T.C. KAFKAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

BAZI YENİ HETEROSİKLİK BİLEŞİKLERİN SENTEZİ VE BAZI ÖZELLİKLERİNİN İNCELENMESİ ÜZERİNE BİR ÇALIŞMA

Gül KEMER DOKTORA TEZİ

DANIŞMAN Prof. Dr. Haydar YÜKSEK

> OCAK-2015 KARS

Bu Tez Çalışması 2014-FEF-35 Nolu Proje ile Kafkas Üniversitesi Araştırma Fonu Tarafından Desteklenmiştir.

T.C. KAFKAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

BAZI YENİ HETEROSİKLİK BİLEŞİKLERİN SENTEZİ VE BAZI ÖZELLİKLERİNİN İNCELENMESİ ÜZERİNE BİR ÇALIŞMA

Gül KEMER DOKTORA TEZİ

DANIŞMAN Prof. Dr. Haydar YÜKSEK

OCAK-2015 KARS T.C. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı DR.553 numaralı Doktora öğrencisi Gül KEMER'in Prof. Dr. Haydar YÜKSEK'in danışmanlığında doktora tezi olarak hazırladığı "Bazı Yeni Heterosiklik Bileşiklerin Sentezi ve Bazı Özelliklerinin İncelenmesi Üzerine Bir Çalışma" adlı bu çalışma, yapılan tez savunması sınavı sonunda jüri tarafından Lisansüstü Eğitim Öğretim Yönetmeliği uyarınca değerlendirilerek oy bir höri... ile kabul edilmiştir.

30/ 0.1/2015

Adı ve Soyadı

Başkan	: Prof. Dr. Haydar YÜKSEK (Danışman)
Üye	: Doç. Dr. Yusuf ATALAY
Üye	: Yrd. Doç. Dr. Onur AKYILDIRIM
Üye	: Yrd. Doç. Dr. Murat BEYTUR
Üye	: Yrd. Doç. Dr. Özlem GÜRSOY KOL

İmza **TH**

Bu tezin kabulü, Fen Bilimleri Enstitüsü Yönetim Kurulu'nun ../ .. / 2015 gün ve /.....sayılı kararıyla onaylanmıştır

> Prof. Dr. Muzaffer ALKAN Enstitü Müdürü

ÖNSÖZ

Bu çalışma Kafkas Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim dalında doktora tezi olarak hazırlanmıştır. Çalışmada, 14 yeni 4,5-dihidro-1*H*-1,2,4-triazol-5-on türevinin sentezi yapılmış, yapıları IR, ¹H-NMR, ¹³C-NMR ve UV spektroskopik yöntemleri kullanılarak aydınlatılmıştır.

Sentezlenen 14 yeni bileşiğin üç farklı yöntemle (indirgeme gücü, serbest radikal giderme aktivitesi, metal şelat aktivitesi) *in-vitro* antioksidan aktiviteleri de incelenmiştir.

Çalışmada, 4,5-dihidro-1*H*-1,2,4-triazol-5-on halkasında N-H grubu içeren 9 adet 4,5dihidro-1*H*-1,2,4-triazol-5-on türevinin susuz çözücülerde (izopropil alkol, *tert*-butil alkol, aseton ve *N*,*N*-dimetilformamid) tetrabutilamonyumhidroksit (TBAH) ile potansiyometrik titrasyonları yapılmış, titrasyon grafikleri çizilmiş ve yarı-nötralizasyon metodu ile pK_a değerleri tayin edilerek asitlik üzerine çözücü ve yapı etkisi tartışılmıştır.

Çalışmada son olarak, sentezlenen 14 yeni ve 16 literatürde kayıtlı toplam 30 adet 4,5dihidro-1*H*-1,2,4-triazol-5-on türevinin ¹H-NMR ve ¹³C-NMR, infrared spektral verileri ve UV-vis değerleri deneysel ve teorik olarak, bağ açıları, bağ uzunlukları, mulliken yükleri, HOMO-LUMO enerjileri, dipol momentleri ve enerjileri ise teorik olarak bilgisayar ortamında iki farklı set kullanılarak incelenmiştir. Çalışmada öncelikle incelenen bileşikler B3LYP/631G(d,p) ve HF/631G(d,p) metoduna göre optimize edilmiştir. Optimize işleminden sonra ¹H-NMR ve ¹³C-NMR isotropik kayma değerleri Gaussian G09W paket programı kullanılarak GIAO metoduna göre hesaplanmıştır. Burada bulunan değerler TMS için bulunan değerlerden çıkarılmıştır. Deneysel ve teorik olarak bulunan değerler δ exp=a. δ calc + b eşitliğine göre grafiğe geçirilmiştir. Sigmaplot programı kullanılarak a ve b sabitleri regresyon katsayısı ile standart hata değerleri bulunmuştur. Yapılan değerlendirme sonucunda her iki yönteminde deneysel sonuçlarla uyumlu olduğu görülmüştür. İncelenen bileşiklerin iki yöntemle IR absorpsiyon frekansları hesaplanmış, deneysel verilerle mukayese edilerek uyumlu oldukları görülmüş, B3LYP ve HF metoduna göre elde edilen veriler B3LYP 631G(d,p) için 0.9617 ve HF 6-31G(d,p) için 0.8992 düzeltme faktörü ile çarpılarak DFT ve HF değerleri ile teorik infrared spektrumu oluşturulmuştur. Ayrıca, bileşiklerin deneysel infrared spektrumları da verilmiştir.

Tez çalışmamı planlayan, yöneten ve her aşamasını titizlikle takip ederek büyük emeği geçen, yoğun çalışmalarından bana zaman ayırarak derin bilgilerinden faydalanma fırsatı veren, öğrencisi olmaktan her zaman gurur duyduğum, değerli bilim adamı, Kafkas Üniversitesi Fen-Edebiyat Fakültesi Dekanı Değerli Hocam Sayın Prof. Dr. Haydar YÜKSEK'e saygı ve teşekkürlerimi sunmayı bir borç bilirim.

Çalışmalarımın her aşamasında ve tezin hazırlanması sürecinde katkılarını esirgemeyen Sayın Hocam Fen Bilimleri Enstitüsü Müdürü Prof. Dr. Muzaffer ALKAN'a saygı ve teşekkürlerimi sunarım.

Bana ve tüm ekip arkadaşlarıma titiz çalışmalarıyla destek olan ve antioksidan incelemelerinde yardımını esirgemeyen Sayın Hocam, Kimya Bölüm Başkan Yardımcısı Yrd. Doç. Dr. Özlem GÜRSOY KOL'a, asitlik çalışmalarının düzenlenmesinde yardımcı olan Sayın Hocam Yrd. Doç. Dr. Zafer OCAK'a ve bilgi ve birikiminden yararlandığım Yrd. Doç. Dr. Onur AKYILDIRIM'a teşekkürlerimi sunarım. Ayrıca tezimin her aşamasında bana sabırla yardım eden, desteğini gördüğüm Yrd. Doç. Dr. Murat BEYTUR'a, Uzman Hilal MEDETALİBEYOĞLU'na, özveriyle yardım eden arkadaşlarım Arş. Gör. Sevda MANAP'a, doktora öğrencisi Feyzi Sinan TOKALI'ya ve Kimya Bölümü Organik Kimya Araştırma Laboratuvarında çalışan değerli çalışma arkadaşlarıma teşekkür ederim.

Benden maddi ve manevi desteğini esirgemeyen, hayatımın her aşamasında yanımda olan ve bugünlere gelmemde büyük pay sahibi olan sevgili anneme, babama, kardeşlerime ve değerli eşime sonsuz teşekkürlerimi sunarım.

Kars-2015

Gül KEMER

İÇİNDEKİLER

ÖNSÖZ		III
İÇİNDEKİ	LER	V
ÖZET		XI
SUMMARY	Y	XIII
ŞEKİLLEF	R DÍZÍNÍ	XV
TABLOLAR DİZİNİ		XXVI
SEMBOLL	ER VE KISALTMALAR DİZİNİ	XXXIX
1.	GENEL BİLGİLER	1
1.1.	Giriş	1
1.2.	Serbest Radikaller ve Antioksidan Sistemler	29
1.2.1.	Serbest Radikaller ve Genel Özellikleri	29
1.2.2.	Oksijen Radikalleri	30
1.2.2.1.	Singlet Oksijen ($O_2^{\uparrow\downarrow}$)	31
1.2.2.2.	Süperoksit Radikali (O ₂ ⁻)	31
1.2.2.3.	Hidrojen Peroksit (H ₂ O ₂)	32
1.2.2.4.	Hidroksil (OH) ve Perhidroksil (HO ₂) Radikali	33
1.2.3.	Serbest Radikallerin Zararlı Etkileri	34
1.2.3.1	Lipit Peroksidasyonu	35
1.2.3.2.	Protein Oksidasyonu	35
1.2.3.3.	DNA Oksidasyonu	35
1.2.3.4.	KarbohidratOksidasyonu	36
1.2.4.	Antioksidan Savunma Sistemi	37
1.2.5.	Antioksidan Aktivitesi Belirleme Metotları	38
1.3.	Çalışmada Kullanılan Yeni Bileşiklerin Sentezi	40
1.4.	3-Alkil(Aril)-4-amino-4,5-dihidro-1H-1,2,4-triazol-5-on	
	Bileşiklerinin Sentez Yöntemleri ve Bazı Reaksiyonları	46
1.4.1.	3-Alkil(Aril)-4-amino-4,5-dihidro-1H-1,2,4-triazol-5-on'ların	
	Sentezi	46
1.4.2.	3-Alkil(Aril)-4-amino-4,5-dihidro-1 <i>H</i> -1,2,4-triazol-5-on'ların Bazı	
	Reaksiyonları	51
1.4.2.1.	3 Tipi Bileşiklerin Dikarboksilli Asid Anhidridleri ile Reaksiyonları	52
1.4.2.2.	3 Tipi Bileşiklerin Açil Halojenürler ile Reaksiyonları	55
1.4.2.3.	3 Tipi Bileşiklerden Schiff Bazı Oluşum Reaksiyonları	59
1.4.2.3.1.	3 Tipi Bileşiklerin Aldehidlerle Reaksiyonları	59
1.4.2.3.2.	3 Tipi Bileşiklerin Açillendirilmiş Benzaldehid Türevleri ile	
	Reaksiyonları	68
1.4.2.3.3.	3 Tipi Bileşiklerin Aromatik Sülfonil Klorürlerle Muamele Edilmiş	
	Benzaldehid Türevleri ile Reaksiyonları	97
1.5.	Susuz Ortam Titrasyonları ve p K_a Tayini	102

1.5.1.	Susuz Ortam Çözücüleri	102
1.5.2.	Potansiyometri	104
1.5.3.	Direkt Potansiyometrik Titrasyonlar	104
1.5.4.	Potansiyometrik Titrasyonlar	104
1.5.5.	Yarı Nötralizasyon Metodu ile p K_a Tayini	105
1.5.6.	4,5-Dihidro-1 <i>H</i> -1,2,4-triazol-5-on Türevleri ile İlgili Susuz Ortam	
	Titrasyonları	105
1.6.	Moleküler Titreşim Spektroskopisi	106
1.6.1.	Molekül Titreşimleri	106
1.6.2.	Infrared Spektroskopisi	109
1.6.3.	İki Atomlu Moleküllerin Titreşim Enerji Seviyeleri	111
1.6.3.1.	Harmonik Titreşici Modeli	111
1.6.3.2.	Anharmonik Titreşici Modeli	112
1.6.4.	Çok Atomlu Moleküllerin Yapabileceği Temel Titreşim Hareketleri	112
1.6.4.1.	Gerilme Titreşimleri: v	113
1.6.4.1.1.	Simetrik Gerilme: v _s	113
1.6.4.1.2.	Asimetrik (Anti-simetrik) Gerilme: v _a	114
1.6.4.2.	Açı Bükülme Titreşimleri: δ	114
1.6.4.2.1.	Makaslama : δ_s	114
1.6.4.2.2.	Sallanma: pr	115
1.6.4.2.3.	Dalgalanma: ω	115
1.6.4.2.4.	Kıvırma: <i>t</i>	116
1.6.4.2.5.	Burulma:	116
1.6.4.3.	Düzlem Dışı Açı Bükülmesi:y	116
1.7.	Moleküler Simetri	117
1.8.	Grup Frekansları	118
1.8.1.	Grup Frekanslarına Etkiyen Faktörler	120
1.8.1.1.	Molekül İçi Etkiler	120
1.8.1.2.	Molekül Dışı Etkiler	121
1.9.	Nükleer Magnetik Rezonans (NMR) Spektroskopisi	123
1.9.1.	Spektroskopi Olarak Magnetik Rezonans	123
1.9.2.	Nükleer Magnetik Rezonansın Temel İlkeleri	124
1.10.	4,5-Dihidro-1H-1,2,4-triazol-5-on Türevleri Üzerine Yapılan Teorik	
	Çalışmalar	128
2.	MATERYAL, YÖNTEM VE HESAPLAMA METOTLARI	139
2.1.	Yeni Maddelerin Antioksidan Özelliklerinin İncelenmesi	139
2.1.1.	İndirgeme Gücü	139
2.1.2.	Serbest Radikal Giderme Aktivitesi	140
2.1.3.	Metal Selat Aktivitesi	141
2.2.	Sentez	142
2.2.1.	3-Metil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-	

	5-on (5)	143
2.2.2.	3-Etil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-	
	5-on (6)	144
2.2.3.	3-(n-Propil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-	
	triazol-5-on (7)	145
2.2.4.	3-Benzil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-	
	triazol-5-on (8)	147
2.2.5.	3-(p-Metilbenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-	
	1,2,4-triazol-5-on (9)	148
2.2.6.	3-(p-Metoksibenzil)- 4-(4-izopropilbenzilidenamino)-4,5-dihidro-	
	1 <i>H</i> -1,2,4-triazol-5-on (10)	149
2.2.7.	3-(p-Klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-	
	1,2,4-triazol-5-on (11)	151
2.2.8.	3-(m-Klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-	
	1,2,4-triazol-5-on (12)	152
2.2.9.	3-Fenil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-	
	5-on (13)	153
2.2.10.	1-Asetil-3-metil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-	
	1,2,4-triazol-5-on (15)	155
2.2.11.	1-Asetil-3-etil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-	
	triazol-5-on (16)	156
2.2.12.	1-Asetil-3-benzil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-	
	1,2,4-triazol-5-on (17)	157
2.2.13.	1-Asetil-3-(p-metilbenzil)-4-(4-izopropilbenzilidenamino)-4,5-	
	dihidro-1 <i>H</i> -1,2,4-triazol-5-on (18)	159
2.2.14.	1-Asetil-3-(p-klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-	
	dihidro-1 <i>H</i> -1,2,4-triazol-5-on (19)	160
2.3.	Potansiyometrik Titrasyonlar	162
2.3.1.	Cihazlar	162
2.3.2.	Kimyasallar	162
2.3.3.	Yöntem	162
2.3.4.	Dönüm Noktası Tayini	162
2.4.	Kuantum Mekaniği	165
2.4.1.	Schrödinger denklemi	165
2.5.	Moleküler Spektroskopide Kuramsal Hesaplamalar	166
2.5.1.	Ab-initio moleküler orbital yöntemleri	167
2.5.2.	Hartree Fock öz uyumlu alan teorisi (HF-SCF)	168
2.5.3.	Yoğunluk fonksiyoneli teorisi (DensityFunctional Theory, DFT)	168
2.5.4.	B3PW91 ve B3LYP karma yoğunluk fonksiyonu teorileri	169
2.5.5.	Yarı-deneysel (semi-emprical) moleküler yöntemler [215]	170
2.5.6.	LCAO/MO metodu	170
2.6.	Temel Setlerin Seçimi ve Adlandırılması	171

2.7.	Geometrik Optimizasyon ve PES	174
2.8.	NMR Spektroskopide Kuramsal Hesaplamalar [129]	176
2.8.1.	GIAO Yöntemi	177
2.8.2.	CSGT ve IGAIM Yöntemleri	178
2.9.	Gaussian 09W Programi	179
2.10.	GaussView	180
3.	BULGULAR	181
3.1.	Antioksidan İncelemeleri	181
3.1.1.	İndirgeme Gücü	181
3.1.2.	Serbest Radikal Giderme Aktivitesi	182
3.1.3.	Metal Şelat Aktivitesi	182
3.2.	Sentezlenen Bileşiklerin IR, ¹ H-NMR, ¹³ C-NMR ve UV Spektrum Verileri	183
3.3.	Potansivometrik Titrasvon	184
3.4.	Sentezlenen Bilesiklerin Teorik Verileri	190
341	3-Metil-4-(4-izopropilbenzilidenamino)-4 5-dihidro-1 <i>H</i> -1 2 4-triazol-	
5.1.1.	5-on(5)	190
3.4.2.	3-Etil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1 <i>H</i> -1,2,4-triazol-	- / •
	5-on (6)	197
3.4.3.	3-(<i>n</i> -Propil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1 <i>H</i> -1,2,4- triazol-5-on (7)	205
3.4.4.	3-Benzil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-	
	triazol-5-on (8)	212
3.4.5.	3-(p-Metilbenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-	
	1,2,4-triazol-5-on (9)	220
3.4.6.	3-(p-metoksibenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-	
	1,2,4-triazol-5-on (10)	228
3.4.7.	3-(p-Klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-	
	1,2,4-triazol-5-on (11)	237
3.4.8.	3-(m-Klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-	
	1,2,4-triazol-5-on (12)	246
3.4.9.	3-Fenil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1 <i>H</i> -1,2,4-triazol-	
	5-on (13)	254
3.4.10.	1-Asetil-3-metil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1 <i>H</i> -	
	1,2,4-triazol-5-on (15)	262
3.4.11.	1-Asetil-3-etil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1 <i>H</i> -1,2,4-	
	triazol-5-on (16)	269
3.4.12.	1-Asetil-3-benzil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1 <i>H</i> -	
2 4 1 5	1,2,4-triazol-5-on (1′)	277
3.4.13.	I-AsetII-3-(<i>p</i> -metilbenzil)-4-(4-izopropilbenzilidenamino)-4,5-	•••
	$d_{1h_1dro-1}H-1,2,4-tr_{1azol-5-on}(18)$	286
3.4.14.	I-Asetil-3-(p-klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-	

	dihidro-1 <i>H</i> -1,2,4-triazol-5-on (19)	295
3.4.15.	3-Metil-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1H-1,2,4-	
	triazol-5-on (21)	304
3.4.16.	3-Etil-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1H-1,2,4-	
	triazol-5-on (22)	310
3.4.17.	3-Benzil-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1H-1,2,4-	
	triazol-5-on (23)	316
3.4.18.	3-(p-Metilbenzil)-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1H-	
	1,2,4-triazol-5-on (24)	323
3.4.19.	3-(p-Metoksibenzil)-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-	
	1 <i>H</i> -1,2,4-triazol-5-on (25)	330
3.4.20.	3-(p-Klorobenzil)-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-	
	1 <i>H</i> -1,2,4-triazol-5-on (26)	337
3.4.21.	3-Fenil-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1H-1,2,4-	
	triazol-5-on (27)	344
3.4.22.	3-Siklopropan-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1 <i>H</i> -	
	1,2,4-triazol-5-on (28)	351
3.4.23.	1-Asetil-3-metil-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1 <i>H</i> -	
	1,2,4-triazol-5-on (30)	357
3.4.24.	1-Asetil-3-benzil-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1 <i>H</i> -	
	1,2,4-triazol-5-on (31)	365
3.4.25.	1-Asetil-3-(<i>p</i> -metilbenzil)-4-(3,4-diasetoksibenzilidenamino)-4,5-	
2.4.26	dihidro-1 H -1,2,4-triazol-5-on (32)	374
3.4.26.	1-Asetil-3-(p-klorobenzil)-4-(3,4-diasetoksibenzilidenamino)-4,5-	202
2 4 27	dihidro-1 H -1,2,4-triazol-5-on (33)	383
3.4.27.	1-Asetil-3-tenil-4- $(3,4-\text{diasetoksibenzilidenamino})$ -4,5-dihidro-1 <i>H</i> -	201
2 4 2 9	1,2,4-triazol-5-on (34)	391
3.4.28.	1,3-Dimetil-4-(3,4-dimetoksibenzilidenamino)-4,5-dihidro-1 H -1,2,4-	100
2 4 20	triazoi-5-on (36)	400
3.4.29.	1-Metil-3-benzil-4- $(3,4-\text{dimetoksibenzilidenamino})$ -4,5-dinidro-1 <i>H</i> -	407
2 4 20	1,2,4-mazoi-5-on $(3/)$ 1 Matil 2 (n matilhamil) 4 (2.4 dimetalszihanzilidanamina) 4.5	407
5.4.50.	dibidro 11112 4 triagol 5 on (28)	415
4	CONTROL = D = T = D T = S = S = S = S = S = S = S = S = S =	413
4.	SUNUÇLAR VE TARTIŞMA	423
4.1.	Antioksidan İncelemesi Sonuçlarının Değerlendirilmesi	423
4.1.1.	İndirgeme Gücü	423
4.1.2.	Serbest Radikal Giderme Aktivitesi	423
4.1.3.	Metal Şelat Aktivitesi	424
4.2.	Sentezlenen Bileşiklere Ait Spektrum Verilerinin Yorumlanması	426
4.3.	PotansiyometrikTitrasyon Sonuçlarının Değerlendirilmesi	429
4.4.	Sentezlenen Bileşiklerin Teorik Verilerinin Yorumlanması	437

4.5.	İncelenen Reaksiyonların Mekanizmaları	452
5.	KAYNAKLAR	454
6.	EKLER	474
	ÖZGEÇMİŞ	537

ÖZET

Bu çalışmada, öncelikle çalışma için gerekli olan 9 adet 3-alkil(aril)-4-amino-4,5dihidro-1*H*-1,2,4-triazol-5-on bileşiği sentezlenmiştir. Sonra bu bileşiklerin 4izopropilbenzaldehit ile reaksiyonları incelenmiş ve 9 adet yeni 3-alkil(aril)-4-(4izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiği elde edilmiştir. Sentez bölümünde ayrıca, bu bileşiklerden 5'inin asetik anhidrid ile reaksiyonundan 5 adet yeni 1-asetil-3-alkil(aril)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4triazol-5-on bileşiği sentezlenmiştir. Sentezlenen 14 yeni bileşiğin yapıları IR, ¹H-NMR, ¹³C-NMR ve UV spektroskopik yöntemleri kullanılarak aydınlatılmıştır.

Çalışmada ikinci olarak, sentezlenen 14 yeni bileşiğin 3 farklı yöntemle (indirgeme gücü, serbest radikal giderme aktivitesi, metal şelat aktivitesi) *in-vitro* antioksidan özellikleri incelenerek elde edilen bulgular yorumlanmıştır.

Çalışmada üçüncü olarak, sentezlenen 9 adet yeni 3-alkil(aril)-4-(4izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on türevinin susuz çözücülerde (izopropil alkol, *tert*-butil alkol, aseton ve *N*,*N*-dimetilformamid) tetrabutilamonyumhidroksit (TBAH) ile potansiyometrik titrasyonları yapılmış, titrasyon grafikleri çizilmiş ve yarı-nötralizasyon metodu ile pK_a değerleri tayin edilerek asitlik üzerine çözücü ve yapı etkisi tartışılmıştır.

Çalışmada son olarak 16' sı literatürde kayıtlı, 14'ü yeni olmak üzere toplam 30 heterosiklik bileşiğin teorik olarak spektral verileri hesaplanmış ve deneysel elde edilen spektral verilerle mukayeseleri yapılarak elde edilen sonuçlar yorumlanmıştır.

Bu amaçla, öncelikle 30 bileşiğin B3LYP/631G(d,p) ve HF/631G(d,p) temel setleri kullanılarak optimize edilmiştir. Bu optimize yapıdan yola çıkılarak ¹H-NMR ve ¹³C-NMR verileri değerleri GIAO metoduna göre Gaussian G09W paket programı kullanılarak gaz fazında hesaplanmıştır. Deneysel ve teorik olarak bulunan değerler δ exp=a+b. δ calc. eşitliğine göre grafiğe geçirilmiş ve Sigmaplot programı kullanılarak a ve b sabitleri regresyon katsayısı ile standart hata değerleri bulunmuştur. Elde edilen sonuçlara göre teorik verilerin deneysel verilerle uyumlu oldukları görülmüştür. Çalışmanın teorik kısmında ayrıca, incelenen 30 bileşiğin IR frekans değerleri B3LYP ve HF metodlarının 631G(d,p) temel seti kullanılarak gaz fazında hesaplanmış, elde edilen değerler uygun uyum faktörleri ile çarpılmıştır. Hesaplanan IR verilerinin tanımlanmasında veda4f programından yararlanılmıştır. Deneysel ve teorik olarak UVvis değerleri etanollü ortamda hesaplanmış ve mukayese edilmiştir. İlaveten, bu 30 bileşiğin bağ açıları, bağ uzunlukları, formal yükleri, HOMO-LUMO enerjileri, dipol momentleri ve enerjileri aynı metodlar ve aynı set kullanılarak hesaplanmış ve tablolar halinde verilmiştir.

2015, 537 sayfa

Anahtar Kelimeler: 4,5-Dihidro-1*H*-1,2,4-triazol-5-on, Gaussian 09W, GIAO, B3LYP, HF, 631G(d,p) temel seti, potansiyometrik titrasyon, pK_a , asetilleme, antioksidan

SUMMARY

In this study, firstly nine 3-alkyl(aryl)-4-amino-4,5-dihydro-1*H*-1,2,4-triazol-5-one compounds requiring for this study were synthesized. Then, the reactions of these compounds with 4-isopropylbenzaldehyde by using triethylamine, were investigated and nine novel 3-alkyl(aryl)-4-(4-isopropylbenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one compounds were obtained. In addition, five of synthesized this compounds were treated with acetic anhydride and five novel 1-acetyl-3-alkyl(aryl)-4-(4-isopropylbenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one were synthesized. In order to identify the fourteen new compounds synthesized in the study, spestroscopic methods including IR, ¹H-NMR, ¹³C-NMR and UV were used.

The second part of the study, synthesized fourteen new compounds were analyzed for their antioxidant activities in three different methods (reducing power, free radical scavenging and metal chelating activity), were drawn their graphs and their results were interpreted.

The thirdly part of the study, synthesized nine novel 3-alkyl(aryl)-4-(4isopropylbenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one derivative were titrated petentiometrically with TBAH in non-aqueous solvents (izopropyl alcohol, *tert*-butyl alcohol, acetone and *N*,*N*-dimethylformamide) graphs were drawn, half notralization potentials and pK_a values were determined by half notralization method. Otherwise, solvent effect and molecul structure on compounds acidity were discussed.

In the finally section of the study, theoritically spectral datas of sixteen registered in the literatüre, fourteen new total thirty heterocyclic compounds were calculated and these datas were with compared experimental datas, obtained conclusions were evaluated.

For this purpose, firstly, of thirty compounds have been optimized using B3LYP/631G(d,p) and HF/631G(d,p) basis set. Starting from this optimized structure with ¹H-NMR and ¹³C-NMR spectral data values according to GIAO method was calculated using the method of Gaussian G09W program package in gas phase. Theoretically and experimentally values were plotted according to exp = a + b. δ calc

Eq. a and b constants regression coefficients with a standard error values were found using the SigmaPlot program. According to obtained conclusions, theoritical and experimental values were seen to be compatible. In the theoretical part of study also, Theoretically calculated IR datas of synthesized thirty compounds were calculated in gas phases by using of 631G(d,p) basic sets of B3LYP and HF methods and are multiplied with appropriate adjustment factors and the data obtained according to B3LYP and HF methods are formed using theoretical infrared spectrum. The identification of calculated IR data was used in veda4f program. Experimentally and theoretically UV-vis values in ethanol were calculated and compared. Additionally, 30 compounds were found bond angles, bond lengths, dipole moments, the HOMO-LUMO energy and total energy of the molecule with formal charges from both methods.

2015, 537 Page

Key words: 4,5-dihydro-1*H*-1,2,4-triazol-5-on, Gaussian 09W, GIAO, B3LYP, HF, 631G(d,p) basic set, potentiometric titration, pK_a , acetylation, antioxidant.

ŞEKİLLER DİZİNİ

Şekil 1.1.	İki atomlu bir molekülün şekli	111
Şekil 1.2.	Harmonik titreşen iki atomlu bir molekülün enerji seviyeleri	111
Şekil 1.3.	Anharmonik titreşen iki atomlu molekülün enerji seviyeleri	112
Şekil 1.4.	Simetrik Gerilme	113
Şekil 1.5.	Asimetrik (anti-simetrik) gerilme	114
Şekil 1.6.	Açı bükülme titreşimleri	114
Şekil 1.7.	Makaslama	115
Şekil 1.8.	Sallanma titreșimi	115
Şekil 1.9.	Dalgalanma titreşimi	115
Şekil 1.10.	Kıvırma titreşimi	116
Şekil 1.11.	Burulma titreșimi	116
Şekil 1.12.	Düzlem dışı açı bükülmesi	117
Şekil 1.13.	a) Magnetik alan olmayan durumdaki numunenin rastgele spin	
	yönelimleri, b) Net çekirdek spinine sahip numunenin dış	
	magnetik alandaki davranışı.	124
Şekil 1.14.	Bir atomun enerji kuantumu salması ya da soğurması.	126
Şekil 1.15.	Hidrojen çekirdeğinin (protonun) magnetik alandaki enerji	
	seviyeleri	127
Şekil 2.1.	11 Bileşiğinin 0.05 N TBAH ile N,N-dimetilformamid	
	Ortamındaki Titrasyonundan elde edilen; a.mL-mV Grafiği,	
	b. $\Delta E / \Delta V$ Eğrisi, c. $\Delta^2 E / \Delta V^2$ Eğrisi	164
Şekil 2.2.	Temel setlerin adlandırılması	173
Şekil 2.3.	a) Potansiyel enerji yüzeyi b) Potansiyel enerji yüzeyindeki	
	eyer noktası	174
Şekil 2.4.	İki atomlu bir molekülde elektronik enerjinin atomlar arası	
	mesafeye bağımlılığı	175
Şekil 3.1.	5 Tipi bileşiğin(6-31G(d,p)) gausview görünümü	190
Şekil 3.2.	5 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	194
Şekil 3.3.	5 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları ve	
	Değerleri (cm ⁻¹)	194
Şekil 3.4.	5 Molekülünün B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	HOMO-LUMO Enerjileri	196
Şekil 3.5.	6 Tipi bileşiğin (6-31G (d,p)) gausview görünümü	197
Şekil 3.6.	6 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	201
Şekil 3.7.	6 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları ve	
	Değerleri (cm ⁻¹)	202
Şekil 3.8.	6 Molekülünün B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	HOMO-LUMO Enerjileri	204

Şekil 3.9.	7 Tipi bileşiğin (6-31G (d,p)) gausview görünümü	205
Şekil 3.10.	7 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	209
Şekil 3.11	7 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları ve	• • • •
	Değerleri (cm ⁻¹)	209
Şekil 3.12	7 Molekülünün B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	HOMO-LUMO Enerjileri	212
Şekil 3.13	8 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	213
Şekil 3.14	8 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	217
Şekil 3.15	8 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları ve	
	Değerleri (cm ⁻¹)	218
Şekil 3.16	8 Molekülünün B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	HOMO-LUMO Enerjileri	220
Şekil 3.17	9 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	221
Şekil 3.18	9 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	225
Şekil 3.19	9 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları ve	
	Değerleri (cm ⁻¹)	225
Şekil 3.20	9 Molekülünün B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	HOMO-LUMO Enerjileri	228
Şekil 3.21	10 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	229
Şekil 3.22	10 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
-	spektrumları	233
Şekil 3.23	10 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
3	ve Değerleri (cm ⁻¹)	234
Sekil 3.24	10 Molekülünün B3LYP ve HF Yöntemlerine Göre	
3	Hesaplanan HOMO-LUMO Eneriileri	236
Sekil 3.25	11 Tipi bilesiğin (6-31G(d.p.)) gauşview görünümü	237
Sekil 3 26	11 Tini hilesiğin denevsel ve teorik (B3LYP ve HF) IR	,
ş ••••• • • • • • •	spektrumları	242
Sekil 3 27	11 Tini bilesiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
ş ••••• • • - /	ve Değerleri (cm ⁻¹)	242
Sekil 3 28	11 Molekülünün B3LYP ve HF Vöntemlerine Göre	212
Şekii 5.20	Hesaplanan HOMO-LUMO Eneriileri	245
Sekil 3 29	12 Tini hilesiğin $(6-31G(d n))$ gausview görünümü	246
Şekil 3.20	12 Tipi bileşiğin deneysel ve teorik (B3LVP ve HE) IR	240
Şekii 5.50	snektrumları	250
Sabil 3 31	12 Tini hilesiðin teorik (B3LVP ve HE) LIV vis Snektrumlar	230
ŞUNII J.J I	$12 ript one significant (DSETT ve TIF) \cup v - v is specificallyve Dečerleri (cm-1)$	251
Salvil 2 22	12 Molekülünün D2LVD vo UE Väntemlering Cäre	231
ŞCKII 3.52	Hasenlanen HOMO LUMO Eneriileri	252
		233

Şekil 3.33	13 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	254
Şekil 3.34	13 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	258
Şekil 3.35	13 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	259
Şekil 3.36	13Molekülünün B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	HOMO-LUMO Enerjileri	261
Şekil 3.37	15 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	262
Şekil 3.38	15 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	266
Şekil 3.39	15 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	266
Şekil 3.40	15 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	269
Şekil 3.41	16 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	270
Şekil 3.42	16 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	274
Şekil 3.43	16 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	274
Şekil 3.44	16 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	277
Şekil 3.45	17 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	278
Şekil 3.46	17 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	282
Şekil 3.47	17 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	283
Şekil 3.48	17 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	285
Şekil 3.49	18 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	286
Şekil 3.50	18 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	291
Şekil 3.51.	18 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	292
Şekil 3.52.	18 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	295
Şekil 3.53.	19 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	296
Şekil 3.54.	19 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	300
Şekil 3.55.	19 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	301
Şekil 3.56.	19 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	303

Şekil 3.57.	21 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	304
Şekil 3.58.	21 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	307
Şekil 3.59.	21 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	307
Şekil 3.60.	21 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	309
Şekil 3.61.	22 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	310
Şekil 3.62.	22 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	313
Şekil 3.63.	22 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	313
Şekil 3.64.	22 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	315
Şekil 3.65.	23 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	316
Şekil 3.66.	23 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	319
Şekil 3.67.	23 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	320
Şekil 3.68.	23 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	322
Şekil 3.69.	24 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	323
Şekil 3.70.	24 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	326
Şekil 3.71.	24 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	327
Şekil 3.72.	24 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	329
Şekil 3.73.	25 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	330
Şekil 3.74.	25 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	334
Şekil 3.75.	25 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	334
Şekil 3.76.	25 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	337
Şekil 3.77.	26 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	338
Şekil 3.78.	26 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	341
Şekil 3.79	26 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	349
Şekil 3.80.	26 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	343

Şekil 3.81.	27 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	344
Şekil 3.82.	27 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	347
Şekil 3.83.	27 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	348
Şekil 3.84.	27 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	350
Şekil 3.85.	28 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	351
Şekil 3.86.	28 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	354
Şekil 3.87.	28 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	355
Şekil 3.88.	28 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	357
Şekil 3.89.	30 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	358
Şekil 3.90.	30 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
-	spektrumları	361
Şekil 3.91.	30 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
-	ve Değerleri (cm ⁻¹)	362
Şekil 3.92.	30 Molekülünün B3LYP ve HF Yöntemlerine Göre	
3	Hesaplanan HOMO-LUMO Enerjileri	364
Sekil 3.93.	31 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	365
, Sekil 3.94.	31 Tipi bilesiğin deneysel ve teorik (B3LYP ve HF) IR	
3	spektrumları	370
Sekil 3.95.	31 Tipi bilesiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
·;	ve Değerleri (cm ⁻¹)	370
Sekil 3.96.	31 Molekülünün B3LYP ve HF Yöntemlerine Göre	• • •
·; ·	Hesaplanan HOMO-LUMO Eneriileri	373
Sekil 3 97	32 Tipi bilesiğin (6-31G(d p)) gauşview görünümü	374
Şekil 3 98	32 Tini hilesiğin denevsel ve teorik (B3LYP ve HF) IR	0,1
çenn 2.90.	spektrumları	379
Sekil 3 99	32 Tipi bilesiğin teorik (B3LYP ve HF) UV-vis Spektrumları	515
çenii 5.99	ve Değerleri (cm ⁻¹)	379
Sekil 3 100	32 Molekülünün B3I VP ve HF Vöntemlerine Göre	517
Şekii 9.100.	Hesanlanan HOMO-I LIMO Eneriileri	382
Selvil 3 101	33 Tini hilesiğin (6-31G(d n)) gauşyiew görünümü	383
Şekil 3.101.	33 Tini bileşiğin denevçel ve teorik (B3LVP ve HE) IR	565
ŞCKII 5.102.	solutrumları	297
Salvil 2 102	22 Tini bilogižin toorik (D2I VD vo HE) UV vig Spoktrumlor	307
ŞEKII 5.105.	v_0 Dožorlori (am^{-1})	200
Salvil 2 104	ve Degenen (Cill) 22 Malakülünün D2LVD va UE Värtamlaring Cöre	200
Şekii 5.104.	Use Hono LUMO Exercitari	200
	Hesapianan HOMO-LUMO Energileri	390

Şekil 3.105.	34 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	391
Şekil 3.106.	34 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	396
Şekil 3.107.	34 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
	ve Değerleri (cm ⁻¹)	396
Şekil 3.108.	34 Molekülünün B3LYP ve HF Yöntemlerine Göre	
	Hesaplanan HOMO-LUMO Enerjileri	399
Şekil 3.109.	36 Tipi bileşiğin (6-31G(d,p)) gausview görünümü	400
Şekil 3.110.	36 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR	
	spektrumları	403
Şekil 3.111.	36 Tipi bileşiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
,	ve Değerleri (cm ⁻¹)	404
Sekil 3.112.	36 Molekülünün B3LYP ve HF Yöntemlerine Göre	
3	Hesaplanan HOMO-LUMO Enerjileri	406
Sekil 3.113.	37 Tipi bilesiğin (6-31G(d,p)) gausview görünümü	407
, Sekil 3.114.	37 Tipi bilesiğin denevsel ve teorik (B3LYP ve HF) IR	
3	spektrumları	411
Sekil 3 115	37 Tipi bilesiğin teorik (B3LYP ve HF) UV-vis Spektrumları	
ş•	ve Değerleri (cm ⁻¹)	411
Sekil 3 116	37 Molekülünün B3LYP ve HF Yöntemlerine Göre	
Şekii 5.110.	Hesanlanan HOMO-LUMO Eneriileri	414
Sekil 3 117	38 Tini hilesiğin (6-31G(d n)) gauşview görünümü	415
Şekil 3 118	38 Tini hilesiğin denevsel ve teorik (B3LYP ve HF) IR	110
Şekii 5.110.	snektrumları	419
Sekil 3 119	38 Tini hilesiğin teorik (B3I VP ve HF) UV-vis Snektrumları	117
Şekii 5.117.	ve Değerleri (cm ⁻¹)	<i>4</i> 19
Sekil 3 120	38 Molekülünün B3I VP ve HF Vöntemlerine Göre	717
Şekii 5.120.	Hesanlanan HOMO-LUMO Enerjileri	422
Sekil 4 1	7 11 ve 16 Bilesiklerinin Konsantrasvona Karsı % Serbest	
Şenn ni	Radikal Giderme Aktiviteleri	424
Şekil 4.2	4 Tipi Bileşiklerin Konsantrasyona Karşı % Metal Şelat	
	Aktiviteleri	425
Şekil 4.3	14 Tipi Bileşiklerin Konsantrasyona Karşı % Metal Şelat	
C -1-:1 4 4	Aktiviteleri	425
Şekii 4.4	5 Inpi Bileşigin <i>N</i> , <i>N</i> -Dimetiliormamid, Aseton, <i>tert</i> -Butil	
	TRAH ile Titrasvon Grafikleri	430
Sekil 4.5	6 Tipi Bilesiğin <i>N.N</i> -Dimetilformamid. Aseton. <i>tert</i> -Butil	150
3	Alkol ve İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N	
	TBAH ile Titrasyon Grafikleri	430
Şekil 4.6	7 Tipi Bileşiğin N,N-Dimetilformamid, Aseton, tert-Butil	
	Alkol ve Izopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N	42.5
Calcil 4 7	IBAH ile Titrasyon Grafikleri	431
Şekii 4. /	8 I Ipi Bileşigin <i>N</i> , <i>N</i> -Dimetiliormamid, Aseton, <i>tert</i> -Butil	

	Alkol ve İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N	
	TBAH ile Titrasvon Grafikleri	431
Sekil 4.8	9 Tipi Bilesiğin <i>N.N</i> -Dimetilformamid, Aseton, <i>tert</i> -Butil	_
3	Alkol ve İzopropil Alkol 10 ⁻³ M'lık Cözeltilerinin 0.05 N	
	TBAH ile Titrasvon Grafikleri	432
Sakil 1 0	10 Tini Bilesiğin NN Dimetilformamid Aseton <i>tart</i> Butil	т <i>32</i>
ŞCKII 4 .7	Alkal va İzanranil Alkal 10^{-3} Milde Cözaltilarinin 0.05 N	
	TDALL is Titur and Confishent	422
0 1 1 4 10		432
Şekil 4.10	11 Tipi Bileşigin N,N-Dimetiliformamid, Aseton, tert-Butil	
	Alkol ve izopropil Alkol 10 ³ M'lik Çözeltilerinin 0.05 N	
	TBAH ile Titrasyon Grafikleri	433
Şekil 4.11	12 Tipi Bileşiğin <i>N</i> , <i>N</i> -Dimetilformamid, Aseton, <i>tert</i> -Butil	
	Alkol ve İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N	
	TBAH ile Titrasyon Grafikleri	433
Şekil 4.12	13 Tipi Bileşiğin N,N-Dimetilformamid, Aseton, tert-Butil	
	Alkol ve İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N	
	TBAH ile Titrasyon Grafikleri	434
Sekil 4.13	4 tipi bilesiklerin B3LYP ve HF vöntemlerivle denevsel ve	
3	teorik ¹³ C ve ¹ H-NMR kimvasal kavma Değerlerinin	
	karsılastırılması	439
Sekil 4 14	4 Tipi bilesiklerin B3LYP (DMSO) ve HF (DMSO)	.07
Şenn nı i	vöntemlerivle denevsel ve teorik 13 C ve 1 H NMR kimvasal	
	kavma Değerlerinin karşılaştırılmaşı	439
Sekil / 15	14 Tini bilesiklerin B3I VP ve HE vöntemlerivle denevsel ve	TJ)
ŞUKII 4.15	taorik ^{13}C va ^{1}H NMR kimvasal kavma Dağarlarinin	
	koralasturilmasi	110
Salvil 4 16	Kaişiiaştirininaşti 14 Tini bilagildarin D2LVD (DMSO) va UE (DMSO)	440
Şekii 4.10	14 HPI DHEŞIKIELIH BSLYP (DIVISO) VE HF (DIVISO)	
	yontemieriyle deneysel ve teorik C ve H Nivik kimyasal	4 4 1
0 1 1 4 17	kayma Degerierinin karşılaştırılması	441
Şekil 4.17	20 Tipi bileşiklerin B3LYP ve HF yontemleriyle deneysel ve	
	teorik ¹³ C ve H-NMR kimyasal kayma Degerlerinin	
~	karşılaştırılması	442
Şek1l 4.18	20 Tipi bileşiklerin B3LYP (DMSO) ve HF (DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C ve ¹ H NMR kimyasal	
	kayma Değerlerinin karşılaştırılması	443
Şekil 4.19	29 Tipi bileşiklerin B3LYP ve HF yöntemleriyle deneysel ve	
	teorik ¹³ C ve ¹ H-NMR kimyasal kayma Değerlerinin	
	karşılaştırılması	444
Şekil 4.20	29 Tipi bileşiklerin B3LYP (DMSO) ve HF (DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C ve ¹ H NMR kimyasal	
	kayma Değerlerinin karşılaştırılması	445
Sekil 4.21	35 Tipi bileşiklerin B3LYP ve HF yöntemleriyle deneysel ve	
3	teorik ¹³ C ve ¹ H-NMR kimvasal kavma Değerlerinin	
	karsılastırılması	446
Sekil 4 22	35 Tipi bilesiklerin B3LYP (DMSO) ve HF (DMSO)	
3	vöntemlerivle denevsel ve teorik ¹³ C ve ¹ H-NMR kimvasal	
	kayma Değerlerinin karşılaştırılmaşı	446
Ek Sekil 1	5 Bilesiğinin IR snektrumu	475
	- Diregi Sinini in operationa	175

