10.2
31	41.241	2.18726	58.9	4.3
32	42.217	2.13894	78	5.8
33	43.248	2.09029	149	11
34	45.152	2.00647	55.2	4.1
35	49.305	1.84674	72.7	5.4
36	55.707	1.64871	132	9.7
37	58.746	1.57046	78.3	5.8
38	59.75	1.54644	127	9.4
39	60.601	1.52675	93.1	6.9
40	61.816	1.49962	84.1	6.2

Ek Tablo 26. 13 kodlu bileşiğin toz XRD Değerleri

	Açı 2θ°	d değeri Angstrom	Pik şiddeti Miktarı	Pik Şiddet Yüzdesi %
1	9.521	9.28147	1087	98
2	10.456	8.45347	232	20.9
3	12.634	7.00061	1109	100
4	13.596	6.50749	136	12.3
5	15.933	5.55805	663	59.8
6	16.959	5.22401	271	24.5
7	18.671	4.74861	125	11.2
8	19.34	4.58589	75.8	6.8
9	19.72	4.49834	109	9.8
10	21.208	4.18604	111	10
11	22.425	3.96144	97.6	8.8
12	23.692	3.75245	842	75.9
13	25.79	3.45169	326	29.4
14	26.794	3.3246	205	18.4
15	27.664	3.22195	89.9	8.1
16	28.903	3.08666	71.2	6.4
17	30.527	2.92602	464	41.8
18	31.853	2.80718	167	15.1
19	33.745	2.65395	130	11.7
20	34.769	2.57816	108	9.7
21	35.993	2.49323	124	11.2
22	37.114	2.42045	122	11
23	39.988	2.25283	116	10.4
24	40.998	2.19966	64.9	5.8
25	43.536	2.07713	78.3	7.1
26	46.799	1.93963	103	9.2
27	61.033	1.51698	55.7	5

Ek Tablo 27. 15 kodlu bileşiğin toz XRD Değerleri

	Açı	d değeri	Pik şiddeti	Pik Şiddet
	20°	Angstrom	Miktarı	Yüzdesi %
1	7.547	11.70398	3274	100
2	10.605	8.33498	927	28.3
3	11.294	7.82847	335	10.2
4	11.643	7.59474	960	29.3
5	12.861	6.87789	178	5.4
6	14.664	6.03577	306	9.3
7	15.207	5.82163	1394	42.6
8	16.013	5.53052	250	7.6
9	16.939	5.23002	199	6.1
10	18.56	4.77686	413	12.6
11	19.357	4.58196	270	8.3
12	20.815	4.26408	793	24.2
13	22.554	3.93902	216	6.6
14	22.771	3.90199	213	6.5
15	24.458	3.63655	1231	37.6
16	25.571	3.48077	256	7.8
17	27.331	3.26052	157	4.8
18	29.164	3.05959	151	4.6
19	31.111	2.87243	173	5.3
20	32.94	2.71694	177	5.4
21	34.602	2.59016	152	4.6
22	38.559	2.33299	214	6.5
23	42.505	2.12507	163	5
24	64.715	1.43928	169	5.2