Ek Şekil 2.	5 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	476
Ek Şekil 3.	5 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	477
Ek Şekil 4.	6 Bileşiğinin IR spektrumu	478
Ek Şekil 5.	6 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	479
Ek Şekil 6.	6 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	480
Ek Şekil 7.	7 Bileşiğinin IR spektrumu	481
Ek Şekil 8.	7 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	482
Ek Şekil 9.	7 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	483
Ek Şekil 10.	8 Bileşiğinin IR spektrumu	484
Ek Şekil 11.	8 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	485
Ek Şekil 12.	8 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	486
Ek Şekil 13.	9 Bileşiğinin IR spektrumu	487
Ek Şekil 14.	9 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	488
Ek Şekil 15.	9 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	489
Ek Şekil 16.	10 Bileşiğinin IR spektrumu	490
Ek Şekil 17.	10 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	491
Ek Şekil 18.	10 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	492
Ek Şekil 19.	11 Bileşiğinin IR spektrumu	493
Ek Şekil 20.	11 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	494
Ek Şekil 21.	11 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	495
Ek Şekil 22.	12 Bileşiğinin IR spektrumu	496
Ek Şekil 23.	12 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	497
Ek Şekil 24.	12 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	498
Ek Şekil 25.	13 Bileşiğinin IR spektrumu	499
Ek Şekil 26.	13 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	500
Ek Şekil 27.	13 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	501
Ek Şekil 28.	15 Bileşiğinin IR spektrumu	502
Ek Şekil 29.	15 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	503
Ek Şekil 30.	15 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	504
Ek Şekil 31.	16 Bileşiğinin IR spektrumu	505
Ek Şekil 32.	16 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	506
Ek Şekil 33.	16 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	507
Ek Şekil 34.	17 Bileşiğinin IR spektrumu	508
Ek Şekil 35.	17 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	509
Ek Şekil 36.	17 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	510
Ek Şekil 37.	18 Bileşiğinin IR spektrumu	511
Ek Şekil 38.	18 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	512
Ek Şekil 39.	18 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	513
Ek Şekil 40.	19 Bileşiğinin IR spektrumu	514
Ek Şekil 41.	19 Bileşiğinin ¹ H-NMR (DMSO-d ₆) spektrumu	515
Ek Şekil 42.	19 Bileşiğinin ¹³ C-NMR (DMSO-d ₆) spektrumu	516
Ek Şekil 43.	5 Bileşiğinin UV spektrumu	517

Ek Şekil 44.	6 Bileşiğinin UV spektrumu	517
Ek Şekil 45.	7 Bileşiğinin UV Spektrumu	517
Ek Şekil 46.	8 Bileşiğinin UV Spektrumu	517
Ek Şekil 47.	9 Bileşiğinin UV Spektrumu	518
Ek Şekil 48.	10 Bileşiğinin UV Spektrumu	518
Ek Şekil 49.	11 Bileşiğinin UV Spektrumu	518
Ek Şekil 50.	12 Bileşiğinin UV Spektrumu	518
Ek Şekil 51.	13 Bileşiğinin UV Spektrumu	519
Ek Şekil 52.	15 Bileşiğinin UV Spektrumu	519
Ek Şekil 53.	16 Bileşiğinin UV Spektrumu	519
Ek Şekil 54.	17 Bileşiğinin UV Spektrumu	519
Ek Şekil 55.	18 Bileşiğinin UV Spektrumu	520
Ek Şekil 56.	19 Bileşiğinin UV Spektrumu	520
Ek Şekil 57.	5 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	521
Ek Şekil 58.	6 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	521
Ek Şekil 59.	7 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	522
Ek Şekil 60.	8 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	522
Ek Şekil 61.	9 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	523
Ek Şekil 62.	10 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	523
Ek Şekil 63.	11 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	524
Ek Şekil 64.	12 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	524
Ek Şekil 65.	13 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	525
Ek Şekil 66.	15 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	

	kayma değerlerinin karşılaştırılması	525
Ek Şekil 67.	16 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	526
Ek Şekil 68.	17 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	526
Ek Şekil 69.	18 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	527
Ek Şekil 70.	19 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	527
Ek Şekil 71.	21 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	528
Ek Şekil 72.	22 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
-	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	528
Ek Şekil 73.	23 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	529
Ek Şekil 74.	24 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	529
Ek Şekil 75.	25 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	530
Ek Şekil 76.	26 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	530
Ek Şekil 77.	27 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	531
Ek Şekil 78.	28 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	531
Ek Şekil 79.	30 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	532
Ek Şekil 80.	31 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	

	kayma değerlerinin karşılaştırılması	532
Ek Şekil 81.	32 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	533
Ek Şekil 82.	33 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	533
Ek Şekil 83.	34 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	534
Ek Şekil 84.	36 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	534
Ek Şekil 85.	37 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	535
Ek Şekil 86.	38 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)	
-	yöntemleriyle deneysel ve teorik ¹³ C- ve ¹ H-NMR kimyasal	
	kayma değerlerinin karşılaştırılması	535

TABLOLAR DİZİNİ

Tablo 1.1.	Formüller Tablosu	2
Tablo 1.2.	Reaktif Oksijen Türleri ve Diğer Serbest Radikallerin Oluşumuna	
	Yol Açan Kaynaklar	31
Tablo 1.3.	Biyolojik Sistemlerdeki Antioksidan Sistemler	38
Tablo 1.4.	Elektromagnetik dalga spektrum bölgeleri	107
Tablo 1.5.	IR bölgeleri	110
Tablo 1.6.	Bazı grup frekansları	119
Tablo 2.1.	İndirgeme Gücü Tayininde İlave Edilen Reaktif Miktarları	139
Tablo 2.2.	Serbest Radikal Giderme Tayininde İlave Edilen Reaktif	
	Miktarları	140
Tablo 2.3.	Metal Şelat Aktivitesi Tayininde İlave Edilen Reaktif Miktarları	141
Tablo 2.4.	11 Bileşiğinin tert- Butil Alkoldeki Deney Sonuçları	162
Tablo 2.5.	11 Bileşiğinin tert- Butil Alkoldeki Deney Sonuçlarının Birinci ve	
	İkinci Türevleri	163
Tablo 3.1.	4 ve 14 Tipi Bileşiklerin İndirgeme Gücü	181
Tablo 3.2.	4 ve 14 Tipi Bileşiklerin Absorbans Değerleri ve Karşın Olan %	
	Serbest Radikal Giderme Aktiviteleri	182
Tablo 3.3.	4 ve 14 Tipi Bileşiklerin Absorbans Değerleri ve Karşın Olan %	
	Metal Şelat Aktiviteleri	183
Tablo 3.4.	5 Tipi Bileşiğin N,N-Dimetilformamid, Aseton, tert-Butil Alkol ve	
	İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile	
	Titrasyonu Sonuçları	185
Tablo 3.5.	6 Tipi Bileşiğin N,N-Dimetilformamid, Aseton, tert-Butil Alkol ve	
	İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile	
	Titrasyonu Sonuçları	185
Tablo 3.6.	7 Tipi Bileşiğin <i>N</i> , <i>N</i> -Dimetilformamid, Aseton, <i>tert</i> -Butil Alkol ve	
	İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile	186
	Titrasyonu Sonuçları	
Tablo 3.7.	8 Tipi Bileşiğin <i>N</i> , <i>N</i> -Dimetilformamid, Aseton, <i>tert</i> -Butil Alkol ve	
	İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile	
	Titrasyonu Sonuçları	186
Tablo 3.8.	9 Tipi Bileşiğin <i>N</i> , <i>N</i> -Dimetilformamid, Aseton, <i>tert</i> -Butil Alkol ve	
	İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile	
	Titrasyonu Sonuçları	187
Tablo 3.9.	10 Tipi Bileşiğin N,N-Dimetilformamid, Aseton, tert-Butil Alkol	
	ve İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile	
	Titrasyonu Sonuçları	187
Tablo 3.10.	11 Tipi Bileşiğin <i>N</i> , <i>N</i> -Dimetilformamid, Aseton, <i>tert</i> -Butil Alkol	
	ve İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile	
	Titrasyonu Sonuçları	188

Tablo 3.11.	12 Tipi Bileşiğin <i>N</i> , <i>N</i> -Dimetilformamid, Aseton, <i>tert</i> -Butil Alkol ve İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile	
	Titrasyonu Sonuçları	188
Tablo 3.12.	13 Tipi Bileşiğin <i>N</i> , <i>N</i> -Dimetilformamid, Aseton, <i>tert</i> -Butil Alkol ve İzopropil Alkol 10 ⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile	
	Titrasyonu Sonuçları	189
Tablo 3.13.	5 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimvasal Kayma	
	Değerleri (δ /ppm)	191
Tablo 3.14.	5 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	191
Tablo 3 15	5 Tini hilesiğin DFT ve HF yöntemlerine göre hesanlanan hağ	171
14010 5.15.	acıları (A^0)	195
Tablo 3 16	5 Tini hilesiğin DFT ve HF yöntemlerine göre hesanlanan hağ	175
14010 5.10.	$z_{\rm uzunluklari} (A^0)$	195
Tablo 3 17	5 Tini bilesiğin atomlarının DFT ve HF vöntemlerine göre	170
14010 5.17.	hesanlanan mulliken viik değerleri	196
Tablo 3 18	5 Tini bilesiğin B3LYP ve HF vöntemlerine göre hesanlanan dinol	170
14010 5.10.	moment değerleri	197
Tablo 3 19	5 Tini bilesiğin B3LYP ve HF Yöntemlerine Göre Hesanlanan	177
14010 5.17.	toplam Eneriileri	197
Tablo 3.20.	6 Tipi bilesiğin TMS've göre 13 C ve 1 H-NMR Denevsel ve Teorik	177
	(B3LYP HF B3LYP(DMSO) ve HF(DMSO)) Kimvasal Kavma	
	Değerleri (δ/ppm)	198
Tablo 3 21	6 Tipi bilesiğin denevsel ve teorik (B3LYP ve HF) IR değerleri	
14010 5.21.	(cm^{-1})	198
Tablo 3 22	6 Tini bilesiğin DFT ve HF vöntemlerine göre hesaplanan bağ	170
14010 5.22.	acıları (A^0)	202
Tablo 3 23	6 Tipi bilesiğin DFT ve HF vöntemlerine göre hesaplanan bağ	202
10010 0.201	uzunlukları (A ⁰)	203
Tablo 3 24	6 Tipi bilesiğin atomlarının DFT ve HF vöntemlerine göre	200
10010 0.2	hesaplanan mulliken vük değerleri	203
Tablo 3.25.	6 Tipi bilesiğin B3LYP ve HF vöntemlerine göre hesaplanan dipol	
	moment değerleri	204
Tablo 3.26.	6 Tipi bilesiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Enerjileri	204
Tablo 3.27.	7 Tipi bilesiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve Teorik	
	(B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal Kayma	
	Değerleri (δ/ppm)	205
Tablo 3.28.	7 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri	
	(cm ⁻¹)	206
Tablo 3.29.	7 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	

	açıları (A^0)	210
Tablo 3.30.	7 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	uzunlukları (A^0)	210
Tablo 3.31.	7 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre	
	hesaplanan mulliken yük değerleri	211
Tablo 3.32.	7 Tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan dipol	
	moment değerleri	212
Tablo 3.33.	7 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Energileri	212
Tablo 3.34.	8 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve Teorik	
	(B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal Kayma	010
	Değerleri (ő/ppm)	213
Tablo 3.35.	8 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri	
T 11 0 0 (214
Tablo 3.36.	8 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	a 1 o
T 11 0 07	açıları (A°)	218
Tablo 3.37.	8 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	0 10
T 11 2 20	uzunlukları (A [°])	219
1 ablo 3.38.	8 lipi bileşigin atomlarının DF1 ve HF yontemlerine gore	210
T-1-1- 2 20	esapianan mulliken yuk degerleri	219
1 abio 3.39.	8 Tipi bileşigin B3LYP ve HF yontemlerine göre nesapianan dipol	220
T_{a} bla 2 40	noment degeneri	220
1 2010 5.40.	8 Tipi bileşigin BSLYP ve HF Yonteinierine Göre Hesapianan	220
$T_{abla} 2.41$	O Tini bilagičin TMS'va cëra ¹³ C va ¹ U NMD Danavaal va Taarik	220
1 2010 3.41.	(D21 VD HE D21 VD(DMSO) vo HE(DMSO)) Kimvosal Kavma	
	(DSLIF, III', DSLIF(DNISO) ve III'(DNISO)) Killiyasai Kayilia Dočerlori (S/mm)	221
$T_{ablo} 2.42$	O Tini bilagižin dangural va tagrik (P2I VD va HE) ID dažarlari	<i>LL</i> 1
1 a010 5.42.	(cm^{-1})	าาา
Table 3 13	0 Tini hilesiğin DET ve HE vöntemlerine göre hesenlanan hağ	
1 4010 5.45.	λ^{0}	226
Tablo 3 44	9 Tini hilesiğin DET ve HE vöntemlerine göre hesanlanan hağ	220
1 4010 5.44.	y ripronegigin Dri ve rir yontennerme gore nesapianan bag uzunluklari (A^0)	226
Tablo 3 45	9 Tini hilesiğin atomlarının DFT ve HF yöntemlerine göre	220
1000 5.15.	hesanlanan mulliken vük değerleri	227
Tablo 3 46	9 Tipi bilesiğin B3LYP ve HF vöntemlerine göre hesaplanan dipol	,
	moment değerleri	228
Tablo 3.47.	9 Tipi bilesiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Enerjileri	228
Tablo 3.48.	10 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	229

Tablo 3.49.	10 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	230
Tablo 3.50.	10 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	açıları (A ⁰)	234
Tablo 3.51.	10 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ uzunlukları (A^0)	235
Tablo 3.52.	10 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre besanlanan mulliken yük değerleri	236
Tablo 3.53.	10 Tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan	250
Tablo 3.54.	dipol moment değerleri 10 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	237
Table 2.55	toplam Enerjileri 11. Tini, bilogižin, TMS'ya, göra, ¹³ C, ya, ¹ H NIMP, Denavgal, ya,	237
1 2010 5.55.	Teorik (B3LYP, HF, B3LYP (DMSO) ve HF (DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	238
Tablo 3.56.	11 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	239
Tablo 3.57.	11 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ açıları (A^0)	243
Tablo 3.58.	11 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	213
Tablo 3 59	11 Tini bilesiğin atomlarının DFT ve HF vöntemlerine göre	243
	hesaplanan mulliken yük değerleri	244
Tablo 3.60.	11 Tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan	
Table 2 (1	dipol moment değerleri	245
1 2010 3.01.	toplam Enerjileri	245
Tablo 3.62.	12 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve Teorik (B3LYP HF B3LYP(DMSO) ve HF(DMSO)) Kimvasal	
	Kayma Değerleri (δ/ppm)	246
Tablo 3.63.	12 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri	247
Tablo 3 64	(CM) 12 Tini hilesiğin DET ve HE vöntemlerine göre hesanlanan hağ	247
1 4010 5.04.	açıları (A^0)	251
Tablo 3.65.	12 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ uzunlukları (A^0)	252
Tablo 3.66.	12 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre	
m 11 0 (T	hesaplanan mulliken yük değerleri	252
Tablo 3.67.	12 Tıpı bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan dipol moment değerleri	253
Tablo 3.68.	12 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan toplam Enerjileri	253

Tablo 3.69.	13 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	254
Tablo 3.70.	13 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri	
	(cm ⁻¹)	255
Tablo 3.71.	13 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ açıları (A^0)	259
Tablo 3.72.	13 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ uzunlukları (A^0)	260
Tablo 3.73.	13 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre hesaplanan mulliken yük değerleri	260
Tablo 3.74.	13 Tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan dipol moment değerleri	261
Tablo 3.75.	13 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan toplam Enerjileri	261
Tablo 3.76.	15 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	262
Tablo 3.77.	15 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri	
	(cm^{-1})	263
Tablo 3.78.	15 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ açıları (A^0)	267
Tablo 3.79.	15 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ uzunlukları (A^0)	267
Tablo 3.80.	15 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre hesaplanan mulliken yük değerleri	268
Tablo 3.81.	15 Tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan dipol moment değerleri	269
Tablo 3.82.	15 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan toplam Enerijleri	269
Tablo 3.83.	16 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	270
Tablo 3.84.	16 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	271
Tablo 3.85.	16 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ açıları (A^0)	275
Tablo 3.86.	16 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ uzunlukları (A^0)	275
Tablo 3.87.	16 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre hesaplanan mulliken yük değerleri	276
Tablo 3.88.	16 Tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan	

	dipol moment değerleri	277
Tablo 3.89.	16 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Enerjileri	277
Tablo 3.90.	17 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	278
Tablo 3.91.	17 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri	
	(cm ⁻¹)	279
Tablo 3.92.	17 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	açıları (A ⁰)	283
Tablo 3.93.	17 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	uzunlukları (A^0)	284
Tablo 3.94.	17 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre	
	hesaplanan mulliken yük değerleri	285
Tablo 3.95.	17 Tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan	
	dipol moment değerleri	286
Tablo 3.96.	17 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Enerjileri	286
Tablo 3.97.	18 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	287
Tablo 3.98.	18 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri	
	(cm ⁻¹)	288
Tablo 3.99.	18 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	açıları (A ⁰)	292
Tablo 3.100.	18 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	uzunlukları (A^0)	293
Tablo 3.101.	18 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre	
	hesaplanan mulliken yük değerleri	294
Tablo 3.102.	18 Tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan	
	dipol moment değerleri	295
Tablo 3.103.	18 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Energileri	295
Tablo 3.104.	19 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	• • •
	Kayma Değerleri (δ/ppm)	296
Tablo 3.105.	19 Tipi bileşiğin deneysel ve teorik (B3LYP ve HF) IR değerleri	
	(cm ⁻¹)	297
Tablo 3.106.	19 Tıpi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
m 11 c 10 m	açıları (A [°])	301
Tablo 3.107.	19 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	uzunlukları (A')	302

Tablo 3.108.	19 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre hesaplanan mulliken yük değerleri	303
Tablo 3 109	19 Tini bilesiğin B3LYP ve HF vöntemlerine göre hesanlanan	202
14010 2.109.	dipol moment değerleri	304
Tablo 3 110	19 Tini bilesiğin B3LYP ve HF Yöntemlerine Göre Hesanlanan	201
14010 2.110.	tonlam Eneriileri	304
Tablo 3 111	21 Tini hilesiğin TMS've göre 13 C ve 1 H-NMR Denevsel ve	501
1000 5.111.	Teorik (B3LVP HE B3LVP(DMSO) ve HF(DMSO)) Kimvasal	
	Kayma Dağarlari (8/nnm)	305
Table 3 112	21 Tini bilasiğin taorik (B2I VP va HE) IP dağarlari (cm ⁻¹)	305
Tablo 3 113	21 Tipi bileşiğin DET ve HE vöntemlerine göre beşanlanan bağ	505
14010 5.115.	21 The blocking of the second	308
Table 2.114	21 Tini bilagiğin DET va HE väntamlarina gära başanlanan bağ	500
1 auto 5.114.	21 The one-sign DFT ve The yontermetine gote nesapianan bag	208
Table 2 115	21 Tini bilogiğin atomlarının DET və HE yöntəmlərinə görə	508
14010 5.115.	başanlanan mullikan yök dağarlari	200
Table 2 116	21 Tini bilogičin P2LVD vo HE vöntomloring göra hogenlangn	309
1 abio 5.110.	dinal mamant dağarlari	200
Table 2 117	21 Tini hilosižin D2LVD va HE Väntamlaring Cära Hasanlanan	309
1 auto 5.117.	21 Tipi bileşigin BSLTP ve HF Tontennerine Göre Hesapianan tonlam Enorjileri	210
Table 2 119	22 Tini bilagičin TMS'ya cëra ¹³ C ya ¹ H NMB Danaysal ya	510
1 auto 5.116.	Taorik (D21 VD HE D21 VD(DMSO) vo HE(DMSO)) Kimvasal	
	Kinyasal	210
Table 2 110	Kayma Degerieri (o/ppm)	211
Tablo 3.119.	22 Tipi bileşigin teorik (B3LYP ve HF) ik degerleri (cm.)	311
1 abio 3.120.	22 Tipi blieşigin DFT ve HF yontemierine göre nesapianan bag	214
T-1-1- 2 121	açıları (A)	314
1 abio 3.121.	22 Tipi bileşigin DFT ve HF yontemierine göre nesapianan bag	214
Table 2 100	uzuniukiari (A)	314
1 abio 3.122.	22 Tipi bileşigin atomarının DFT ve HF yontemierine göre	215
T-1-1- 2 122	22 Tini hilarikin D21 VD an UE sintendaring sing harmland	313
1 abio 3.123.	22 Inpi bileşigin B3LYP ve HF yontemlerine göre nesaplanan	215
T-1-1- 2 124	alpoi moment degerieri	315
1 abio 3.124.	22 Tipi bileşigin B3LYP ve HF Yontemlerine Gore Hesaplanan	216
T 11 2 125	toplam Energilieri $\frac{13}{12}$ $\frac{13}{12}$ $\frac{13}{12}$ $\frac{13}{12}$	316
Tablo 3.125.	23 Tipi bileşigin TMS'ye göre "C ve H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	216
	Kayma Değerleri (ð/ppm)	316
Tablo 3.126.	23 Tıpı bileşiğin teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	317
Tablo 3.127.	23 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
m 11	açıları (A [°])	320
Tablo 3.128.	23 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	uzunlukları (A ^v)	321

Tablo 3.129.	23 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre hesaplanan mulliken yük değerleri	321
Tablo 3.130.	23 Tipi bilesiğin B3LYP ve HF vöntemlerine göre hesaplanan	
	dipol moment değerleri	322
Tablo 3.131.	23 Tipi bilesiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Eneriileri	322
Tablo 3.132.	24 Tipi bilesiğin TMS've göre ¹³ C ve ¹ H-NMR Denevsel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimvasal	
	Kavma Değerleri (δ /nnm)	323
Tablo 3 133	24 Tini bilesiğin teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	324
Tablo 3 134	24 Tipi bileşiğin DFT ve HF vöntemlerine göre hesaplanan bağ	521
1 4010 0110 11	acıları (A^0)	327
Tablo 3 135	24 Tipi bilesiğin DFT ve HF vöntemlerine göre hesaplanan bağ	021
	uzunlukları (A ⁰)	328
Tablo 3.136.	24 Tipi bilesiğin atomlarının DFT ve HF vöntemlerine göre	020
	hesaplanan mulliken vük değerleri	328
Tablo 3.137.	24 Tipi bilesiğin B3LYP ve HF vöntemlerine göre hesaplanan	
	dipol moment değerleri	329
Tablo 3.138.	24 Tipi bilesiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Enerjileri	329
Tablo 3.139.	25 Tipi bilesiğin TMS've göre ¹³ C ve ¹ H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kavma Değerleri (δ /ppm)	330
Tablo 3 140	25 Tipi bilesiğin teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	331
Tablo 3.141.	25 Tipi bilesiğin DFT ve HF vöntemlerine göre hesaplanan bağ	
	acıları (A^0)	335
Tablo 3.142.	25 Tipi bilesiğin DFT ve HF vöntemlerine göre hesaplanan bağ	
	uzunlukları (A ⁰)	335
Tablo 3.143.	25 Tipi bilesiğin atomlarının DFT ve HF yöntemlerine göre	
	hesaplanan mulliken yük değerleri	336
Tablo 3.144.	25 Tipi bilesiğin B3LYP ve HF yöntemlerine göre hesaplanan	
	dipol moment değerleri	337
Tablo 3.145.	25 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Enerjileri	337
Tablo 3.146.	26 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	338
Tablo 3.147.	26 Tipi bileşiğin teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	339
Tablo 3.148.	26 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	-
	açıları (A^0)	342
Tablo 3.149.	26 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	uzunlukları (A ⁰)	342

Tablo 3.150.	26 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre hesaplanan mulliken yük değerleri	343
Tablo 3.151.	26 Tipi bilesiğin B3LYP ve HF vöntemlerine göre hesaplanan	
	dipol moment değerleri	344
Tablo 3.152.	26 Tipi bilesiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	• • •
	toplam Eneriileri	344
Tablo 3 153	27 Tipi bilesiğin TMS've göre ¹³ C ve ¹ H-NMR Denevsel ve	511
14010 5.105.	Teorik (B3LVP HE B3LVP(DMSO) ve HF(DMSO)) Kimvasal	
	Kayma Değerleri (8/nnm)	345
Table 3 154	27 Tini hilesiğin teorik (B3I VP ve HE) IR değerleri (cm ⁻¹)	3/15
Tablo 3 155	27 Tipi bileşiğin DET ve HE vöntemlerine göre beşanlanan bağ	3/8
1 abio 5.155.	27 Tipi bicşigin DFT ve TiF yontermerine göre nesapianan bag	540
Table 2 156	27 Tini hilosižin DET va UE väntamlarina gära hasanlanan haž	
1 2010 5.150.	27 The bresign DFT ve HF yontennerine gote nesapianan bag	240
Table 2 157	uzulluklall (A) 27 Tini hilosižin stamlarunu DET va HE väntamlarina sära	349
1 2010 5.157.	27 Tipi bileşigin atomatının DFT ve HF yöntermetme göre	240
T-1-1- 2 150	27 Tini hilanišin D2LVD na UE näntandaning säns hannland	349
1 2010 3.138.	2/ Tipi blieşigin B3LYP ve HF yontemierine göre nesapianan	250
T 11 2 160		350
1 abio 3.159.	2/ Tipi bileşigin B3LYP ve HF Yontemierine Gore Hesaplanan	250
T 11 2 1(0	toplam Energilieri $29 \text{ T}^{-1} + 1^{-1} + 2^{-1} \text{ TM}(2^2 + 2^{-1})^{-1} \text{ III NM}$	350
Tablo 3.160.	28 Tipi bileşigin TMS ye göre C ve H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	251
T 11 A 4 64	Kayma Degerleri (ð/ppm)	351
Tablo 3.161.	28 Tipi bileşiğin teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	352
Tablo 3.162.	28 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	açıları (A ^o)	355
Tablo 3.163.	28 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	uzunlukları (A°)	356
Tablo 3.164.	28 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre	
	hesaplanan mulliken yük değerleri	356
Tablo 3.165.	28 Tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan	
	dipol moment değerleri	357
Tablo 3.166.	28 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Enerjileri	357
Tablo 3.167.	30 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	358
Tablo 3.168.	30 Tipi bileşiğin teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	359
Tablo 3.169.	30 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	açıları (A^0)	362
Tablo 3.170.	30 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	uzunlukları (A ⁰)	363

Tablo 3.171.	30 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre	2(2
T 11 0 150		363
Tablo $3.1/2$.	30 Tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan	264
	dipol moment değerleri	364
Tablo 3.173.	30 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Enerjileri	365
Tablo 3.174.	31 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	366
Tablo 3.175.	31 Tipi bileşiğin teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	367
Tablo 3.176.	31 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	açıları (A^0)	371
Tablo 3.177.	31 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	uzunlukları (A ⁰)	371
Tablo 3.178.	31 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre	
	hesaplanan mulliken yük değerleri	372
Tablo 3.179.	31 Tipi bilesiğin B3LYP ve HF yöntemlerine göre hesaplanan	
	dipol moment değerleri	373
Tablo 3.180.	31 Tipi bilesiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Eneriileri	373
Tablo 3.181.	32 Tipi bilesiğin TMS've göre 13 C ve 1 H-NMR Denevsel ve	
	Teorik (B3LYP HF B3LYP(DMSO) ve HF(DMSO)) Kimvasal	
	Kayma Değerleri (S/nnm)	374
Tablo 3 182	32 Tini hilesiğin teorik (B3I VP ve HF) IR değerleri (cm ⁻¹)	375
Tablo 3 183	32 Tipi bileşiğin DET ve HE vöntemlerine göre hesanlanan bağ	515
14010 5.105.	$\frac{32}{4}$ ripi oneşigin Di i ve ini yönemlerine göre nesapianan öag	380
Table 2 184	22 Tini hilogičin DET vo HE vöntomlaring göra haganlangn hað	380
1 auto 5.164.	32 Tipi oneşigin DTT ve TIT yontennetine göre nesapianan bag	201
Table 2 185	22 Tini bilogičin atomlarinin DET vo HE väntomlarina gära	301
14010 5.165.	baanlanan mullikan yök dačarlari	201
Table 2 196	22 Tini hilosižin D21 VD va UE väntamlarina sära hasenlanan	301
1 2010 3.180.	32 Tipi bileşigin BSLYP ve HF yontemierine göre nesapianan	202
T-1-1- 2 197	22 Tini hilarišin D2LVD av UE Väntandaring Gäng Haranland	382
1 2010 3.187.	32 Tipi bileşigin B3LYP ve HF Yontemierine Gore Hesapianan	202
T 11 2 100	topiam Energitieri $\frac{1}{2}$ Truck $\frac{1}{2}$ $\frac{1}{2}$ truck $\frac{1}{2}$	382
1 ablo 3.188.	33 Tipi bileşigin TMS'ye göre "C ve H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	202
	Kayma Değerleri (δ/ppm)	383
Tablo 3.189.	33 Tipi bileşiğin teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	384
Tablo 3.190.	33 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	açıları (A ^v)	388
Tablo 3.191.	33 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	uzunlukları (A^0)	389
Tablo 3.192.	33 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre hesanlanan mulliken yük değerleri	390
---------------	--	-----
Tablo 3 193	33 Tini hilesiğin B3I VP ve HE vöntemlerine göre hesanlanan	570
1000 5.175.	dinol moment değerleri	391
Tablo 3 194	33 Tini hilesiöin B3I VP ve HF Vöntemlerine Göre Hesanlanan	571
1000 5.174.	tonlam Enerilleri	301
Tablo 3 195	34 Tini hilesiğin TMS'ye göre 13 C ve 1 H-NMR Denevsel ve	571
1000 5.175.	Teorik (B3LVP HE B3LVP(DMSO) ve HE(DMSO)) Kimvasal	
	Kayma Dečerleri (8/nnm)	392
Table 3 106	Advina Degeneri (0/ppin) 34 Tini bilesiğin teorik (B3I VP ve HE) IP değerleri (cm ⁻¹)	303
Table 3 197	34 Tipi bileşiğin DET ve HE vöntemlerine göre hesenlanan bağ	595
1 auto 5.197.	34 Tipi oneşigin DTT ve Tit yontennerine göre nesapianan bag	307
Table 3 108	34 Tini hilesiðin DET va HE vöntamlarina göra hasanlanan hað	571
1 abio 5.198.	34 Tipi oneşigin DTT ve Tit yontennerine göre nesapianan bag	307
Table 3 100	34 Tini hilesiğin atomlarının DET ve HE vöntemlerine göre	571
1000 5.177.	hesanlanan mulliken wik değerleri	308
Tablo 3 200	34 Tini hilesiğin B3I VP ve HE vöntemlerine göre hesanlanan	570
1 4010 5.200.	dinol moment değerleri	399
Tablo 3 201	34 Tini hilesiğin B3I VP ve HE Vöntemlerine Göre Hesanlanan	577
10010 5.201.	tonlam Enerilleri	399
Tablo 3 202	36 Tini hilesiğin TMS've göre 13 C ve 1 H-NMR Denevsel ve	577
14010 5.202.	Teorik (B3LYP HF B3LYP(DMSO) ve HF(DMSO)) Kimvasal	
	Kayma Değerleri (8/nnm)	400
Tablo 3 203	36 Tini bilesiğin teorik (B3I VP ve HF) IR değerleri (cm ⁻¹)	401
Tablo 3 204	36 Tipi bileşiğin DFT ve HF vöntemlerine göre hesanlanan hağ	401
10010 5.201.	acıları (A ⁰)	404
Tablo 3 205	36 Tini hilesiğin DFT ve HF vöntemlerine göre hesanlanan hağ	101
14010 5.205.	uzunlukları (A ⁰)	405
Tablo 3.206.	36 Tipi bilesiğin atomlarının DFT ve HF vöntemlerine göre	
	hesaplanan mulliken vük değerleri	405
Tablo 3.207.	36 Tipi bilesiğin B3LYP ve HF vöntemlerine göre hesaplanan	
	dipol moment değerleri	406
Tablo 3.208.	36 Tipi bilesiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Enerjileri	406
Tablo 3.209.	37 Tipi bilesiğin TMS've göre ¹³ C ve ¹ H-NMR Denevsel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	407
Tablo 3.210.	37 Tipi bilesiğin teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	408
Tablo 3.211.	37 Tipi bilesiğin DFT ve HF vöntemlerine göre hesaplanan bağ	
•	acıları (A^0)	412
Tablo 3.212.	37 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	_
	uzunlukları (A ⁰)	413

Tablo 3.213.	37 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre hesaplanan mulliken yük değerleri	413
Tablo 3.214.	37 Tipi bilesiğin B3LYP ve HF vöntemlerine göre hesaplanan	115
	dipol moment değerleri	414
Tablo 3.215.	37 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Enerjileri	414
Tablo 3.216.	38 Tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR Deneysel ve	
	Teorik (B3LYP, HF, B3LYP(DMSO) ve HF(DMSO)) Kimyasal	
	Kayma Değerleri (δ/ppm)	415
Tablo 3.217.	38 Tipi bileşiğin teorik (B3LYP ve HF) IR değerleri (cm ⁻¹)	416
Tablo 3.218.	38 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	açıları (A^0)	420
Tablo 3.219.	38 Tipi bileşiğin DFT ve HF yöntemlerine göre hesaplanan bağ	
	uzunlukları (A ⁰)	421
Tablo 3.220.	38 Tipi bileşiğin atomlarının DFT ve HF yöntemlerine göre	
	hesaplanan mulliken yük değerleri	421
Tablo 3.221.	38 Tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan	
	dipol moment değerleri	422
Tablo 3.222.	38 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan	
	toplam Enerjileri	422
Tablo 4.1.	4 Tipi Bileşiklerin Yarı Nötralizasyon Potansiyelleri ve Karşın	
	Olan pK _a Değerleri	434
Tablo 4.2.	4 Tipi bileşiklerin B3LYP ve HF metodlarına göre hesaplanmış	
	¹³ C- ve ¹ H-NMR için bulunan R, standart hata, a ve b değerleri	438
Tablo 4.3.	4 Tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) metodlarına	
	göre hesaplanmış ¹³ C- ve ¹ H-NMR için bulunan R, standart hata, a	
	ve b değerleri	439
Tablo 4.4.	14 Tipi bileşiklerin B3LYP ve HF metodlarına göre hesaplanmış	
T 11 4 5	¹³ C- ve ¹ H-NMR ıçın bulunan R, standart hata, a ve b değerleri	440
Tablo 4.5.	14 Tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) metodlarına	
	gore hesaplanmış ^{TC} - ve ^H -NMR için bulunan R, standart hata, a	4 4 1
T-1-1- 4 C	ve b degerieri	441
1 abio 4.6.	13 C us ¹ U NMP isin bulunon P, stondart hata a via h dažarlari	440
Table 47	20 Tini bilogiklorin B2I VP(DMSO) vo HE(DMSO) metodlaring	442
1 auto 4.7.	20 Tipi blieşiklerili BSL P(DMSO) ve HF(DMSO) illetodiarilla göra hasanlanmıs ^{13}C va ¹ H NMP jain hulunan P standart hata a	
	ya b değerleri	113
Table 4.8	29 Tini hilesiklerin B3I VP ve HF metodlarına göre hesanlanmış	440
1 U UU T .U.	13 C- ve ¹ H-NMR icin bulunan R standart hata a ve b deŏerleri	444
Tablo 4 9	29 Tipi bilesiklerin B3LYP(DMSO) ve HF(DMSO) metodlarına	
	göre hesaplanmis ¹³ C- ve ¹ H-NMR icin bulunan R standart hata a	
	ve b değerleri	445

Tablo 4.10.	35 Tipi bileşiklerin B3LYP ve HF metodlarına göre hesaplanmış	
	¹³ C- ve ¹ H-NMR için bulunan R, standart hata, a ve b değerleri	445
Tablo 4.11.	35 Tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) metodlarına	
	göre hesaplanmış ¹³ C- ve ¹ H-NMR için bulunan R, standart hata, a	
	ve b değerleri	446
Tablo 4.12.	4 Tipi Bileşiklerinin Toplam Molekül Enerjileri (a.u.)	450
Tablo 4.13.	14 Tipi Bileşiklerinin Toplam Molekül Enerjileri (a.u.)	
Tablo 4.14.	20 Tipi Bileşiklerinin Toplam Molekül Enerjileri (a.u.)	450
Tablo 4.15.	29 Tipi Bileşiklerinin Toplam Molekül Enerjileri (a.u.)	451
Tablo 4.16.	35 Tipi Bileşiklerinin Toplam Molekül Enerjileri (a.u.)	451

SEMBOLLER VE KISALTMALAR DİZİNİ

$\stackrel{\rightarrow}{A}$: vektör potansiyeli	
$\vec{B_0}$: dış magnetik alan vektörü	
$C_{\mu i}$: moleküler orbital açılım katsayı	
D_{e}	: spektroskopik ayrışma enerjisi	
D_o	: ayrışma (dissociation) enerjisi	
ΔE	: enerji farkı	
δ	: bağıl kimyasal kayma, açı bükülme titreşimi	
$\delta_{_{s}}$: makaslama (scissoring)	
Ε	: enerji	
E^{j}	: elektron-elektron itme enerjisi	
$E^{^{T}}$: elektronların hareketinden doğan kinetik enerji terimi	
E^{V}	: çekirdek-elektron arasındaki çekimi ifade eden potansiyel enerji terimi	
E^{XC}	: değişim korelasyon enerjisi	
е	: elektron yükü $(1e=1.6.10^{-17}C)$	
γ	: düzlem dışı açı bükülmesi (out of plane bending)	
Hatree	: Hartree birimi (27.192 eV)	
H h	: Hamiltoniyen operatoru : Planak sabiti	
n ħ	: Planck Sabitinin 2TT" ve bölümü	
J	: <i>n</i> Planck Sabitinin 211 ye boluniu	
k	: Boltzmann sabiti $(1.38.10^{-23} \text{ J.K}^{-1})$	
ζ	: relative spin polarizasyonu	
χ _e	: anharmoniklik sabiti	
l	: spin kuantum sayısı	
\vec{I}	: açısal momentum vektörü	
λ	: dalgaboyu	
т	: magnetik kuantum sayısı	
μ	: etkin kütle	
$\stackrel{\rightarrow}{\mu}$: magnetik moment vektörü	
V	: frekans, gerilme titreşimi	
v	: dalga sayısı	
<u>()</u> →	: Larmor frekansı	
P W	: dalga fanksiyany	
Ψ D	: danga noktasi	
κ _c	. denge nortasi	
I _S		
Ŕ	: ayar orjini (Gauge origin)	
ρ	: elektron yoğunluğu	
$ ho_r$: sallanma (rocking)	
σ	: Perdeleme Sabiti	

τ	Burulma(torsion)	
Т	Sıcaklık	
t	Kıvırma (twisting)	
V	Potansiyel Enerji	
AO	Atomik Orbitaller	
CC	Çiftlenmiş Öbek (Coupled cluster)	
CI	Konfigürasyon Etkileşimi (Configuration interaction)	
CSGT	Ayar dönüşümlerinin sürekli seti (Continuous Set of Gauge	
DFT	Yoğunluk fonksiyoneli teorisi (Density Functional Theory)	
GIAO	Ayar içeren atomik orbital (Gauge Including Atomic Orbital)	
GTO	: Gaussian Tipi Atomik Orbital (Gaussian-type orbitals)	
HF	: Hatree-Fock	
HF-SCF	: Hatree-Fock özuyumlu alan teorisi (Hatree-Fock Self Consistent Field)	
IGAIM	: Moleküldeki atomlar için tek tek ayarlar (Individual Gauges for Atoms	
	in molecules)	
KBr	: Potasyum Bromür	
LCAO	: Atomik orbitallerin lineer kombinasyonu	
MO	Moleküler Orbital	
MP2	2. Derece Moller-Plesset Pertürbasyon Teorisi	
MP4	24. Derece Moller-Plesset Pertürbasyon Teorisi	
NMR	Nükleer Magnetik Rezonans (Nucleae Magnetic Resonance)	
PES	Potansiyel Enerji Düzeyi	
ppm	Milyonda bir kısım (parts per million)	
QCISD(T)	2. Derece konfigürasyon etkileşmesi	
STO	Slater tipi atomik orbital	
TMS	: Tetrametilsilan (Si(CH ₃) ₄)	

1. GENEL BİLGİLER

1.1. Giriş

"Bazı Yeni Heterosiklik Bileşiklerin Sentezi ve Bazı Özelliklerinin İncelenmesi Üzerine Bir Çalışma" başlıklı bu tezde, öncelikle çalışma için gerekli olan 9 adet 3alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiği sentezlenmiştir. Sonra bu bileşiklerin 4-izopropilbenzaldehid ile reaksiyonları incelenmiş ve 9 adet yeni 3alkil(aril)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri elde edilmiştir. Sentez bölümünde ayrıca, bu bileşiklerden 5'i ile asetik anhidrid'in reaksiyonu sonucu *N*-asetil türevi olan 5 adet yeni 1-asetil-3-alkil(aril)-4-(4izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiği sentezlenmiştir. Sentezlenen 14 yeni bileşiğin yapıları IR, ¹H-NMR, ¹³C-NMR ve UV kullanılarak aydınlatılmıştır.

Çalışmada ikinci olarak, sentezlenen 14 yeni bileşiğin 3 farklı yöntemle (indirgeme gücü, serbest radikal giderme aktivitesi, metal şelat aktivitesi) *in-vitro* antioksidan özellikleri incelenerek elde edilen bulgular yorumlanmıştır.

Çalışmada üçüncü olarak 9 adet yeni 3-alkil(aril)-4-(4-izopropilbenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on türevlerinin susuz çözücülerde (izopropil alkol, *tert*-butil alkol, aseton ve *N*,*N*-dimetilformamid) tetrabutilamonyumhidroksit (TBAH) ile potansiyometrik titrasyonları yapılmış, titrasyon grafikleri çizilmiş ve yarı-nötralizasyon metodu ile p K_a değerleri tayin edilerek asitlik üzerine çözücü ve yapı etkisi tartışılmıştır.

Çalışmada son olarak 16 literatürde kayıtlı, 14 yeni olmak üzere toplam da 30 heterosiklik 4,5-dihidro-1*H*-1,2,4-triazol-5-on türevinin ¹H-NMR ve ¹³C-NMR ile infrared spektral verileri deneysel ve teorik olarak, bağ açıları, bağ uzunlukları, mulliken yükleri, HOMO-LUMO enerjileri, dipol momentleri ve enerjileri teorik olarak bilgisayar ortamında iki farklı set kullanılarak incelenmiştir. Çalışma için gerekli deneysel ¹H-NMR ve ¹³C-NMR spektrum değerleri ile IR spektral verileri literatürlerden alınmıştır. Çalışmada öncelikle incelenen bileşikler B3LYP/631G(d,p) ve

HF/631G(d,p) metoduna göre optimize edilmiştir. Optimize işleminden sonra ¹H-NMR ve ¹³C-NMR isotropik kayma değerleri Gaussian G09W paket programı kullanılarak GIAO metoduna göre hesaplanmıştır. Burada bulunan değerler TMS için bulunan değerlerden çıkarılmıştır. Deneysel ve teorik olarak bulunan değerler δ exp=a+b. δ calc. eşitliğine göre grafiğe geçirilmiştir. Sigmaplot programı kullanılarak a ve b sabitleri regresyon katsayısı ile standart hata değerleri bulunmuştur.

Yapılan değerlendirme sonucunda her iki yönteminde deneysel sonuçlarla uyumlu olduğu görülmüştür.

İki yöntemle incelenen bileşiklerin ir absorpsiyon frekansları hesaplanmış, deneysel verilerle mukayese edilerek uyumlu oldukları görülmüş ve B3LYP metoduna göre elde edilen veriler kullanılarak teorik infrared spektrumu oluşturulmuştur. Ayrıca, bileşiklerin deneysel infrared spektrumları da verilmiştir.

Çalışmada spektral verileri incelenen bileşiklerin formülleri ile bu bileşiklerin sentezi ile ilgili bileşiklerin formülleri aşağıda Tablo 1.1' de verilmiştir.

 Tablo 1.1. Formüller Tablosu

Ó

Birçok heterosiklik bileşik doğal ürünlerin yapısında yer alır ve yaşamda çok çeşitli yerlerde kullanılmaları nedeniyle büyük öneme sahiptirler. Özellikle ilaç ve boya sanayinde kullanılmaları, ayrıca birçoğunun sentetik olarak elde edilmeleri önemlerini daha da artırmıştır. Karbohidratlar, nükleik asitler, peptitler ve proteinler heterosiklik moleküllere örnek olarak gösterilebilir [1].

Günümüzde kullanılan teorik yöntemler ile moleküllerin birçok özellikleri deney yapmaya gerek kalmadan hesaplanmaya başlanmıştır. Hatta bu hesaplamalar ile şimdiye kadar elde edilmemiş veya edilememiş ve gerçek koşullarda var olamayacak bileşikler için kolayca uygulanabilmekte ve istenen sonuçlar alınabilmektedir [1].

Kimyasal araştırmalarda bilgisayar kullanılarak yapılan kimyasal hesaplamalar, deneysel yöntemlerle elde edilen birçok maddenin; ¹H-NMR ve ¹³C-NMR spektral verileri, IR frekans değerleri, UV-Vis değerleri, bağ açıları, bağ uzunlukları, mulliken

yükleri, HOMO-LUMO enerjileri, dipol momentleri ve enerjileri gibi çok sayıda özelliğinin daha kısa sürede ve daha güvenilir bir şekilde elde edilmesini sağlar. Teorik yöntemler kullanılarak standart değerler elde edilmiş ve bu değerler temel alınarak deneysel çalışmalar arttırılmıştır [1].

1.2. Serbest Radikaller ve Antioksidan Sistemler

Serbest radikaller, biyolojik membranlarda lipid peroksidasyonuna, protein oksidasyonuna ve DNA hasarına sebep olarak hücre metabolizmasını olumsuz yönde etkileyen moleküllerdir. Fizyolojik koşullarda, oksidan etkenler ve antioksidan mekanizmalar bir denge halinde bulunmaktadır. Fizyopatolojik sartlarda biyomoloküllerin oksidasyonunu geciktiren veya engelleyen endojen ve eksojen antioksidanlara ilgi giderek artmakta ve organizmaya zarar vermeyen antioksidan özellikteki sentetik bileşiklerin üretimi ve biyolojik sistemlerde oksidan-antioksidan denge üzerine olan etkileri araştırılmaktadır. Eksojen ve metabolik reaksiyonlar sonucu oldukca reaktif olan serbest olusan endojen kimyasallar radikalleri oluşturabilmektedirler. Özellikle oksijen orjinli radikaller hücre hasarı ve hücre ölümüne sebep olabilecek kadar biyomolekülleri okside edebilme özelliklerine sahiptirler. Oksidatif stres, hastalıkların patolojisinde önemli rol oynar. Reaktif oksijen türlerinin (ROT) antioksidan kapasitenin yetersiz olması ve aynı zamanda aşırı üretimi organizmalarda yangı, diabet, genotoksisite ve kanser gibi çeşitli fizyopatolojik olaylara sebep olur [2, 3].

1.2.1. Serbest Radikaller ve Genel Özellikleri

Atom, çekirdeğinde pozitif yüklü protonlar ve yüksüz nötronlardan ve çevresinde bulunan negatif yüklü elektronlardan meydana gelmiştir. Serbest radikaller, en azından bir ortaklanmamış elektron içeren ve bağımsız olarak bulunabilen çok kısa ömürlü atom ya da moleküllerdir. Serbest radikaller katyonik, anyonik ya da nötral karakteristikli olabilirler. Son derece reaktif bir yapıya sahip olan serbest radikaller eşlenmemiş elektronlarını eşlemek için diğer moleküller ile hızla reaksiyona girerek, daha kararlı yapılar oluştururlar. Oksijenin bu toksik özelliği, eşlenmemiş elektronu ile diradikal yapabilmesinden kaynaklanmaktadır. Moleküler oksijen organizmalar için indirgenmiş karbon bileşiklerinin oksidasyonunda enerji oluşturmak üzere kullanılan en son elektron alıcısıdır.

İnsan vücudu ve diğer tüm canlı organizmaların yapısının büyük çoğunluğunu karbon ve hidrojen havuzu oluşturur. Bu havuz stabil olmayıp, sürekli moleküler oksijen ile temas halindedir. Canlı sistemlerde birçok fizyolojik olay sırasında az miktarlarda ROT ve serbest radikaller ortaya çıkmaktadır. Hücrenin tüm bileşenleri radikal oluşumuna katkıda bulunmaktadır. Organizmada *in-vivo* serbest radikal üretiminde oksijen gerektiren biyokimyasal reaksiyonlar (özellikle mitokondrial elektron transport zinciri), hiperoksia, aşırı egzersiz, iskemi, radyasyon, ultraviyole ışık ve çevresel kirleticiler etkili olmaktadır. Serbest radikaller antimikrobiyal savunma, sinyal iletimi gibi işlevlerde rol oynarlar. Canlıların, serbest radikallerin oksidasyonundan korunmasında çeşitli antioksidan sistemler görev alır [4].

1.2.2. Oksijen Radikalleri

Biyolojik sistemlerde serbest radikallerin çoğunluğunu oksijen radikalleri oluşturur. Serbest oksijen radikallerinin büyük kısmı mitokondrilerde indirgenmiş karbon birimlerinden alınan elektronların çeşitli elektron taşıyıcılarından geçerek en son elektron alıcısı olan moleküler oksijene transferi sonucunda oluşur. Oksijenin kısmi indirgenmesi sonucu çeşitli oksijen radikalleri meydana gelir. Oksijenin bir elektron indirgenmesiyle süperoksit anyonu serbest radikalini üretir (O₂⁻⁻). Bütün sulu sistemlerde oluşan süperoksit iyonu, sonuçta bir dismutasyon reaksiyonu ile iki elektron indirgenmesi sonucu hidrojen peroksiti (H₂O₂) ve üç elektron indirgenmesiyle hidroksil radikalini (OH⁻) meydana getirir. Oksijen biyolojik sistemlerde önemli indirgenme reaksiyonlarını indükleyebilir; örneğin ferritin gibi metalloproteinlerdeki Fe⁺³'i indirgeyebilir. Demir bağlı proteinlerin indirgenmesi, biyolojik sistemlerde önemli bir reaksiyondur. İndirgenmiş demir oldukça reaktif bir radikal olan OH⁻ radikallerinin üretimine sebep olur [5].

Tablo 1.2. Reaktif Oksijen Türleri ve Diğer Serbest Radikallerin Oluşumuna Yol Açan Kaynaklar

FKSOIFN KAVNAKLAR	FNDO IFN KAVNAKLAR
I. Iyonizan radyasyon	I. Mitokondrial ETS
2. Hepatotoksinler	2. Nötrofil fagasitoz sistemi
3. Ksenobiyotikler	3. Ksantin oksidaz enzim sistemi
4. Redoks siklusu yapan bileşikler	4. Araşidonik asit metabolizması
(Örn: alloksan, parakuat)	5. Lenfosit, fibroblast endotelden
5. Kemoterapötikler	düzenleyici moleküller olarak salınma
6. Hava kirliliği	6. Diğer oksidanlar
7. Sigara	7. Enzimatik olmayan reaksiyon

1.2.2.1. Singlet Oksijen ($O_2^{\uparrow\downarrow}$)

Singlet oksijen molekülü, temel haldeki oksijenin elektronlarından birinin enerji alarak kendi spininin ters yönünde olan başka bir orbitalle yer değiştirmesi ile meydana gelir. Singlet oksijen ortaklanmamış elektronu olmadığı için radikal olmayan reaktif oksijen moleküllerindendir. Serbest radikal reaksiyonları sonucu meydana gelebildiği gibi serbest radikal reaksiyonlarının başlamasına da sebep olabilirler. Singlet oksijen oluşumu daha çok ışığa maruz kalmış pigment sistemlerinde meydana gelir (örneğin, göz lenslerinde ve kloroplastlarda). Singlet oksijen çift bağları içeren lipitleri oksitleyip lipit hidroperoksitlerinin oluşmasına yol açabilir. En iyi singlet oksijen tutucusu beta-karotendir [6].

1.2.2.2. Süperoksit Radikali (O2-)

Moleküler oksijenin bir elektron alarak indirgenmesi sonucu oluşur. Süperoksit radikalleri hücrede enerji metabolizmasında oksidasyon sırasında ya da oksidazlar gibi bazı enzimlerin aktivitesi sonucu oluşurlar. Süperoksit radikalleri hidrokinonların,
lökoflavinlerin, katekolaminlerin, tiollerin, indirgen boyaların, tetrahidroksipteridinlerin, ferrodoksinlerin, hemoproteinlerin oksidasyonunda ortaya çıkabilir.

Süperoksit radikali yüklü olduğundan hücre membranını direkt olarak geçemez ve bu nedenle daha az toksik etkiye sahiptir. Süperoksit radikalinin protonlanmasıyla çok daha aktif bir radikal olan perhidroksil radikali (HO₂⁻) meydana gelir. Süperoksit radikali ile perhidroksil radikali birbiriyle reaksiyona girince biri oldukça okside olurken diğeri indirgenir. Bu dismutasyon reaksiyonu sonucu ise, oksijen molekülü ve hidrojen peroksit meydana gelir.

$$HO_2^{\bullet} + O_2^{\bullet} + H^{+} \longrightarrow O_2 + H_2O_2 \quad (1)$$

Süperoksit radikali ferrik (Fe^{+3}) 'i ferroz (Fe^{+2}) 'a indirgeyerek onu daha reaktif hale getirebilir. Süperoksit radikali, nitrik oksit radikali ile birleşmesi sonucu başka bir reaktif oksijen türevi olan peroksinitrit radikali meydana getirebilir.

 $NO^{\bullet} + O_{\overline{2}}^{\bullet} \longrightarrow ONOO^{-}$ (2)

Peroksi nitritler proteinlere direkt olarak etki ederek daha zararlı azot dioksit radikali (NO_2) , hidroksil radikali (OH) ve nitronyum (NO_2^+) iyonu gibi daha zararlı oksijen türevleri meydana getirirken proteinlerin yapısında bozulmaya neden olurlar [7].

1.2.2.3. Hidrojen Peroksit (H₂O₂)

Moleküler oksijenin iki elektron ve süperoksit radikalinin bir elektron indirgemesi ile peroksit meydana gelir. Peroksit iki hidrojen atomu ile birleşerek hidrojen peroksiti meydana getirir.

Hidrojen peroksit, biyolojik sistemlerde ya süperoksit radikalinin enzimatik ve enzimatik olmayan dismutasyonu ile veya elektron transfer sisteminde oksijen molekülünün eksik indirgenmesi sonucunda oluşur.

H₂O₂ çiftleşmemiş elektrona sahip olmadığı için radikal olarak değerlendirilemez. Biyolojik membranlardan kolay geçebilir ve kendinden daha zararlı olan süperoksit ve hidroksil radikallerinin oluşumuna sebep olur. Ayrıca hidrojen peroksit metal katalizli dismutasyonu sonucu, çok reaktif hidroksil radikalini oluşturur.

$$H_2O_2 + O_2 \cdot \longrightarrow OH \cdot + OH + O_2$$
 (3)

Katalizörlü ya da katalizörsüz olarak meydana gelebilen bu reaksiyon, "Haber-Weiss" reaksiyonu olarak adlandırılır. Katalizörsüz reaksiyon oldukça yavaş olmasına rağmen demir katalizörlüğünde reaksiyon oldukça hızlı ilerler. Bu reaksiyonda önce ferrik demir süperoksit anyonu tarafından ferroz demire indirgenir. Oluşan bu ferroz demir "Fenton" reaksiyonu ile H₂O₂'in dismutasyonuna neden olarak hidroksil radikali oluşturur [8]. Reaksiyon mekanizması şöyledir:

$$O_{2^{\bullet}}^{\bullet} + Fe^{+3} \longrightarrow O_{2} + Fe^{+2}$$

$$Fe^{+2} + H_{2}O_{2} \longrightarrow Fe^{+3} + OH \cdot + OH^{-} \qquad (4)$$

$$H_{2}O_{2} + O_{2^{\bullet}}^{\bullet} \longrightarrow OH \cdot + OH^{-} + O_{2}$$

1.2.2.4. Hidroksil (OH⁻) ve Perhidroksil (HO₂⁻) Radikali

Süperoksit radikalinin protonlanması ile perhidroksil radikali meydana gelir. Süperoksit radikali gibi perhidroksil radikali de yağ asitlerine direkt olarak etki edebilir ve lipit peroksitleri meydana gelebilir. Hidroksil radikali daha çok yüksek enerjili iyonize edici radyasyona maruz kalma sonucu meydana gelir. Hidroksil radikali ayrıca metal katalizli

H₂O₂'nin dismutasyonu sonucu da oluşabilir. Hidroksil radikali en reaktif radikal olup diğer radikallere göre ömrü en kısa olan radikaldir [9].

Çeşitli metal tuzlarının H_2O_2 ile etkileşmesi ile hidroksil radikali oluşur. Çoğu zaman bu metal iyonu demirdir, fakat demirin yanı sıra aynı reaksiyonu bakır da verebilir. Fe⁺² tuzlarının H_2O_2 ile etkileşerek hidroksil radikalini oluşturmasına Fenton Reaksiyonu adı verilir. Fenton Reaksiyonu'nun stokiyometrisi aşağıdaki gibidir:

$$Fe(II) + H_2O_2 \longrightarrow OH^{\bullet} + OH^{\bullet} + Fe(III)$$
(5)

Oksidatif stres sonucu intrasellüler serbest Ca⁺²'nin ve Fe (III)'ün konsantrasyonunun arttığı ispatlanmıştır. Ayrıca oksidatif stres sonucu ferritinden Fe (III)'ün mobilizasyonu artar. Dolayısıyla bir Haber-Weiss ya da Fenton reaksiyonu sonucu hidroksil radikalinin oluşumu oksidatif strese bağlı olarak arttığı kaydedilmiştir [9].

1.2.3. Serbest Radikallerin Zararlı Etkileri

Serbest radikaller; hücrelerin lipit, protein, DNA, karbohidrat ve enzim gibi fonksiyonel bileşiklerine etki ederler. Mitokondrilerdeki aerobik solunumu ve kapiller geçirgenliği bozar, hücrenin elektrolit kaybına ve trombositlerin kümeleşmesine neden olurlar. Ayrıca proteaz, fosfolipaz, elastaz, siklooksigenaz, ksantin oksidaz, lipooksigenaz, triptofan dioksigenaz ve galaktoz oksidaz gibi hidrolitik enzimleri aktifleştirirken alfa 1-antitiripsin gibi antiproteolitik enzimleri inaktif hale getirirler.

Serbest radikallerin zararlı etkilerinden en fazla zarar gören yapılar membranlardır. Membranlardaki kolesterol ve yağ asitlerinin doymamış bağları ile kolaylıkla reaksiyona girerek çeşitli peroksidasyon ürünleri meydana getirirken, membranların yapısını, permeabilitesini ve fonksiyonunu bozarlar. Membrandaki enzimleri inaktif hale getirirler [8].

1.2.3.1. Lipit Peroksidasyonu

Bütün membran lipitleri, poliansatüre yağ asitleri (PUFA) içerirler ve serbest radikal hasarına hassastırlar. PUFA, C=C yapısında karakteristik çift bağa sahiptir. Hassas olan bu yapıdan H atomlarının hidroksil radikalleri tarafından koparılması sonucu dien konjugatlar olarak bilinen peroksit ürünler oluşur. Molekül içi çift bağlarının değişmesiyle dien konjugatlarının daha sonra oksijenle etkileşmesi sonucu lipit peroksil radikalleri oluşur. Lipit peroksil radikalleri, membran yapısındaki diğer PUFA'ni etkileyerek yeni lipit radikallerinin oluşumuna yol açarken, kendileri de açığa çıkan hidrojen atomlarını alarak lipit hidroperoksitlerine dönüşürler [8].

1.2.3.2. Protein Oksidasyonu

Proteinler serbest radikal etkisine karşı PUFA'dan daha az hassastırlar ve başlayan zarar verici zincir reaksiyonlarının hızla ilerleme ihtimali daha azdır. Proteinlerin serbest radikallerden etkilenme dereceleri amino asit bileşimlerine bağlıdır.

Serbest radikaller proteinleri yükseltgeyebilirler, amino asitlere ve disülfit (S-S) bağlarına saldırırlar ve özelikle sülfür radikalleri ve karbon merkezli radikaller meydana gelirler. Bu reaksiyonlar sonucunda immunglobülin G ve albümin gibi fazla sayıda disülfid bağı bulunduran proteinlerin üç boyutlu yapıları bozularak fonksiyon kaybına uğrarlar ve proteolitik yıkım gösterirler [8].

1.2.3.3. DNA Oksidasyonu

Kararlı bir molekül olan DNA endojen etkenlerin yanı sıra elektromanyetik, ultraviyole ve X-ışınları gibi eksojen kaynaklara maruz kaldığında diğer biyomoleküller gibi spontan olarak kimyasal oksidatif hasara uğrayabilmektedir. Serbest radikallerin etkisiyle DNA'nın yapısının değişmesi hücrede mutageneze, karsinogeneze ve hücre ölümüne sebep olabilmektedir.

Hidroksil radikali, deoksiriboz ve bazlarla kolayca reaksiyona girer ve değişikliklere yol açar. Aktive olmuş nötrofillerden kaynaklanan hidrojen peroksit membranlardan kolayca geçerek ve hücre çekirdeğine ulaşarak DNA hasarına, dolayısıyla da hücrede fonksiyon bozukluğuna yol açabilir. Bu yüzden DNA serbest radikallerden kolay zarar görebilir, önemli bir hedeftir.

Oksidatif hasara bağlı olarak DNA'da, tek ve çift dal kırıkları, abazik alanlar, baz modifikasyonları (baz katılımı, bazlarda yeniden düzenlenme), şeker hasarı meydana gelebilir veya DNA ile protein arasında çapraz bağlanma olabilir. Bu lezyonlardan bazıları fizyolojik koşullarda da oluşabilmektedir. Örneğin pürin kaybı ile apürinik alanların oluşması insan genomunda gün içinde 10⁴ kez meydana gelebilmektedir. Oksidatif modifikasyon sonucunda DNA antijenik karakter kazanmakta ve anti DNA antikorları oluşmaktadır [4, 10].

1.2.3.4. Karbohidrat Oksidasyonu

Glikoz, mannoz ve deoksi şekerler otooksidasyonla hidrojen peroksit, peroksitler ve oksoaldehidleri meydana getirirler. Oluşan okside formlar diabet ve sigara içimi ile ilişkili kronik hastalıklarda önemli rol oynar.

Oksoaldehitler, DNA, RNA ve proteinlere bağlanabilme ve aralarında çapraz bağ oluşturabilme özelliklerinden dolayı antimitotik etki gösterirler. Böylece, kanser ve yaşlanma olaylarında rol oynarlar.

Oksijen radikalleri, yüksek viskositeli sinoval sıvıda bulunan hiyaluronik asit gibi karbohidrat polimerlerinin fragmentasyonuna sebep olabilirler. Romatoid artritte oksijen radikalleri tarafından stimule edilmesinin bir etkisi olarak depolimerize olurlar [8].

1.2.4. Antioksidan Savunma Sistemi

Reaktif oksijen türleri prooksidanlar olarak bilinir ve normal aerobik hayatı oldukça etkilerler. Oksijen ise aerobik hayatın vazgeçilmez bir yakıt kaynağıdır. Normal metabolik reaksiyonlar sırasında, serbest radikallerin endojen olarak ortaya çıkmaları nedeniyle, tüm aerobik organizmalar doku hasarından korunmak için antioksidan savunma mekanizmaları geliştirmişlerdir. Zararlı kimyasalların oluşmasını ve birikmesini önleyen sistemlere "Antioksidan Sistemler" denir. Antioksidanlar, okside edilebilir substrata oranla çok düşük konsantrasyonlarda bile, substratın oksidasyonunu geciktiren veya engelleyen maddelerdir. Fizyolojik koşullarda, organizmada oksidan etkenler ve antioksidan mekanizmalar bir denge halinde bulunmaktadır. Bu dengenin oksidan lehine değişmesi ile oksidatif stres olarak adlandırılan ileri doku hasarı oluşmaktadır.

Tüm aerobiklerde iki çeşit antioksidan savunma mekanizması mevcuttur. Bunlar enzimatik ve enzimatik olmayan savunma mekanizmalarıdır. Biyolojik sistemlerde bulunan tüm antioksidanlar Tablo 1.3'te gösterilmiştir. İster enzimatik olsun, ister enzimatik olmasın tüm antioksidanların 5 değişik mekanizma ile etkili oldukları savunulmaktadır. Bu mekanizmalar şu şekilde sıralanabilir: Lokal oksijen konsantrasyonunu azaltmak; OH', O₂⁻⁻ gibi anahtar ROT'ni ortadan kaldırmak yoluyla zincir reaksiyonunu başlamasını engellemek; peroksitleri parçalayarak onların zincir reaksiyonunu oluşturan radikallere dönüşümünü engellemek; katalitik metal iyonlarını bağlayarak radikal oluşumunun başlamasını engellemek; başlamış olan bir zincir reaksiyonunu kırmak. Bu mekanizmalardan ilk ikisi ile işlev gören antioksidanlar, birincil savunma hattını oluşturmaktadır. Enzim olmaları nedeniyle, normal koşullarda antioksidan görevleri bitince değişmeden ortamda kalırlar. Son üç mekanizma ile işlev gören antioksidanlar ise ikincil antioksidan savunma hattını oluştururlar. Bu maddeler koruyucu işlevleri sırasında tüketilirler [11, 12].

Enzimatikler		
Süperoksit dismutaz GSH-peroksidaz Katalaz		
	Yardımcı enzimler:	NADP-kinon Oksidoredüktaz Epoksit hidrolaz
	Konjugasyon enzimleri:	GSH-S-transferaz UDP-glukuronil transferaz Sülfonil transferaz GSH-redüktaz
	NADPH sağlayıcı enzimler:	Glukoz-6-fosfataz 6-Fosfoglukono dehidrogenaz İzositrat dehidrogenaz Malik enzim
Enzimatik olmayanlar		
 α-tokoferoller (Vit E) Askorbikasit (Vit C) Glutatyon (GSH) Flavonoidler β-karoten (proVit A) Ürat Bilirubin Mannitol Sistein Metiyonin Melatonin Sitokrom P-450 Hemoglobin Miyoglobin 		Gamilantamin
	Plazma proteinleri:	Seruloplazmin
		Ferritin
		Albumin Transferin
		Laktoferrin

 Tablo 1.3. Biyolojik Sistemlerdeki Antioksidan Sistemler [8]

1.2.5. Antioksidan Aktivitesi Belirleme Metotları

Antioksidan aktivitesi belirleme metotlarının altı başlık altında incelenebileceği bildirilmiştir [13-20].

1. Total Antioksidan Aktivite Tayini: Bu metotta antioksidan aktivitesi β -Karoten metoduna göre belirlenmektedir. Bu işlem için aktivitesi ölçülecek olan örneğin stok

çözeltisi hazırlandıktan sonra uygun tampon çözelti ile eşit hacimde, β -Karoten-linoleik asit emülsiyonu eklenmekte, inkübasyonu 50 °C'de yapılmakta ve kontrol olarak tampon çözelti ile β -Karoten-linoleik asit eşit karışımları kullanılmaktadır. Her 30 dakikada bir, 470 nm'de UV spektrofotometresi ile köre karşı absorbansı alınmaktadır. İnkübasyon, kontrolün minimum absorbansa ulaşmasıyla sona erdirilmektedir [13].

2. DPPH Radikali Giderme Aktivitesi Tayini: Bu işlemde örneğin stok çözeltisi hazırlandıktan sonra eşit konsantrasyonda DPPH radikali çözeltisiyle muamele edilmekte ve 30 dakika karanlıkta bekletilen karışımın 517 nm'de UV spektrofotometresi ile köre karşı absorbansı alınmaktadır [14, 15].

3. Süperoksit Anyon Radikal Giderme Aktivitesi Tayini: Bu metotta süperoksit anyon radikal giderme aktivitesi NADH-PMS-NBT sistemine göre in vitro belirlenmektedir. Bu işlem için örneğin stok çözeltisi hazırlandıktan sonra eşit hacimde uygun tampon çözeltide çözündürülmüş NADH ve NBT konulmaktadır. Eşit hacimde PMS ile muamele edildikten 5 dakika sonra karışımın 560 nm'de UV spektrofotometresi ile köre karşı absorbansı alınmaktadır [15, 16].

4. ABTS Katyon Radikali Giderme Aktivitesi: Bu yöntemde ABTS katyon radikali giderme aktivitesi ABTS'nin potasyum persülfat ile muamelesinden oluşan ABTS⁺radikali ile belirlenmektedir. Bunun için, örneğin stok çözeltisi hazırlandıktan sonra eşit konsantrasyonlardaABTS⁺radikali çözeltisiyle muamele edilmektedir ve 734 nm'de UV spektrofotometresi ile köre karşı absorbansı alınmaktadır [17].

5. Metal Bağlama Aktivitesi Tayini: Metal bağlama aktivitesi Fe(II)-Ferrozine metoduna göre belirlenmektedir. Bu işlem için örneğin stok çözeltisi hazırlandıktan sonra Fe (II) ve ferrozin reaktifleri eklenmekte ve 562 nm'de UV spektrofotometresi ile köre karşı absorbansı alınmaktadır [17, 18, 19].

6. İndirgeme Gücü: Oyaizu metoduna [20] göre pH = 6,6 ortamında örneğin stok çözeltisi hazırlandıktan sonra potasyum ferrisiyanür ile muamele edilerek 50 °C'de 20 dakika inkübasyona tutulmaktadır. Eşit hacimde trikloroasetik asit ile muamelesinden

sonra ise Fe (III) ile reaksiyona sokularak 700 nm'de UV spektrofotometresi ile köre karşı absorbansı alınmaktadır.

1.3. Çalışmada Kullanılan Yeni Bileşiklerin Sentezi

Tez kapsamında sentezi planlanan bileşiklerin elde edilmesinde kullanılan 1 tipi iminoesterlerin sentezi için çeşitli metotlar geliştirilmiştir. Bu metotlara amidlerden, ortoesterlerden, karbonil bileşiklerinden, iminoklorürlerden ve bazı doymamış sistemlerden başlayan yöntemler örnek olarak verilebilirse de 1 tipi bileşiklerin sentezinde en uygun yöntem Pinner Yöntemidir [21]. Pinner metoduna göre literatürde kayıtlı 1 tipi iminoester hidroklorürler (alkil imidat hidroklorürler) olan etil imidoasetat hidroklorür (1a), etil imidopropiyonat hidroklorür (1b), etil imido-n-butirat hidroklorür (1c), etil imidofenilasetat hidroklorür (1d), etil imido-*p*-tolilasetat hidroklorür (1e), etil imido-*p*-klorofenilasetat hidroklorür (1g), etil imido-m-klorofenilasetat hidroklorür (1h) ve etil imidobenzoat hidroklorür (1i) bileşikleri elde edilmiştir. Bu yöntemde bir nitril, bir mutlak alkol (genellikle mutlak etanol) ile susuz bir çözücü (genellikle susuz dietil eter) içinde HCl gazı ile soğukta muamele edilir (Denklem 6).

$$R = N + R'OH + HCl(g) = R = NH_2Cl \qquad (6)$$

$$1$$

1 tipi iminoesterhidroklorürler (alkil imidathidroklorürler) in soğuk mutlak etanollü ortamda etil karbazat ile muamelesinden [22-28] ester etoksikarbonilhidrazonlar (2) elde edilmiştir. Bu reaksiyon sonucu literatürde kayıtlı etil asetat etoksikarbonilhidrazon (2a), etil propiyonat etoksikarbonilhidrazon (2b), etil *n*-butirat etoksikarbonilhidrazon (2c), etil fenilasetat etoksikarbonilhidrazon (2d), etil *p*-tolilasetat etoksikarbonilhidrazon (2e), etil *p*-metoksifenilasetat etoksikarbonilhidrazon (2f), etil *p*-klorofenilasetat etoksikarbonilhidrazon (2g), etil *m*-klorofenilasetat etoksikarbonilhidrazon (2h) ve etil benzoat etoksikarbonilhidrazon (2i) bileşikleri sentezlenmiştir (Denklem 7).

Elde edilen 2 tipi bileşiklerin hidrazin ile ayrı ayrı muamelesinden [24-30] çalışma için gerekli olan ve literatürde kayıtlı bulunan 3 tipi 3-alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri olan 3-metil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3a), 3-etil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3b), 3-(*n*-propil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3c), 3-benzil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3d), 3-(p-metilbenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3e), <math>3-(p-metoksibenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(p-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(p-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), <math>3-(m-klorobenzil)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3g), bileşikleri elde edilmiştir (Denklem 8).

	R
3a	CH ₃
3b	CH ₂ CH ₃
3c	CH ₂ CH ₂ CH ₃
3d	$CH_2C_6H_5$
3e	$CH_2C_6H_4CH_3(p-)$
3f	$CH_2C_6H_4OCH_3(p-)$
3g	$CH_2C_6H_4Cl(p-)$
3h	$CH_2C_6H_4Cl(m^-)$
3i	$C_6 \tilde{H}_5$
3j	
	7

Çalışmanın orjinal bölümünde 4-izopropilbenzaldehid ile 3 tipi bileşiklerin ayrı ayrı muamelesinden 9 adet yeni 4 tipi 3-alkil(aril)-4-(4-izopropilbenzilidenamino)-4,5dihidro-1H-1,2,4-triazol-5-on bileşikleri olan 3-metil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (5), 3-etil-4-(4-izopropilbenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on (6), 3-(n-propil)-4-(4-izopropilbenzilidenamino)-4,5dihidro-1-H-1,2,4-triazol-5-on (7), 3-benzil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-(8), 3-(p-metilbenzil)-4-(4-izopropilbenzilidenamino)-4,5-1-*H*-1,2,4-triazol-5-on dihidro-1-H-1,2,4-triazol-5-on (9), 3-(p-metoksibenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1-*H*-1,2,4-triazol-5-on (10),3-(p-klorobenzil)-4-(4izopropilbenzilidenamino)-4,5-dihidro-1-H-1,2,4-triazol-5-on (11), 3-(m-klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1-H-1,2,4-triazol-5-on 3-fenil-4-(4-(12),izopropilbenzilidenamino)-4,5-dihidro-1-H-1,2,4-triazol-5-on (13)bileşikleri sentezlenmiştir (Denklem 9).

Çalışmanın sentez bölümünde ikinci olarak 4 tipi bileşiklerinin asetik anhidrid ile muamelesinden *N*-asetil türevleri olan 5 adet yeni 14 tipi 1-asetil-3-alkil(aril)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri olan 1-asetil-3-metil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (15), 1-asetil-3-etil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (16), 1-asetil-3-benzil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (17), 1-asetil-3-(*p*-metilbenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (17), 1-asetil-3-(*p*-metilbenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (18) ve 1-asetil-3-(*p*-klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (19) bileşikleri sentezlenmiştir (Denklem 10).

Literatürde kayıtlı bir çalışmada 3,4-dihidroksibenzaldehid ile 3 tipi bileşiklerin ayrı ayrı muamelesinden 8 adet 20 tipi 3-alkil(aril)-4-(3,4-dihidroksibenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on bileşikler olan 3-metil-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (21), 3-etil-4-(3,4-dihidroksibenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on (22), 3-benzil-4-(3,4-dihidroksibenzilidenamino)-4,5dihidro-1H-1,2,4-triazol-5-on 3-(p-metilbenzil)-4-(3,4-(23),dihidroksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (24),3-(pmetoksibenzil)-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (25), 3-(p-klorobenzil)-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (26), 3-fenil-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (27), 3-siklopropil-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (28) bileşikleri sentezlenmiştir (Denklem 11) [31-33].

Aynı çalışmada 20 tipi bileşiklerin asetik anhidrid ile muamelesinden *N*-asetil türevleri olan 5 adet 29 tipi 1-asetil-3-alkil(aril)-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri olan 1-asetil-3-metil-4-(3,4-asetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (30), 1-asetil-3-benzil-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (31), 1-asetil-3-(*p*-metilbenzil)-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (32), 1-asetil-3-(*p*-klorobenzil)-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (33), 1-asetil-3-fenil-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (32), 1-asetil-3-(*p*-klorobenzil)-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (33), 1-asetil-3-fenil-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (32), 1-asetil-3-fenil-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (33), 1-asetil-3-fenil-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (33), 1-asetil-3-fenil-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on(34) bileşikleri de sentezlenmiştir (Denklem 11) [31-33].

Çalışmada son olarak 20 tipi bileşiklerin dimetilsülfat ile muamelesinden metil türevleriolan 3 adet 35 tipi 1-metil-3-alkil(aril)-4-(3,4-dimetoksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on bileşikleri olan 1,3-dimetil-4-(3,4-dimetoksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (36), 1-metil-3-benzil-4-(3,4-dimetoksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (36), 1-metil-3-benzil-4-(3,4-dimetoksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (37), 1-metil-3-(p-metilbenzil)-4-(3,4-dimetoksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (38)

Çalışma kapsamında sentezlenen 14 yeni bileşiğin yapısı IR, ¹H-NMR, ¹³C-NMR ve UV spektroskopik yöntemleri kullanılarak aydınlatılmıştır.

Çalışmada, sentezlenen 14 yeni bileşiğin 3 farklı yöntemle (indirgeme gücü, serbest radikal giderme aktivitesi, metal şelat aktivitesi) *in-vitro* antioksidan özellikleri incelenerek elde edilen bulgular yorumlanmıştır.

Çalışmada ayrıca, 9 yeni bileşiğin potansiyometrik titrasyonları 4 farklı susuz çözücüde (izopropil alkol, *tert*-butil alkol, *N*,*N*-dimetilformamid ve aseton) tetrabutilamonyum hidroksitle yapılmış ve yarı-nötralizasyon metodu ile yarı nötralizasyon potansiyelleri tayin edilmiş, titrasyon grafikleri çizilmiş ve her bir çözücüdeki asitlik sabitleri belirlenerek asitlik üzerine çözücü ve yapı etkileri incelenmiştir.

Calışmada son olarak, 14' ü yeni ve 16' sı literatürde kayıtlı toplam 30 adet heterosiklik 4,5-dihidro-1H-1,2,4-triazol-5-on türevinin ¹H-NMR ve ¹³C-NMR, UV-vis değerleri ve infrared spektral verileri deneysel ve teorik olarak, bağ açıları, bağ uzunlukları, mulliken yükleri, HOMO-LUMO enerjileri, dipol momentleri ve enerjileri ise teorik olarak bilgisayar ortamında Becke tipi 3-parametreli Yoğunluk Fonksiyon Teorisi ve Hartree-Fock Öz Uyumlu Alan Teorisi setleri kullanılarak incelenmiştir. Çalışmada öncelikle bileşikler DFT/631G(d,p) ve HF/631G(d,p) metoduna göre optimize edilmiştir. Optimize işleminden sonra ¹H- NMR ve ¹³C-NMR isotropik kayma değerleri Gaussian G09W paket programı kullanılarak GIAO metoduna göre hesaplanmıştır. Deneysel ve teorik olarak bulunan değerler $\delta \exp=a+b$. δ calc. eşitliğine göre grafikler oluşturulacak ve regresyon analizi yapılmıştır. IR frekans değerleri yine B3LYP ve HF metodlarının 631G(d,p) temel seti kullanılarak gaz fazında hesaplanmıştır. Teorik olarak hesaplanan IR verilerinin tanımlanmasında Veda4f programından vararlanılmıştır.

1.4. 3-Alkil(Aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on Bileşiklerinin Sentez Yöntemleri ve Bazı Reaksiyonları

1.4.1. 3-Alkil(Aril)-4-amino-4,5-dihidro-1H-1,2,4-triazol-5-on'ların Sentezi

1,2,4-Triazol ve 4,5-dihidro-1*H*-1,2,4-triazol-5-on halka sisteminin oluşturulmasına yönelik bazı yöntemler geliştirilmiştir: 4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin en basit üyesi olan 4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (39) bileşiği ilk kez etil ortoformatın karbohidrazid ile reaksiyonundan sentezlenmiştir (Denklem 12) [34].

$$HC(OC_{2}H_{5})_{3} + H_{2}NNH - C - NHNH_{2} \xrightarrow{100^{\circ}C} \bigvee_{N \longrightarrow NH}^{NH_{2}} O + 3CH_{3}CH_{2}OH$$
(12)

Bir başka çalışmada etil ortoformat yanında etil ortoasetat ve etil ortopropionat kullanılmış ve 3 tipi 3-metil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3a) ve 3-etil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3b) bileşikleri ile 3 bileşiği elde edilmiştir (Denklem 13) [35].

$$RC(OC_{2}H_{5})_{3} + H_{2}NNH - C - NHNH_{2} \longrightarrow R \xrightarrow{NH_{2}} O + 3CH_{3}CH_{2}OH$$
(13)

$$N \xrightarrow{NH} R: H için 39$$

$$3 \quad R: CH_{3} için 3a$$

$$R: C_{2}H_{5} için 3b$$

Farklı bir çalışmada nitrillerden elde edilen iminoester hidroklorürlerin (1) karbohidrazid ile muamelesi öngörülmüştür (Denklem 14) [36].

$$\overset{R}{\xrightarrow{}}_{OR'} = \overset{\Theta}{\underset{NH_2Cl}{H_2Cl}} + \overset{O}{\underset{H_2NNH-C-NHNH_2}{H_2Cl}} \xrightarrow{} \overset{NH_2}{\underset{N}{\underset{N}{\longrightarrow}}} \overset{NH_2}{\underset{N}{\underset{N}{\longrightarrow}}} ^{O} + R'OH + NH_4Cl (14)$$

$$1 \qquad \qquad 3$$

3 Tipi bileşiklerin sentezi için en uygun olan ve çalışmada da kullanılan yöntemde ise, 1 tipi iminoester hidroklorürler (alkil imidat hidroklorürler) in soğuk mutlak etanollü ortamda etil karbazat ile muamelesinden [22-28] elde edilen ester etoksikarbonilhidrazonlar (2) hidrazin hidrat ile kaynar sulu ortamda muamele edilmişlerdir (Denklem 7 ve 8) [24-30].