Ek Tablo 28. 16 kodlu bileşiğin toz XRD Değerleri

	Açı 20°	d değeri Angstrom	Pik şiddeti Miktarı	Pik Şiddet Yüzdesi %
1	5,393	16.37244	41.3	3.7
2	5 466	16 15555	129	11.4
3	12 499	7 07629	269	23.8
4	13 503	6 5523	205	20.5
5	15.82	5 59733	186	16.4
6	16.84	5 26072	07.8	8.6
7	18 281	4 84902	1//	12.7
, ,	18.54	4.34502	70.5	7
0	18 075	4.78131	1122	,
10	10.373	4.07331	287	24.2
10	20.004	4.36413	507	34.2 4E 2
11	20.334	2,00990	214	43.2
12	22.212	3.99889	1107	18.9
13	25.542	2.62615	71.7	97.0
14	24.401	3.03015	/1./	0.3
15	25.579	3.47966	450	40.3
16	26.551	3.35451	559	49.4
17	27.339	3.25958	159	14
18	28.638	3.11455	324	28.7
19	30.178	2.95905	568	50.2
20	30.596	2.9196	139	12.3
21	31.706	2.81989	141	12.5
22	32.991	2.71292	134	11.8
23	33.425	2.67867	123	10.9
24	34.428	2.60291	74.4	6.6
25	35.623	2.51826	297	26.2
26	36.726	2.4451	162	14.3
27	38.663	2.32695	142	12.5
28	39.699	2.26861	200	17.7
29	40.438	2.22884	140	12.3
30	43.342	2.08596	93.8	8.3
31	44.574	2.03115	72.3	6.4
32	46.241	1.96173	76	6.7
33	48.064	1.89149	87.2	7.7
34	48.735	1.867	93.8	8.3
35	49.705	1.8328	105	9.2
36	50.644	1.80102	75.6	6.7
37	60.297	1.53372	94.8	8.4
38	62.099	1.49346	75.5	6.7
39	65.757	1.41898	103	9.1
40	66.353	1.40767	100	8.8
41	69.677	1.34841	92.6	8.2

Ek Tablo 29. 18 kodlu bileşiğin toz XRD Değerleri

	Açı	d değeri	Pik şiddeti	Pik Şiddet
	20°	Angstrom	Miktarı	Yüzdesi %
1	7.446	11.86316	318	31.6
2	10.642	8.30645	907	90.3
3	11.263	7.84998	285	28.4
4	11.551	7.65483	405	40.3
5	14.358	6.16411	195	19.5
6	15.004	5.89984	501	49.9
7	15.83	5.59402	267	26.6
8	18.178	4.8764	197	19.7
9	18.566	4.77523	743	74
10	19.306	4.59387	166	16.6
11	20.279	4.37558	239	23.8
12	20.735	4.28046	1004	100
13	22.119	4.01552	134	13.4
14	22.599	3.93143	387	38.5
15	24.164	3.68019	558	55.6
16	25.525	3.48695	284	28.3
17	25.99	3.42565	200	19.9
18	26.897	3.31216	423	42.2
19	28.405	3.13956	226	22.5
20	28.954	3.08135	114	11.4
21	30.945	2.88741	170	16.9
22	32.556	2.74815	191	19
23	34.965	2.56412	178	17.7
24	37.113	2.42048	175	17.4
25	38.261	2.35045	123	12.2
26	39.266	2.29259	284	28.3
27	39.626	2.27259	153	15.3
28	42.244	2.13763	147	14.7
29	46.182	1.96407	148	14.7
30	47.008	1.93149	164	16.3

Ek Tablo 30. 19 kodlu bileşiğin toz XRD Değerleri

	Açı	d değeri	Pik şiddeti	Pik Şiddet
	20°	Angstrom	Miktarı	Yüzdesi %
1	5.584	15.81369	154	6.7
2	10.453	8.45641	367	16
3	12.532	7.05787	1116	48.6
4	13.522	6.54285	775	33.8
5	15.811	5.60062	607	26.4
6	16.935	5.23118	258	11.2
7	18.291	4.8463	361	15.7
8	18.841	4.70606	2295	100
9	19.399	4.57202	1798	78.3
10	21.069	4.21335	1589	69.2
11	22.163	4.00769	917	40
12	23.603	3.76632	2168	94.4
13	25.499	3.49049	1115	48.6
14	26.489	3.36223	754	32.9
15	27.406	3.25177	405	17.6
16	28.518	3.12737	265	11.6
17	30.047	2.97166	1384	60.3
18	30.568	2.92215	407	17.7
19	31.872	2.80557	667	29.1
20	33.398	2.68073	153	6.6
21	34.53	2.59546	314	13.7
22	35.402	2.53344	327	14.3
23	36.753	2.44341	353	15.4
24	38.672	2.32641	197	8.6
25	39.553	2.27662	339	14.8
26	40.659	2.21722	308	13.4
27	45.42	1.99524	208	9.1
28	46.175	1.96439	206	9
29	48.417	1.87851	189	8.2
30	49.451	1.84161	201	8.7
31	50.415	1.80864	129	5.6
32	58.894	1.56687	153	6.7
33	61.83	1.49931	169	7.4