1 Tipi bileşiklerin Pinner yöntemine göre sentezlendiği reaksiyonun muhtemel mekanizması, asidik ortamda protonlanmış nitrile bir alkolün nükleofilik katılması üzerinden yürümektedir (Denklem 15) [37].

$$R-C\equiv N \implies R-C\equiv \stackrel{\oplus}{NH} \iff R-\stackrel{\oplus}{C}= NH \stackrel{R'\ddot{O}H}{=} \stackrel{R}{\underset{|}{\overset{|}{\oplus}}} \stackrel{R}{\underset{|}{\overset{|}{\oplus}}} \stackrel{R}{\underset{|}{\overset{|}{\oplus}}} \stackrel{R}{\underset{|}{\overset{|}{\oplus}}} \stackrel{R}{\underset{|}{\overset{|}{\oplus}}} \stackrel{R}{\underset{|}{\overset{|}{\oplus}}} (15)$$

Pinner Yöntemine göre Denklem 6 uyarınca hidroklorürleri halinde sentezlenen 3 tipi iminoester hidroklorürler uygun koşullarda ve NaOH, NaOEt gibi bazlar ile muamele edilirse serbest iminoesterler (40) ele geçer (Denklem 16) [23, 38, 39-42]. Serbest iminoesterler (alkil imidatlar) (40) genellikle erime noktası düşük olan hatta sıvı olan bileşiklerdir.

$$\overset{R}{\stackrel{\bigoplus}{\underset{OR'}{\rightarrow}} = \overset{\Theta}{\underset{NH_2Cl}{\oplus}} + : \overset{P}{\underset{R}{\oplus}} \longrightarrow \overset{R}{\underset{OR'}{\rightarrow}} = \overset{R}{\underset{NH}{\rightarrow}} + H: \overset{R}{\underset{R}{\oplus}} + : \overset{C}{\underset{OR'}{\oplus}}$$
(16)

1 Tipi hidroklorürlerinden serbest hale geçirilen iminoesterlerin (40) bugüne kadar birçok reaksiyonu incelenmiştir. Bu reaksiyonların üçünde 40 tipi bileşiklerin etil karbazat, *tert*-butil karbazat ve semikarbazit ile ayrı ayrı muamelesinden imino grubunun korunması sonucu, sırasıyla amid etoksikarbonilhidrazonlar (41), amid *tert*butoksikarbonilhidrazonlar (42) ve amid semikarbazonlar (43) elde edilmiştir (Denklem 17-19) [23, 39, 42].

$$\overset{R}{\rightarrow} = \underset{OR'}{\overset{}} \underset{NH_2}{\overset{}} \underset{NH_2}{\overset{}} \underset{R'OH}{\overset{}} \underset{NH_2}{\overset{}} \underset{NH}{\overset{}} \underset{NHNH}{\overset{}} \underset{NH_2}{$$

1 Tipi iminoester hidroklorürlerin incelenen diğer iki reaksiyonunda tiyosemikarbazit ve *tert*-butilkarbazat ile muamelesi sonucu -OR' grubu korunacak şekilde gerçekleşen reaksiyonlar sonucunda karşın olan ester tiyosemikarbazonlar (44) ve ester *tert*-butoksikarbonilhidrazonlar (45) ele geçmiştir (Denklem 20 ve 21) [42-44].

Denklem 7 uyarınca 1 tipi bileşiklerin etil karbazat ile reaksiyonundan elde edilen 2 tipi ester etoksikarbonilhidrazonların Denklem 8 uyarınca 3 tipi bileşikleri oluşturduğu reaksiyon dışında bazı reaksiyonları da incelenmiş ve 4,5-dihidro-1*H*-1,2,4-triazol-5-on halka sistemini içeren farklı bileşikler elde edilmiştir. Nitekim 2 tipi ester etoksikarbonilhidrazonların primer aminler ile 3,4-dialkil(diaril)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (46), alkil hidrazinler ile 3-alkil(aril)-4-alkilamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (47) ve aril hidrazinler ile de 3-alkil(aril)-4-arilamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (48) bileşiklerini verdiği rapor edilmiştir (Denklem 22-24) [22, 24, 29, 30, 45-49].

$$\begin{array}{c} R \\ O \\ O \\ O \\ \end{array} + R'NH_{2} \longrightarrow R \\ N \\ N \\ N \\ NH \\ NH \\ \end{array} + 2C_{2}H_{5}OH$$
 (22)

2 Tipi bileşiklerin incelenen diğer iki ayrı reaksiyonundan birinde etanolamin ile 49 tipi 3-alkil(aril)-4-(2-hidroksietil)-4,5-dihidro-1*H*-1,2,4-triazol-5-on ve hidroksilamin ile 50 tipi bileşikleri verdiği bildirilmiştir (Denklem 25 ve 26) [50, 51].

Ester etoksikarbonilhidrazonların (2) mikrodalga etkisiyle 4-*tert*-butilanilin ile reaksiyonu sonucu 2,4-dihidro-4-[4-(*tert*-butil)fenil]-5-alkil(aril)-3*H*-1,2,4-triazol-3-on (51) bileşikleri sentezlenmiştir. Elde edilen 51 tipi bileşiğin yine mikrodalgada benzilklorür ile muamelesinden 2-benzil-2,4-dihidro-4-[4-(*tert*-butil)fenil]-5-alkil(aril)-3*H*-1,2,4-triazol-3-on (52) bileşikleri de sentezlenmiştir. Yine 51 bileşiğinin asetik anhidrid ile reaksiyonu ile 2-asetil-2,4-dihidro-4-[4-(*tert*-butil)fenil]-5-alkil(aril)-3*H*-1,2,4-triazol-3-on (53) bileşikleri elde edilmiştir (Denklem 27) [52].

1.4.2. 3-Alkil(Aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on'ların Bazı Reaksiyonları

3-Alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3) bileşiklerinin 1980'li yıllardan sonra birçok reaksiyonu incelenmiş ve karşın olan heterosiklik bileşikler elde edilmiş ve bazı özellikleri incelenmiştir. Bu reaksiyonlardan bazıları aşağıda verilmiştir:

1.4.2.1. 3 Tipi Bileşiklerin Dikarboksilli Asid Anhidridleri ile Reaksiyonları

3-Alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3) bileşiklerinin bazı dikarboksilli asit anhidridleri ile reaksiyonlarının incelendiği birkaç çalışma yapılmış olup 3 tipi bileşiklerin suksinik anhidrid, maleik anhidrid, ftalik anhidrid, cishekzahidroftalik anhidrid, cis-1,2,3,6-tetrahidroftalik anhidrid, tetrakloroftalik anhidrid ve glutarik anhidrid ile muamelesinden N,N'-bağlı biheterohalkalı bileşikler olan sırasıyla, 3-alkil(aril)-4-suksinimido-4,5-dihidro-1*H*-1,2,4-triazol-5-on (54) ve 3alkil(aril)-4-(2,5-dihidropirrol-2,5-dion-1-il)-4,5-dihidro-1H-1,2,4-triazol-5-on (55), 3alkil(aril)-4-ftalimido-4,5-dihidro-1H-1,2,4-triazol-5-on (56), 3-alkil(aril)-4-(cishekzahidroftalimido)-4,5-dihidro-1H-1,2,4-triazol-5-on (57), 3-alkil(aril)-4-(cis-1,2,3,6tetrahidroftalimido)-4,5-dihidro-1H-1,2,4-triazol-5-on (58), 3-alkil(aril)-4tetrakloroftalimido-4,5-dihidro-1H-1,2,4-triazol-5-on (59) ve 3-alkil(aril)-4-(piperidin-2,6-dion-1-il)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (60) bileşikleri elde edilmiştir (Denklem 28-34) [24, 27, 53-58].

R.

(32)

58

-H₂O

3-Alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on'ların (3) reaksiyonlarının incelendiği iki farklı çalışmadan birinde suksindialdehid eşdeğeri olan 2,5dimetoksitetrahidrofuran ile reaksiyon koşullarına bağlı olarak asetik asitli ortamda N,N'-bağlı biheterohalkalı bileşik olan 3-alkil(aril)-4-(pirrol-1-il)-4,5-dihidro-1*H*-1,2,4triazol-5-on (61) ve nötral ortamda (nitrobenzen) N,N'-bis-(3-alkil-4,5-dihidro-1*H*-1,2,4triazol-5-on-4-il)-1,4-butandiimin (62) bileşiklerini, diğerinde ise asetonil aseton ile N,N'-bağlı biheterohalkalı bileşik olan 3-alkil(aril)-4-(2,5-dimetilpirrol-1-il)-4,5dihidro-1*H*-1,2,4-triazol-5-on (63) bileşiklerini oluşturduğu rapor edilmiştir (Denklem 35-37) [24, 26, 27, 59, 60].

1.4.2.2. 3 Tipi Bileşiklerin Açil Halojenürler ile Reaksiyonları

3 Tipi bileşiklerin açil halojenürler ile de reaksiyonları incelenmiş ve asetil klorür ile 64 tipi 3-alkil(aril)-4-asetilamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on, propiyonil klorür ile 65 tipi 3-alkil(aril)-4-propiyonilamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on, benzoil klorür ile 66 tipi 3-alkil(aril)-4-benzoilamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on, 2klorobenzoil klorür ile 67 tipi 3-alkil(aril)-4-(2-klorobenzoilamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerini verdiği bildirilmiştir (Denklem 38-41) [61, 62].

3 tipi bileşiklerin 2-furoil klorür ve tiyofen-2-karbonil klorür ile de reaksiyonları incelenmiş ve karşın olan 68 tipi 3-alkil(aril)-4-(2-furoilamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on ve 69 tipi 3-alkil(aril)-4-(2-tiyenilkarbonilamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerini verdiği rapor edilmiştir (Denklem 42 ve 43) [63, 64].

Bir diğer çalışmada ise 3 tipi bileşiklerin 4-metoksibenzoil klorür ile reaksiyonundan sentezlenen 70 tipi 3-alkil(aril)-4-(4-metoksibenzoilamino)-4,5-dihidro-1*H*-1,2,4triazol-5-on bileşiklerinin potansiyometrik olarak tetrabutilamonyum hidroksit ile bazı susuz çözücülerde titrasyonları yapılarak yarı nötralizasyon metodu ile pK_a değerleri tayin edilmiştir (Denklem 44) [63, 65]. Benzer şekilde 3 tipi bileşiklerin sinnamoil klorür ve fenilasetil klorür ile reaksiyonlarından 71 ve 72 tipi bileşiklerin oluştuğu bildirilmiştir. (Denklem 45 ve 46) [63, 66].

Bazı heterohalkalı amino bileşiklerinin açil klorürler yerine sulfonik asit klorürleri ile sulfonilamino türevlerini verdikleri bilinmektedir [67, 68]. Nitekim son yıllarda yapılan bir çalışmada 3 tipi bileşiklerin benzen sulfonilklorür, 4-toluen sulfonil klorür ve naftalen-2-sulfonil klorür ile reaksiyonları incelenmiş ve karşın olan sırayla 3-alkil(aril)-4-benzensulfonilamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (73), 3-alkil(aril)-4-(4-toluensulfonilamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (74) ve 3-alkil(aril)-4-(naftalen-2-sulfonilamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (75) bileşikleri sentezlenmiş ve antibakteriyel özellikleri incelenmiştir (Denklem 47-49) [61,69].

1.4.2.3. 3 Tipi Bileşiklerden Schiff Bazı Oluşum Reaksiyonları

1.4.2.3.1. 3 Tipi Bileşiklerin Aldehidlerle Reaksiyonları

Aldehid ve ketonların primer aminler ile reaksiyonlarından oluşan imin tipi Schiff bazları kimyanın birçok alanında, tıpta, sanayide, teknolojide geniş bir kullanım alanı bulmuştur.

Bir primer amin gibi hareket eden ve N-NH2 grubu içeren 3 tipi bileşiklerin bazı aromatik ve/veya heteroaromatik aldehidlerle reaksiyonları incelenerek karşın olan heteroaromatik Schiff bazları (76 ve 77) elde edilmiştir (Denklem 50 ve 51) [26, 27, 70,

71]. Nitekim 3 tipi bileşiklerin piridin-2-, piridin-3- ve piridin-4-karboksi aldehidler ile muamelesinden 78 tipi heterosiklik Schiff bazları elde edilmiş ve bu bileşiklerin antifungal aktivite gösterdikleri belirlenmiştir (Denklem 52) [72].

Schiff bazı tipinden 79 ve 81 bileşiklerinin sentezlendiği iki farklı çalışmadan birinde 3 tipi bileşikler 3-metoksibenzaldehid, diğerinde ise 4-metoksibenzaldehid ile muamele edilmiştir. Sentezlenen 79 ve 81 tipi bileşiklerin susuz çözücülerde potansiyometrik olarak titrasyonları yapılarak asitlik sabitleri tayin edilmiş ve ayrıca *N*-asetil türevleri (80 ve 82) elde edilmiştir (Denklem 53 ve 54) [73-76].

Benzer nitelikteki iki ayrı çalışmadan birinde 3 tipi bileşiklerin heteroaromatik aldehidler olan furfural (furan-2-karboksialdehid) ve tiyofen-2-karboksialdehid ile reaksiyonları incelenerek 3-alkil(aril)-4-(2-furilmetilenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (83) ve 3-alkil(aril)-4-(2-tiyenilmetilenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (85) bileşiklerinin sentezi gerçekleştirilmiş, diğerinde ise bu bileşiklerin asetik anhidrid ile reaksiyonları incelenerek 84 ve 86 tipi *N*-asetil türevleri elde edilmiştir. Ayrıca 83 tipi bileşiklerin potansiyometrik olarak asitlik sabitleri tayin edilmiştir. Bundan başka 85 ve 86 tipi bileşiklerin biyolojik aktivite incelemeleri çok yakın bir zamanda yapılmıştır (Denklem 55 ve 56) [77-80].

Son çalışma ile ilgili iki ayrı çalışma son yıllarda yapılmış olup, 3 tipi bileşiklerin 5metiltiyofen-2-karboksialdehid ve 3-metiltiyofen-2-karboksialdehid ile reaksiyonları incelenmiş ve 87 ve 89 tipi bileşikler elde edilmiştir. Bu bileşiklerin *N*-asetil türevlerinin de (88 ve 90) sentezlendiği bu çalışmalarda elde edilen bileşiklerin 3 farklı yöntemle *in-vitro* antioksidan özelliklerinin incelenmesi yanında 87 ve 89 bileşiklerinin asitlik özellikleri de incelenmiştir (Denklem 57 ve 58) [81, 82].

3

R

 $\begin{array}{c} \mathbf{87} \\ +(\mathrm{CH}_{3}\mathrm{CO})_{2}\mathrm{O} \\ -\mathrm{CH}_{3}\mathrm{COOH} \\ \\ \mathbf{N} \\$

88

3

— №H **89** +(CH₃CO)₂O -CH₃COOH

0

(58)

(57)

64

3 Tipi bileşiklerle ilgili yapılan iki çalışmadan birinde 3 tipi bileşiklerin 4hidroksibenzaldehid ile muamelesinden 91 tipi 3-alkil(aril)-4-(4hidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri elde edilmiş, *N*ve *O*-metil ve *N*-asetil türevleri (92 ve 93) sentezlenmiş ve antioksidan özellikleri incelenmiştir [63, 83]. Bu çalışmada ayrıca 91 tipi bileşiklerin susuz ortam titrasyonları incelenerek p K_a değerleri belirlenmiştir (Denklem 59). Son çalışmada ise 3 tipi bileşiklerin 2,4-dihidroksibenzaldehid ile reaksiyonundan sentezlenen 94 tipi 3alkil(aril)-4-(2,4-dihidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerini antioksidan özellikleri incelenmiştir (Denklem 60) [84].

Yine yapılan benzer bir çalışmada 3 tipi bileşiklerin 3-etoksi-4-hidroksibenzaldehid ile reaksiyonundan Schiff bazları olan 3-alkil(aril)-4-(3-etoksi-4-hidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (95) bileşikleri elde edilmiş, susuz çözücülerde pK_a değerleri tayin edilmiş, *N*- ve *O*-metil (92) ile *N*- ve *O*-asetil (97) türevleri elde edilmiştir (Denklem 61) [85, 86].

3 Tipi bileşiklerin vanillin (3-metoksi-4-hidroksibenzaldehid) ile reaksiyonları yakın bir zamanda incelenmiş ve 98 tipi 3-alkil(aril)-4-(3-metoksi-4-hidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri elde edilmiştir. Ayrıca, 98 tipi bileşiklerin asetillendirme ve metillendirme reaksiyonları incelenerek 99 ve 100 tipi bileşikler elde edilmiştir (Denklem 62). Çalışmada ayrıca, 98 tipi bileşiklerin farklı susuz çözücülerde TBAH ile potansiyometrik olarak titrasyonları yapılarak yarı nötralizasyon metodu ile asitlik sabitleri tayin edilmiştir. Buna ilaveten, sentezlenen yeni bileşiklerin 3 farklı yöntemle *in-vitro* antioksidan özellikleri incelenmiştir [87, 88].

Bir başka çalışmada 3 tipi bileşiklerin 4-metiltiyobenzaldehid ile reaksiyonundan 3alkil(aril)-4-(4-metiltiyobenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (101) bileşikleri elde edilmiş ve bunların asetik anhidrid ile reaksiyonundan da 102 tipi *N*-asetil türevleri elde edilmiştir. Sentezlenen bileşiklerin antioksidan özelliklerinin yanında, 101 tipi bileşiklerin asitlik özellikleri de incelenmiştir (Denklem 63) [89].

1.4.2.3.2. 3 Tipi Bileşiklerin Açillendirilmiş Benzaldehid Türevleri ile Reaksiyonları

3 Tipi bileşiklerin hidroksibenzaldehid türevlerinin bazı açıl halojenürlerle muamelesinden elde edilen substituebenzaldehid türevleri ile de reaksiyonları incelenerek karşın olan schiff bazları elde edilmiş olup aşağıda incelenen bazı reaksiyonlar verilmiştir:

3 Tipi bileşiklerin 3-hidroksibenzaldehidin trietilamin varlığında soğukta 4-nitrobenzoil klorür ile muamelesinden elde edilen 103 tipi 3-(4-nitrobenzoksi)benzaldehid ile ayrı ayrı reaksiyonundan 104 tipi 3-alkil(aril)-4-[3-(4-nitrobenzoksi)benzilidenamino]-4,5- dihidro-1*H*-1,2,4-triazol-5-on bileşikleri sentezlenmiş ve ayrıca 104 tipi bileşiklerin *N*- asetil türevleri (105) de elde edilmiştir (Denklem 64 ve 65) [90, 91].

Benzer bir çalışmada, 3-hidroksibenzaldehidin trietilamin varlığında tereftaloil klorür ve izoftaloil klorür ile Denklem 64 ve 65 uyarınca muamelesinden elde edilen di-(3-formilfenil) tereftalat (106) ve di-(3-formilfenil) izoftalat (107) ile 3 tipi bileşiklerin muamelesi sonucu 108 tipi di-[3-alkil(aril)-4,5-dihidro-1*H*-1,2,4-triazol-5-on-4-il)- azometinfenil tereftalat ve 109 tipi di-[3-alkil(aril)-4,5-dihidro-1*H*-1,2,4-triazol-5-on-4-il)-azometinfenil izoftalat bileşikleri elde edilmiştir (Denklem 66 ve 67) [92].

(68)

3-Nitrobenzoil klorürün trietilamin varlığında salisilaldehid ile buz banyosunda muamelesinden elde edilen 110 tipi benzaldehid türevinin 3 tipi bileşikler ile reaksiyonu da son yıllarda incelenmiş ve 111 tipi 3-alkil(aril)-4-[3-(4-nitrobenzoksi)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on bileşikleri elde edilmiştir. Benzer bir çalışmada ise buz banyosunda *p*-nitrobenzoil klorürün 4-hidroksibenzaldehid ile trietilamin varlığında muamelesinden 112 tipi benzaldehid türevi elde edilmiş olup bu bileşiğin de 3 tipi bileşiklerle reaksiyonundan 113 tipi 3-alkil(aril)-4-[4-(4-nitrobenzoksi)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on bileşikleri elde edilmiş olup bu bileşiğin de 3 tipi bileşiklerle reaksiyonundan 113 tipi 3-alkil(aril)-4-[4-(4-nitrobenzoksi)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on bileşikleri elde edilmiştir elde edilmiştir.

Bir başka çalışmada ise bir alifatik açil klorür olan kloroasetil klorürün trietilamin varlığında buz banyosunda 4-metoksi-3-hidroksibenzaldehid ile muamelesinden 114 tipi benzaldehid türevi elde edilmiş olup bu bileşiğin 3 tipi bileşiklerle reaksiyonundan 115 tipi 3-alkil(aril)-4-(3-kloroasetoksi-4-metoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri elde edilmiştir (Denklem 72) [95].

Başka bir çalışmada ise bir aromatik dikarboksilli asid klorürü olan tereftaloil klorürün 3-metoksi-2-hidroksibenzaldehid ile buz banyosunda trietilamin varlığında muamelesinden elde edilen 116 tipi benzaldehid türevinin 3 tipi bileşikler ile reaksiyonundan 117 tipi di-[2-(3-alkil/aril-4,5-dihidro-1H-1,2,4-triazol-5-on-4-il)-azometin-6-metoksifenil] tereftalat bileşikleri elde edilmiştir. Benzer bir diğer çalışmada ise fenilasetil klorürün buz banyosunda trietilamin varlığında 3-metoksi-2-hidroksibenzaldehid ile muamelesinden elde edilen 118 tipi benzaldehid türevinin 3 tipi bileşikler ile reaksiyonundan 119 tipi 3-alkil(aril)-4-[3-metoksi-2-(fenilasetoksi)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on bileşikleri elde edilmiştir (Denklem 73 ve 74) [96, 97].

Fenilasetil klorürün buz banyosunda trietilamin varlığında 3-etoksi-4hidroksibenzaldehid ile reaksiyonundan elde edilen 120 tipi benzaldehid türevinin 3 tipi bileşiklerle reaksiyonundan 121 tipi 3-alkil(aril)-4-(3-etoksi-4fenilasetoksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on bileşiklerinin de elde edildiği rapor edilmiştir (Denklem 75) [98].

Bir diğer çalışmada ise 3,5-dinitrobenzoil klorürün trietilamin varlığında buz banyosunda 3-hidroksibenzaldehid ile muamelesinden elde edilen 122 tipi benzaldehid türevinin 3 tipi bileşiklerle reaksiyonundan 123 tipi 3-alkil(aril)-4-[3-(3,5-dinitrobenzoksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri elde edilmiştir (Denklem 76) [99].

Son yıllarda yapılan bir başka çalışmada ise 3-metoksi-4-hidroksibenzaldehidin trietilaminli ortamda fenilasetil klorür ve 4-metilbenzoil klorür ile reaksiyonundan elde edilen ve birer benzaldehid türevleri olan 3-metoksi-4-fenilasetoksibenzaldehid (124) ve 3-metoksi-4-(4-metilbenzoksi)-benzaldehid (127)'3 tipi bileşikler ile in reaksiyonlarından sırasıyla 3-alkil(aril)-4-(3-metoksi-4-fenilasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (125)ve 3-alkil(aril)-4-[3-metoksi-4-(4metilbenzoksi)-benziliden-amino]-4,5-dihidro-1H-1,2,4-triazol-5-on (128) bileşikleri sentezlenmiştir. Bu çalışmada 125 ve 128 bileşiklerinin N-asetil türevleri olan 126 ve 129 bileşikleri de elde edilmiştir (Denklem 77-78) [100].

NH₂

R_

∬ N-

3

3-Hidroksi-4-metoksibenzaldehidin sinnamoil klorür ile trietilamin varlığında muamelesinden elde edilen 4-metoksi-3-sinnamoiloksibenzaldehidin (130) 3 tipi bileşiklerle reaksiyonundan 131 tipi 3-alkil(aril)-4-(4-metoksi-3sinnamoiloksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on bileşikleri sentezlenmiş ve asetik anhidrid ile N-asetillendirme reaksiyonları incelenerek karşın olan 132 tipi bileşikler elde edilmiştir (Denklem 79) [101, 102]. Bir başka çalışmada ise, 3 tipi bileşiklerin salisilaldehidin p-nitrobenzoil klorür ile reaksiyonundan elde edilen ve benzaldehid türevi olan 133 bileşiği ile muamelesinden karşın olan 3alkil(aril)-4-[2-(4-nitrobenzoksi)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on (134) bileşikleri ve bu bileşiklerin asetillendirilmesinden de 135 tipi bileşikler sentezlenmiştir (Denklem 80) [103]. Her iki çalışmada sentezlenen 131, 132, 134 ve 135 tipi bileşiklerin 3 farklı yöntemle in-vitro antioksidan özelliklerinin incelenmesi yanında 4,5-dihidro-1*H*-1,2,4-triazol-5-on halkasında zayıf asidik N-H içeren 131 ve 134 tipi bileşiklerin 4 farklı susuz çözücüde TBAH ile potansiyometrik titrasyonları yapılarak yarı-nötralizasyon metodu ile yarı-nötralizasyon potansiyelleri ve karşın olan asitlik sabitleri tayin edilmiştir.

Yapılan bir diğer çalışmada ise, 3-etoksi-4-hidroksibenzaldehidin benzer şartlarda 3nitrobenzoil klorür ve 3,5-dinitrobenzoil klorür ile muamelesinden birer benzaldehid 3-etoksi-4-(3-nitrobenzoksi)benzaldehid (136)3-etoksi-4-(3,5türevi olan ve dinitrobenzoksi)benzaldehid (139) bileşiklerinin 3 tipi bileşiklerle reaksiyonundan karşın olan 3-alkil(aril)-4-[3-etoksi-4-(3-nitrobenzoksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on (137)3-alkil(aril)-4-[3-etoksi-4-(3,5-dinitrobenzoksi)ve benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on (140) bileşikleri elde edilmiş; 137 ve 140 bileşiklerinin asetik anhidrid ile muamelesinden N-asetil türevleri olan 138 ve 141 bileşikleri sentezlenmiştir (Denklem 81-84) [104]. Çalışmada ayrıca, 137 ve 140 tipi bileşiklerin farklı susuz çözücülerde TBAH ile potansiyometrik olarak titrasyonları yapılarak yarı nötralizasyon metodu ile asitlik sabitleri tayin edilmiştir. Buna ilaveten,

sentezlenen 137, 138, 140 ve 141 tipi bileşiklerin 3 farklı yöntemle *in-vitro* antioksidan özellikleri incelenmiştir.

3-Hidroksi-4-metoksibenzaldehidin trietilaminli ortamda soğukta *o*-metilbenzoil klorür ile reaksiyonundan sentezlenen ve bir benzaldehid türevi olan 3-(2-metilbenzoksi)-4metoksibenzaldehid (142) ile 3 tipi bileşiklerin ayrı ayrı muamelesinden 143 tipi 3alkil(aril)-4-[3-(2-metilbenzoksi)-4-metoksibenzilidenamino]-4,5-dihidro-1*H*-1,2,4triazol-5-on bileşikleri ve bunların da asetik anhidrid ile reaksiyonundan karşın olan *N*asetil türevleri (144) sentezlenmiştir (Denklem 85) [105]. Bu çalışmada sentezlenen 143 ve 144 tipi bileşiklerin 3 farklı yöntemle *in-vitro* antioksidan özelliklerinin incelenmesi yanında 4,5-dihidro-1*H*-1,2,4-triazol-5-on halkasında zayıf asidik N-H içeren 143 tipi bileşiklerin 4 farklı susuz çözücüde TBAH ile potansiyometrik titrasyonları yapılarak yarı-nötralizasyon metodu ile yarı-nötralizasyon potansiyelleri ve karşın olan asitlik sabitleri tayin edilmiştir.

144 3-Etoksisalisilaldehid'in (3-etoksi-2-hidroksibenzaldehid) iki farklı aroil klorür ile trietilaminli ortamda etil asetat içinde soğukta muamelesinden sentezlenen benzaldehid türevlerinin 3 tipi bileşiklerle reaksiyonları incelenmiştir. Bu amaçla öncelikle tereftaloil klorür ve izoftaloil klorür kullanılmış ve dialdehid karakterindeki di-(2-etoksi-5formilfenil) tereftalat (145) ve di-(2-etoksi-5-formilfenil) izoftalat (148) bileşikleri elde edilmiştir. Bu bileşiklerin 3 tipi bileşiklerle reaksiyonundan di-[2-etoksi-5-(3-alkil/aril-4,5-dihidro-1*H*-1,2,4-triazol-5-on-4-il)-azometinfenil] tereftalat (146) ve di-[2-etoksi-5-(1-asetil-3-alkil/aril-4,5-dihidro-1*H*-1,2,4-triazol-5-on-4-il)-azometinfenil] tereftalat (149) bileşikleri elde edilmiştir. Çalışmada 146 ve 149 tipi bileşiklerin *N*-asetil türevleri olan 147 ve 150 tipi bileşiklerin de sentezlenmiştir (Denklem 86-87) [106]. Bu çalışmada sentezlenen 146, 147, 149 ve 150 tipi bileşiklerin 3 farklı yöntemle *in-vitro* antioksidan özelliklerinin incelenmesi yanında 4,5-dihidro-1*H*-1,2,4-triazol-5-on halkasında zayıf asidik N-H içeren 146 ve 149 tipi bileşiklerin 4 farklı susuz çözücüde TBAH ile potansiyometrik titrasyonları yapılarak yarı-nötralizasyon metodu ile yarınötralizasyon potansiyelleri ve karşın olan asitlik sabitleri tayin edilmiştir.

Aynı çalışmada, *p*-metoksibenzoil klorür, benzoil klorür ve fenilasetil klorür de kullanılmış olup, bu bileşiklerin 3-etoksisalisilaldehid (3-etoksi-2-hidroksibenzaldehid)

reaksiyonundan sırasıyla birer benzaldehid türevleri olan 3-etoksi-2-(pile metoksibenzoksi)-benzaldehid (151), 2-benzoksi-3-etoksibenzaldehid (154) ve 2fenilasetoksi-3-etoksibenzaldehid (156) bileşikleri elde edilmiştir. Bu üç benzaldehid türevinin 3 tipi bileşiklerle reaksiyonundan sırasıyla imin tipi 3-alkil(aril)-4-[3-etoksi-2-(p-metoksibenzoksi)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on (152),3alkil(aril)-4-(2-benzoksi-3-etoksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (155) ve 3-alkil(aril)-4-(2-fenilasetoksi-3-etoksibenzilidenamino)-4,5-dihidro-1H-1,2,4triazol-5-on (157) bileşikleri sentezlenmiştir (Denklem 88, 90, 91) [106]. Bu çalışmada 152 ve 157 bileşiklerinin N-asetil türevleri olan 1-asetil-3-alkil(aril)-4-[3-etoksi-2-(pmetoksibenzoksi)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on (124) ve 1-asetil-3-alkil(aril)-4-(2-fenilasetoksi-3-etoksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5on (158) bileşikleri de elde edilmiştir (Denklem 89 ve 92). Bu çalışmada sentezlenen 152, 153, 155, 157 ve 158 tipi bileşiklerin 3 farklı yöntemle in-vitro antioksidan özelliklerinin incelenmesi yanında 4,5-dihidro-1*H*-1,2,4-triazol-5-on halkasında zayıf asidik N-H içeren 152, 155 ve 157 tipi bileşiklerin 4 farklı susuz çözücüde TBAH ile potansiyometrik titrasyonları yapılarak yarı-nötralizasyon metodu ile yarı-nötralizasyon potansiyelleri ve karşın olan asitlik sabitleri tayin edilmiştir [106].

-0

4-Hidroksibenzaldehidin *p*-metilbenzoil klorür ile trietilaminli ortamda muamelesinden elde edilen 4-(4-metilbenzoksi)benzaldehid (159) ile 3 tipi bileşiklerin reaksiyonundan 160 tipi 3-alkil(aril)-4-[4-(4-metilbenzoksi)benzilidenamino]-4,5-dihidro-1*H*-1,2,4triazol-5-on bileşikleri ve bunların da asetik anhidrid ile reaksiyonundan *N*-asetil türevleri olan 161 tipi bileşiklerin de sentezlendiği bildirilmiştir (Denklem 93-95) [107]. Sentezlenen 160 ve 161 bileşiklerinin 3 farklı yöntemle *in-vitro* antioksidan özelliklerinin incelenmesi yanında 160 bileşiklerinin asitlik sabitleri de tayin edilmiştir.

2-Hidroksi-3-metoksibenzaldehidin aynı şartlarda *p*-nitrobenzoil klorür ile reaksiyonundan elde edilen 162 tipi benzaldehid türevi olan 2-(4-nitrobenzoksi)-3metoksibenzaldehid ile 3 tipi bileşiğin muamelesinden 3-alkil(aril)-4-[2-(4nitrobenzoksi)-3-metoksibenzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on (163) bileşiklerinin oluştuğu bir çalışmada ortaya konmuştur (Denklem 96) [108].

3 tipi bileşiklerin 3-hidroksi-4-metoksibenzaldehidin trietilaminli ortamda soğukta 3,5dinitrobenzoil klorür ile reaksiyonundan sentezlenen ve bir benzaldehid türevi olan 3-(3,5-dinitrobenzoksi)-4-metoksibenzaldehid (164) ile muamelesinden 165 tipi 3alkil(aril)-4-[3-(3,5-dinitrobenzoksi)-4-metoksibenzilidenamino]-4,5-dihidro-1*H*-1,2,4triazol-5-on bileşikleri elde edilmiştir. 165 tipi bileşiklerinin asetik anhidrid ile muamelesinden elde edilen *N*-asetil türevleri 1-asetil-3-alkil(aril)-4-[3-(3,5dinitrobenzoksi)-4-metoksibenzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on (166) bileşikleri sentezlenmiştir. 165 tipi bileşiklerin 4 farklı susuz çözücüde TBAH ile potansiyometrik titrasyonları yapılarak yarı-nötralizasyon metodu ile yarı-nötralizasyon potansiyelleri ve karşın olan asitlik sabitleri tayin edilmiştir. 165 ve 166 tipi bileşiklerin 3 farklı yöntemle *in-vitro* antioksidan özellikleri de incelenmiştir. (Denklem 97 ve Denklem 98) [109, 110].

165

3 Tipi bileşiklerin 3-hidroksi-4-metoksibenzaldehidin trietilamin varlığında 3nitrobenzoil klorür ile muamelesinden elde edilen 3-(3-nitrobenzoksi)-4metoksibenzaldehid (167) ile reaksiyonları incelenerek 168 tipi 3-alkil(aril)-4-[3-(3nitrobenzoksi)-4-metoksibenzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on bileşikleri elde edilmiştir. Sentezlenen bileşiklerin 3 farklı yöntemle *in-vitro* antioksidan özelliklerinin incelenmiştir ve 4,5-dihidro-1H-1,2,4-triazol-5-on halkasında zayıf asidik N-H protonu içerdiğinden dolayı 4 farklı susuz çözücüde TBAH ile potansiyometrik titrasyonları yapılarak yarı-nötralizasyon metodu ile yarı-nötralizasyon potansiyelleri ve karşın olan asitlik sabitleri tayin edilmiştir (Denklem 99 ve 100) [111].

Yakın zamanda yapılan bir çalışmada *o*-toluoil klorürün trietilaminli ortamda etil asetat içinde soğukta 3-hidroksibenzaldehid ile muamelesinden yeni bir aldehid olan 169 tipi 3-(2-metilbenzoksi)-benzaldehid bileşiği ile 3 tipi bileşiklerin reaksiyonundan imin tipi heterosiklik bileşikler olan 170 tipi 3-alkil(aril)-4-[3-(2-metilbenzoksi)benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri sentezlenmiştir. 170 tipi bileşiklerin susuz ortam titrasyonları yapılarak asitlik özellikleri ve antioksidan özellikleri incelenmiştir (Denklem 101) [112].

o-Toluoil klorürün trietilaminli ortamda etil asetat içinde soğukta 3-etoksi-4hidroksibenzaldehid ile muamelesinden 171 tipi 3-etoksi-4-(2-metilbenzoksi)benzaldehid bileşiği elde edilmiştir. Bu bileşiğin 3 tipi bileşiklerle reaksiyonundan 172 tipi 3-alkil(aril)-4-[3-etoksi-4-(2-metilbenzoksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on imin tipi heterosiklik bileşikler sentezlenmiştir. Sentezlenen bileşiklerin antioksidan özellikleri incelenmiş ve asitlik incelemeleri yapılmıştır (Denklem 102 ve 103) [113].

3 Tipi bileşiklerin, 2-hidroksi-3-metoksibenzaldehidin benzer koşullarda 4-metoksi benzoil klorür ile muamelesinden elde edilen 173 tipi benzaldehid türevi ile de

reaksiyonları incelenmiş ve karşın olan 174 tipi heterosiklik schiff bazları elde edilmiştir (Denklem 104) [114].

Son yıllarda yapılan ilginç bir çalışmada 3-metoksi-4-hidroksibenzaldehidin trietilaminli ortamda 1,3,5-benzentrikarbonil klorür (175) ile reaksiyonuda incelenmiş ve sentezlenen 1,3,5-tri-(2-metoksi-4-formilfenoksikarbonil)-benzen (176) bileşiğinin 3 tipi bileşiklerle ayrı ayrı muamelesinden 177 tipi 1,3,5-tri- $\{2-\text{metoksi-4-}[(3-\text{alkil/aril-4,5-dihidro-1}H-1,2,4-\text{triazol-5-on-4-il})-\text{azometin}]-fenoksikarbonil}-benzen bileşikleri elde edilmiştir (Denklem 105 ve 106) [100, 115, 116]. Çalışmada 177 tipi bileşiklerin$ *N*-asetil türevleri de (178) sentezlenmiştir (Denklem 106) [100].

Yapılan diğer bazı çalışmalarda, hidroksibenzaldehidlerin bazı açil halojenürlerle veya asetikanhidridle reaksiyonundan benzaldehid türevleri elde edilmiş ve bu benzaldehid türevlerinin 3 tipi bileşiklerle reaksiyonları incelenmiştir. Nitekim, 2-hidroksi-3-metoksibenzaldehidin asetik anhidrid ile muamelesinden sentezlenen ve bir benzaldehid türevi olan 2-asetoksi-3-metoksibenzaldehidin (179) 3 tipi bileşiklerle reaksiyonundan 3-alkil(aril)-4-(2-asetoksi-3-metoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (180) bileşikleri elde edilmiştir (Denklem 107) [117]. Benzer bir çalışmada ise, 3-

hidroksibenzaldehidin asetik anhidrid ile muamelesinden oluşturulan 3asetoksibenzaldehidin (181) 3 tipi bileşiklerle reaksiyonundan 182 tipi 3-alkil(aril)-4-(3asetoksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on bileşikleri elde edilmiştir (Denklem 108 ve 109) [90].

3-Metoksi-4-hidroksibenzaldehid bileşiğinin asetik anhidrid ile muamelesi sonucu elde edilen 3-metoksi-4-asetoksibenzaldehid (183) bileşiğinin 3 tipi 3-alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on bilekleri ile reaksiyonundan 3-alkil(aril)-4-(3metoksi-4-asetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (184) bileşikleri sentezlenmiştir (Denklem 110 ve 111) [118].

1.4.2.3.3. 3 Tipi Bileşiklerin Aromatik Sülfonil Klorürlerle Muamele Edilmiş Benzaldehid Türevleri ile Reaksiyonları

3 Tipi bileşiklerin salisilaldehidin trietilamin varlığında soğukta *p*-toluensulfonil klorür ile reaksiyonundan elde edilen 185 tipi benzaldehid türevi olan 2-(*p*-toluensulfoniloksi)benzaldehid ile muamelesinden 3-alkil(aril)-4-[2-(*p*-toluensulfoniloksi)benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on (134) bileşiklerinin oluştuğu ortaya konmuştur (Denklem 112) [119]. Bu çalışmalarda ayrıca, 186 tipi bileşiklerin asitlik ve antioksidan özellikleri incelenmiştir. Bunlara ilaveten, 186 tipi bileşiklerin yakın bir zamanda *in-vitro* biyolojik aktivite incelemeleri yapılmıştır [80].

3-Hidroksi-4-metoksibenzaldehidin (izovanilin) iki farklı substituesulfonil klorür ile reaksiyonundan elde edilen benzaldehid türevlerinin 3 tipi bileşiklerle reaksiyonları da incelenmiştir. Bu amaçla, ilk olarak 3-hidroksi-4-metoksibenzaldehidin trietilaminli ortamda benzensulfonil klorür ile reaksiyonundan sentezlenen 3-benzensulfoniloksi-4-metoksibenzaldehidin (187) 3 tipi bileşiklerle ayrı ayrı muamelesinden 188 tipi 3-alkil(aril)-4-(3-benzensulfoniloksi-4-metoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-

triazol-5-on bileşikleri ve bunların asetik anhidrid ile muamelesinden *N*-asetil türevleri olan 189 tipi bileşikler sentezlenmiştir (Denklem 113-115) [80]. Çalışmada ikinci olarak, 3-hidroksi-4-metoksibenzaldehidin trietilaminli ortamda *p*-toluensulfonil klorür ile reaksiyonundan sentezlenen 4-metoksi-3-(*p*-toluensulfoniloksi)-benzaldehidin (190) 3 tipi bileşiklerle ayrı ayrı muamelesinden 191 tipi 3-alkil(aril)-4-[4-metoksi-3-(*p*toluensulfoniloksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri ve bunların da asetik anhidrid ile muamelesinden karşın olan 192 bileşikleri sentezlenmiştir (Denklem 116-118) [80]. Bu çalışmada sentezlenen 188, 189, 191 ve 192 tipi bileşiklerin 3 farklı yöntemle *in-vitro* antioksidan özelliklerinin incelenmesi yanında bu bileşiklerin *in-vitro* biyolojik aktiviteleri de incelenmiştir. Ayrıca, 4,5dihidro-1*H*-1,2,4-triazol-5-on halkasında zayıf asidik N-H içeren 188 ve 191 tipi bileşiklerin 4 farklı susuz çözücüde TBAH ile potansiyometrik titrasyonları yapılarak yarı-nötralizasyon metodu ile yarı-nötralizasyon potansiyelleri ve karşın olan asitlik sabitleri tayin edilmiştir.

ŃΗ

p-Toluensulfonil klorürün trietilamin varlığında 3-metoksi-4-hidroksibenzaldehid ile buz banyosunda muamelesinden elde edilen 193 tipi benzaldehid türevinin 3 tipi bileşiklerle reaksiyonu da son yıllarda incelenmiş ve 194 tipi 3-alkil(aril)-4-[3-metoksi-4-(p-toluensulfoniloksibenzilidenamino)]-4,5-dihidro-1H-1,2,4-triazol-5-on bileşikleri elde edilmiştir (Denklem 119) [120, 121].

Son zamanlarda yapılan bir çalışmada, 2-hidroksi-3-metoksibenzaldehidin trietilamin varlığında soğukta benzensulfonil klorür ile reaksiyonundan sentezlenen ve bir benzaldehid türevi olan 2-benzensulfoniloksi-3-metoksibenzaldehid (195) ile 3 tipi bileşiklerin ayrı ayrı muamelesinden 196 tipi 3-alkil(aril)-4-(2-benzensulfoniloksi-3-metoksi)-benzilidenamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri sentezlenmiştir 196 tipi bileşiklerin potansiyometrik titrasyonları tetrabutilamonyum hidroksitle yapılmış ve yarı-nötralizasyon metodu ile yarı nötralizasyon potansiyelleri tayin edilmiş, titrasyon grafikleri çizilmiş ve her bir çözücüdeki asitlik sabitleri belirlenerek asitlik üzerine çözücü ve yapı etkileri incelenmiş ve *in-vitro* antioksidan özellikleri incelenmiştir. (Denklem 120 ve 121) [122].

1.5. Susuz Ortam Titrasyonları ve pKa Tayini

1.5.1. Susuz Ortam Çözücüleri

Saf su dışındaki diğer çözücüler içinde gerçekleşen reaksiyonlara susuz ortam reaksiyonları denir. Ancak, tam doğru olmamakla birlikte bazı çözücülerin suyla karıştırılmasıyla oluşan çözücülerdeki reaksiyonlara da susuz ortam reaksiyonları denilmektedir.

Bir reaksiyonun gerçekleşmesinde çözücü çok önemli bir rol oynar. Bir çözücü, sadece reaksiyona girecek maddeleri çözen, onların en küçük taneciklerinin çarpışmalarını sağlayan inert bir ortam değil, aksine çarpışan taneciklerin reaksiyona girmelerini kolaylaştıran bir vasıtadır. Her maddeyi çözen ve adına üniversal çözücü denen bir çözücü yıllardır aranmıştır. Bir çözücünün üniversal olmasında onun hidrojen bağı akseptörlüğünün veya donörlüğünün, ortaklanmamış elektron çifti donörlüğünün veya akseptörlüğünün, dipol momentinin, dielektrik sabitinin, kaynama ve donma noktasının, atmosfere karşı inertliğinin vs. büyük önemi vardır. Bu kriterler dikkate alındığında su üniversal olmayan en uygun çözücüdür. Ancak, ne yazık ki su üniversal değil, sadece eşsiz bir çözücüdür. Suyun çözücü olarak en olumsuz yanı organik maddelerin çoğunu çözememesidir. Bu nedenle, suyun çözemediği maddelerin çözülmesi ve bazı özelliklerinin araştırılmasıyla susuz çözücülere ihtiyaç duyulmuş olup, genellikle bunlar organik çözücülerdir [123, 124].

Çok sayıda susuz çözücü olduğundan, suda çözünmeyen on binlerce organik madde bu çözücülerde çözülebilmiş ve titrasyonları mümkün olmuştur. Böylece organik maddeler hakkında çok yararlı bilgiler elde edilmiştir. Bu bilgiler arasında analitik bilgiler önemli bir yer tutar. Çünkü susuz ortamda gerçekleştirilen pek çok reaksiyon, sulu ortama benzer özellikler gösterir. Bu özelliklerin başlıcaları:

- Reaksiyonun hızlı olması,
- Reaksiyonun kantitatif denecek oranda sağa cereyan etmesi,
- Reaksiyonun tekrarlanabilmesi,
- Reaksiyonun stokiyometrik olması,

- Reaksiyonun dönüm noktasının tespit edilebilmesidir.

Susuz ortamlardaki kantitatif tayinlerde, sulu ortamlardaki gibi söz konusu maddelerin asitliğinden, bazlığından, yükseltgenmesinden, indirgenmesinden, çökmesinden vs. yararlanılabilir.

İlk susuz ortam reaksiyonları 1910 yılında Folin ve Wenworth adlı bilim adamları tarafından gerçekleştirilmiştir. Bu bilim adamları, bazı yağ asitlerini kloroform karbontetraklorür çözücülerinde çözerek fenolftalein indikatörlüğünde sodyum etoksit ile titre etmişlerdir. Teorik ve pratik yönü büyük olan bu çalışma o sıralarda fazla ilgi görmemiş ve bu çalışmayı sadece birkaç çalışma takip etmiştir. 1948 yılında Hall ve arkadaşları tarafından zayıf asit olan ve suda titre edilemeyen fenol etilen diamin içinde sodyum etoksit ile titre edilmiştir. Bu çalışmayı Fritz grubunun bu konudaki yoğun çalışmaları takip etmiş ve bilim dünyasının ilgisi bu alana kaymıştır. Bunun sonucunda da kısa bir sürede yüzlerce çalışma yapılmıştır.

Konu 1950'li yıllarda daha da önem kazanmıştır. Bunun nedenleri:

- Kimyasal bağlar üzerindeki çalışmaların artması,
- İnstrumental metotların gelişmesi ve çoğalması,
- Atom pilleri ve roket yapımında çok saf metallere ihtiyaç duyulmasıdır.

Özellikle çok saf moleküllere ihtiyaç duyulması, bilim adamlarını susuz ortam çalışmalarına yöneltmiştir. Metal katyonları önce koordinasyon bileşikleri halinde çöktürülmüş, susuz çözücülerde kristallendirilerek saflaştırılmış, sonuçta atom pilleri ve roket yapımında kullanılacak saflıkta metaller elde edilmiştir. Böylece, koordinasyon kimyası ve susuz ortam reaksiyonları birlikte gelişmeye ve önem kazanmaya başlamıştır. Uzay çalışmaları nedeniyle ABD ve eski Sovyetler Birliği bu konuya fazlasıyla önem vermişlerdir [123].
1.5.2. Potansiyometri

Potansiyometrik titrasyonlar genellikle çok zayıf asit ve bazları, bazen de asit ve baz karışımlarını titre etmek için kullanılır [125]. Potansiyometrik analiz yöntemleri, elektrokimyasal hücrelerde fark edilebilir bir akım geçmezken yapılan potansiyel ölçümlerine dayanan yöntemlerdir. 20. yüzyılın başından beri potansiyometrik teknikler, titrimetrik analiz yöntemlerinde dönüm noktasının belirlenmesinde kullanılır. Titrimetrik analizler yüksek hassasiyetle yapılabilmesi, kolay ve kullanışlı olması nedeniyle hala geniş ölçüde kullanılmaktadır [123]. Potansiyometrik metodlarla yapılan tayinler genellikle iki gruba ayrılır: Direkt potansiyometrik titrasyonlar ve potansiyometrik titrasyonlar.

1.5.3. Direkt Potansiyometrik Titrasyonlar

Direkt potansiyometrik tayinler hızla gerçekleştirilen basit bir analiz şeklidir. Herhangi bir ön ayırmayı gerektirmez. Direkt potansiyometrik metotla, dengede bulunan çözeltilerde iyon aktiviteleri tayin edilir. Bu amaçla tayini yapılacak çözeltiye bir referans elektrot, bir de indikatör elektrot daldırılır. Bu elektrotlar arasındaki E_{g} , gözetlenen potansiyel farkı,

$$E_{g} = E_{r} - E_{i} + E_{s}$$
 (122) olur.

 E_s , sınır potansiyeli olup, referans elektrot çözeltisiyle, tayini yapılacak çözeltinin sınır yüzeyleri arasında meydana gelir. E_r , referans elektrodun potansiyelidir ve sabittir. E_i ise indikatör elektrodun potansiyelidir [125].

1.5.4. Potansiyometrik Titrasyonlar

Potansiyometrik titrasyon, ayıracın her ilavesinden sonra potansiyel ölçülmesi üzerine kurulmuştur. Mekanik bir karıştırıcıyla iyice karıştırılan çözeltiye prensip olarak ayıraç başlangıçta fazla fazla ilave edilir ve dönüm noktasına doğru yavaş yavaş azaltılır.

Dönüm noktasına yaklaşıldığı, her ilaveden sonra ölçülen potansiyelin değişme miktarından anlaşılır. Dönüm noktasını kesin olarak bulabilmek için titrasyona dönüm noktasının ötesinde de daha bir süre devam edilir. Titrasyon hangi reaksiyona dayanırsa dayansın, ayıraç özellikle dönüm noktası yakınında azar azar ilave edilir ve ölçümler birkaç defa tekrar edilir. Çözelti veya karışım her ölçüden sonra iyice karıştırılır. Ayıracın sarf edilen mL sayısına karşılık kalomel elektroda karşı bulunan potansiyel farkları milimetrik bir kâğıda çizilirse S eğrisi elde edilir [125].

1.5.5. Yarı Nötralizasyon Metodu ile pKaTayini

Titrasyonlar sonucunda titrant hacmine karşılık olan pH ve mV değerleri okunarak bu değerlere göre titrasyon grafiği çizilmiştir. Çizilen grafiklerden dönüm noktaları bulunmuştur. Dönüm noktaları ilâve edilen titrant hacmine (mL) karşılık mV değerindeki en büyük sıçramanın olduğu noktalardır. Bu değerlerden de yarı nötralizasyon noktaları belirlenmiştir. Zayıf asit ve bazların yarı nötralizasyon noktalarındaki p K_a değerleri pH değerlerine eşit olduğu için pH değerleri p K_a değerleri olarak alınmıştır. Zayıf asit ve onun tuzu bir tampon çözelti oluşturur. Tampon çözeltide:

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$
 (123)

eşitliğinden yarı nötralizasyonda, $[A^-] = [HA]$ olduğundan pH = p K_a elde edilir (Denklem 123) [126, 127].

1.5.6. 4,5-Dihidro-1*H*-1,2,4-triazol-5-on Türevleri ile İlgili Susuz Ortam Titrasyonları

4,5-Dihidro-1*H*-1,2,4-triazol-5-on türevlerinin susuz ortamda potansiyometrik olarak TBAH ile titrasyonu ve pK_a değerlerinin tayini ile ilgili ilk çalışmalar 1991 yılında

yapılmış olup iki farklı çalışmada çözücü olarak izopropil alkol kullanılmıştır [128, 129].

1994 yılında yapılan bir diğer çalışmada ise iki adet 1,2,4-triazol-5-on türevinin beş farklı susuz çözücüde TBAH ile potansiyometrik olarak titrasyonları incelendiği bildirilmiştir [130].

Özellikle 2002 yılından sonra yapılan birçok çalışmada yeni sentezlenen 4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin farklı susuz çözücülerde hazırlanan çözeltilerinin TBAH ile potansiyometrik olarak titrasyonları yapılmış, titrasyon grafikleri çizilmiş ve yarı nötralizasyon metodu ile pK_a değerleri tayin edilerek asitlik üzerine çözücü ve molekül yapısının etkisi (4,5-dihidro-1*H*-1,2,4-triazol-5-on halkasındaki C-1'e bağlı substituentlerin asitliğe etkisi) incelenmiştir.

1.6. Moleküler Titreşim Spektroskopisi

1.6.1. Molekül Titreşimleri

İki veya daha fazla atomun bir araya gelerek kararlı bir düzen kurmaları ile molekül veya molekül sistemleri oluşur. Atomların molekül içindeki düzen ve kararlılığını incelemek için en iyi yöntem moleküler spektroskopidir. Molekül titreşim spektroskopisi, moleküllerin yapısının tayininde kullanılır. Elektromagnetik dalgayla maddenin etkileşmesini inceler [131]. Bu incelemenin sonucunda moleküllerin geometrik ve elektronik yapıları ile aralarındaki etkileşmeler hakkında birçok bilgiyi elde edebiliriz. Numune molekülleri elektromagnetik dalga ile etkileştiğinde başlangıçtaki enerjisi, elektromagnetik dalgayı soğurması veya salmasıyla değişir. Soğrulan veya salınan elektromagnetik dalganın frekansı, band şiddeti incelenerek molekülün yapısıyla ilgili; simetri, bağ uzunluğu, bağlar arasındaki açılar, bağ kuvvetleri, kararlılığı gibi önemli bilgilerle birlikte molekülün fiziksel ve kimyasal yapısı hakkında bilgi edilebilmektedir [132]. Madde ile elektromagnetik dalganın etkileşmesi, molekülün enerji seviyeleri arasında geçişe neden olur. Bu geçişler, gelen

elektromagnetik dalganın enerjisine bağlı olarak değişik spektrum bölgelerine ayrılır (Tablo 1.2.) [133]. Madde üzerine gönderilen elektromagnetik dalga soğrulduğunda madde ile arasında enerji alışverişi olur.

$$E = E'' - E' = hv$$
 (124)

Burada, ΔE : iki seviye arasındaki enerji farkı, h: Planck sabiti, v: elektromagnetik dalga ışığının frekansıdır. Molekülün titreşim enerji seviyeleri arasındaki geçişler için E'': üst titreşim seviyesinin enerjisi, E': alt titreşim seviyesinin enerjisi olmak üzere, E'seviyesinden E'' seviyesine geçilmesi, molekülün ışığı soğurması; E'' enerji seviyesinden E' enerji seviyesine geçmesi de ışığın yayınımı olarak tanımlanır [133].

Bölge	Dalga Boyu	Spektroskopi Türü	Frekans (Hz)	
Radyo Dalgaları	300-3 m	NMR ve NQR	10^{6} - 10^{8}	
Mikrodalga	30-0,3 m	ESR ve Moleküler Dönme	10 ¹⁰ -10 ¹²	
Kızılötesi (İnfrared)	300-1 μm	Moleküler Dönme ve Titreşim	10^{12} -3x10 ¹⁴	
Görünür ve Mor Ötesi (UV)	1 μm-300 A°	Elektronik Geçişler(Dış Eektronlar)	3x10 ¹⁴ -3x10 ¹⁶	
X-Işınları	100-0,3 A°	Elektronik Geçişler(İç Eektronlar)	$3x10^{16}-10^{19}$	
γ-Işınları	0,3-0,03 A ^o	Nükleer Geçişler	10 ¹⁹ -10 ²²	

Tablo 1.4. Elektromagnetik dalga spektrum bölgeleri

Elektromagnetik dalga spektrum bölgeleri şöyle tanımlanır [134]:

Radyo Dalgaları Bölgesi: Elektron veya çekirdeğin spininin işaret değiştirmesinden kaynaklanan enerji değişimleri bu bölgede incelenir. Radyo dalgaları bölgesi, Nükleer Magnetik Rezonans (NMR) ve Nükleer Kuadrupol Rezonans (NQR) spektrumlarını içerir.

Mikrodalga Bölgesi: Molekülün dönme enerji seviyelerinin değişimi incelenir. Dönme enerjileri arasındaki geçişlerin spektrumu, mikrodalga bölgesinde meydana gelir. Ayrıca çiftlenmemiş elektrona sahip sistemin magnetik özelliklerindeki değişimlerin de incelendiği bölgedir.

Kızılötesi (İnfrared) Bölgesi: Bir molekülün titreşim ve dönme enerji seviyeleri arasındaki geçişler incelenir. Molekülün titreşim frekansları bu bölgede, kızılötesi soğurma ve Raman saçılma spektroskopisi yöntemleri ile incelenir.

Görünür ve Mor Ötesi Bölgesi: Atom veya molekülde bulunan dış kabuktaki elektronların yer değiştirmesi incelenir. Bu bölgedeki spektroskopi türü (elektron spektroskopisi), molekül veya atomun en dış orbitalindeki elektronların çeşitli enerji seviyeleri arasındaki geçişlerine dayanır.

X-Işınları Bölgesi: Bir atom veya molekülde iç kabuktaki elektronların geçişleri bu bölgede olur. X-ışınları bölgesindeki spektroskopi türü X-ışınları spektroskopisi adını alır. X-ışınları atom veya moleküllerde, iç orbitaldeki elektronların enerji seviyelerinin değişmesini sağlar [133].

γ-Işınları Bölgesi: Çekirdeğin içindeki enerji seviyeleri arasındaki geçişler incelenir. Bu geçişlerin enerjisi oldukça yüksektir. Çekirdek uyarılmış seviyede çok kısa bir süre kaldıktan sonra temel hale geri döner.

Serbest bir molekülün toplam enerjisi; titreşim, dönme, elektronik, öteleme ve nükleer dönme enerjileri olmak üzere beş kısımdan oluşur. Öteleme enerjisi sürekli bir enerji olması nedeniyle dikkate alınmaz. Nükleer dönme enerjisi ise diğer enerjilere kıyasla çok küçük olduğundan ihmal edilebilir [135]. Elektronik, titreşim ve dönme enerjilerinin birbirinden çok farklı olduğunu Born-Oppenheimer yaklaşımı vermektedir. Bu enerjilerin aralarındaki etkileşmeler ihmal edilebilir olduğundan elektronik enerji geçişleri, titreşim ve dönme geçişlerinden ayrı incelenmelidir [136]. O halde bir molekülün toplam enerjisi;

$$\Delta E_{toplam} = E_{elektronik} + E_{titresim} + E_{dönme}$$
(125)

şeklinde yazılabilir. Burada $E_{elektronik}$, moleküldeki elektronların hareketinden kaynaklanan elektronik enerji, $E_{titreşim}$, moleküldeki atomların titreşiminden kaynaklanan titreşim enerjisi, E_{donme} , molekülün dönmesinden kaynaklanan dönü enerjisidir. Bir moleküldeki toplam enerji değişimi;

$$\Delta E_{toplam} = \Delta E_{elektronik} + \Delta E_{titresim} + \Delta E_{donme}$$
(126)

şeklindedir. Bu enerji değişimlerinin birbirlerine göre oranları ise

$$E_{\text{elektronik}} = 10^3 E_{\text{titresim}} = 10^6 E_{\text{dönme}}$$
(127)

olarak ifade edilir [137].

1.6.2. Infrared Spektroskopisi

Kızılötesi (IR) spektroskopisi, moleküler titreşimleri analiz eden bir tekniktir. Bu spektroskopi tekniğinde, örnek, kızılötesi bölgede tüm frekansları içeren elektromagnetik dalga ile ışınlanarak geçen veya soğurulan ışık incelenir [138]. Kızılötesi spektroskopisinin temeli ışığın soğurulmasına dayanır. Soğurulan elektromagnetik dalganın elektrik alan bileşeni ile molekülün elektriksel dipol momentinin etkileşmesi incelenir. Kızılötesi spektroskopisi ile molekül simetrisi, elektron dağılımı, bağ kuvveti gibi özellikler hakkında bilgi edinilebilir.

Kızılötesi spektroskopisi dalga boyu, dalga sayısı ve frekansa göre yakın, orta ve uzak kızılötesi bölge olmak üzere üç kısımda incelenir.

Tablo 1.5. IR bölgeleri [139].

Bölge	Dalga Boyu Aralığı (µm)	Dalga Sayısı Aralığı (cm ⁻¹)	Frekans Aralığı (Hz)
Yakın IR	0.78-2.5	12800-4000	$3.8 \times 10^{14} - 1.2 \times 10^{14}$
Orta IR	2.5-50	4000-200	1.2×10^{14} - 6.0×10^{12}
Uzak IR	50-1000	200-10	$6.0 \times 10^{12} - 3.0 \times 10^{11}$

Yakın IR Bölgesi: Molekül titreşimlerinin üst ton ve harmonikleri gözlenir.

Orta IR Bölgesi: Moleküler temel titreşimler genellikle bu bölgeye düştüğü için spektroskopide en çok kullanılan bölgedir. Bu sebeple IR bölge denilince genellikle bu bölge anlaşılır.

Uzak IR Bölgesi: Molekül saf dönü hareketi ve ağır atom içeren molekülün titreşimlerinin incelendiği bölgedir. Mikrodalga bölgesine yakın yerlerde moleküllerin dönme hareketleri de incelenebilir.

İnfrared spektroskopisi, maddenin infrared ışınlarının soğurulması üzerine kurulmuş bir spektroskopi dalıdır. Bir sistem yayınlayabildiği frekansa eşdeğerde, başka bir frekansı soğurabilir. N₂, O₂, Cl₂ gibi homonükleer ve CCl₄ gibi simetrik moleküller hariç tüm moleküller infrared ışınını soğurur ve infrared spektrumu verirler. Homonükleer ve CCl₄ gibi simetrik moleküller infrared ışınını soğuramazlar, çünkü bunlarda dipol moment değişimi olmamaktadır. Infrared ışınlarını soğuran maddelere infrared aktif maddeler denir.

Molekül v frekanslı bir ışın soğurduğunda, molekülün μ elektriksel dipol momentinin bileşiklerinden en az biri bu frekansta titreşecektir. Bu titreşim spektrumda infrared bölgede gözlenebilir. Titreşimle ilgili olan bu soğurma klasik teori ve kuantum mekaniksel teori olmak üzere iki kısımda incelenebilir [140-142].

1.6.3. İki Atomlu Moleküllerin Titreşim Enerji Seviyeleri

İki atomlu moleküllerin titreşim enerji seviyeleri hesaplanırken atomların birbirlerine bir yayla bağlı olduğu varsayılır (Şekil 1.1.).

Şekil 1.1. İki atomlu bir molekülün şekli.

1.6.3.1. Harmonik Titreşici Modeli

Harmonik titreşici modeline göre bu yay esnek olarak hareket eder. Atomlar denge noktasından (R_c) uzaklaştığında iki atomlu molekülün moleküler potansiyel enerjisi artar [140, 143].

Şekil 1.2. Harmonik titreşen iki atomlu bir molekülün enerji seviyeleri.

1.6.3.2. Anharmonik Titreşici Modeli

Moleküler potansiyel enerji Taylor serisine göre açıldığında kuadratik terimleri ihmal edilir, bu yalnızca bir yaklaşımdır. Aslında gerçek molekülde ihmal edilen terimler özellikle denge noktasından olan büyük uzaklıklarda önemlidir ve bu sebepten dolayı harmonik yaklaşıklık gerçek molekülün enerji seviyelerini bize vermez. Anharmonik yaklaşıklık bize molekülün gerçek titreşim enerji düzeylerini verir. Bu yaklaşımda enerji seviyeleri aralıkları birbirine eşit değildir ve yüksek uyarılma seviyelerinde bu aralıklar gitgide azalır. Böylece molekül atomlarına ayrılabilir. Anharmonik yaklaşıklıkta Morse potansiyel enerjisi kullanılır.

Şekil 1.3. Anharmonik titreşen iki atomlu molekülün enerji seviyeleri.

1.6.4. Çok Atomlu Moleküllerin Yapabileceği Temel Titreşim Hareketleri

Bir moleküldeki bütün atomların aynı faz ve frekansta basit harmonik hareket yaptıkları titreşimlere temel titreşimler (normal modlar) denir [134].

N atomlu bir molekülün her atomunun uzaysal konumu x, y, z yer değiştirme koordinatları ile belirlenir. Çok atomlu moleküllerin titreşim hareketi karışık olmakla beraber hesaplanabilmektedir. Bir molekülün temel titreşim kipleri (normal mod), bütün

atomların aynı fazda ve aynı frekansta yaptıkları titreşim hareketleridir; fakat genlikler (kütlelerle ters orantılı) farklıdır.

N atomlu bir molekülün 3N tane serbestlik derecesi vardır. Lineer olmayan bir molekül için 3 eksen boyunca öteleme ve 3 eksen etrafında dönme titreşimleri serbestlik derecesinden çıkarılırsa, 3N-6 tane (molekül lineer ise 3N-5) temel titreşim elde edilir. Kapalı halka oluşturmayan N atomlu bir molekülün N-1 bağ gerilmesi, 2N-5 açı bükülme (lineer ise 2N-4) titreşimi vardır. Çok atomlu bir molekülün herhangi bir gözlenen bandına karşılık gelen titreşim hareketi 3N-6 temel titreşimden bir veya birkaçının üst üste binmesi şeklinde açıklanabilir. Çok atomlu moleküllerin titreşimini dört grupta inceleyebiliriz [140, 142].

1.6.4.1. Gerilme Titreşimleri: v

Bağın kendi ekseni doğrultusunda, periyodik uzama ve kısalma hareketine neden olan titreşimlerdir. Yer değiştirme vektörleri bağ uzunluğundaki değişmeyi verir. Bu tür titreşim hareketleri bağ açısını değiştirmez. Bağ simgesi "v" ile gösterilir. Simetrik ve asimetrik (anti-simetrik) gerilme olarak ikiye ayrılır (Şekil 1.4-12) [140, 144].

1.6.4.1.1. Simetrik Gerilme: v_s

Molekülün tüm bağlarının aynı anda uzaması ve kısalması hareketidir ve " v_s " ile gösterilir.

Şekil 1.4. Simetrik gerilme

1.6.4.1.2. Asimetrik (Anti-simetrik) Gerilme: v_a

Moleküldeki bağların biri veya birkaçı uzarken diğeri kısalır ve " v_a " ile gösterilir. Asimetrik gerilmenin enerjisi, genel olarak simetrik gerilme titreşim enerjisinden daha yüksek enerjilidir.

Şekil 1.5. Asimetrik (anti-simetrik) gerilme

1.6.4.2. Açı Bükülme Titreşimleri: δ

İki bağ arasındaki açının periyodik olarak değişerek deformasyona uğraması hareketidir. Yer değiştirme vektörleri bağ doğrultusuna diktir ve " δ " ile gösterilir. Molekül grupları için açı bükülmesinin özel şekilleri aşağıdaki gibidir.

Şekil 1.6. Açı bükülme titreşimleri

1.6.4.2.1. Makaslama : δ_s

Yer değiştirme vektörlerinin bağa dik doğrultuda ve aynı noktaya doğru olduğu titreşim hareketidir ve " δ_s " ile gösterilir.

Şekil 1.7. Makaslama

1.6.4.2.2. Sallanma: *ρ*_r

Bir grup atomla (atomlar arasındaki açı yer değiştirmeden) bir bağ yada iki bağ arasındaki açının bükülmesidir ve " ρ_r " ile gösterilir.

Şekil 1.8. Sallanma titreşimi

1.6.4.2.3. Dalgalanma: ω

Bir bağ ile iki bağ tarafından tanımlanan bir düzlem arasındaki açının değişimine neden olan titreşim hareketidir. Molekülün tüm atomları denge konumunda düzlemsel iken, bir atomu bu düzleme dik hareket etmesidir ve " ω " ile gösterilir.

Şekil 1.9. Dalgalanma titreşimi

1.6.4.2.4. Kıvırma: *t*

Bir bağ ile bağ düzlemi arasındaki açı değişimidir ve "t" ile gösterilir. Lineer ve düzlemsel olmayan moleküllerde bağların atomlar tarafından bükülmesine neden olur. Yer değiştirme vektörleri bağ doğrultusuna dik ve zıt yöndedir.

Şekil 1.10. Kıvırma titreşimi

1.6.4.2.5. Burulma: *τ*

İki düzlem arasındaki açının bir bağ veya açıyı bozarak (deforme ederek) periyodik olarak değişim hareketidir ve " τ " ile gösterilir.

Şekil 1.11. Burulma titreşimi

1.6.4.3. Düzlem Dışı Açı Bükülmesi: y

Bir düzleme (en yüksek simetriye sahip düzlem) dik doğrultudaki açı değişimidir. Atomların hareketi ile bir düzlem yok edilmiş olur. Bu titreşim hareketi " γ " ile gösterilir. Genelde kapalı bir halka oluşturan moleküllerde görülür ve hareketin biçiminden dolayı "şemsiye" titreşimi olarak bilinir. Şekildeki (+) ve (-), sırasıyla kağıt düzlemin üstüne ve altına olan hareketleri göstermektedir.

Şekil 1.12. Düzlem dışı açı bükülmesi

Boltzmann olasılık dağılımına göre moleküllerin çoğu oda sıcaklığında taban titreşim enerji düzeyinde, çok az bir kısmı da uyarılmış titreşim enerji düzeyinde bulunabilir. Bu nedenle bir molekülün infrared spektrumunda şiddetli bandları birinci titreşim düzeylerinden kaynaklanan ($v=0\rightarrow1$) geçişlerinde gözlenir. Bu geçişlerde gözlenen titreşim frekanslarına temel titreşim frekansı denir. Temel titreşim bandları yanında, üst ton, birleşim ve fark bandları da bulunur. Temel titreşim frekansının iki, üç veya daha fazla katlarında (2v, 3v) üst ton geçişleri gözlenir. İki veya daha fazla temel titreşim frekansının toplamı ve farkı olarak ortaya çıkan frekansılarda da birleşim ve fark bandları oluşur. Bu bandların şiddeti, temel titreşim bandlarına göre zayıftır. Bu titreşimlerin gözlenebilir olması daha önce ifade ettiğimiz infrared gözlenebilirlik şartı ile mümkündür.

Rezonans şartı ise, aynı simetri türünde olan bir titreşim ile bir üst ton ve birleşim frekansı birbirine çok yakın olduğu durumlardaki etkileşmeler için olasıdır. Bu durumda spektrumda şiddetli bir temel titreşim bandı ile zayıf bir üst ton veya birleşim bandı gözleneceği yerde, temel titreşim bandı civarında gerçek değerlerden sapmış farklı iki şiddetli band gözlenir. Bu olay Fermi rezonansı olarak adlandırılır. Moleküllerin spektrumu çekildiğinde titreşim, frekans ve kip tayininde en çok yararlanılan grup frekanslarıdır. İzotropik yer değiştirmeden de yararlanılmaktadır.

1.7. Moleküler Simetri

Bir molekülü oluşturan atomların uzaydaki geometrik dağılımına moleküler simetri denir. Bir molekülün nokta, eksen ve düzlem gibi geometrik simetri elemanları bir grup oluşturur. Yansıma, dönü ve terslenme gibi simetri işlemleri simetri elemanlarına uygulandığında molekül ilk durumu ile özdeş olur, molekülün simetrisi değişmez. Bir moleküle simetri işlemleri uygulamasının sonunda molekülün en az bir noktası (simetri elemanlarının kesiştiği nokta veya kütle merkezi) yer değiştirmemiş olarak kaldığından, molekülün simetri elemanlarının oluşturduğu bu gruplara nokta grubu denir. Molekülün simetri özelliklerinden yararlanılarak karakter tabloları hazırlanmıştır. Moleküle ait temel titreşim modların hangi simetri türlerine ait olduğu ve bu titreşimlerin IR aktif olup olmadığı; grup teori yöntemiyle karakter tabloları kullanılarak bulunabilir. Bununla birlikte simetrisi bilinen bir molekülün *3N-6* tane titreşiminden hangilerinin IR ve hangilerinin raman aktif olduğu belirlenebilir [134].

1.8. Grup Frekansları

Moleküldeki belli gruplar belli frekanslarla titreşim yaparlar. Buna grup frekansları denir. Molekülün titreşim frekans ve kiplerinin belirlenmesinde en çok grup frekansları kullanılır. Molekülün bütün atomlarının aynı faz ve frekansta hareket etmesi anlamına gelen temel titreşimlerin genlikleri, titreşim frekanslarının kütle ile 10 ters orantılı olmalarından dolayı birbirinden farklıdır. Harmonik titreşicinin frekansı;

$$v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$
(128)

ile ifade edilir. Burada; k: kuvvet sabiti, µ: indirgenmiş kütledir. Kuvvet sabitinin büyük olması atomların denge pozisyonunda hareketinin zorlaşmasına sebep olacağından ikili ve üçlü bağların (C=C, C=O, C=N, C C, C N) gerilme frekansları tekli bağlardan daha yüksektir. Bazı gruplar molekülün diğer kısımlarından bağımsız olup, yaklaşık aynı frekansta soğurma gösterirler. Deneysel verilere göre; -NH₂-C=N-, C-N, C=O gibi bazı grupların, IR ve Raman spektrumlarında, molekül grubu çevreye bağlı olmaksızın yaklaşık aynı frekansta soğurma gösterebilirler. Bu gruplar molekülün geri kalan kısmından bağımsız olarak hareket edebilirler [145]. Moleküllerin titreşimsel spektrumlarını yorumlayabilmek için grup frekanslarının önemli bir yeri vardır. Infrared ve Raman spektrumları incelenirken aynı grubun bulunduğu değişik moleküllerde grubun karakteristik infrared bandının, moleküle ait geri kalan kısmı ne olursa olsun, yaklaşık olarak aynı frekansta soğurma verdikleri gözlenmiştir. Moleküllerin temel titreşimleri aynı, genlikleri farklı ise; bu fark bazı grupların molekülün geri kalan kısmından bağımsız olarak hareket etmesine sebep olur [140, 146]. Bu gruplar molekülün diğer atomuna kıyasla hafif atomlar (–CH₃, C=O) veya ağır atomlar (=C–Br, =C–F) içeren gruplardır.

Bağ kuvveti sabitlerinin molekülden moleküle değişmemesi sonucu grup frekansı sabit kalmaktadır. Karışık bir molekülün karakteristik grup frekanslarından oluşan infrared spektrumunun incelenmesi, infrared spektroskopisinin yapı analizinde önemli bir yöntem olduğunu ortaya koyar.

Gerilme ve bükülme hareket şekillerinde, bükülme kuvvet sabiti gerilme kuvvet sabitinden daha küçüktür. Bu nedenle gerilme titreşiminin neden olduğu frekans bölgesi bükülme titreşiminin neden olduğundan daha yüksek bölgededir. Aynı atoma bağlı bağların aynı anda gerildiği ve büküldüğü titreşim kipleri de mümkündür. Aynı grubun bulunduğu çeşitli moleküllerde çevre düzeni farklı olduğundan dolayı grup frekanslarında da küçük değişmeler söz konusudur. Tablo 1.6'da bazı grupların grup frekansları verilmiştir.

Grup	Gösterim	Titreşim Dalga Sayısı Aralığı
		(cm ⁻¹)
–O–H gerilme	<i>v</i> (OH)	3640-3600
–N–H gerilme	v (NH)	3500-3380
-C-H gerilme (aromatik halkalarda)	v(CH)	3100-3000
–C–H gerilme	<i>v</i> (CH)	3000-2900
-CH ₃ gerilme	$v(CH_3)$	2962±10 ve 2872±5
-CH ₂ gerilme	$v(CH_2)$	2926±10 ve 2853±10
–C≡C gerilme	v(CC)	2260-2100
–C≡N gerilme	v(CN)	2200-2000
-C=O gerilme	v(CO)	1800-1600

Tablo 1.6. Bazı grup frekansları [140, 147].

Tablo 1.6'nın devamı		
–NH ₂ bükülme	$\delta(\mathrm{NH}_2)$	1600-1540
–CH ₂ bükülme	$\delta(\mathrm{CH}_2)$	1465-1450
–CH3 bükülme	$\delta(\mathrm{CH}_3)$	1450-1375
C–CH ₃ bükülme	ρ_r (CH ₃)	1150-850
-S=O gerilme	v(SO)	1080-1000
-C=S gerilme	v(CS)	1200-1050
–C–H düzlem dışı açı bükülme	γ (CH)	650-800

Moleküllerin normal titreşimlerini iskelet ve karakteristik grup titreşimleri olarak iki gruba ayırabiliriz. İskelet titreşimleri genellikle 1400-700 cm⁻¹ dalga sayısı aralığında gözlenir. Grup titreşim frekansları iskelet titreşim frekanslarından daha yüksek veya daha düşük frekanslardır.

1.8.1. Grup Frekanslarına Etkiyen Faktörler

Grup frekanslarına etkiyen faktörler molekül içi ve molekül dışı olmak üzere iki kısımda incelenir [140, 148].

1.8.1.1. Molekül İçi Etkiler

Molekül içi etkiler titreşimsel çiftlenim (coupling), komşu bağ etkisi ve elektronik etki olmak üzere üç kısma ayrılır.

Titreşimsel çiftlenim (coupling) bir molekülde frekansı birbirine yakın iki titreşim veya bir atoma bağlı iki titreşim arasında görülür. Buna örnek olarak iki atomlu C=O molekülü verilebilir. Bu molekülde gerilme titreşimi teorik olarak 1871 cm⁻¹'de gözlenmesi gerekirken (Bu hesap CO₂'den elde edilen kuvvet sabiti kullanılarak yapılmıştır), CO₂ molekülünün infrared spektrumuna baktığımızda 1871 cm⁻¹'de bir pik gözlenmeyip 1340 cm⁻¹ ve 2350 cm⁻¹ olmak üzere iki gerilme titreşim gözlenmektedir. Bunun nedeni, CO₂ molekülündeki titreşimlerin birbirlerini etkilemeleri ve iki C=O bağı olmasıdır. Bu olaya titreşimsel çiftlenim denir.

Komşu bağ etkide önemli olan bağlar arasındaki kuvvet sabitidir. Bir bağa komşu olan bağın kuvvet sabitinin küçülmesi, o bağın kuvvet sabitinin de küçülmesine sebep olduğundan, bağın titreşim frekansı da düşer. Buna komşu bağ etkisi denir. Bunun tersi de doğrudur. Örneğin, nitril (R–C≡N, R: alkali radikal) bileşiklerinde R yerine halojenler geldiği zaman titreşim frekansının düştüğü görülmektedir.

Elektronik etki bağın elektron yoğunluğunda değişiklik meydana getiren etkilerdir. Bunlar indüktif ve rezonans etkisi olmak üzere iki kısımda incelenebilir. İndüktif etki bağın elektron yoğunluğunu artıran pozitif ve azaltan negatif etkiden oluşur. Bu etki, diğer gruplardaki elektron dağılımının elektrostatik etkisinin, bir gruba olan etkisi olarak tanımlanabilir. Rezonans etkisi ise, sadece elektronların yerlerinin birbirinden farklılık gösterdiği yapılar olarak tanımlanabilir. Bu yapılarda yalnız elektronlar hareket etmekte, çekirdek sabit kalmaktadır [140, 149].

1.8.1.2. Molekül Dışı Etkiler

Bir maddenin spektrumu en iyi gaz fazında iken alınır. Bunun nedeni madde gaz halinde iken moleküller arası uzaklık fazla olduğundan, molekül normal titreşimini yapar. Ancak madde sıvı halde iken molekül yakınında bulunan başka moleküllerden etkilenebilir. Bu etkilenme dipolar (çift kutupsal) etkilenme ve hidrojen bağı ile etkilenme olmak üzere iki çeşittir.

Polar bir molekülün pozitif ucuyla diğer bir molekülün negatif ucunun birbirlerini çekmeleri dipolar etkileşmedir. Örneğin, aseton molekülünün ((CH₃)₂–C=O) gaz halindeki titreşim frekansı 1738 cm⁻¹, sıvı haldeki aynı titreşimin frekansı 1715 cm⁻¹'de gözlenmiştir [140, 150]. Bunun nedeni sıvı haldeyken dipol olan iki C=O grubunun birbirlerini çekmeleridir. Böylece bağların polarlığı daha da artar ve karbonil grubunun bağ derecesi düşer. Bu halde meydana gelen kaymalar 25 cm⁻¹ civarındadır.

Polar çözücülerde, çözünen ve çözücü arasında etkileşim olmaktadır. Dolayısıyla değişik çözücülerde değişik dalga boylarında bantlar oluşabilmektedir [140, 150].

Hidrojen bağından ileri gelen kaymalar, dipolar etkilerden ileri gelen kaymalardan daha büyüktür.

Hidrojen bağı ile etkilenme bir molekülün A–H molekülü ile diğer molekülün donöru olan ve üzerinde ortaklanmamış elektron çifti bulunan B atomu arasındaki etkileşme olarak tanımlanır. (A–H…B). A; hidrojenden daha elektronegatif bir atom ihtiva eder. Burada H…B bağı, normal kovalent bağa göre çok zayıf olduğundan infrared bölgede 300 cm⁻¹'in altında gözlenir. Buna örnek olarak karboksilli asitler verilebilir. Bunlar polar olmayan çözücüler ile derişik çözeltilerinde dimer moleküllerden oluşurlar. Bu dimerleşmenin nedeni iki molekül arasında iki hidrojen bağının meydana gelmesidir. Bu tür hidrojen bağları O–H bağının titreşim dalga sayısını, 3560-3500 cm⁻¹'en 3000-2500 cm⁻¹'e yaklaşık 1000 cm⁻¹ kadar düşürür. Hidrojen bağı sonucu aynı zamanda O–H bağının soğurma bandında da genişleme gözlenebilir.

Hidrojen atomu etrafındaki kuvvet alanı A–H…B bağının oluşumu sonucunda değiştiğinden, A–H titreşim bantları da değişebilir. Hidrojen bağı A–H bağını da zayıflattığı için gerilme titreşim frekansı da düşer. Buna karşılık H…B bağı nedeniyle bükülme frekansı yükselir. Örneğin, primeramidlerde (R–NH₂C=O) C=O gerilme titreşimleri ve NH bükülme titreşimlerinin frekansları hidrojen bağına imkan sağlayan bir ortamda çalışıldığı zaman yaklaşık 40 cm⁻¹ düşer. C=O gerilme titreşimleri çok seyreltik çözeltilerde 1690 cm⁻¹'de, parafin KBr içinde ise 1650 cm⁻¹'de gözlenmektedir, çünkü bu ortamda amid molekülleri arasında hidrojen bağı meydana gelir. Buna karşılık seyreltik çözeltilerde 1620-1590 cm⁻¹'de gözlenen N–H gerilme titreşimleri 1650-1620 cm⁻¹'e yükselebilmektedir [140, 148].

1.9. Nükleer Magnetik Rezonans (NMR) Spektroskopisi

1.9.1. Spektroskopi Olarak Magnetik Rezonans

Magnetik Rezonans, bir spektroskopi aracı olarak kullanıldığı zaman, rezonans çizgi genişliği, rezonans çizgi şiddeti, rezonans çizgi yarılmaları, rezonans çizgi kayması, rezonans çizgi şekli, durulma zamanları gibi fiziksel nicelikleri ölçer.

Spinlerin hem kendi aralarında ve hem de çevresi ile etkileşmeleri göz önünde tutularak ölçülen fiziksel nicelikler üstüne yapılan kuramsal yorumlar ve açıklamalar, spektroskopi ile uğraşanları, incelenen maddenin yapısını çözümlemeye götürür. Bu nedenle, magnetik rezonans, değişik spektroskopik incelemelerin yapılabileceği yararlı bir araç olarak kabul edilmiş ve gelişimini bu amaç doğrultusunda sürdürmüştür [141, 151, 152].

Magnetik Rezonansın ilk uygulamaları, çekirdek fiziği, katıhal fiziği ve kimyasal fizik alanlarında olmuştur. Daha sonraları, düşük sıcaklıklar fiziği, biyofizik ve jeofizikte önemli uygulama alanları bulmuştur.

Nükleer Magnetik Rezonans Bloch tarafından kuramsal olarak ileri sürüldüğü 1946 yılını izleyen yıllarda deneysel olarak uygulamaya geçmiş ve organik bileşiklerin yapısı ve dinamik hareketleri üstüne çok başarılı sonuçlar vermiştir. NMR spektroskopisinin, çok karmaşık bileşiklerin yapısal özelliklerini incelemede gösterdiği bu başarısı onu, daha sonraki yıllarda, biyolojik sistemlerin incelenmesine yöneltmiştir.

Böylece başlangıçta, fizik ve kimya gibi temel bilimlerde spektroskopik inceleme kolaylığı sağlayan, magnetik rezonans, bugün tıpta klinik amaçlı kullanılan bir araç olmuştur. Gerçekte, magnetik rezonansın öteki spektroskopik yöntemlerde bulunmayan durulma süreçleri gibi bir kavrama sahip olması ona normal doku ile hastalıklı dokuyu birbirinden ayırt etme özelliği kazandırmaktadır. 1960'lı yıllarda bu amaçla yapılan durulma zamanları ölçümleri, normal doku ile kanserli dokuları birbirinden ayırt etmede son derece başarılı sonuçlar vermiştir. Magnetik rezonansın bir tomografi aracı olarak

düşünülmesi 1970'li yıllara rastlamaktadır. Spin sistemi üzerine dış magnetik alana ek olarak uygulanan alan gradyanlarına göre spin yoğunluğunun uzaysal dağılımını resimleme işlemi NMR Görüntüleme yada NMR Tomografi Tekniği olarak bilinmektedir. Bugün bu teknik, kliniklerde tanı ve tedavi amacıyla uygulanan bir tekniktir.