Ek Tablo 31. 20 kodlu bileşiğin toz XRD Değerleri
	Açı 20°	d değeri Angstrom	Pik şiddeti Miktarı	Pik Şiddet Yüzdesi %
1	5.497	16.06435	79.4	4.2
2	5.622	15 70807	112	6
3	5.738	15.38858	82.7	4.4
4	7.534	11.7248	916	48.8
5	10.616	8.32686	1876	100
6	11.252	7.85718	424	22.6
7	11.528	7.66966	342	18.2
8	14.404	6.14443	283	15.1
9	15.147	5.84454	573	30.6
10	15.974	5.54393	409	21.8
11	17.044	5.19817	169	9
12	17.555	5.04785	59.4	3.2
13	18.167	4.87915	383	20.4
14	18.572	4.77373	1023	54.5
15	19.32	4.59045	422	22.5
16	20.797	4.26777	1094	58.3
17	21.802	4.07325	202	10.7
18	22.256	3.99114	374	20
19	22.66	3.92085	715	38.1
20	23.505	3.78187	212	11.3
21	23.985	3.70725	372	19.8
22	24.409	3.64375	1811	96.5
23	25.585	3.47894	396	21.1
24	26.003	3.42386	250	13.3
25	27.221	3.27344	225	12
26	28.394	3.14075	266	14.2
27	29.144	3.0616	245	13
28	29.694	3.0062	115	6.1
29	31.06	2.87698	191	10.2
30	31.573	2.83147	146	7.8
31	32.837	2.72525	244	13
32	34.554	2.59366	146	7.8
33	35.135	2.55208	131	7
34	35.751	2.50952	123	6.6
35	36.597	2.45344	84.9	4.5
36	37.111	2.42065	133	7.1
37	38.483	2.3374	215	11.5
38	39.635	2.27209	186	9.9
39	40.017	2.25131	122	6.5
40	42.431	2.1286	117	6.2
41	43.162	2.09425	145	7.7
42	44.993	2.01321	108	5.8
43	46.246	1.96153	97.1	5.2
44	50.041	1.82129	99.9	5.3
45	52.648	1.73707	87.2	4.6

Ek Tablo 32. 21 kodlu bileşiğin toz XRD Değerleri

46	53.608	1.7082	67.4	3.6
47	54.601	1.67947	99.2	5.3

ÖZGEÇMİŞ

Adı Soyadı	: Füreya Elif ÖZBEK		
Dogum Yeri	: Kars		
Dogum Tarihi	: 14.11.1983		
Medeni Hali	: Evli		
Yabancı Dili	: İngilizce		

Egitim Durumu (Kurum ve Yıl)

Lise	: Kars Alpaslan Lisesi -2000
Lisans	: Kafkas Üniversitesi Fen Edebiyat Fakültesi Kimya Bölümü-2004
Yüksek Lisan	s: Kafkas Üniversitesi Fen Bilimleri Enstitüsü-2006

Çalıstıgı Kurum/Kurumlar ve Yıl

Kafkas Üniversitesi Fen Edebiyat Fakültesi 2005-

Yayınları (SCI ve diger)