1.9.2. Nükleer Magnetik Rezonansın Temel İlkeleri [140, 153]

Magnetik rezonans, magnetik momentleri ve açısal momentumu olan magnetik sistemlerde bulunan bir olaydır. Magnetik rezonansın fizikle kaynaşmasının nedenlerinden biri atomik düzeyde süreçler üzerine bilgi verme yeteneğidir. Çoğu çekirdek spine (I) sahiptir ve bunun sonucu olarak da açısal momentuma (\vec{I}) ve magnetik momente ($\vec{\mu}$) sahip olur.

Magnetik çekirdek denilen ve belirtilen özellikleri olan (kendi etrafında dönen (spin hareketi yapan), elektrik yüküne sahip, kendi magnetik alanını yaratan (proton, ¹H vb.)) bu çekirdeklere dışarıdan bir $\overrightarrow{B_0}$ magnetik alanı uygulanarak spektroskopik çalışmalar yapılabilir. Magnetik bir çekirdek bir dış magnetik alana konulduğunda çubuk mıknatıs gibi davranarak alanla aynı yönlü ya da zıt yönlü olmak üzere iki yönelime sahip olur. Şekil 1.13.'de belirtilen bu iki farklı duruma ait yönelimler farklı enerjidedir.

Şekil 1.13.a) Magnetik alan olmayan durumdaki numunenin rastgele spin yönelimleri,b) Net çekirdek spinine sahip numunenin dış magnetik alandaki davranışı.

Çekirdek spin kuantum sayısı *I* ile gösterilmek üzere çekirdeğin açısal momentumunun maksimum gözlenebilir bileşeni

$$I_z = m_I(\max)\hbar \tag{129}$$

şeklinde yazılabilir. Çekirdekler, spinlerine göre sınıflandırılabilir. Çekirdek spinleri *I*=0 olan, dolayısıyla açısal momentuma sahip olmayan çekirdeklerde asla magnetik rezonans gözlenmez. ¹²C, ¹⁶O, ³²S izotopları buna örnek olarak verilebilir.

I = 1/2 spinine sahip olan çekirdekler için ¹H, ³H, ¹³C, ¹⁵N, ¹⁹F, ³¹P; I = 1 spinine sahip olan çekirdekler için ²H, ¹⁴N; I > 1 olan çekirdeklere de ¹⁰B, ¹¹B, ¹⁷O, ²³Na, ²⁷Al, ³⁵C örnek olarak verilebilir.

Magnetik moment açısal momentumla doğrusal orantılıdır ve aralarında

$$\vec{\mu} = \gamma \vec{I} \tag{130}$$

şeklinde bir ilişki vardır. Burada γ jiromagnetik orandır ve farklı çekirdekler için farklı değerlere sahiptir (H için 26753 s⁻¹.gauss⁻¹). Spinleri sıfırdan farklı olan çekirdekler magnetik alana yerleştirildiğinde farklı enerji seviyelerine sahip olacak şekilde yönelirler. Örneğin proton, magnetik alan içinde iki izinli yönelime sahiptir. Bu enerji seviyeleri arasındaki ΔE enerji farkı, bu farkı oluşturan v frekanslı ışınımın $\Delta E = hv$ eşitliğini sağlamasıyla oluşur. Rezonans şartı olarak da bilinen bu eşitlik magnetik rezonans spektroskopisinin temelini oluşturur.

Rezonans kavramının kökeni klasik mekanikten gelmektedir. Basit bir örnekle şöyle açıklanabilir. İki basit sarkaç düşey olarak yan yana asıldıkları zaman birisinin hareketi öteki tarafından tekrarlanır. Yani, sarkaçlardan birisi durgun ve öteki hareketli ise hareketli tarafından durgun olana enerji aktarılır ve durgun olan da harekete koyulur. Sonra enerjisinin bir kesimini yeniden ilk sarkaca aktarır. Böylece, sönüm etkenlerinin olmadığı bir ortamda iki sarkaç arasında enerji akışı sürer gider. Sarkaçların doğal

frekansları birbirine eşit oldukları zaman, aralarındaki enerji alış-verişi en etkin duruma ulaşır. İşte sarkaçların doğal frekanslarının birbirine eşit olduğu bu duruma rezonans denir.

Kuantum mekaniğinde rezonansa örnek olarak, ışık ile maddenin etkileşmesi verilebilir. Bu durumda atom ile elektromagnetik alan birbiri ile kenetlenen iki periyodik sistem olarak düşünülür. Atomların doğal frekansları geçiş frekansları olarak bilinir ve gelen ışığın frekansı da ayarlanabilir. O halde elektromagnetik alanın frekansı, atomun doğal frekansına ayarlandığı zaman, bu kuantum mekaniksel sistem klasik mekanikteki sarkaç sistemi gibi davranır. Yani, ya elektromagnetik alandan atoma enerji aktarılır ya da başlangıçta uyarılmış durumda olan atomdan elektromagnetik alana enerji aktarılır. Bunlardan ilkine enerji soğurulması ve ikincisine de enerji salınması denir (Şekil 1.14.).

Şekil 1.14. Bir atomun enerji kuantumu salması ya da soğurması.

Nükleer magnetik rezonans spektroskopisinde *v* rezonans frekansının değeri rf (radyo frekans) bölgesine karşılık gelmektedir.

Magnetik moment $\vec{\mu}$ 'nin uygulanan \vec{B}_0 magnetik alanla etkileşmesi yaygın olarak Zeeman etkileşmesi olarak adlandırılmaktadır. Kuantum teorisine göre bu Zeeman etkileşmesi hamiltoniyen (\hat{H}) işlemcisi olarak karşımıza çıkmaktadır ve

$$\hat{H} = -\vec{\mu}.\vec{B}_0 \tag{131}$$

şeklindedir. Denklemde μ yerine eşiti (10) ve (11) denklemleri kullanılarak yazılırsa,

$$\hat{H} = -\gamma \cdot \vec{B}_0 \cdot \vec{I} \tag{132}$$

elde edilir. Burada , kuantummekaniksel bir işlemci olarak yorumlanmaktadır. \vec{I}' nın büyüklüğü $\left| \vec{I} \right| = \sqrt{I(I+1)}\hbar$ şeklindedir.

Uygulanan \overrightarrow{B}_0 magnetik alanı z eksenindedir ve çekirdek spininin z bileşeni $I_z = m_I \hbar$ şeklinde olduğundan

$$E = -\gamma \hbar B_0 m_I \tag{133}$$

Hamiltoniyene karşılık gelen enerjili özdeğeri bulunmuş olur. Bu bağıntı rezonans şartı olan (E=hv) ile birleştirilirse $\Delta E = hv = \hbar \gamma B$ 'dan

$$v = \frac{\gamma B_0}{2\pi} \tag{134}$$

elde edilir. Magnetik spin kuantum sayısı olan m_1 , -I, -I+1,,I-1, I değerlerini alıp toplam 2I+1 tanedir. O halde spin kuantum sayısı I olan çekirdek, magnetik alan içinde 2I+1 tane enerji seviyesine ayrılır. Örneğin Şekil 1.15'deki çekirdek spin kuantum sayısı 1/2 olan proton için iki enerji seviyesi vardır.

Şekil 1.15. Hidrojen çekirdeğinin (protonun) magnetik alandaki enerji seviyeleri.

NMR'da etkileşme hamiltoniyeni, sıvı ve katı maddeler için birçok terimden oluşur. Hareketli sıvılarda bu hamiltoniyen iki terimden ibarettir.

1.10. 4,5-Dihidro-1*H*-1,2,4-triazol-5-on Türevleri Üzerine Yapılan Teorik Çalışmalar

4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin ¹H- ve ¹³C-NMR spektrumlarının deneysel ve teorik olarak incelendiği iki farklı çalışma son yıllarda yapılmıştır. Çalışmalardan birinde 3 bileşiklerinin 5-metil-2-furfural ile muamelesinden 197 tipi 3-alkil(aril)-4-(5-metil-2-furilmetilenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri [154, 155], diğerinde ise 5-bromosalisilaldehid ile reaksiyonundan 198 tipi 3-alkil(aril)-4-(5-bromo-2-hidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri elde edilmiş ve ¹H- ve ¹³C-NMR spektral değerleri deneysel ve teorik olarak incelenmiştir (Denklem 135 ve 136) [156, 157].

3-Alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (3) bileşiklerinin 4etilbenzaldehid ile 3-alkil(aril)-4-(4-etilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (199) bileşiklerinin oluştuğu bir çalışma ile ortaya konmuştur (Denklem 137) [158, 159]. Bu çalışmada 199 tipi bileşiklerin asitlik ve antioksidan özellikleri incelenmiştir. Ayrıca, ¹H-NMR ve ¹³C-NMR ile infrared spektral verileri deneysel ve teorik olarak, bağ açıları, bağ uzunlukları, mulliken yükleri, HOMO-LUMO enerjileri, dipol momentleri ve enerjileri ise teorik olarak bilgisayar ortamında iki farklı set kullanılarak incelenmiştir [160, 161].

Yapılan farklı bir çalışmada ise, trietilamin varlığında 4-hidroksibenzaldehidin fenilasetil klorür ile muamelesinden elde edilen 200 tipi benzaldehid türevinin 3 tipi bileşiklerle reaksiyonundan elde edilen 201 tipi bileşikler ve bu bileşiklerin asetik anhidrid ile muamelesinden 202 tipi *N*-asetil türevleri sentezlenmiş, yapıları aydınlatılmış ve *in-vitro* antioksidan özellikleri incelenmiştir. 201 ve 202 tipi bileşiklerin *in-vitro* antioksidan özellikleri yanında 201 tipi bileşiklerin susuz ortam titrasyonları yapılarak asitlik sabitleri tayin edilmiştir (Denklem 138) [162-165]. Ayrıca, 201 tipi bileşiklerin ¹H-NMR ve ¹³C-NMR ile infrared spektral verileri deneysel ve teorik olarak, bağ açıları, bağ uzunlukları, mulliken yükleri, HOMO-LUMO enerjileri, dipol momentleri ve enerjileri ise teorik olarak bilgisayar ortamında iki farklı set kullanılarak son yıllarda incelenmiştir [160, 166].

Benzensülfonil klorürün trietilamin varlığında 4-hidroksibenzaldehid ile buz banyosunda muamelesinden elde edilen 203 tipi benzaldehid türevinin 3 tipi bileşiklerle reaksiyonu da son yıllarda incelenmis ve 204 tipi 3-alkil(aril)-4-(4benzensulfoniloksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on bileşikleri elde edilmiştir (Denklem 139) [167-169]. Çalışmada ayrıca 204 tipi bileşiklerin farklı susuz çözücülerde potansiyometrik yöntemle p K_a değerlerinin tayini yanında 3 farklı yöntemle in-vitro antioksidan özellikleri ve DNA ile eşleşme özellikleri incelenmiş olup, bu bileşiklerin yakın bir zamanda in-vitro biyolojik aktivite incelemeleri de yapılmıştır [80, 167-169]. Bunlardan başka, 204 tipi bileşiklerin ¹H-NMR ve ¹³C-NMR ile infrared spektral verileri deneysel ve teorik olarak, bağ açıları, bağ uzunlukları, mulliken yükleri, HOMO-LUMO enerjileri, dipol momentleri ve enerjileri ise teorik olarak bilgisayar ortamında iki farklı set kullanılarak incelenmiştir [160].

Son yıllarda yapılan bir çalışmada 3 tipi bileşiklerin metil-4-formil benzoat ile reaksiyonundan sentezlenen 205 tipi bileşikleri ve bunların asetik anhidrid ile muamelesinden *N*-asetil türevleri olan 206 tipi bileşikler sentezlenmiştir. Yapıları aydınlatılmış ve ¹H-NMR, ¹³C-NMR spektral verileri B3LYP metoduna göre çalışılmıştır (Denklem 140) [170-172].

207 Tipi 4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin elde edildiği bir çalışmada ayrıca, bu bileşiklerin asitlik ve *in-vitro* antioksidan özelliklerinin incelenmesi yanında

deneysel ve teorik ¹H-NMR ve ¹³C-NMR çalışmaları da gerçekleştirilmiştir (Denklem 141) [173].

Bazı 4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin teorik hesaplanan IR frekans değerlerinin deneysel verilerle uyumu üzerinde az sayıda çalışma yapılmıştır. Bu çalışmalardan birinde 94 tipi bileşiklerin diğerlerinde ise 72a, 91a ve 91d bileşiklerinin DFT ve HF yöntemleri ile titreşim frekansları hesaplanmış ve elde edilen veriler deneysel verilerle mukayese edilmiştir [174-176].

Son zamanlarda Yüksek ve çalışma arkadaşları tarafından 4-metilbenzoil klorürün trietilamin varlığında 3-metoksi-4-hidroksibenzaldehid ile muamelesinden elde edilen 208 tipi 3-metoksi-4-(4-metilbenzoksi)-benzaldehidin 3 tipi bileşiklerle reaksiyonu sonucu 209 tipi 3-alkil(aril)-4-[3-metoksi-4-(4-metilbenzoksi)benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri elde edilmiş ve bu bileşiklerin asetik anhidrid ile muamelesinden *N*-asetillendirme reaksiyonları incelenerek 210 tipi 1-asetil-3-alkil(aril)-4-[3-metoksi-4-(4-metilbenzoksi)benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikler sentezlenmiştir. Sentezlenen bileşiklerin yapıları IR, Mikro-Raman, NMR ve UV-vis gibi spektroskopik yöntemler ile aydınlatılmıştır. Bu bileşiklerden bazılarının teorik olarak DFT/B3LYP temel set ile titreşim frekansları, HOMO-LUMO, moleküler elektrostatik potansiyeli ve doğal bağ orbital (NBO) hesaplamaları yapılmıştır (Denklem 142) [100, 177, 178].

3-Etil-4-(4-metilbenzoksi)benzilidenamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (160b) ve 3-metil-4-[3-(3-nitrobenzoksi)-4-metoksibenzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on (168a) bileşikleri ile 211 tipi 2-(2-metilbenzoksi)-benzaldehid ve 213 tipi 3metoksi-4-benzensulfoniloksibenzaldehidin 3b ve 3a bileşikleri ile reaksiyonu sonucu elde edilen 3-etil-4-[2-(2-metilbenzoksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on (212b), ve 3-metil-4-(3-etoksi-4-benzensulfoniloksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (214a) bileşiklerinin ¹H-NMR ve ¹³C-NMR ile infrared spektral verileri deneysel ve teorik olarak, bağ uzunlukları, bağ açıları, mulliken yükleri ve dipol momentleri ise teorik olarak bilgisayar ortamında iki farklı set kullanılarak incelenmiştir. İncelenen moleküllerin iki yöntemle IR absorpsiyon frekansları hesaplanmış ve her iki metoda göre elde edilen veriler kullanılarak teorik infrared spektrumları oluşturulmuştur (Denklem 143 ve 144) [107, 111, 179-182].

134

3-Etil-4-[3-(3,5-dinitrobenzoksi)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on (123b), 3-metil-4-(2-benzoksi-3-etoksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5on (155a) bileşikleri ve 2-naftilsülfonilklorür' ün salisilaldehid ile trietilamin varlığında muamelesinden elde edilen 215 tipi 2-naftilsulfoniloksibenzaldehid ve 3c bileşiği ile reaksiyonundan sentezlenen 3-n-propil-4-[2-(2-naftilsulfoniloksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on (216c) ve trietilaminli ortamda 2-metilbenzoil klorür ve 3-metoksi-4-hidroksibenzaldehidin reaksiyonundan elde edilen 3-metoksi-4-(2metilbenzoksi)-benzaldehid (217) ile 3-metil-4-amino-4,5-dihidro-1H-1,2,4-triazol-5onun (3a) muamelesinden sentezlenen 218a tipi 3-metil-4-[3-metoksi-4-(2metilbenzoksi)benzilidenamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin 1 H-NMR ve ¹³C-NMR ile infrared spektral verileri deneysel ve teorik olarak mukayese edilmiştir. Ayrıca, her iki metoda göre bağ açıları, bağ uzunlukları, dipol momentleri, mulliken yükleri, HOMO-LUMO enerjileri ve molekülün toplam enerjileri de hesaplanmıştır (Denklem 145 ve 146) [99, 106, 183-186].

155a

136

3a

Son birkaç yılda yapılan farklı bir çalışmada sinnamoil klorürün trietilamin varlığında 4-hidroksibenzaldehid ve 3-hidroksibenzaldehid ile muamelesinden elde edilen 219 ve 222 tipi 4-sinnamoiloksibenzaldehid ve 4-sinnamoiloksibenzaldehidin 3 tipi bileşiklerle reaksiyonu sonucu 220 tipi 3-alkil(aril)-4-(4-sinnamoiloksibenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on 223 tipi 3-alkil(aril)-4-(3ve sinnamoiloksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on bileşikleri elde edilmiş ve bu bileşiklerin asetik anhidrid ile muamelesinden 221 tipi 1-asetil-3alkil(aril)-4-(4-sinnamoiloksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on ve 224 1-asetil-3-alkil(aril)-4-(3-sinnamoiloksibenzilidenamino)-4,5-dihidro-1H-1,2,4tipi triazol-5-on bileşikleri sentezlenmiştir. Sentezlenen bileşiklerin yapıları IR, NMR ve UV-vis gibi spektroskopik yöntemler ile aydınlatılmış ve in-vitro antioksidan özelliklerinin incelenmiştir. 220 ve 223 tipi bileşiklerin 4,5-dihidro-1H-1,2,4-triazol-5on halkasında zayıf asidik N-H protonu içerdiğinden dolayı 4 farklı susuz çözücüde TBAH ile potansiyometrik titrasyonları yapılarak yarı-nötralizasyon metodu ile yarınötralizasyon potansiyelleri ve karşın olan asitlik sabitleri tayin edilmiştir. Ayrıca, sentezlenen bilesiklerin ¹H-NMR ve ¹³C-NMR, infrared spektral verileri ile UV-Vis verileri deneysel ve teorik olarak mukayese edilmiştir. Ayrıca, teorik olarak HF/631G(d) ve DFT/631G(d) temel setleri ile bağ açıları, bağ uzunlukları, mulliken yükleri, dipol momentleri HOMO-LUMO enerjileri ve molekülün toplam enerjileri hesaplanmıştır (Denklem 147-152) [187,188].

137

(151)

2. MATERYAL, YÖNTEM VE HESAPLAMA METOTLARI

2.1. Yeni Maddelerin Antioksidan Özelliklerinin İncelenmesi

2.1.1. İndirgeme Gücü

İndirgeme gücü Oyaizu metoduna göre yapılmıştır [20]. Bu metodun prensibi antioksidan bileşiklerin K₃Fe(CN)₆, TCA ve FeCl₃ ile oluşturduğu renkli komplekslerin UV spektrofotometresinde 700 nm'de ölçümüne dayanmaktadır. Reaksiyon karışımının absorbansındaki artış numunenin indirgeme gücü ile doğru orantılıdır. Kullanılan reaktifler şunlardır: Fosfat tamponu (0.2 M, pH = 6.6); K₃Fe(CN)₆ (%1); TCA çözeltisi (%10); FeCl₃ (%0.1); α -tokoferol (1mg/mL); BHT (1mg/mL); BHA (1mg/mL).

Çalışmada sentezi yapılan, her bir bileşikten 10 mg tartılarak bir miktar etil alkolde çözülmüştür. Son hacim yine aynı çözücülerden ilave edilerek 10 mL'ye tamamlanmıştır. Standartlar da 1 mg/mL olacak şekilde etanolde çözülmüş ve 10 mL'lik deney tüplerine aşağıdaki tabloya göre pipetlemeler yapılmıştır.

Reaktifler	\mathbf{S}_1	S_2	S_3	N ₁	N_2	N ₃	Kör
Bileşik	-	-	-	100µL	250µL	500µL	-
Standart	100µL	250µL	500µL	-	-	-	-
Fosfat tamponu	2.4 mL	2.25 mL	2.0 mL	2.4 mL	2.25 mL	2.0 mL	-
K ₃ Fe(CN) ₆	2.5 mL	2.5 mL	2.5 mL	2.5 mL	2.5 mL	2.5 mL	-

Tablo 2.1. İndirgeme gücü tayininde ilave edilen reaktif miktarları

Deney tüpleri iyice karıştırılmış ve 50°C'de 20 dakika inkübasyona bırakılmıştır. İnkübasyonun ardından oda sıcaklığına getirilen her bir deney tüpüne %10'luk TCA çözeltisinden 2.5 mL ilave edilmiş ve 3000 rpm'de 10 dakika santrifüjlenmiştir. Supernatant kısmından 2.5 mL alınarak deney tüplerine aktarılmış ve çözeltiye 2.5 mL su, ardından 0.5 mL FeCl₃ çözeltisinden ilave edilmiştir. Kör çözelti ise 2.5 mL TCA, 2.5 mL deiyonize su ve 0.5 mL FeCl₃ çözeltisinden oluşmuştur. Son olarak oluşan koyu lacivert rengin absorbansı 700 nm'de UV spektrofotometresinde ölçülmüştür.
2.1.2. Serbest Radikal Giderme Aktivitesi

Bileşiklerin serbest radikal giderme aktivitesi tayini 1,1-difenil-2-pikril-hidrazilin (DPPH) kullanıldığı Blois metoduna göre yapılmıştır [14]. Metodun prensibi serbest radikal toplayıcılarının renkli serbest radikal olan DPPH'ı indirgemesine dayanır. DPPH kırmızı renkli kararlı bir serbest radikaldir. Serbest radikaller antioksidan bileşikler tarafından giderildiğinde renk kırmızıdan sarıya döner. Reaksiyon karışımının 517 nm'deki absorbansındaki düşüş serbest radikal giderme aktivitesi ile doğru orantılıdır. Kullanılan reaktifler şunlardır: 0.1 mM DPPH (etanolde hazırlanmıştır); α-tokoferol (1mg/mL); BHA (1mg/mL).

Çalışmada sentezi yapılan bileşikler 1 mg/mL olacak şekilde etil alkolde çözülmüştür. Standartlar ise yine 1 mg/mL olacak şekilde etanolde çözülmüş ve 10 mL'lik deney tüplerine aşağıdaki tabloya göre pipetlemeler yapılmıştır.

|--|

Reaktifler	\mathbf{S}_1	S_2	S_3	N_1	N_2	N_3	Kör	Kontrol
Bileşik	-	-	-	50µL	100µL	150µL	-	-
Standart	50µL	100µL	150µL	-	-	-	-	-
Etil alkol	2.95 mL	2.90 mL	2.85 mL	2.95 mL	2.90 mL	2.85 mL	-	3 mL
DPPH [.]	1 mL	1 mL	1 mL	1 mL	1 mL	1 mL	4 mL	1 mL

Deney tüpleri iyice karıştırılmış ve oda sıcaklığında 30 dakika bekletildikten sonra 517 nm'de absorbansları UV spektrofotometresinde ölçülmüştür. Reaksiyon ortamındaki DPPH radikalini giderme aktivitesi için hesaplamalar aşağıdaki formüle göre hesaplanmıştır.

% Serbest Radikal Giderme Aktivitesi = $(A_0 - A_1/A_0) \times 100$

A₀: Kontrol reaksiyonunun absorbansı, A₁: Numune veya standardın absorbansı

2.1.3. Metal Şelat Aktivitesi

Ferrrozin

0.2 mL

0.2 mL

Metal şelat aktivitesi tayini Dinis metoduna göre yapılmıştır [11]. Metal şelat aktivitesi tayininin prensibi, ferrozin-Fe⁺²kompleks oluşumunun inhibisyonuna dayanmaktadır. Kullanılan reaktifler şunlardır: 2 mM FeCl₂.4H₂O; 5 mM ferrozin; α -tokoferol (1mg/mL); EDTA (1mg/mL).

Çalışmada sentezi yapılan bileşiklerin ve standartların etanolde 1mg/mL olacak şekilde çözeltileri hazırlanarak 10 mL'lik deney tüplerine aşağıdaki tabloya göre pipetlemeleri yapılmıştır.

Reaktifler	S_1	S_2	S ₃	N_1	N_2	N ₃	Kör	Kontro
Bileşik	-	-	-	30 µL	60 µL	90 µL	-	-
Standart	30 µL	60 µL	90 µL	-	-	-	-	-
Etanol	3.75 mL	3.75 mL	3.75 mL	3.75 mL	3.75 mL	3.75 mL	3.75 mL	3.75 mI
FeCl ₂ .4H ₂ O	0.05 mL	0.05 mL	0.05 mL	0.05 mL	0.05 mL	0.05 mL	0.05 mL	0.05 mI

Tablo 2.3. Metal Şelat Aktivitesi Tayininde İlave Edilen Reaktif Miktarları

0.2 mL

Deney tüplerine konulan numuneler ve standartlar 15, 30 ve 45 μ g/mL konsantrasyonlarını oluşturacak ve toplam hacimleri 200 μ L olacak şekilde saf su kullanılarak seyreltilmiştir. Sonra sırasıyla FeCl₂.4H₂O, etil alkol ve ferrozin ilave edilerek karıştırılmış ve oda sıcaklığında 10 dakika bekletilmiştir. Oluşan renk 562 nm'de UV spektrofotometresinde köre (ferrozin dışındakiler) karşı okunmuştur.

0.2 mL

0.2 mL

0.2 mL

0.2 mL

Ferrozin–Fe⁺² karmaşık oluşumunun inhibisyon yüzdesi aşağıdaki formüle göre hesaplanmıştır:

Şelat yüzdesi = $(A_0 - A_1/A_0) \ge 100$

A₀: Kontrol reaksiyonunun absorbansı, A₁: Numune veya standardın absorbansı

2.2. Sentez

Bu çalışma Kafkas Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü Organik Kimya Araştırma Laboratuvarında gerçekleştirilmiştir. Çalışmada kullanılan kimyasal maddeler Merck, Fluka ve Aldrich firmalarından sağlanmıştır. Gerekli çözücüler ise yerli ya da yurtdışı kaynaklardan temin edilmiştir.

Çalışma kapsamında sentezlenen bileşiklerin erime noktaları WRS-2A Microprocessor Melting-Point Apparatus marka erime noktası tayin cihazında tayin edilmiştir. Yapı aydınlatılmasında kullanılan IR spektrumları çalışmanın yürütüldüğü laboratuvarda, ALPHA-P BRUKER FT-IR spektrometresinde alınmıştır. ¹H-NMR ve ¹³C-NMR spektrumları Mersin Üniversitesi Merkez Araştırma ve Uygulama Laboratuvarında, Bruker marka 400 MHz'lik NMR cihazında alınmıştır. UV absorbsiyon spektrumları da Kafkas Üniversitesi Fen-Edebiyat Fakültesi Organik Kimya araştırma Laboratuvarında PG Instruments Ltd T80 UV/VIS Spectrometerde %95'lik etanolde 10⁻⁴-10⁻⁵ M çözeltileri halinde 10 mm kuartz hücreleri kullanılarak alınmıştır. Çalışmada sentezlenen bileşiklerin indirgeme gücü, serbest radikal giderme aktivitesi ve metal şelat aktivitesi metotları ile incelenen antioksidan özellikleri Kafkas Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü Organik Kimya Araştırma Laboratuvarında gerçekleştirilmiştir. Bu çalışmada PG Instruments Ltd T80 UV/VIS Spectrometer cihazı kullanılmıştır.

Çalışma kapsamında sentezlenen ve N-H grubu taşıyan asidik bileşiklerin dört farklı susuz çözücüde TBAH ile potansiyometrik titrasyonları Fen-Edebiyat Fakültesi Kimya Bölümü Organik Kimya Araştırma Laboratuvarında Jenco model pH metre kullanılarak gerçekleştirilmiştir.

Çalışmada öncelikle nitrillerden başlanarak literatürde kayıtlı 9 adet iminoester hidroklorür elde edilmiş, sonra bu bileşiklerden 9 adet ester etoksikarbonilhidrazon ve son olarak çalışma için gerekli 9 adet 3-alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (2) bileşiği sentezlenmiştir. Bu bileşiklerin literatürde kayıtlı bileşiklerle identik olduğu IR spektrum verileri ve erime noktaları tayin edilerek belirlenmiştir. Çalışmada sentezlenen yeni bileşiklerin sentezi ve spektroskopik verileri aşağıda verilmiştir:

2.2.1. 3-Metil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (5)

Yuvarlak dipli bir balonda 3-metil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (2a) (1.14 g, 10 mmol) bileşiği ile 4-izopropilbenzaldehid (1.48 g, 1.509 mL, 10 mmol)' in 20 mL asetik asit içindeki çözeltisi geri soğutucu altında 2 saat reflux edilmiş ve bir kristalizuara alınarak çeker ocak altında çözücü uzaklaştırılmıştır. Kalıntı etanolden kristallendirilmiştir. Ele geçen kristaller (2.10 g, % 85.90 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra **5** bileşiği olarak tanımlanmıştır. E.n. 185 °C.

IR	: 3164 (NH)
(Ek Şekil 1)	1692 (C=O)
	1602 (C=N)
	833 (1,4-disubstitue aromatik halka) cm^{-1}
¹ H-NMR (DMSO- d_6)	: δ 1.22 (d, 6H, 2CH ₃ ; <i>J</i> =6.80 Hz)
(Ek Şekil 2)	δ 2.28 (s, 3H, CH ₃)
	δ 2.94 (hept, 1H, CH; <i>J</i> =6.80 Hz)
	δ 7.36 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	δ 7.75 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	δ 9.70 (s, 1H, N=CH)
	δ 11.84 (s, 1H, NH)

¹³C-NMR (DMSO-
$$d_6$$
)
(Ek Şekil 3)
(Ek Şekil 3)
 $\delta 23.52 (2CH_3)$
 $\delta 33.43 (CH)$
 $\delta 126.87 (2C), 127.73 (2C), 131.22, 144.18 (ArC)$
 $\delta 151.27 (Triazol C_1)$
 $\delta 152.09 (N=CH)$
 $\delta 153.62 (Triazol C_2)$
UV [Etanol, λ_{max} , nm (ε , L.mol⁻¹.cm⁻¹)]
(Ek Şekil 43)
 $\lambda_2 : 262 (12810)$ nm
 $\lambda_3 : 218 (13637)$ nm

2.2.2. 3-Etil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (6)

Yuvarlak dipli bir balonda 3-etil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (2b) (1.28 g, 10 mmol) bileşiği ile 4-izopropilbenzaldehid (1.48 g, 1.509 mL, 10 mmol)' in 20 mL asetik asit içindeki çözeltisi geri soğutucu altında 2 saat reflux edilmiş ve bir kristalizuara alınarak çeker ocak altında çözücü uzaklaştırılmıştır. Kalıntı etanolden kristallendirilmiştir. Ele geçen kristaller (2.26 g, % 87.41 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra **6** bileşiği olarak tanımlanmıştır. E.n. 157 °C.

IR	: 3168 (NH)
(Ek Şekil 4)	1696 (C=O)
	1604, 1583 (C=N)
	834 (1,4-disubstitue aromatik halka) cm^{-1}

H-NMR (DMSO- d_6)	: δ 1.22 (d, 6H, 2CH ₃ ; <i>J</i> =6.80 Hz)
(Ek Şekil 5)	δ 1.23 (t, 3H, CH ₂ CH ₃ ; <i>J</i> =7.20 Hz)
	δ 2.69 (q, 2H, CH ₂ CH ₃ ; <i>J</i> =7.20 Hz)
	δ 2.94 (hept, 1H, CH; <i>J</i> =6.80 Hz)
	δ 7.36 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	δ 7.75 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	δ 9.71 (s, 1H, N=CH)
	δ 11.87 (s, 1H, NH)
	S 10 50 (CH CH)
$C-NMR$ (DMSO- d_6)	$: \delta 10.50 (CH_2CH_3)$
(Ek Şekıl 6)	δ 19.03 (<u>CH</u> ₂ CH ₃)
	δ 23.99 (2 <u>CH</u> ₃)
	δ 33.93 (CH)
	δ 127.36 (2C), 128.17 (2C), 131.77,
	148.45 (ArC)
	δ 151.92 (Triazol C ₁)
	δ 152.58 (N=CH)
	δ 154.08 (Triazol C ₂)
UV [Etanol, λ_{max} , nm (ϵ , L.mol ⁻¹ .cm ⁻¹)]	: λ_1 : 292 (13259) nm
(Ek Şekil 44)	λ_2 : 262 (13213) nm
	λ ₃ : 218 (14074) nm

2.2.3. 3-(*n*-Propil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (7)

Yuvarlak dipli bir balonda 3-*n*-propil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (2c) (1.42 g, 10 mmol) bileşiği ile 4-izopropilbenzaldehid (1.48 g, 1.509 mL, 10 mmol)' in 20 mL asetik asit içindeki çözeltisi geri soğutucu altında 2 saat reflux edilmiş ve bir kristalizuara alınarak çeker ocak altında çözücü uzaklaştırılmıştır. Kalıntı etanolden kristallendirilmiştir. Ele geçen kristaller (2.44 g, % 89.55 verim) aynı çözücüden birkaç

kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra 7 bileşiği olarak tanımlanmıştır. E.n. 135 °C.

IR : (Ek Şekil 7)	3210 (NH) 1687 (C=O) 1633, 1578 (C=N) 819 (1,4-disubstitue aromatik halka) cm ⁻¹
¹ H-NMR (DMSO- d_6) : (Ek Şekil 8)	δ 0.96 (t, 3H, CH ₂ CH ₂ CH ₃ ; <i>J</i> =7.20 Hz) δ 1.22 (d, 6H, 2CH ₃ ; <i>J</i> =7.20 Hz) δ 1.69 (sext, 2H, CH ₂ CH ₂ CH ₃ ; <i>J</i> =7.20Hz) δ 2.64 (t, 2H, <u>CH</u> ₂ CH ₂ CH ₃ ; <i>J</i> =7.20 Hz) δ 2.95 (hept, 1H, CH; <i>J</i> =6.80 Hz) δ 7.38 (d, 2H, ArH; <i>J</i> =8.00 Hz) δ 7.74 (d, 2H, ArH; <i>J</i> =8.40 Hz) δ 9.69 (s, 1H, N=CH) δ 11.85 (s, 1H, NH)
¹³ C-NMR (DMSO- d_6) : (Ek Şekil 9)	δ 13.47 (CH ₂ CH ₂ CH ₃) δ 18.94 (CH ₂ CH ₂ CH ₃) δ 23.54 (2CH ₃) δ 26.75 (CH ₂ CH ₂ CH ₃) δ 33.44 (CH) δ 126.94 (2C), 127.71 (2C), 131.27, 146.86 (ArC) δ 151.34 (Triazol C ₁) δ 152.15 (N=CH) δ 153.73 (Triazol C ₂)
UV [Etanol, λ_{max} , nm (ϵ , L.mol ⁻¹ .cm ⁻¹)] : (Ek Şekil 45)	$λ_1$: 292 (15986) nm $λ_2$: 262 (14904) nm $λ_3$: 218 (18075) nm

2.2.4. 3-Benzil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (8)

Yuvarlak dipli bir balonda 3-benzil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (2d) (1.90 g, 10 mmol) bileşiği ile 4-izopropilbenzaldehid (1.48 g, 1.509 mL, 10 mmol)' in 20 mL asetik asit içindeki çözeltisi geri soğutucu altında 2 saat reflux edilmiş ve bir kristalizuara alınarak çeker ocak altında çözücü uzaklaştırılmıştır. Kalıntı etanolden kristallendirilmiştir. Ele geçen kristaller (2.99 g, % 93.33 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra **8** bileşiği olarak tanımlanmıştır. E.n. 186 °C.

IR	: 3167 (NH)
(Ek Şekil 10)	1699 (C=O)
	1602, 1582 (C=N)
	832 (1,4-disubstitue aromatik halka)
	759 ve 699 (monosubstitue aromatik
	halka) cm ⁻¹
¹ H-NMR (DMSO- d_6)	: δ 1.22 (d, 6H, 2CH ₃ ; <i>J</i> =6.80 Hz)
(Ek Şekil 11)	δ 2.94 (hept, 1H, CH; <i>J</i> =6.80 Hz)
	δ 4.05 (s, 2H, CH ₂ Ph)
	<u>δ 7.20-7.25 (m, 1H, ArH)</u>
	<u>δ 7.29-7.34 (m, 4H, ArH)</u>
	δ 7.36 (d, 2H, ArH; <i>J</i> =8.00 Hz)
	δ 7.71 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	δ 9.66 (s, 1H, N=CH)
	δ 11.99 (s, 1H, NH)

13 C-NMR (DMSO- d_6)	: δ 23.55 (2CH ₃)
(Ek Şekil 12)	δ 31.08 (CH ₂ Ph)
	δ 33.44 (CH)
	δ <u>126.69</u> , 126.95 (2C), 127.78 (2C),
	<u>128.43 (2C)</u> , <u>128.74 (2C)</u> , 131.21
	<u>135.82</u> , 146.18 (ArC)
	δ 151.27 (Triazol C ₁)
	δ 152.19 (N=CH)
	δ 153.49 (Triazol C ₂)
UV [Etanol, λ_{max} , nm (ϵ , L.mol ⁻¹ .cm ⁻¹)]	: λ_1 : 292 (16094) nm
(Ek Şekil 46)	λ_2 : 264 (14414) nm
	λ ₃ : 214 (21323)nm

2.2.5. 3-(*p*-Metilbenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (9)

Yuvarlak dipli bir balonda 3-*p*-metilbenzil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (2e) (2.04 g, 10 mmol) bileşiği ile 4-izopropilbenzaldehid (1.48 g, 1.509 mL, 10 mmol)' in 20 mL asetik asit içindeki çözeltisi geri soğutucu altında 2 saat reflux edilmiş ve bir kristalizuara alınarak çeker ocak altında çözücü uzaklaştırılmıştır. Kalıntı etanolden kristallendirilmiştir. Ele geçen kristaller (2.94 g, % 88.13 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra **9** bileşiği olarak tanımlanmıştır. E.n. 177 °C.

IR	: 3162 (NH)
(Ek Şekil 13)	1690 (C=O)
	1589 (C=N)
	830 (1,4-disubstitue aromatik halka) cm ⁻¹

¹ H-NMR (DMSO- d_6)	: δ 1.21 (d, 6H, 2CH ₃ ; <i>J</i> =6.80 Hz)
(Ek Şekil 14)	δ 2.24 (s, 3H, PhCH ₃)
	δ 2.93 (hept, 1H, CH; <i>J</i> =6.80 Hz)
	δ 4.00 (s, 2H, CH ₂ Ph)
	<u>δ 7.10 (d, 2H, ArH; <i>J</i>=7.60 Hz)</u>
	<u>δ 7.22 (d, 2H, ArH; <i>J</i>=8.00 Hz)</u>
	δ 7.36 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	δ 7.72 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	δ 9.67 (s, 1H, N=CH)
	δ 12.00 (s, 1H, NH)
13 C-NMR (DMSO- d_6)	: δ 20.56 (PhCH ₃)
(Ek Şekil 15)	δ 23.51 (2CH ₃)
	δ 30.69 (CH ₂ Ph)
	δ 33.44 (CH)
	δ 126.91 (2C), 127.75 (2C), <u>128.60 (2C)</u>
	<u>128.97 (2C)</u> , 131.23, <u>132.69</u> , <u>135.72</u> ,
	146.32 (ArC)
	δ 151.29 (Triazol C ₁)
	δ 152.13 (N=CH)
	δ 153.37 (Triazol C ₂)
UV [Etanol, λ_{max} , nm (ϵ , L.mol ⁻¹ .cm ⁻¹)]	: λ_1 : 292 (19009) nm
(Ek Sekil 47)	λ_2 : 264 (17980) nm
× , ,	λ ₃ : 222 (21779) nm

2.2.6. 3-(*p*-Metoksibenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (10)

Yuvarlak dipli bir balonda 3-*p*-metoksibenzil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5on (2f) (2.20 g, 10 mmol) bileşiği ile 4-izopropilbenzaldehid (1.48 g, 1.509 mL, 10 mmol)' in 20 mL asetik asit içindeki çözeltisi geri soğutucu altında 2 saat reflux edilmiş ve bir kristalizuara alınarak çeker ocak altında çözücü uzaklaştırılmıştır. Kalıntı etanolden kristallendirilmiştir. Ele geçen kristaller (2.91 g, % 83.11 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra **10** bileşiği olarak tanımlanmıştır. E.n. 180 °C.

IR (Ek Şekil 16)	: 3163 (NH) 1696 (C=O) 1603, 1588 (C=N) 827 ve 805 (1,4-disubstitue aromatik halka) cm ⁻¹
¹ H-NMR (DMSO- <i>d</i> ₆) (Ek Şekil 17)	: δ 1.22 (d, 6H, 2CH ₃ ; <i>J</i> =6.80 Hz) δ 2.94 (hept, 1H, CH; <i>J</i> =6.80 Hz) δ 3.70 (s, 3H, OCH ₃) δ 3.97 (s, 2H, CH ₂ Ph) δ 6.87 (d, 2H, ArH; <i>J</i> =8.80 Hz) δ 7.24 (d, 2H, ArH; <i>J</i> =8.40 Hz) δ 7.37 (d, 2H, ArH; <i>J</i> =8.40 Hz) δ 7.73 (d, 2H, ArH; <i>J</i> =8.00 Hz) δ 9.66 (s, 1H, N=CH) δ 11.95 (s, 1H, NH)
¹³ C-NMR (DMSO- <i>d</i> ₆) (Ek Şekil 18)	: $\delta 23.56 (2CH_3)$ $\delta 30.22 (CH_2Ph)$ $\delta 33.45 (CH)$ $\delta 54.96 (OCH_3)$ $\delta 113.83 (2C), 126.97 (2C), 127.58, 127.79 (2C), 129.81 (2C), 131.23, 146.50, 158.04 (ArC)$ $\delta 151.28 (Triazol C_1)$ $\delta 152.18 (N=CH)$ $\delta 153.47 (Triazol C_2)$
UV [Etanol, λ_{max} , nm (ϵ , L.mol ⁻¹ .cm ⁻] (Ek Şekil 48)	: λ_1 : 284 (19222) nm λ_2 : 266 (18807) nm λ_3 : 224 (21613) nm

2.2.7. 3-(*p*-Klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (11)

Yuvarlak dipli bir balonda 3-*p*-klorobenzil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (2g) (2.245 g, 10 mmol) bileşiği ile 4-izopropilbenzaldehid (1.48 g, 1.509 mL, 10 mmol)' in 20 mL asetik asit içindeki çözeltisi geri soğutucu altında 2 saat reflux edilmiş ve bir kristalizuara alınarak çeker ocak altında çözücü uzaklaştırılmıştır. Kalıntı etanolden kristallendirilmiştir. Ele geçen kristaller (3.39 g, % 95.73 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra **11** bileşiği olarak tanımlanmıştır. E.n. 152°C.