- Necefoglu H, Maraci A., Ozbek F.E., Tercan B ,Hokelek T., Diaquabis(N,Ndiethylnicotinamide-κN¹)bis(4-ethylbenzoato-κO)cobalt(II), Acta Crystallographica Section E-Structure Reports Online E67, m619-m620, 2011.
- Necefoglu H, Özbek F.E., Aktas V., Tercan B ,Hokelek T., Bis(4-ethylbenzoato-*k* O)bis(nicotinamide-*k*N¹)zinc(II), Acta Crystallographica Section E-Structure Reports Online E67, m382-m383, 2011.
- Hokelek T., Yılmaz F., Tercan B., Ozturkkan F.E., Necefoglu H, Diaquabis(2bromobenzoato-O)bis-(N,N-diethylnicotinamide-N)cobalt(II), Acta Crystallographica Section E-Structure Reports Online, E66, m1132–m1133, 2010.
- Hokelek T., Yılmaz F., Tercan B., Özbek F.E., Necefoğlu H., Bis(2-fluorobenzoato-1:2-O:O)-(2-fluorobenzoato-O,O)(2-fluorobenzoato-O)dinicotinamide-N1-N1-dizinc(II)fluorobenzoicacid (1/1), Acta Crystallographica Section E-Structure Reports Online , E65, M1608-M1609, 2009.

- Hokelek T., Dal H, Tercan B, Ozbek FE, Necefoglu, Tetraaquabis(nicotinamide-kappa N-1) bis(2-fluorobenzoate)Nickel(II), Acta Crystallographica Section E-Structure Reports Online, E65, m1330-m1331, 2009
- Hokelek T., Yilmaz F , Tercan B, Ozbek FE, Necefoglu H, Diaquabis(2-bromobenzoatokappa O)bis(N,N-diethylnicotinamide-kappa N-1)nickel(II), Acta Crystallographica Section E-Structure Reports Online, 65, M766-U739, Part 7, 2009.
- Hokelek T., Yilmaz F, Tercan B, Ozbek FE, Necefoglu H., Diaquabis(2-bromobenzoatokappa O)bis(nicotinamide-kappa N-1)nickel(II), Acta Crystallographica Section E-Structure Reports Online, 65, M768-U749, Part 7, 2009.
- Hokelek T, Dal H, Tercan B, Ozbek FE, Necefoglu, H, Diaquabis(2-bromobenzoato-kappa O)bis(N,N-diethylnicotinamide-kappa N-1)zinc(II), Acta Crystallographica Section E-Structure Reports Online, 65, M481-U230, Part 5, 2009.
- Hokelek T, Dal H, Tercan B, Ozbek FE, Necefoglu H, Diaquabis(2-chlorobenzoato-kappa O)bis-(N,N-diethylnicotinamide-kappa N-1)manganese(II), Acta Crystallographica Section E-Structure Reports Online, 65, M513-U497, Part 5, 2009.
- Hokelek T, Dal H, Tercan B, Ozbek FE, Necefoglu, H,(2-bromobenzoato-kappa O)bis(N,N-diethylnicotinamide-kappa N-1)manganese(II), Acta Crystallographica Section E-Structure Reports Online , 65, M513-U664, Part 5, 2009.
- Hokelek T , Dal H , Tercan B , Ozbek FE , Necefoglu, H., Diaquabis(2-chlorobenzoatokappa O)bis(N,N-diethylnicotinamide-kappa N-1)nickel(II) Acta Crystallographica Section E-Structure Reports Online, 65, M545-U750, Part 5, 2009.
- Hokelek T., Dal H, Tercan B, Ozbek FE, Necefoglu H., Diaquabis(2-bromobenzoato-kappa O)bis(nicotinamide-kappa N-1)zinc(II), Acta Crystallographica Section E-Structure Reports Online, 65, M607-U1270, Part 5, 2009.
- Ozbek FE, Tercan B, Sahin E, Necefoglu H., Hokelek T., Tetraaquabis(nicotinamide-kappa N-1)cobalt(II) bis(2-fluorobenzoate), Acta Crystallographica Section E-Structure Reports Online, 65, m341-m342, Part 3, 2009.
- Hokelek T., Dal H, Tercan B, Ozbek FE, Necefoglu H., Diaquabis(2-chlorobenzoato-O)bis(nicotinamide- N)Nickel(II), Crystallographica Section E-Structure Reports Online, E65, m466-m467, 2009.
- Öztürk A., Hökelek T., Özbek F. E. and Necefoğlu H., Diaquabis(4-bromobenzoato-O)bis(N,N-Diethylnicotinamide- N)Zinc(II), Crystallographica Section E-Structure Reports Online, E64, m1218-m1219, 2008.