IR	: 3171 (NH)
(Ek Şekil 19)	1709 (C=O)
	1604, 1584 (C=N)
	844 ve 819 (1,4-disübstitue aromatik halka)
	cm ⁻¹
¹ H-NMR (DMSO- d_6)	: δ 1.22 (d. 6H. 2CH ₃ : <i>J</i> =6.80 Hz)
(Ek Şekil 20)	δ 2.95 (hept, 1H, CH; <i>J</i> =6.80 Hz)
	δ 4.06 (s, 2H, CH ₂ Ph)
	δ 7.37 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	<u>δ 7.33-7.39 (m, 4H, ArH)</u>
	δ 7.71 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	δ 9.65 (s, 1H, N=CH)
	δ 11.99 (s, 1H, NH)

13 C-NMR (DMSO- d_6)	: δ 23.48 (2CH ₃)
(Ek Şekil 21)	δ 30.31 (CH ₂ Ph)
	δ 33.35 (CH)
	δ 126.89 (2C), 127.72 (2C), <u>128.28 (2C)</u> ,
	<u>130.60 (2C)</u> , 131.06, <u>131.29</u> , <u>134.71</u> ,
	145.77 (ArC)
	δ 151.15 (Triazol C ₁)
	δ 152.16 (N=CH)
	δ 153.52 (Triazol C ₂)
UV [Etanol, λ_{max} , nm (ε , L.mol ⁻¹ .cm ⁻¹)]	: λ_1 : 292 (13743) nm
(Ek Şekil 49)	λ_2 : 264 (12168) nm
	λ ₃ : 218 (23274) nm

2.2.8. 3-(*m*-Klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (12)

Yuvarlak dipli bir balonda 3-*m*-klorobenzil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (2h) (2.245 g, 10 mmol) bileşiği ile 4-izopropilbenzaldehid (1.48 g, 1.509 mL, 10 mmol)'in 20 mL asetik asit içindeki çözeltisi geri soğutucu altında 2 saat reflux edilmiş ve bir kristalizuara alınarak çeker ocak altında çözücü uzaklaştırılmıştır. Kalıntı etanolden kristallendirilmiştir. Ele geçen kristaller (3.33 g, % 93.87 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra **12** bileşiği olarak tanımlanmıştır. E.n. 164°C.

IR (Ek Şekil 22) : 3172 (NH) 1699 (C=O) 1603, 1581 (C=N) 834 (1,4-disubstitue aromatik halka) 784 ve 717 (1,3-disubstitue aromatik halka) cm⁻¹

¹ H-NMR (DMSO- d_6)	: δ 1.22 (d, 6H, 2CH ₃ ; <i>J</i> =6.80 Hz)
(Ek Şekil 23)	δ 2.94 (hept, 1H, CH; <i>J</i> =6.80 Hz)
	δ 4.08 (s, 2H, CH ₂ Ph)
	<u>δ 7.28-7.33 (m, 3H, ArH)</u>
	δ 7.37 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	<u>δ 7.43 (s, 1H, ArH)</u>
	δ 7.71 (d, 2H, ArH; <i>J</i> =8.00 Hz)
	δ 9.65 (s, 1H, N=CH)
	δ 12.01 (s, 1H, NH)
13 C-NMR (DMSO- d_6)	: δ 23.55 (2CH ₃)
(Ek Şekil 24)	δ 30.69 (CH ₂ Ph)
	δ 33.44 (CH)
	δ <u>126.74</u> , 126.94 (2C), <u>127.56</u> , 127.81
	(2C), <u>128.90</u> , <u>130.25</u> , 131.16, <u>132.92</u> ,
	<u>138.20</u> , 145.68 (ArC)
	δ 151.23 (Triazol C ₁)
	δ 152.26 (N=CH)
	δ 153.59 (Triazol C ₂)
UV [Etanol, λ_{max} , nm (ϵ , L.mol ⁻¹ .cm ⁻¹)]	: λ_1 : 292 (16608) nm
(Ek Sekil 50)	λ_2 : 266 (14497) nm
× , /	λ_3 : 216 (24295) nm

2.2.9. 3-Fenil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (13)

Yuvarlak dipli bir balonda 3-fenil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on (2i) (1.76 g, 10 mmol) bileşiği ile 4-izopropilbenzaldehid (1.48 g, 1.509 mL, 10 mmol)' in 20 mL asetik asit içindeki çözeltisi geri soğutucu altında 2 saat reflux edilmiş ve bir kristalizuara alınarak çeker ocak altında çözücü uzaklaştırılmıştır. Kalıntı etanolden

kristallendirilmiştir. Ele geçen kristaller (2.65 g, % 86.66 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra **13** bileşiği olarak tanımlanmıştır. E.n. 194 °C.

IR (Ek Şekil 25)	: 3160 (NH) 1692 (C=O) 1605 (C=N) 825 (1,4-disubstitue aromatik halka) 762 ve 690 (monosubstitue aromatik halka) cm ⁻¹
¹ H-NMR (DMSO- <i>d</i> ₆) (Ek Şekil 26)	 δ 1.22 (d, 6H, 2CH₃; <i>J</i>=7.20 Hz) δ 2.95 (hept, 1H, CH; <i>J</i>=6.80 Hz) δ 7.39 (d, 2H, ArH; <i>J</i>=8.40 Hz) <u>δ 7.51-7.54 (m, 3H, ArH)</u> δ 7.74 (d, 2H, ArH; <i>J</i>=8.00 Hz) <u>δ 7.90-7.92 (m, 2H, ArH)</u> δ 9.61 (s, 1H, N=CH) δ 12.37 (s, 1H, NH)
¹³ C-NMR (DMSO- <i>d</i> ₆) (Ek Şekil 27)	: δ 23.55 (2CH ₃) δ 33.48 (CH) δ <u>126.71</u> , 127.07(2C), 127.86(2C), <u>128.00</u> (<u>2C)</u> , <u>128.50 (2C)</u> , <u>130.04</u> , 131.05, 144.50 (ArC) δ 151.45 (Triazol C ₁) δ 152.49 (N=CH) δ 156.71 (Triazol C ₂)
UV [Etanol, λ_{max} , nm (ϵ , L.mol ⁻¹ .cm ⁻¹)] (Ek Şekil 51)	: λ_1 : 284 (14142) nm λ_2 : 262 (14707) nm λ_3 : 224 (15572) nm

2.2.10. 1-Asetil-3-metil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (15)

Yuvarlak dipli bir balonda **5** bileşiği (2.44 g, 10 mmol) 20 mL asetik anhidrit ile CaCl₂ tüpü takılı bir geri soğutucu altında 30 dakika kaynatıldıktan sonra 100 mL mutlak etanol ilave edilmiş ve 30 dakika daha kaynatılmıştır. Nihai çözelti 40-45 °C de ve düşük basınç altında buharlaştırılmış ve geriye kalan katı madde etanolden kristallendirilmiştir. Ele geçen kristaller (2.25 g, % 78.57 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra **15** bileşiği olarak tanımlanmıştır. E.n. 121 °C.

IR (Ek Şekil 28)

¹H-NMR (DMSO-*d*₆) (Ek Şekil 29) : 1772, 1696 (C=O) 1603 (C=N) 837 (1,4-disubstitue aromatik halka) cm⁻¹

δ 1.24 (d, 6H, 2CH₃; *J*=7.20 Hz)
δ 2.34 (s, 3H, CH₃)
δ 2.49 (s, 3H, COCH₃)
δ 2.96 (hept, 1H, CH; *J*=7.20 Hz)
δ 7.40 (d, 2H, ArH; *J*=8.00 Hz)
δ 7.79 (d, 2H, ArH; *J*=8.00Hz)
δ 9.54 (s, 1H, N=CH)

13 C-NMR (DMSO- d_6)	: δ 11.22 (CH ₃)
(Ek Şekil 30)	δ 23.53 (2CH ₃)
	δ 23.69 (CO <u>CH</u> ₃)
	δ 33.48 (CH)
	δ 127.02 (2C), 128.11 (2C), 130.67,
	146.67 (ArC)
	δ 147.90 (Triazol C ₁)
	δ 152.79 (N=CH)
	δ 156.00 (Triazol C ₂)
	δ 165.97 (<u>CO</u> CH ₃)
UV [Etanol, λ_{max} , nm (ϵ , L.mol ⁻¹ .cm ⁻¹)]	: λ_1 : 294 (16212) nm
(Ek Sekil 52)	λ_2 : 256 (15789) nm
`` , ,	λ_3 : 216 (17791) nm

2.2.11. 1-Asetil-3-etil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (16)

Yuvarlak dipli bir balonda 6 bileşiği (2.58 g, 10 mmol) 20 mL asetik anhidrit ile CaCl₂ tüpü takılı bir geri soğutucu altında 30 dakika kaynatıldıktan sonra 100 mL mutlak etanol ilave edilmiş ve 30 dakika daha kaynatılmıştır. Nihai çözelti 40-45 °C de ve düşük basınç altında buharlaştırılmış ve geriye kalan katı madde etanolden kristallendirilmiştir. Ele geçen kristaller (2,26 % 75.29 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra 16 bileşiği olarak tanımlanmıştır. E.n. 120 °C.

IR	:	1764, 1697 (C=O)
(Ek Şekil 31)		1605 (C=N)
		834 (1,4-disubstitue aromatik halka) cm ⁻¹

¹ H-NMR (DMSO- d_6)	: δ 1.23 (d, 6H, 2CH ₃ ; <i>J</i> =7.20 Hz)
(Ek Şekil 32)	δ 1.24 (t, 3H, CH ₂ CH ₃ ; <i>J</i> =8.00Hz)
	δ 2.49 (s, 3H, COCH ₃)
	δ 2.72 (q, 2H, CH ₂ CH ₃ ; <i>J</i> =7.20 Hz)
	δ 2.95 (hept, 1H, CH; <i>J</i> =6.80Hz)
	δ 7.38 (d, 2H, ArH; <i>J</i> =8.40Hz)
	δ 7.76 (d, 2H, ArH; <i>J</i> =8.00 Hz)
	δ 9.53 (s, 1H, N=CH)
13 C-NMR (DMSO- d_6)	: δ 9.49 (CH ₂ CH ₃)
(Ek Şekil 33)	δ 18.64 (<u>CH</u> ₂ CH ₃)
	$\delta 23.53 (2CH_3 + COCH_3)$
	δ 33.49 (CH)
	δ 127.05 (2C), 128.09 (2C), 130.71,
	148.15 (ArC)
	δ 150.17 (Triazol C ₁)
	δ 152.82 (N=CH)
	δ 156.15 (Triazol C ₂)
	δ 165.97 (<u>CO</u> CH ₃)
UV [Etanol, λ_{max} , nm (ϵ , L.mol ⁻¹ .cm ⁻¹)]	: λ_1 : 292 (17577) nm
(Ek Sekil 53)	λ_2 : 258 (16581) nm
	$\lambda_3 : 216 (20106) \text{ nm}$

2.2.12. 1-Asetil-3-benzil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (17)

Yuvarlak dipli bir balonda **8** bileşiği (3.20 g, 10 mmol) 20 mL asetik anhidrit ile $CaCl_2$ tüpü takılı bir geri soğutucu altında 30 dakika kaynatıldıktan sonra 100 mL mutlak etanol ilave edilmiş ve 30 dakika daha kaynatılmıştır. Nihai çözelti 40-45 °C de ve

düşük basınç altında buharlaştırılmış ve geriye kalan katı madde etanolden kristallendirilmiştir. Ele geçen kristaller (3.09 % 85.36 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra **17** bileşiği olarak tanımlanmıştır. E.n. 94 °C.

IR : (Ek Şekil 34)	1769, 1700 (C=O) 1602 (C=N) 832 (1,4-disubstitue aromatik halka) 763 ve 705 (monosubstitue aromatik halka) cm ⁻¹
¹ H-NMR (DMSO- d_6) : (Ek Şekil 35)	δ 1.22 (d, 6H, 2CH ₃ ; <i>J</i> =6.80 Hz) δ 2.50 (s, 3H, CO <u>CH₃</u>) δ 2.94 (hept, 1H, CH; <i>J</i> =7.20 Hz) δ 4.13 (s, 2H, CH ₂ Ph) <u>δ 7.22-7.26 (m, 1H, ArH)</u> <u>δ 7.31-7.38 (m, 4H, ArH)</u> δ 7.31-7.38 (m, 2H, ArH) δ 7.73 (d, 2H, ArH; <i>J</i> =8.40 Hz) δ 9.51 (s, 1H, N=CH)
¹³ C-NMR (DMSO- <i>d</i> ₆) : (Ek Şekil 36)	δ 23.50 (2CH ₃ , CO <u>CH₃</u>) δ 31.03 (CH ₂ Ph) δ 33.48 (CH) δ <u>126.95</u> , 127.02 (2C), 128.10 (2C), <u>128.49</u> (<u>2C</u>), <u>128.76 (2C)</u> , 130.67, <u>134.66</u> , 148.07 (ArC) δ 148.26 (Triazol C ₁) δ 152.76 (N=CH) δ 155.58 (Triazol C ₂) δ 165.91 (<u>CO</u> CH ₃)
UV [Etanol, λ_{max} , nm (ϵ , L.mol ⁻¹ .cm ⁻¹)] : (Ek Şekil 54)	$ λ_1 : 292 (17079) nm $ $ λ_2 : 258 (15385) nm $ $ λ_3 : 216 (24031) nm $

2.2.13. 1-Asetil-3-(*p*-metilbenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (18)

Yuvarlak dipli bir balonda 9 bileşiği (3.34 g, 10 mmol) 20 mL asetik anhidrit ile CaCl₂ tüpü takılı bir geri soğutucu altında 30 dakika kaynatıldıktan sonra 100 mL mutlak etanol ilave edilmiş ve 30 dakika daha kaynatılmıştır. Nihai çözelti 40-45 °C de ve düşük basınç altında buharlaştırılmış ve geriye kalan katı madde etanolden kristallendirilmiştir. Ele geçen kristaller (3.25 g, % 86.45 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra 18 bileşiği olarak tanımlanmıştır. E.n. 100 °C.

IR	: 1764, 1704 (C=O)
(Ek Şekil 37)	1602 (C=N)
	829 ve 803 (1,4-disubstitue aromatik
	halka) cm ⁻¹
¹ H-NMR (DMSO-d ₆)	: δ 1.22 (d, 6H, 2CH ₃ ; <i>J</i> =7.20 Hz)
(Ek Şekil 38)	δ 2.25 (s, 3H, PhCH ₃)
	δ 2.51 (s, 3H, COCH ₃)
	δ 2.95 (hept, 1H, CH; <i>J</i> =6.80 Hz)
	δ 4.07 (s, 2H, CH ₂ Ph)
	<u>δ 7.12 (d, 2H, ArH; <i>J</i>=8.00 Hz)</u>
	<u>δ 7.25 (d, 2H, ArH; J=8.00 Hz)</u>
	δ 7.39 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	δ 7.75 (d, 2H, ArH; <i>J</i> =8.40 Hz)
	δ 9.50 (s, 1H, N=CH)

13 C-NMR (DMSO-d ₆)	:	δ 20.60 (PhCH ₃)
(Ek Şekil 39)		δ 23.52 (2CH ₃ , CO <u>CH₃</u>)
		δ 30.64 (CH ₂ Ph)
		δ 33.48 (CH)
		δ 127.05 (2C), 128.12 (2C), <u>128.82 (2C)</u> ,
		<u>129.06 (2C)</u> , <u>130.68</u> , 131.52, <u>136.06</u> ,
		148.06 (ArC)
		δ 148.42 (Triazol C ₁)
		δ 153.45 (N=CH)
		δ 155.70 (Triazol C ₂)
		δ 165.95 (<u>CO</u> CH ₃)
UV [Etanol, λ_{max} , nm (ε , L.mol ⁻¹ .cm ⁻¹)]:	:	λ ₁ : 294 (17413) nm
(Ek Şekil 55)		λ_2 : 260 (15814) nm
		λ ₃ : 216 (27894) nm
		λ ₃ : 216 (27894) nm

2.2.14. 1-Asetil-3-(*p*-klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (19)

Yuvarlak dipli bir balonda **11** bileşiği (3.545 g, 10 mmol) 20 mL asetik anhidrit ile CaCl₂ tüpü takılı bir geri soğutucu altında 30 dakika kaynatıldıktan sonra 100 mL mutlak etanol ilave edilmiş ve 30 dakika daha kaynatılmıştır. Nihai çözelti 40-45 °C de ve düşük basınç altında buharlaştırılmış ve geriye kalan katı madde etanolden kristallendirilmiştir. Ele geçen kristaller (3.32 g, % 83.61 verim) aynı çözücüden birkaç kez daha kristallendirilip vakumda kurutularak saflaştırıldıktan sonra **19** bileşiği olarak tanımlanmıştır. E.n. 107 °C.

IR : (Ek Şekil 40)	1775, 1728 (C=O) 1604 (C=N) 848 ve 827 (1,4-disubstitue aromatik halka) cm ⁻¹
¹ H-NMR (DMSO- d_6) : (Ek Şekil 41)	δ 1.22 (d, 6H, 2CH ₃ ; <i>J</i> =6.80 Hz) δ 2.50 (s, 3H, COCH ₃) δ 2.95 (hept, 1H, CH; <i>J</i> =6.80 Hz) δ 4.14 (s, 2H, CH ₂ Ph) <u>δ 7.38-7.40 (m, 4H, ArH)</u> δ 7.38-7.40 (m, 2H, ArH) δ 7.74 (d, 2H, ArH; <i>J</i> =8.40 Hz) δ 9.52 (s, 1H, N=CH)
¹³ C-NMR (DMSO- <i>d</i> ₆) : (Ek Şekil 42)	δ 23.52 (2CH ₃ , CO <u>CH₃</u>) δ 30.36 (CH ₂ Ph) δ 33.48 (CH) δ 127.06 (2C), <u>128.14 (2C)</u> , 128.42 (2C), <u>130.64</u> , <u>130.89 (2C)</u> , 131.67, <u>133.68</u> , 147.98 (ArC) δ 148.08 (Triazol C ₁) δ 152.83 (N=CH) δ 155.71 (Triazol C ₂) δ 165.92 (<u>CO</u> CH ₃)
UV [Etanol, λ_{max} , nm (ϵ , L.mol ⁻¹ .cm ⁻¹)] : (Ek Şekil 56)	$λ_1$: 294 (14964) nm $λ_2$: 258 (13126) nm $λ_3$: 218 (25964) nm

2.3. Potansiyometrik Titrasyonlar

2.3.1. Cihazlar

Yapılan çalışmada Jenco model pH metre kullanılmıştır. Kullanılan pH metre pH ölçümlerinde \pm 0,01 kesinlikte, mV ölçümünde \pm 0,05'lik kesinliktedir. Elektrot olarak sağladığı büyük avantajlar nedeniyle ingold kombine pH elektrodu tercih edilmiştir.Titrasyonlarda 50 µL'lik mikro pipet kullanılmıştır.

2.3.2. Kimyasallar

Kullanılan çözücüler izopropil alkol, *tert*-butil alkol, aseton ve *N*,*N*- dimetilformamid (DMF) ve (TBAH) tetrabutilamonyum hidroksit'in 2-propanol deki çözeltisi titrant kullanılmıştır. Çözücüler izopropil alkol, *N*,*N*-dimetilformamid, aseton ve *tert*-butil alkol Merck firmasından temin edilmiştir.

2.3.3. Yöntem

Potansiyometrik titrasyon için gerekli çalışma düzeneği kuruldu. 3-alkil(aril)-4-(4izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (4) türevlerinin hazırlanan 10⁻³ M'lık çözeltisi 0,05 N'lik TBAH'ın izopropil alkoldeki çözeltisi ile potansiyometrik metotla titre edildi. Titrasyon sonucu okunan pH ve mV değerleri dikkate alınarak pK_a ve HNP değerleri yarı nötralizasyon metoduna göre hesaplandı.

2.3.4. Dönüm Noktası Tayini

Aşağıda örnek olarak 3-(*p*-klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (11) bileşiğinin *tert*-butil alkol ortamındaki potansiyometrik metotla yapılan titrasyon sonuçları verilmiştir.

TBAH (mL)	рН	mV
0,05	14,29	-569
0,10	16,95	-572
0,15	17,23	-592
0,20	17,33	-596
0,25	18,81	-679
0,30	19,02	-684
0,35	19,36	-686
0,40		

Tablo 2.4. 11 Bileşiğinin tert-Butil Alkoldeki Deney Sonuçları

Bu değerlerden dönüm noktasını belirlemek güç olduğundan birinci türev ve ikinci türev eğrisi çizilmiştir (Şekil 2.1). Bunun için $\Delta E/\Delta V$ ve $\Delta^2 E/\Delta V^2$ değeri hesaplanarak titrant hacmine karşılık grafiğe geçirilmiştir. $\Delta E/\Delta V$ değerleri titrant hacmine karşı hesaplanmıştır (Tablo 2.5).

Tablo 2.5. 11 Bileşiğinin *tert*-Butil Alkoldeki Deney Sonuçlarının Birinci ve İkinci Türevleri

TBAH (mL)	mV		ΔΕ/ΔV	$\Delta^2 E / \Delta V^2$
0,05	-569	<u> </u>		
		}	-60	
0,10	-572	J		-6800
		}	-400	
0,15	-592	J	Ļ	6400
		}	-80	
0,20	-596	J	}	-31600
		}	-1660 -	
0,25	-679	J	<u>}</u>	31200
		}	-100	
0,30	-684	ך ר	5	1200
		}	-40	
0,35	-686	J		800
0,40				

Şekil 2.1. 11 Bileşiğinin 0.05 N TBAH ile *N*,*N*-dimetilformamid Ortamındaki Titrasyonundan Elde Edilen; a) mL-mV Grafiği, b) $\Delta E/\Delta V$ Eğrisi, c. $\Delta^2 E/\Delta V^2$ Eğrisi

Birinci ve ikinci türev eğrisinden yararlanarak, titrasyonun dönüm noktası belirlenmiştir. Tablo 2.5'teki değerlerden dönüm noktası 0,20 mL olduğu görülmüştür. Dönüm noktası 0,20 mL titrant hacmine karşın olan –596 mV olarak bulunmuştur. Yarı nötralizasyondaki TBAH değeri 0,10 mL olup pH değeri ise 13,08 dir. Yarı nötralizasyondaki pH = pK_a olduğundan 11 tipi bileşiğin *tert*-butil alkoldeki pK_a değeri 16,95, yarı nötralizasyon potansiyeli -572 olarak hesaplanmıştır.

2.4. Kuantum Mekaniği

2.4.1. Schrödinger denklemi

De Broglie'nin, parçacıkların dalga özelliği ile ilgili ortaya attığı teori birçok bilim adamını etkilemişti. Bunlardan biride Avusturyalı fizikçi Erwin Schrödinger idi. Schrödinger, Zürih Üniversitesi sempozyumlarından birinde Bohr yörüngeleri ve Broglie'nin çalışmasıyla ilgili konuşmasını bitirdikten sonra sempozyumun hazırlayıcısı Peter Debye "Aptalca konuşuyorsun Schrödinger. Dalgalardan bahsediyorsun ama hiçbir dalga denklemin yok." dedi [140, 189].

Yaklaşık bir yıl sonra Schrödinger'in bir dalga denklemi vardı. Schrödinger bu denklemini bilinen bir klasik dalga denklemi yerine De Broglie'nin, bir taneciğin dalga boyu durumunu koyarak elde etmişti. Zaten bu dalga denklemi fiziğin diğer temel ilkelerinden çıkarılamazdı, çünkü zaten kendisi bir temel ilkeydi. Buluş, büyük bir heyecanla karşılandı. Denklem hidrojen atomunun, harmonikosilatörün ve birkaç fiziksel sistemin daha tam çözümünü başarıyla gerçekleştirdi [190].

Doğadaki her şey hem parçacık hem de dalga karakteri gösterir. Bu durumu açıklamak için klasik yöntemler yetersiz kalır. Enerjinin kesikli olması, parçacıkların girişimi veya tünelleme gibi konuların açıklanmasında kuantum mekaniği ve onun temel denklemi olan Schrödinger denklemine ihtiyaç vardır.

Kuantum mekaniği ile bir molekülün enerjisini ve buna bağlı diğer fiziksel özelliklerini tayin etmek için Schrödinger eşitliğini çözmek gerekir. Schrödinger denkleminin çözümü ψ dalga fonksiyonunu verir. Sistemin bütün fiziksel özellikleri bu dalga fonksiyonundan çıkarılabilir. Schrödinger denkleminin en genel formu;

$$H\psi = E\psi \tag{153}$$

şeklindedir. Burada ψ yukarıda belirtildiği gibi dalga fonksiyonu, *E* sistemin enerjisi ve *H* Hamiltoniyen operatörüdür. ∇^2 Laplace operatörü, *V* potansiyel enerji operatörü ve \hbar ,*h* Planck sabitinin 2π 'ye bölümü ($\hbar = h/2\pi$) olmak üzere Hamiltoniyen operatörü,

$$H = \left[\frac{\hbar^2}{2m}\nabla^2 + V\right]$$
(154)

olarak tanımlanır. Buna göre V potansiyeli içerisinde hareket eden ve ψ dalga fonksiyonu ile tanımlanan bir parçacık için Schrödinger denklemi şu şekilde verilir;

$$i\hbar \frac{\partial \psi(r,t)}{\partial t} = \frac{-\hbar^2}{2m} \nabla^2 \psi(r,t) + V \psi(r,t)$$
(155)

Yukarıda verilen denklem bir parçacık için geçerlidir. İzole edilmiş bir molekül için tam hamiltoniyen işlemcisi çekirdeklerin ve elektronların kinetik enerji operatörlerini, tüm yüklü parçacıklar arasındaki etkileşimleri ve çekirdeklerle elektronların spinlerine bağlı tüm magnetik moment etkileşimlerini içerir. Bu yüzden Schrödinger denkleminin tam çözümü sadece bir elektronlu atomlar için mümkündür. Schrödinger denkleminin birden fazla elektron içeren bir sistem için çözülebilir kılınabilmesi için bazı yaklaşımların yapılması gerekir.

2.5. Moleküler Spektroskopide Kuramsal Hesaplamalar

Kuantum mekaniğine göre çok küçük sistemler için bir molekülün enerjisini veren Schrödinger denkleminin tam çözümü mümkün değildir. Bu nedenle simülasyonla yaklaşık çözümler yapılır. Elektronik yapı metotları, yarı deneysel metotlar ve *ab-initio* metotlar olarak ikiye ayrılır.

2.5.1. Ab-initio moleküler orbital yöntemleri

Ab-initio Latince kökenli bir kelime olup "başlangıçtan itibaren" anlamına gelir. *Ab-initio* moleküler orbital yöntemleri kuantum mekaniksel temellere dayanır. Bu yöntemler ile yapı ve buna bağlı özellikler hesaplanabilir. *Ab-initio* metotlar moleküler mekanik ve yarı deneysel metotların tersine, ilgilenilen molekül için ışık hızı, Planck sabiti, elektronların kütlesi gibi temel fiziksel sabitler haricinde deneysel değerler kullanmadan Schrödinger dalga denkleminin yaklaşık bir çözümüne dayanır [140, 191]. Tek elektronlu Hidrojen atomu için bu denklemi çözmek mümkün olsa da çok elektronlu sistemlerde çözüm çok zor olduğundan, Hartree-Fock Self Consistent Field (HF-SCF) ve Density Functional Theory (DFT) gibi farklı matematiksel yaklaşımlar kullanılır.

Ab-initio hesaplamalarının avantajı, geniş aralıklı sistemler için kullanışlı olması, deneysel sonuçlara dayanmaması ve bozulmuş ya da uyarılmış durumları hesaplayabilmesidir. Birçok sistem için yüksek kalitede sonuçlar sağlar ve kullanılan molekül küçüldükçe doğruluk oranı artar. Dezavantajları ise pahalı bir yöntem olması, çok büyük miktarda bilgisayar işlem gücü gerektirmesi ve bilgisayarda fazla yer kaplamasıdır. Ayrıca hesaplama süresi de moleküler mekanik yöntemlere göre çok daha fazladır. Hesaplama süresini azaltmak için geometrilerde ve kullanılan parametrelerde bazı basitleştirmeler yapılabilir; ancak bu basitleştirmeler kesin olmayan sonuçların elde edilmesine neden olur. Hesaplama süresi, molekülü veya moleküler sistemi içeren elektron sayısına bağlıdır.

Ab-initio metotları olan Hartree-Fock ve yoğunluk fonksiyoneli teorisi metotları moleküllerin yapılarının tayin edilmesi, spektroskopik, elektronik ve lineer olmayan optik özellikler gibi moleküler özellikleri araştırmak için ideal metotlardır. Bu metotların son yıllarda oldukça popüler olmalarının nedeni, hiçbir deneysel veriye ihtiyaç duymadan kullanılabilmeleridir.

2.5.2. Hartree Fock öz uyumlu alan teorisi (HF-SCF)

Hartree-Fock hesaplamalarında molekülün dalga fonksiyonu, temel fonksiyonlarından yaralanarak oluşturulur, Schrödinger dalga denklemi çözülür ve enerji özdeğeri bulunur. Varyasyon yöntemi kullanılarak enerji minimize edilir ve en uygun enerji özdeğerleri ve frekansları saptanır. Bu hesaplamaları Hartree-Fock SCF (Self Consistent Field) teorisi yardımıyla gerçekleştirebiliriz. Türkçe karşılığı "Öz Uyumlu Alan Teorisi"dir. Hartree-Fock hesaplamalarında merkezi alan yaklaşıklığı kullanılır. Merkezi alan yaklaşıklığında Coulomb elektron-elektron itmesi ilk başta hesaplara dahil edilmez ve bu itmenin net etkisi daha sonra düzeltme olarak hesaba katılır. Bu metodun ardındaki varsayım şudur; herhangi bir elektronun, kendisinin dışındaki tüm elektronların ve çekirdeğin oluşturacağı ortalama küresel potansiyel alanı içinde hareket edeceği kabul edilir [140, 192].

2.5.3. Yoğunluk fonksiyoneli teorisi (Density Functional Theory, DFT)

Moleküler sistemin temel hal özelliklerini incelemede kullanılan geleneksel yaklaşımlardan yarı-deneysel ve *ab-initio* metotlarına alternatif olarak ortaya çıkan DFT, 1970'lerde katı hal hesaplamaları için kullanılan popüler bir metottu. Kuantum kimyasında 1990'lara kadar yeteri derecede doğru bir metot olarak kabul edilmedi. Bugünlerde ise DFT hem katı halde hem de kuantum kimyası alanında yaygın bir şekilde kullanılan bir metottur. Ancak bu metot molekülün sadece temel hal özelliklerini hesaplamakta, uyarılmış hallerdeki özelliklerini hesaplamamaktadır. Bununla beraber, özellikle çok atomlu moleküller üzerinde geniş temel setli kesin hesaplamaları yapma zorluğu gibi sınırlamalara sahiptir.

Karşılıklı elektron etkileşimini hesaba katan DFT' nin popülaritesinin artmasının sebeplerinden biri daha az hesaplama gerektirmesidir. Ayrıca, d-bloğu metallerini içeren sistemler için DFT, yapılan HF hesaplamalarından deneysel verilerle daha uyumlu sonuçlar verir.

DFT teorisi, 1920'lerdeki Thomas FermiDirac ve 1950'lerdeki Slater'ın çalışmaları gibi kuantum mekanik çalışmalardan çıkartılan metotlara dayanır. Geçen kırk yıl üzerinde popülaritesinde büyüme olan HF metodunun alternatifi olan DFT, 1964 de Hohenberg ve WalterKohn tarafından ileri sürülen teori [140, 193] üzerine inşa edilmiştir. Bu teoriye göre temel haldeki elektronik enerji, tamamen elektron yoğunluğu ile belirlenebilir. Diğer bir ifadeyle sistemin elektron yoğunluğu ile enerjisi arasında birebir ilişki vardır. Dalga fonksiyonu yaklaşımında N tane elektron içeren bir sistemde her bir elektron için 3 tane olmak üzere (spini de katarsak 4) 3N tane koordinat vardır. Elektron yoğunluğu ise N-1 tane koordinat üzerinden integrali alınmış dalga fonksiyonunun karesidir. Diğer taraftan yoğunluk sistemdeki elektron sayısından bağımsız olarak sadece 3 koordinata bağlı düşünülebilir. Dalga fonksiyonunun karmaşıklığı elektron sayısı ile artarken elektron yoğunluğu sistemin büyüklüğünden bağımsız olarak aynı sayıda değişkene bağlıdır. Farklı yoğunlukların farklı temel hal enerjileri verdiği ispatlanmasına rağmen tek problem bu iki niceliği birbirine bağlayacak fonksiyoneldir. Dolayısıyla DFT metotlarının amacı elektron yoğunluğunu enerji ile ilişkilendirecek fonksiyoneller üretmektir [140, 194, 195]. Burada terim olarak fonksiyon ve fonksiyonelin arasındaki farka dikkat etmek gerekir. Fonksiyon değişkenler setinden sayı üreten bir reçete iken fonksiyonel değişkenlere bağlı fonksiyondan sayı üreten reçetedir. Böylece dalga fonksiyonu ve elektron yoğunluğu fonksiyon iken enerji dalga fonksiyonuna veya elektron yoğunluğuna bağlı fonksiyoneldir.

2.5.4. B3PW91 ve B3LYP karma yoğunluk fonksiyonu teorileri

DFT, moleküllerin değiş-tokuş ve karşılıklı enerjilerini daha iyi vermesi nedeni ile tam enerji ifadesi için, yalnız HF veya DFT modelleri yerine bu modellerin her ikisinin de enerji ifadeleri toplam elektronik enerji ifadesinde kullanılarak karma modeller üretilmiştir. Bu modeller, toplam enerjiyi, bağ uzunlukları ve iyonlaşma enerjileri gibi birçok büyüklüğü saf modellerden daha iyi hesaplamaktadır. Bu modellerden bazıları [147, 196, 197]; (a) Kinetik enerji fonksiyoneli: Hartree 1928 (H28), Thomas-Fermi 1927 (TF27), (b) Değiş-tokuş enerji fonksiyoneli: Fock 1930 (F30), Dirac 1930 (D30), Becke 1988 (B88), ... (c) Karşılıklı etkileşim enerji fonksiyoneli: Lee-Yang-Parr

(LYP), Vosko-Wilk-Nusair (VWN), Perdew-Wang 1991 (PW91), ... gibi üç farklı enerji fonksiyonelleri çok sık karşılaşılan fonksiyonellerdir [197-199].

2.5.5. Yarı-deneysel (semi-emprical) moleküler yöntemler [200]

Yarı-deneysel metotlar, deneysel sonuçların yanı sıra *ab-inito* moleküler orbital yöntemleri gibi kuantum mekaniksel esaslara ve çok sayıda yaklaşıklığa dayanmaktadır. Yarı-deneysel yöntemler elektron-elektron etkileşmelerine ait iki elektron integrallerini hesaplamazlar. Bu integral ifadeleri için inceleme konusu olan moleküle benzer elektronik yapıdaki moleküllerden, deneysel olarak elde edilen bilgilerden oluşturulmuş parametreleri kullanırlar. Bir başka deyişle yarı-deneysel metotlar Schrödinger dalga denklemini deney verilerinden türetilen parametreleri içeren ve çözümü daha kolay olan bir forma dönüştürerek çözerler.

Etkileşim integralleri için yaklaşık fonksiyonların kullanılmasıyla hesaplama süresi *ab-initio* yöntemlerin hesaplama süresi ile karşılaştırılamayacak kadar azdır. *Ab-initio* hesaplama metotlarının yetersiz kaldığı biyolojik makro moleküller üzerinde yapılacak hesaplamalarda deney verileri ile uyumlu ve oldukça hızlı hesaplamalar gerçekleştirebilmeleri açısından avantajlıdır. Çok küçük sistemler için kullanılabileceği gibi büyük kimyasal sistemler için de kullanılabilir.

2.5.6. LCAO/MO metodu

Molekül sistemini tanımlayan toplam dalga fonksiyonu ψ antisimetrik olmalıdır. Bir elektronik dalga fonksiyonu için, elektronların fermiyon olmasından kaynaklanan dalgafonksiyonu'nun antisimetrik olması fiziksel bir gerekliliktir. Moleküldeki her bir elektron için tek elektron dalga fonksiyonunu tanımlamalıyız. Molekül içindeki her elektron (x_i, y_i, z_i) koordinatlarının bir fonksiyonu olan $\Phi_i(x_i, y_i, z_i)$ tek elektron moleküler orbital dalga fonksiyonuyla tanımlanır. Bu moleküler orbitallerden toplam dalga fonksiyonu ψ 'yi oluşturmanın en basit yolu, *n* elektronlu sistem için tek elektron moleküler orbital dalga fonksiyonlarının Hartree çarpımı ile birbirleriyle çarpılarak bir kombinasyon oluşturulmasıdır [140, 201-203].

2.6. Temel Setlerin Seçimi ve Adlandırılması

Kuramsal hesaplamaların amacı moleküllerin özelliklerini matematiksel olarak açıklamaktır. Bu özelliklerin en önemlilerinden bir tanesi moleküler orbitallerdir. Bu orbitallere yaklaşımlar için temel setler kullanılır.

Esas itibariyle, temel fonksiyonların bir tam seti, tamamen spinorbitallerin temsil edilmesi için kullanılmalıdır ve fonksiyonların sonsuz sayıda kullanımı varyasyonel ifadesinde verilen bir Hartree-Fock enerjisi ile sonuçlanır. Bu sınırlayıcı enerjiye Hartree-Fock sınırı denir. Elektronlar arası etkileşme ihmal edildiğinden HF sınırı molekülün kesin taban-durum enerjisi değildir. Sonsuz temel set hesaplaması mümkün olmadığından her zaman sonlu temel set kullanılır ve temel set eksikliğine göre hata, temel set kesme (truncation) hatası olarak adlandırılır. Hartree-Fock SCF hesaplamasında, hesaplanan en düşük enerji ve Hartree-Fock sınırı arasındaki fark temel set kesme hatasının bir ölçüsüdür. Bu nedenle sayısal çözümlemede önemli noktalar, temel fonksiyonların sayısını az tutmak (değerleri belirlenecek olan ikielektron integrallerinin sayısını en aza indirgemek amacıyla onları akıllı bir şekilde seçmektir. Fakat yine de hesaplamayı küçük bir temel set kesme hatayla başarmaktır [151].

Temel setler atomik orbitallerin matematiksel tanımıdır. Genel bir ifadeyle temel setler; elektronların bulunabileceği yerleri matematiksel olarak hesaplayan sayılar tablosudur. Bir moleküler orbital; (i) moleküllerin atomlardan oluşması, (ii) aynı cins atomların farklı cins moleküllerde benzer özellikler göstermeleri nedeni ile atomik orbitallerin çizgisel toplamları olarak yazılabilir. ψ_i moleküler orbitali ile ϕ_{μ} atomik orbitalleri arasındaki bağıntı,

$$\psi_i = \sum_{\mu=1}^N c_{\mu i} \phi_\mu \tag{156}$$

ifadesi ile verilir. Burada $C_{\mu i}$ moleküler orbital açılım katsayıları olarak adlandırılır, ϕ_{μ} atomik orbitallerini ise temel fonksiyonlar olarak adlandırırız. Atomik orbitaller için birçok temel set önerilmiştir. Minimal temel setler orbitallerin en temel durumlarını tanımlarlar, herhangi bir atom için gerektiği sayıda temel fonksiyon içerirler; fakat molekülleri oluşturan atomların atomik orbitallerinde büyüklük, şekil veya yük bakımından önemli değişiklikler olması da özel tanımlamalar gerektirir. Bunun için temel sete polarize ve difüze fonksiyonlar eklenerek genişletilmiş temel set tanımlanmıştır. Genişletilmiş temel setler, molekülün yüksek dereceden orbitallerini hesaba katarak, moleküler yük dağılımındaki, komşu atomların etkileşmesinden kaynaklanan şekil ve boyut değişikliklerini tanımlar, böylece orbitallerin çok daha detaylı bir şekilde ifade edilmesini sağlarlar.

Molekül içindeki çekirdekler diğer çekirdeklerin etrafındaki polarize elektron yoğunluğunu bozduğundan, serbest atomların s, p, d, f ... gibi orbitallerinden daha esnek olan moleküler orbitallerin oluşturulması gerekir. Bunu sağlamanın en iyi yolu temel fonksiyonlarına daha yüksek açısal momentum kuantum sayısı eklemektir. Eklenen bu temel fonksiyonlara polarize fonksiyonlar denir. Bunlara örnek olarak 6-31G(d) ve 6-31G(d,p) temel fonksiyonları verilebilir. Polarizasyon fonksiyonları karbon atomları için 'd', hidrojen atomları için 'p' ve geçiş metalleri için 'f' isimlerini alırlar.

Elektron yoğunluğu çekirdekten uzak sistemler, yalın çifti moleküller, eksi yüklü sistemler (anyonlar), düşük iyonlaşma enerjili sistemler, uyarılmış haller için atomik orbitaller daha geniş bir uzay bölgesini kaplayacaklarından, yalnızca sıkıştırılmış temel setlerin kullanılması yetersiz kalmaktadır. Yetersizliklerin giderilebilmesi için dağınık fonksiyonlar (difüze) kullanılır. Difüze fonksiyonlu temel setler orbitallerin uzayda daha geniş yer işgal etmesine izin verir. Difüze fonksiyonlarının dahil edilmesi '+' veya '++' işaretleriyle olur. Hidrojen dışındaki ağır atomlar için '+' işareti, hem ağır atomlar hem hidrojen atomları için '++' işareti ile gösterilir. 6-31+G(d) temel seti, 6-31G(d) temel seti ise hidrojen atomuna da difüzyon fonksiyonu ilave eder. Eğer anyonlar ile ilgileniliyorsa

difüze fonksiyonunun kullanılması tavsiye edilir. Çift difüze fonksiyonlu temel setler (++) özellikle hidrürler ile çalışılıyorsa kullanışlıdır.

Program verilerinde bulundurulan ve literatürde değişik şekillerde gösterilen çok sayıda temel set vardır. Her bir temel setin nasıl okunacağını anlamak önemlidir. k-nlmG temel set split-valans tipi temel set olarak bilinir. Bu gösterimde k kor orbital veya iç kabuktaki elektronların kaç tane ilkel gaussian tipi fonksiyon ile temsil edildiğini gösterir. nlm ise hem valans orbitallerinin kaça yarıldığını hem de bunların kaç tane ilkel gaussian fonksiyonu ile temsil edildiğini gösterir. Eğer gösterimde sadece (nl) var ise ikili yarılma, (nlm) var ise üçlü yarılma dikkate alınır. Daha önce belirtildiği gibi temel set gösteriminde G den önce difüze fonksiyonlar için + veya ++ gösterimi kullanılır. Polarize fonksiyonları belirtmek için G den sonra parantez içinde d, df, p, pd harfleri kullanılır (Şekil 2.2.).