- Öztürkkan F.E., Köse D. A., Necefoglu H.and Uzun İ, Synthesis and Characterization of bis(N,N-Diethylnicotinamide) p-Halogenobenzoate Complexes of Co(II), Asian J. Chem., Vol. 19, pp. 4880-4888, 2007.
- 17. Sahin O, Buyukgungor O, Kose DA, Ozturkkan EF, Necefoglu H, Diaquabis(4fluorobenzoato-kappa O)-bis(nicotinamide-kappa N)cobalt(II), Acta Crystallographica Section C-Crystal Structure Communications, 63, M243-M245, 2007.
- N. Çaylak, T. Hökelek, F. E. Öztürkkan and H. Necefoglu, Diaquabis(4-chlorobenzoato-O)bis(nicotinamide- N)cobalt(II), Crystallographica Section E-Structure Reports Online, E6, m1344-m1346, 2007.

Uluslar arası ve Ulusal Kongrelerde Sunulan ve Bildiri Kitaplarında Basılan Bildiriler

- Füreya Elif Özbek, Barış Tercan, Ertan Şahin, Tuncer Hökeleki Hacali Necefoğlu, Tetraakvabis(nikotinamid)kobaltbis(flüoridbenzoat) kimpleksinin sintezi ve kristal quruluşu, Kompleks Birleşmeler Kimyası Konferansı, 29, Bakü, 2009
- Füreya Elif Özbek, Songül Edebalı, Hacali Necefoğlu, Çinko (II) p-Halojenobenzoatların Nikotinamid ve N,N-Dietilnikotinamid Komplekslerinin Sentezi ve Özellikleri, XXIII.Ulusal Kimya Kongresi, IP042, Sivas, 2009
- Yusuf Ersan, Evren Koç, Hacali Necefoğlu, F.Elif Öztürkkan, Kobalt(II) p-Aminobenzoatın Erişkin Fare Karaciğeri Üzerine Histopatolojik Etkisi, 19.Ulusal Biyoloji Kongresi, PZ215, Trabzon, 2008
- Gültekin Gökçe, Kadir Pekmez, Elif Öztürkkan, Hacali Necefoğlu, Karboksile Camsı Karbon Elektrot Yüzeyine Bağlı Co(II)- Nikotinamid Kompleksinin Oksijenin Elektrokimyasal İndirgenmesine Katalitik Etkisi,XXI. Ulusal Kimya Kongresi, ANL046P, Malatya, 2007
- F.Elif Öztürkkan, Hacali Necefoğlu, Mangan(II) *p*-floro-, *p*-bromobenzoatın N,N-Dietilnikotinamid Karışık Ligand Komplekslerinin Sentezi Ve Yapılarının İncelenmesi, XXI. Ulusal Kimya Kongresi, ANO087P, Malatya, 2007
- F. Elif Öztürkkan, Hacali Necefoğlu, Bakır(II) *p*-klorobenzoatın nikotinamid ve N,N-Dietilnikotinamid komplekslerinin sentezi ve yapısal özellikleri, XXI. Ulusal Kimya Kongresi, ANO086P, Malatya, 2007
- Dursun Ali Köse, F.Elif Öztürkkan, Hacali Necefoğlu, Kobalt(II) *p*-floro-, *p*-kloro- ve *p*bromobenzoatlarının Nikotinamid Komplekslerinin Sentezi Ve Yapısal Özellikleri, Kimya 2006, XX. Ulusal Kimya Kongresi, Kayseri Bildiri Özetleri Kitabı, ANP-14, 2006

 F.Elif Öztürkkan., Dursun Ali Köse, Hacali Necefoğlu, Kobalt(II) *p*-halojenbenzoatların N,N-Dietilnikotinamid Mix-Ligand Komplekslerinin Sentezi Ve Yapılarının İncelenmesi, Kimya 2006, XX. Ulusal Kimya Kongresi, Kayseri Bildiri Özetleri Kitabı, ANP-15, 2006