Kor orbital veya iç kabuktakielektronlar kaç tane ilkelgaussian tipi fonksiyon iletemsil ediliyor. Difüze fonksiyonlar için + veya ++ gösterimi kullanılır.+ ağır atomlar için p-fonksiyonunu, ++ ise Hidrojenatomu için s- fonksiyonunu tanımlar Karbon atomları için d, hidrojen atomları için p ve geçiş metalleri için f harfleri kullanılır.

↘ k-nlm++G(d,p)

Hem valansorbitallerinin kaça yarıldığını hem de bunların kaç tane ilkel gaussian fonksiyonu ile temsil edildiğini gösterir. Eğer gösterimde sadece (nl) var ise ikili yarılma, (nlm) var ise üçlü yarılma dikkate alınır.

Şekil 2.2. Temel setlerin adlandırılması.

Genelde atomik orbitali daha iyi tanımlamak için çok sayıda temel fonksiyona ihtiyaç duyulur. Örneğin, bir molekül sistemin elektriksel özellikleri (dipol moment, polarizebilite, vb.) hesaplanırken temel setlere difüze ve polarize fonksiyonlar eklenerek (6-31+G(d), 6-31++G(d), 6-31++G(d,p) ve 6-311++G(d,p) vb) doğruluğu arttırılır. Ancak kullanılan temel fonksiyon sayısı fazlalaştıkça daha fazla hesaplama süresi ve daha fazla bilgisayar hafizası gerekir, bu nedenle yapılacak bir hesaplamada amaçlanan sonuca en uygun temel set seçilmelidir.

2.7. Geometrik Optimizasyon ve PES

Bilgisayarlı hesaplama tekniğinde hesaplamalar moleküle ait belirli bir geometri oluşturularak başlar. Bir koordinat sistemindeki atomlar arasındaki yer değiştirmeler, molekülün enerjisiyle birlikte diğer birçok özelliklerinde kayda değer değişmelere neden olur. Molekülün yapısındaki değişiklikler sonucunda enerjinin koordinata bağımlılığı "potansiyel enerji yüzeyi (PES)" olarak tanımlanır (Şekil 2.2. (a)). Bu bağımlılık moleküler yapı ile molekülün enerjisi arasındaki ilişkidir. Bir molekül için potansiyel enerji eğrileri veya yüzeyi bilinirse denge durumundaki geometriye karşılık gelen minimum enerjili noktaları bulunabilir. Bir molekülün potansiyel enerji yüzeyi 3*N*-6 boyuta sahiptir (doğrusal moleküllerde 3*N*-5). Bir molekülün potansiyel enerji yüzeyi çok sayıda minimum ve maksimum içerir. Tek bir molekül için farklı minimumlar farklı konformasyonlara veya izomerlere karşılık gelir [140, 204-207].

Şekil 2.3. a) Potansiyel enerji yüzeyi b) Potansiyel enerji yüzeyindeki eyer noktası [191].

Potansiyel enerji yüzeyinde, bir yönde yerel minimum diğer yönde ise yerel maksimum olan noktalar vardır, bunlara eyer noktaları (saddlepoint) denir (Şekil 2.3. (b)). Eyer noktaları iki kararlı yapı arasındaki geçiş haline karşılık gelir.

İki atomlu bir molekülde bağ gerilmesine karşılık gelen elektronik enerji grafiği Şekil 2.4.' te verilmiştir. Burada minimum enerjili nokta E_m ve minimum enerjiye karşılık gelen koordinat nokta X_m ile gösterilmektedir.

Şekil.2.4. İki atomlu bir molekülde elektronik enerjinin atomlar arası mesafeye bağımlılığı.

Burada potansiyelin harmonik kısmı Hooke yasası ile verilir;

$$E = E_m + \frac{1}{2}G(x - x_m)^2$$
 (157)

Burada *G* enerjinin koordinatlara göre ikinci türevidir ve kuvvet sabiti olarak adlandırılır. Çok boyutlu problemlerde genelleştirilmiş Hooke yasası şöyle yazılabilir;

`

$$E = E_{m} + \frac{1}{2} ([x_{1} - x_{1}^{m}][x_{2} - x_{2}^{m}] \dots [x_{n} - x_{n}^{m}]) \begin{pmatrix} G_{11} & G_{12} & \dots & G_{1n} \\ \dots & G_{22} & \dots & G_{2n} \\ \dots & \dots & \dots & \dots \\ G_{1n} & \dots & \dots & G_{nn} \end{pmatrix} \begin{pmatrix} x_{1} - x_{1}^{m} \\ x_{2} - x_{2}^{m} \\ \vdots \\ x_{n} - x_{n}^{m} \end{pmatrix}$$
(158)

Burada (x- x^m) yer değiştirme vektörü, *G* elemanlarını köşegen ve köşegen dışı etkileşen kuvvet sabitlerinin oluşturduğu Hessian matrisi adını alır. Moleküler geometri optimizasyonu $x_1^m - x_2^m$,....konumlarına karşılık gelen minimum enerjili noktaları bulmak demektir. Sistemin dengede olduğu yerler potansiyel enerji yüzeyindeki minimumlardır. Bu da ilk aşamada gradyan vektörünü bulmaya, daha sonrada bu vektörü sıfır vektör yapan noktaları bulmaya karşılık gelir.

$$\langle g | \equiv g = \left[\frac{\partial E}{\partial x_1}, \frac{\partial E}{\partial x_2} \dots \right] \langle g | = (0, 0, \dots)$$
 (159)
Potansiyel enerjinin koordinatlara göre birinci türevi yani gradyanının sıfır olduğu noktalar; minimumlar, eyer noktaları ve maksimumlardır. Kuvvet gradyanın negatifidir o nedenle bu noktalarda kuvvette sıfırdır.

Paket programlarda geometrik optimizasyon için molekülün başlangıç geometrisi kartezyen koordinat veya iç koordinat (*z*-matrisi) cinsinden girilir, hesaplama için temel set seçilir ve optimizasyon başlatılır. Optimizasyon algoritmalarının çoğu kuvvet sabitleri matrisi olarak bilinen Hessian matrisini de hesaplar veya tahmin eder. Program potansiyel enerji yüzeyini dolaşır, enerji ve gradyan hesaplayarak hangi yöne ne kadar gidileceğine karar verir. Kuvvet sabitleri bu noktadaki yüzeyin eğriliğini tanımlayarak bir sonraki aşamanın belirlenmesini sağlar. Gradyan yüzey boyunca mevcut noktaların eğimini belirler. Her bir çevrimde gradyanın büyüklüğüne bağlı olarak geometri değişir ve bu hesaplamalar minimum bir değere ulaşıncaya kadar tekrarlanır. Yani hesaplanan geometride *g* vektörü sıfır ve bir sonraki aşamada hesaplanan geometrik parametrelerin değerleri ile hesaplanan değerler arasındaki fark ihmal edilebilir bir değer ise optimizasyon tamamlanmış olur.

2.8. NMR Spektroskopide Kuramsal Hesaplamalar [140]

Bir molekülün magnetik özellikleri arasında, molekülün NMR spektrumunu karakterize eden parametreler özellikle fizik ve kimya alanında çalışanlar için ilgi çekicidir. NMR organik bileşiklerin yapılarının belirlenmesinde kullanılan en güçlü tekniktir. Çok çeşitli çekirdeklerin çalışılmasında kullanılabilir: ¹H, ¹³C, ¹⁵N, ¹⁹F, ³¹P. NMR kimyasal kaymalar ve aynı zamanda dolaylı spin-spin çiftlenim sabitlerinin kuantum kimyasal hesaplamaları çok önemlidir, çünkü deneysel NMR spektrumun işaretlenmesi açık değildir.

Soğurma yerinin referans protonundan uzaklığına kimyasal kayma denir. Kimyasal kayma etkisi çok küçüktür. Birimi yoktur ve ppm (partspermillion) ile ifade edilir. Kimyasal kayma değeri bir referansa göre bildirilir. En çok kullanılan referans tetrametilsilan (Si(CH₃)₄) (TMS)'dır. Spektrumdaki diğer protonların kaymaları buna

göre değerlendirilir. TMS'nin avantajları şunlardır: i) Kimyasal olarak inerttir, madde ile reaksiyona girmez. ii) Magnetik olarak izotropiktir (Bütün protonların gölgelenmesi eşittir.). iii) Organik çözücülerde çözünür ve uçucudur. iV) Tek ve keskin bir soğurma piki verir. V) Bütün organik protonlardan daha yüksek sahada soğurma yapar (daha fazla gölgelenir). (Silisyum karbondan daha az elektronegatiftir.)

Kimyasal kayma, delta (δ) ölçeği olarak adlandırılır. İzotropik perdeleme

$$\sigma_{K} = \frac{1}{3} Tr(\sigma_{K})$$
(160)

ile verilir. Aynı zamanda bağlı kaymalar da

$$\delta = \sigma_{ref} - \sigma_K \tag{161}$$

olur. Bağlı kaymalar δ bir referans bileşiğin a_{ref} perdelemesine (örneğin, ¹H ve ¹³C durumunda TMS'ye göre) göre verilir.

Daha elektronegatif atomların varlığı perdelenmeyi azaltarak daha yüksek kayma değerlerine sebep olurlar. Bu etki protona olan mesafe arttıkça azalır. Elektronegatif atomların sayısı arttıkça kayma miktarı da artar. Bu hesaplamalarda Gaussian birim sistemi kullanılır [208].

2.8.1. GIAO Yöntemi

GIAO yaklaşımı [209-212], atomik orbitaller $|\chi_{\mu}\rangle$ için yerel ayar orijinlerinin seçimini içerir. Özellikle bunun anlamı atomik orbitallerde merkezlenmiş karşılığı olan çekirdeklerde "doğal" ayar orijini olarak seçilir. Manyetik özelliklerin hesaplanması, genellikle alan-bağımsız $|\chi_{\mu}(0)\rangle$ fonksiyonlar yerine pertürbasyon-bağımlı temel fonksiyonlarda

$$\chi_{\mu}\left(\vec{B}\right) = \exp\left[-\frac{i}{2c}\left(\vec{B}\times\vec{R}_{\mu}\right),\vec{r}\right]\chi_{\mu}\left(\vec{O}\right)$$
(162)

ile gerçekleştirilir. Burada \vec{R}_{μ} , χ_{μ} temel fonksiyonunun durum vektörüdür ve $\chi_{\mu} \left(\vec{O} \right)$ ise alan bağımsız temel fonksiyonları ifade eder.

Eşitlik (162)'nin alan-bağımlı temel fonksiyonları literatürde ayar-içeren atomik orbitaller (GaugeIncludingAtomicOrbital) (GIAO'lar orijinal olarak ayar-değişmezliği veya ayar-bağımsız atomik orbitaller diye biraz yanıltıcı olarak isimlendirildi. Boumanve Hansen [140, 213] tarafından önerilen isim, ayar-içeren atomik orbitaller 90'lı yılların başlarından beri standart olmuştur.) veya Londonorbitalleri olarak tanımlanır.

2.8.2. CSGT ve IGAIM Yöntemleri

2. mertebeden moleküler manyetik tepki özelliklerinin hesaplanması için birçok metot geliştirildi. Genellikle, ayar-değişmezliği yöntemleri [214, 215] gerektiren sonlu temel yaklaşım için de bu özelliklerin doğru şekilde tahmin edilmesini kabul eder. Açık şekilde alana bağlı olan temel fonksiyonları kullanan GIAO metot [216], ilk kez Ditchfield [211] tarafından kuantum kimyasal NMR kayma hesaplamaları için kabul edildi. HF metodu ile daha fazla uygulamalar Pulay [212] ve Gauss [214] tarafından yapılmıştır. Keith ve Bader [215] tarafından geliştirilen ve gerçek uzayda her bir nokta için ayar dönüşümlerin devamlı bir setinin düzenlenmesi ile ayar-değişmezliğini sağlayan CSGT metodu, doğru akım yoğunluğunun tanımlanması ile perdeleme tensörlerinin uygun şekilde bulunmasını sağlar.

Ayar-değişmezliği Hartree-Fock (yeterli derecede geniş temel setlerde) metotları, elektron korelasyon etkileşmelerinin birbirine göre küçük olduğu çoğu hidrokarbon molekülleri ve diğer moleküller için deneysel sonuçlara yakın ¹³C perdeleme sonuçlarını verir. Çok bağlı moleküller için, elektron korelasyon katkılar daha önemli hale gelir ve bu etkiler doğru perdeleme tensörleri elde etmek için elektron korelasyon etkileri içermeleri gereklidir (özellikle ¹⁵N ve ¹⁷O gibi çekirdekler için) [214]. Bu elektron korelasyon katkıları içermesi için, Gauss son zamanlarda deney ile tutarlı (uyumlu) olan perdeleme sabitlerini sağlamak için GIAO-MP2 [214] ve GIAO-CCSD [217] metotları geliştirdi. *Ab-initio* metotlarının alternatifi olarak ortaya çıkarılan Yoğunluk fonksiyoneli teorisi (DFT)'nin çeşitli moleküler özellikleri özellikleri özellikle perdeleme tensörlerinde incelemek için uygun olduğu görülür.

2.9. Gaussian 09W Programi

Bu çalışmada moleküler mekanik, yarı-deneysel ve *ab-initio* yöntemlerini içeren, çok sayıda teori ve temel set seçeneğine sahip olan oldukça kapsamlı bir program olan Gaussian 09W [218] paket programı kullanılmıştır.

Program kullanılırken öncelikle bir teori düzeyi belirlemek gerekmektedir. Gaussian 09W [218] programında en çok kullanılan teori düzeylerinin kısaltmaları şöyledir: HF (Hartree-Fock Öz Uyumlu Alan Teorisi), B3LYP (Becke tipi 3-parametreli Yoğunluk Fonksiyon Teorisi (Lee-Yang-Parr korelasyon modelini kullanır.)), MP2 (2. derece Moller-PlessetPertürbasyon Teorisi), MP4 (4. derece Moller-PlessetPertürbasyon Teorisi), QCISD(T) (2. derece Konfigürasyon Etkileşmesi (tekli, ikili, üçlü)). Bir sonraki adım ise bir temel set kümesi belirlemektir. Temel set fonksiyonları ve teori düzeyleri ile ilgili bilgiler önceki kısımlarda geniş olarak ele alınmıştır.

Gaussian 09W [218] programı ile atom ve moleküllerin enerjileri hesaplanabilir, geometrik optimizasyonları yapılabilir ve enerjiye bağlı olan titreşim frekansları, kuvvet sabitleri ve dipol momentleri hesaplanabilir. Program potansiyel enerji yüzeyinde

dolaşarak minimumlar, geçiş halleri ve tepkime güzergâhını tarayabilir, molekül dalga fonksiyonunun kararlılığını test edebilir. Ayrıca IR ve Raman spektrumları, termokimyasal özellikleri, bağ ve tepkime enerjileri, molekül orbitalleri, atom yükleri, çok kutuplu momentler, NMR ve manyetik duyarlılık titreşimsel şiddetleri, elektron ilgisi ve iyonlaşma enerjileri, kutuplanabilirlik ve hiperkutuplanma, elektrostatik potansiyel ve elektron yoğunluğu gibi pek çok özelliğin atomlar ve moleküller için hesaplanmasına olanak tanır. Tüm bu özellikler gaz fazında, çözelti içinde ve kristal yapılarında hesaplanabilir. Hesaplamalarda atom veya molekülün temel hali ya da uyarılmış hali kullanılabilir.

2.10. GaussView

GaussView programı, bir molekülün üç boyutlu tasarımını yaparak molekülün özelliklerinin görsel olarak tanımlanmasına, bu değerler üzerinde değişiklik yapılabilmesine ve giriş (input) dataları oluşturarak hesaplamaların başlatılmasına imkan veren, Gaussian paket programlarına dahil edilmiş olan bir grafik ara yüzüdür [201, 219]. Bu program molekülleri görsel hale getirip onları istediğimiz gibi döndürmemize, hareket ettirmemize, moleküllerde değişiklik yapmamıza ve Gaussian programında çalışılmış bir molekül için hesaplanmış olan sonuçları grafiksel olarak incelememize olanak sağlar. Bu sonuçlar; optimize edilmiş moleküler yapılar, moleküler orbitaller, elektrostatik potansiyel yüzeyi, atomik yükler, IR, Raman, NMR, VCD spektrumları, titreşim frekanslarına bağlı normal mod animasyonları gibi sıralanabilir.

3. BULGULAR

3.1. Antioksidan İncelemeleri

3.1.1. İndirgeme Gücü

Sentezlenen bileşiklerin üç farklı konsantrasyonda indirgeme gücü testleri yapılmış, UV spektrofotometresinde 700 nm'de ölçülen absorbans değerleri tablo halinde aşağıda verilmiştir.

Bileşikler	İndirg	00 nm)	
	50	100	150
5	0.143	0.168	0.162
6	0.190	0.192	0.190
7	0.203	0.219	0.254
8	0.194	0.187	0.173
9	0.189	0.191	0.195
10	0.201	0.203	0.193
11	0.207	0.203	0.204
12	0.202	0.194	0.187
13	0.145	0.159	0.165
15	0.196	0.191	0.197
16	0.221	0.223	0.223
17	0.175	0.202	0.179
18	0.213	0.219	0.202
19	0.195	0.190	0.201
BHT	0.517	1.028	1.288
BHA	1.162	2.374	3.455
a-Tokoferol	0.586	1.174	2.014

Tablo 3.1. 4 ve 14 Tipi Bileşiklerin İndirgeme Gücü

Kontrol reaksiyonunun absorbansı 0.172'dir.

3.1.2. Serbest Radikal Giderme Aktivitesi

Sentezlenen bileşiklerin üç farklı konsantrasyonda serbest radikal giderme aktivite testleri yapılmış, UV spektrofotometresinde 517 nm'de ölçülen absorbans değerleri ve buna karşılık gelen % Serbest Radikal Giderme Aktiviteleri tablo halinde aşağıda verilmiştir.

	Absorba	ns ve %Serbes	t Radikal G	iderme Aktivi	tesi (µg/mL,	%inh, 517				
	nm)									
Bileşikler	1	2.5		25	3	37.5				
	А	% Aktivite	А	% Aktivite	Α	% Aktivite				
5	0.215	NEGATİF	0.213	NEGATİF	0.209	1.4				
6	0.213	NEGATİF	0.213	NEGATİF	0.202	4.7				
7	0.208	1.9	0.202	4.7	0.178	16.0				
8	0.214	NEGATİF	0.214	NEGATİF	0.220	NEGATİF				
9	0.214	NEGATİF	0.211	0.5	0.211	0.5				
10	0.215	NEGATİF	0.204	3.8	0.211	0.5				
11	0.208	1.9	0.206	2.8	0.203	4.2				
12	0.212	0.0	0.211	0.5	0.216	NEGATİF				
13	0.215	NEGATİF	0.213	NEGATİF	0.211	0.5				
15	0.216	NEGATİF	0.202	4.7	0.213	NEGATİF				
16	0.207	2.4	0.210	0.9	0.210	0.9				
17	0.217	NEGATİF	0.216	NEGATİF	0.201	5.2				
18	0.213	NEGATİF	0.209	NEGATİF	0.213	NEGATİF				
19	0.216	NEGATİF	0.216	NEGATİF	0.222	NEGATİF				
BHA	0.056	73.6	0.052	75.5	0.050	76.4				
a-Tokoferol	0.053	75.0	0.053	75.0	0.052	75.5				

Tablo 3.2. 4 ve 14 Tipi Bileşiklerin Absorbans Değerleri ve Karşın Olan % Serbest Radikal Giderme Aktiviteleri

Kontrol reaksiyonunun absorbansı 0.212'dir.

3.1.3. Metal Şelat Aktivitesi

Sentezlenen bileşiklerin üç farklı konsantrasyonda metal şelat aktivite testleri yapılmış, UV spektrofotometresinde 562 nm'de ölçülen absorbans değerleri ve buna karşılık gelen % Metal Şelat Aktiflikleri tablo halinde aşağıda verilmiştir.

	Abso	orbans ve % N	letal Şelat A	ktivitesi (μg/n	nL, %inh, 56	52 nm)
Bileşikler	1	2.5	2	25	3	7.5
	Α	% Aktivite	А	% Aktivite	А	% Aktivite
5	0.139	36.8	0.149	32.3	0.103	53.2
6	0.157	28.6	0.140	36.4	0.137	37.7
7	0.175	20.5	0.121	45.0	0.101	54.1
8	0.134	39.1	0.129	41.4	0.091	58.6
9	0.105	52.3	0.094	57.3	0.071	67.7
10	0.163	25.9	0.149	32.3	0.112	49.1
11	0.118	46.4	0.148	32.7	0.121	45.0
12	0.163	25.9	0.136	38.2	0.094	57.3
13	0.104	52.7	0.072	67.3	0.067	69.5
15	0.117	46.8	0.104	52.7	0.069	68.6
16	0.103	53.2	0.091	58.6	0.129	41.4
17	0.130	40.9	0.147	33.2	0.131	40.5
18	0.110	50.0	0.152	30.9	0.118	46.4
19	0.132	40.0	0.093	57.7	0.128	41.8
EDTA	0.031	85.9	0.029	86.8	0.029	86.8
a-Tokoferol	0.134	39.1	0.112	49.1	0.098	55.5

Tablo 3.3. 4 ve 14 Tipi Bileşiklerin Absorbans Değerleri ve Karşın Olan % Metal Şelat Aktiviteleri

Kontrol reaksiyonunun absorbansı 0.220'dir.

3.2. Sentezlenen Bileşiklerin IR, ¹H-NMR, ¹³C-NMR ve UV Spektrum Verileri

Bu tez kapsamında; 16 literatürde kayıtlı, 14 yeni toplam 30 heterosiklik schiff bazı bileşiği sentezlenmiştir.

Çalışmada sentezlenen bileşiklerin IR spektrumları alınmış ve spektrumlarda ortaya çıkan karakteristik pikler değerlendirilerek yeni bileşiklerin yapı aydınlatılmasında kullanılmıştır.

Çalışma kapsamında sentezlenen bileşiklerin ¹H-NMR ve ¹³C-NMR spektrumları DMSO-d₆'da alınmış ve bu spektrumlarda gözlenen piklerin kimyasal kayma değerleri belirlenerek yeni bileşiklerin yapı aydınlatılmasında kullanılmıştır. Bileşiklerin ¹H-NMR spektrumlarında δ 2.50-2.60 ppm civarında DMSO-d₆'dan ileri gelen metil protonlarına ait karakteristik pikler gözlenmiştir, ki bu durum literatürdeki verilerle uyumludur. Ayrıca bu spektrumların bazılarında kullanılan DMSO-d₆'nın içerdiği az miktardaki sudan ileri gelen karakteristik H₂O pikleri δ 3.50 ppm civarında ortaya çıkmıştır. Tetrametilsilan (TMS) sıfırı belirlemek amacıyla spektrumların alınmasında standart olarak kullanılmıştır.

¹³C-NMR spektrumlarının alınmasında da çözücü olarak kullanılan DMSO-d₆'dan ileri gelen karakteristik karbon pikleri δ 40 ppm civarında gözlenmiş olup, bu spektrumlardan elde edilen veriler yapı aydınlatılmasında kullanılmıştır.

Çalışmada, ayrıca sentezlenen bileşiklerin %95'lik etanolde 10^{-4} - 10^{-5} M'lık çözeltileri halinde UV spektrumları alınmış, gözlenen piklerin λ_{max} değerleri belirlenenerek karşın olan ε_{max} değerleri hesaplanmıştır. Elde edilen verilerin literatürde 4,5-dihidro-1*H*-1,2,4triazol-5-on türevlerine ait UV absorpsiyon spektrumlarında ortaya çıkan verilerle uyumlu olduğu belirlenmiştir.

3.3. Potansiyometrik Titrasyon

Bu çalışmada sentezlenen 9 adet yeni 3-Alkil(aril)-4-(4-izopropilbenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on (4) bileşiklerinin izopropil alkol, *tert*-butil alkol, aseton ve *N*,*N*-dimetilformamid çözücülerindeki 10⁻³ M'lık çözeltilerinin 0.05 N TBAH ile titrasyonu sonucu elde edilen değerler titrant hacmine (TBAH) karşı mV olarak Tablo 3.4-12'de verilmiştir. Deneyler beşer kez tekrarlanmıştır. Yeni bileşikler için pH metreden okunan pH ve mV değerleri aşağıda verilmiştir.

5	DMF		ASE	ASETON		<i>tert</i> -BUTİL ALKOL		İZOPROPİL ALKOL	
	pН	mV	pН	mV	pН	mV	рН	mV	
0.05	10.65	-220	11.54	-284	11.31	-295	11.24	-279	
0.10	11.18	-249	12.94	-361	13.37	-389	13.10	-359	
0.15	11.40	-261	16.38	-549	14.46	-486	14.30	-412	
0.20	11.57	-270	16.82	-576	17.01	-590	14.34	-430	
0.25	11.68	-277	17.17	-591	18.03	-943	14.61	-443	
0.30	11.85	-286	17.28	-613	18.45	-664	14.83	-449	
0.35	12.03	-296	17.77	-619	18.62	-672	15.00	-461	
0.40	12.29	-310	18.05	-638	18.75	-678	15.07	-475	
0.45	12.63	-329	18.57	-643	18.82	-682	15.31	-477	
0.50	13.39	-371	18.67	-644	-	-	15.32	-479	
0.55	14.21	-417	-	-	-	-	-	-	
0.60	15.56	-499	-	-	-	-	-	-	

Tablo 3.4. 5 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10^{-3} M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyonu Sonuçları

Tablo 3.5. 6 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10^{-3} M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyonu Sonuçları

6	DN	1 F	ASETON		tert-E	<i>tert</i> -BUTİL		İZOPROPİL	
	DN	1Г			AL	ALKOL		ALKOL	
	рН	mV	pН	mV	pН	mV	рН	mV	
0.05	10.54	-214	12.64	-354	13.91	-400	10.28	-195	
0.10	10.93	-236	13.89	-418	14.91	-446	10.83	-231	
0.15	11.18	-249	14.25	-428	16.23	-495	12.16	-306	
0.20	11.35	-256	15.14	-467	17.78	-645	13.44	-381	
0.25	11.49	-266	16.20	-529	18.93	-693	13.89	-402	
0.30	11.66	-275	18.72	-689	18.96	-702	14.13	-415	
0.35	11.83	-285	19.02	-692	19.42	-718	14.29	-423	
0.40	12.04	-297	19.13	-706	19.51	-722	14.40	-428	
0.45	12.61	-329	19.32	-708	19.64	-725	14.52	-430	
0.50	13.05	-352	19.33	-708	19.73	-726	-	-	
0.55	13.34	-368	-	-	-	-	-	-	
0.60	13.76	-393	_	_	_	-	-	_	

	Л	1F	ASET	ΓΟΝ	tert-E	BUTIL	İZOPR	OPİL
7	DIV	11			ALKOL		ALKOL	
	pН	mV	pН	mV	pН	mV	рН	mV
0.05	10.74	-219	12.59	-450	11.32	-201	9.89	-221
0.10	11.13	-248	16.70	-529	16.01	-584	13.08	-334
0.15	11.62	-267	17.29	-603	18.44	-672	13.54	-382
0.20	11.75	-284	17.69	-617	18.96	-695	14.05	-411
0.25	12.19	-302	17.95	-633	19.31	-696	14.16	-416
0.30	12.95	-347	18.02	-637	-	-777	14.20	-425
0.35	14.07	-411	18.04	-638	-	-781	14.25	-427
0.40	15.79	-508	-	-	-	-783	-	-
0.45	16.75	-563	-	-	-	-	-	-
0.50	17.25	-593	-	-	-	-	-	-
0.55	17.47	-606	-	-	-	-	-	-
0.60	17.52	-608	-	-	-	-	-	-

Tablo 3.6. 7 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10^{-3} M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyonu Sonuçları

Tablo 3.7. 8 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyonu Sonuçları

8	DMF		ASETON		tert-BUTÌL ALKOL		İZOPROPİL ALKOL	
	pН	mV	pН	mV	pН	mV	pН	mV
0.05	10.88	-234	12.67	-306	12.80	-350	9.54	-150
0.10	11.30	-257	13.66	-390	15.50	500	10.89	-237
0.15	11.51	-269	13.98	-419	16.85	-575	12.14	-314
0.20	11.67	-264	16.60	-555	17.82	-628	12.78	-340
0.25	11.79	-282	18.03	-638	18.15	-648	13.11	-360
0.30	11.93	-291	18.26	-649	18.22	-660	13.35	-370
0.35	12.08	-299	18.39	-657	18.53	-667	13.46	-379
0.40	12.37	-315	18.44	-659	18.76	-672	13.63	-387
0.45	12.92	-343	-	-	18.74	-674	13.82	-397
0.50	13.51	-376	-	-	-	-	13.96	-407
0.55	14.87	-452	-	-	-	-	13.24	-423
0.60	16.49	-543	-	-	-	-	14.47	-433

	DN	1 F	ASET	ΓΟΝ	tert-E	BUTİL	İZOPR	OPİL
9	DN	11	ASE	IUN	AL	KOL	ALK	OL
	pН	mV	pН	mV	рН	mV	рН	mV
0.05	11.76	-278	13.19	-442	10.97	-226	11.55	-282
0.10	12.11	-299	15.88	-531	13.10	-425	12.93	-348
0.15	12.39	-317	16.49	-556	15.77	-564	13.29	-368
0.20	12.66	-329	16.97	-576	16.94	-624	13.58	-386
0.25	13.31	-388	17.15	-583	18.84	-685	13.97	406
0.30	15.37	-485	17.23	-592	19.44	-739	14.13	-416
0.35	16.48	-554	17.42	-598	-	-773	14.29	-425
0.40	17.53	-608	17.50	-602	-	-779	14.46	-434
0.45	18.31	-649	17.53	-603	-	-782	14.54	-458
0.50	18.44	-661	-	-	-	-	14.56	-459
0.55	18.62	-670	-	-	-	-	-	-
0.60	18.67	-671	-	-	-	-	-	-

Tablo 3.8. 9 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10^{-3} M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyonu Sonuçları

Tablo 3.9. 10 Tipi Bileşiğin N,N-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyonu Sonuçları

	л	1F	ASET	ΓΟΝ	<i>tert</i> -E	BUTİL	İZOPROPİL	
10	DIV	11	ASE		AL	KOL	ALK	OL
	pН	mV	pН	mV	рН	mV	рН	mV
0.05	11.95	-295	12.31	-365	11.76	-296	9.50	-156
0.10	12.38	-317	14.25	-367	12.61	-363	12.99	-356
0.15	12.73	-335	15.44	513	13.93	-445	13.64	-390
0.20	13.17	-359	16.70	-553	15.94	-545	13.77	-394
0.25	14.37	-426	17.26	-598	17.08	-603	13.83	-396
0.30	16.47	-547	17.60	-608	17.68	-628	-	-
0.35	17.35	-597	17.72	-621	18.32	-644	-	-
0.40	17.49	-605	17.85	-623	18.47	-721	-	-
0.45	18.05	-641	17.87	-624	19.67	-749	-	-
0.50	18.25	-647	-	-	-	-755	-	-
0.55	18.35	-657	-	-	-	-758	-	-
0.60	18.46	-659	-	-	-	-758	-	-

	DN	(F	ASE	ΓΟΝ	tert-E	BUTİL	İZOPR	OPİL
11	DN	11	ASE	IUN	AL	KOL	ALK	OL
	pН	mV	pН	mV	pН	mV	рН	mV
0.05	12.03	-292	13.62	-401	14.29	-569	12.85	-361
0.10	12.32	-309	15.14	-466	16.95	-572	13.64	-386
0.15	12.64	-328	16.37	-586	17.23	-592	14.36	-432
0.20	13.48	-377	17.56	-596	17.33	-596	14.57	-438
0.25	15.27	-428	17.63	-615	18.81	-679	14.58	-440
0.30	17.32	-377	17.96	-723	19.02	-684	14.62	-444
0.35	17.97	-428	18.02	-726	19.36	-686	14.75	-446
0.40	18.19	-595	18.04	-727	-	-	-	-
0.45	18.45	-637	-	-	-	-	-	-
0.50	18.80	-645	-	-	-	-	-	-
0.55	18.86	-668	-	-	-	-	-	-
0.60	-	-681	-	-	-	-	-	-

Tablo 3.10. 11 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10^{-3} M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyonu Sonuçları

Tablo 3.11. 12 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyonu Sonuçları

	DN	ſF	ASETON		tert-B	UTIL	İZOPR	OPİL
12				11021011		KOL	ALKOL	
	pН	mV	pН	mV	pН	mV	рН	mV
0.05	14.37	-396	10.55	-310	7.88	-82	10.46	-227
0.10	15.09	-421	14.50	-417	12.85	-348	12.57	-319
0.15	16.26	-478	16.40	-507	15.07	-425	13.56	-352
0.20	16.86	-512	18.01	-573	17.08	-512	14.33	-388
0.25	17.38	-545	18.44	-582	17.74	-563	14.99	-419
0.30	18.04	-569	19.04	-612	18.48	-597	15.39	-436
0.35	18.19	-576	19.21	-626	19.08	-619	15.71	-451
0.40	18.38	-588	19.30	-628	19.73	-654	15.94	-464
0.45	18.53	-596	-	-	19.95	-665	16.30	-481
0.50	18.70	-598	-	-	-	-672	16.42	-486
0.55	-	-	-	-	-	-674	16.55	-488
0.60	-	-	-	-	-	-676	-	-

	Л	(F	ASET	ΓΟΝ	tert-F	BUTİL	İZOPROPİL		
13	DN	11	ASE	ASETON		ALKOL		ALKOL	
	pН	mV	pН	mV	pН	mV	рН	mV	
0.05	10.80	-225	11.52	-311	6.54	-84	12.69	-331	
0.10	11.27	-249	13.35	-388	14.00	-677	14.39	-425	
0.15	11.52	-269	16.97	-596	19.43	-629	15.04	-467	
0.20	11.79	-282	17.99	-642	-	-672	15.42	-486	
0.25	11.97	-290	18.49	-654	-	-695	15.56	-494	
0.30	12.12	-301	19.23	-693	-	-817	15.66	-500	
0.35	12.33	-310	19.27	-718	-	-823	15.68	-500	
0.40	12.56	-327	19.51	-719	-	-831	-	-	
0.45	12.92	-342	-	-	-	-833	-	-	
0.50	13.05	-353	-	-	-	-	-	-	
0.55	13.60	-383	-	-	-	-	-	-	
0.60	14.62	-437	-	-	-	-	-	-	

Tablo 3.12. 13 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyonu Sonuçları

3.4. Sentezlenen Bileşiklerin Teorik Verileri

Teorik ve deneysel spektroskopik verileri incelenen 4, 14, 20, 29, 35 tipi bileşiklerin teorik NMR spektral verileri (B3LYP ve HF metodlarına göre 631G(d,p) temel setleri kullanılarak) deneysel verilerle karşılaştırmalı olarak, IR teorik frekans değerleri (B3LYP ve HF metodlarına göre 631G(d,p) temel setleri kullanılarak), UV-vis verileri, bağ açıları, bağ uzunlukları, dipol momentleri, mulliken yükleri, HOMO-LUMO enerjileri ve moleküllerin toplam enerjileri aşağıda tablolar ve şekiller halinde verilmiştir:

3.4.1. 3-Metil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (5)

Şekil 3.1.: 5 tipi bileşiğin (6-31G(d,p)) gausview görünümü

No				DFT /	Fark/		<u> </u>	HF/	Fark/
110	Deney.	DFT	Fark	DMSO	DMSO	HF	Fark	DMSO	DMSO
C1	151.27	148.61	2.66	150.25	1.02	143.20	8.07	145.41	5.86
C2	153.62	152.18	1.44	152.93	0.69	145.86	7.76	146.62	7.00
C3	152.09	154.32	-2.23	155.07	-2.98	148.89	3.20	149.88	2.21
C4	131.22	137.27	-6.05	136.28	-5.06	126.57	4.65	125.51	5.71
C5	127.73	127.86	-0.13	127.36	0.37	123.27	4.46	122.80	4.93
C6	126.87	132.14	-5.27	132.45	-5.58	123.32	3.55	123.42	3.45
C7	144.18	154.65	-10.47	156.61	-12.43	148.04	-3.86	149.72	-5.54
C8	126.87	128.67	-1.80	129.32	-2.45	120.66	6.21	121.05	5.82
C9	127.73	136.11	-8.38	136.41	-8.68	130.18	-2.45	130.57	-2.84
C10	33.43	47.72	-14.29	47.52	-14.09	29.47	3.96	29.22	4.21
C11	23.52	33.15	-9.63	32.72	-9.20	20.27	3.25	19.81	3.71
C12	23.52	33.14	-9.62	32.70	-9.18	20.27	3.25	19.81	3.71
C13	11.07	21.10	-10.03	20.93	-9.86	10.58	0.49	10.48	0.59
H14	11.84	7.96	3.88	8.42	3.42	7.19	4.65	7.61	4.23
H15	9.70	11.06	-1.36	11.00	-1.30	10.26	-0.56	10.22	-0.52
H16	7.75	9.08	-1.33	9.11	-1.36	8.85	-1.10	8.90	-1.15
H17	7.36	8.06	-0.70	8.25	-0.89	7.74	-0.38	7.94	-0.58
H18	7.36	8.35	-0.99	8.54	-1.18	7.88	-0.52	8.10	-0.74
H19	7.75	8.20	-0.45	8.34	-0.59	8.04	-0.29	8.22	-0.47
H20	2.94	3.58	-0.64	3.72	-0.78	2.75	0.19	2.91	0.03
H21	1.22	2.10	-0.88	2.06	-0.84	1.47	-0.25	1.41	-0.19
H22	1.22	2.09	-0.87	2.15	-0.93	1.48	-0.26	1.55	-0.33
H23	1.22	2.13	-0.91	2.18	-0.96	1.55	-0.33	1.60	-0.38
H24	1.22	2.09	-0.87	2.15	-0.93	1.48	-0.26	1.55	-0.33
H25	1.22	2.13	-0.91	2.18	-0.96	1.55	-0.33	1.60	-0.38
H26	1.22	2.10	-0.88	2.06	-0.84	1.47	-0.25	1.41	-0.19
H27	2.28	3.16	-0.88	3.27	-0.99	2.64	-0.36	2.78	-0.50
H28	2.28	3.16	-0.88	3.27	-0.99	2.64	-0.36	2.78	-0.50
H29	2.28	2.84	-0.56	2.91	-0.63	2.40	-0.12	2.48	-0.20

Tablo: 3.13. 5 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP (DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

Tablo 3.14. 5 tipi bileşiğin teorik (B3LYP ve HF) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	B3LYP	HF
1	τ NCCC(42), τ CNNC(15), τ CCCC(18)	20	18
2	τ NCNN(20), τ CCCC(18), τ NNCC(17)	34	31
3	τ NCCC(15), τ CCCC(43)	48	46
4	δ NCC(37), δ CCC(30), δ NNC(10)	57	58
5	τ NCNN(27), τ CCCC(16), τ CNNC(17)	87	87
6	τ CNNC(21), τ NNCC(11), τ CCCC(14)	133	125
7	τ HCCN(72)	145	158
8	δ CNN(15), δ CCC(30)	159	162
9	τ NCCC(10), τ CNNC(43)	166	167
10	ν CC(13), δ CCC(12), δ NNC(10)	171	172
11	τ HCCC(34)	217	211
12	δ CCN(21), δ CCC(10), τ HCCC(14)	231	227
13	δ CCC(13), τ NCCC(17), τ NCNN(16)	232	237
14	δ CCN(15), δ CCC(12), τ HCCC(23)	257	259
15	τ HNNC(20), τ CNNC(34)	279	285
16	δ CCC(51)	300	302

Tablo 3.14	4.'ün devamı		
17	δ CCC(14), τ NCNN(20), τ CCCC(22), τ NNCC(13)	302	304
18	δ OCN(10), δ CNN(12), δ CCN(17), δ CCC(14)	350	354
19	τ CCCC(77)	400	410
20	δ NCN(12) δ OCN(14) δ CCC(21)	409	413
21	τ HNNC(20) τ CCCC(14) τ NNCC(13)	42.2	429
21	τ HNNC(40) τ NNCC(12) τ ONNC(11)	442	446
22	$\nu CC(13) \& CCC(17)$	455	456
23	$\delta CCC(12), \sigma CCCC(14)$	546	
24	$\tau CCCC(12), \tau CCCC(14)$	551	561
25	$\sum_{i \in U(U(25))} \sum_{i \in U(10$	551	502
26	0 OCN(55), 0 CNN(19), 0 CCN(12)	5/5	585
27	V CC(20)	605	606
28	0 CCC(30)	629	632
29	τ HNNC(14), τ NNCC(30), τ CNNC(12)	632	651
30	$\tau ONNC(80)$	693	698
31	v CC(22)	700	740
32	τ CCCC(41)	727	754
33	ν CC(11), δ NNC(20), δ CNN(11)	771	779
34	ν NC(14), ν NCN(12), ν NN(18), δ CNN(12)	781	792
35	τ HCCC(42)	818	851
36	τ HCCC(41)	829	857
37	δ NCN(12), δ NCC(15), δ CCC(12)	857	861
38	v CC(54)	866	865
39	δ HCH(11), τ HCCC(44)	899	906
40	ν CC(25), τ HCCC(17)	928	933
41	ν CC(12), τ HCCC(26)	932	980
42	τ HCCC(43)	947	984
43	δ HCH(14), δ NNC(11), τ HCCN(40)	959	997
44	τ HCNN(83)	982	1001
45	δ CCC(53)	995	1035
46	δ HCH(21), τ HCCN(60)	1029	1045
47	δ HCH()	1036	1051
48	δ NNC(16)	1039	1065
49	v NN(31), δ HNN(12), τ HCCN(15)	1066	1081
50	ν CC(46), τ HCCC(10)	1082	1096
51	v CC(17), HCC(20)	1095	1096
52	τ HCCC(11)	1133	1123
53	ν CC(10), δ HCC(21)	1159	1166
54	v NC(16), v NN(11), δ HCC(15)	1168	1176
55	δ HCC(22)	1190	1193
56	v CC(20)	1209	1213
57	v NN(21), δ CCC(19), δ CNN(10)	1257	1226
58	ν CC(10), δ HCC(13)	1272	1297
59	ν CC(13), δ HCC(14)	1294	1314
60	τ HCCC(27)	1298	1321
61	δ HCN(11), δ HCC(27)	1336	1345
62	ν NC(13), δ HNN(12), δ HCN(13), δ HCC(16)	1338	1366
63	δ HNN(50), δ HCH(17)	1344	1384
64	δ HCH(35)	1358	1391
65	δ HCN(16), δ HCH(52)	1376	1398
66	δ HCH(55)	1378	1403
67	ν CC(21), δ HCC(11)	1404	1420
68	ν NC(10), δ HCN(15), δ HCH(17)	1412	1434
69	δ HCH(78), τ HCCN(21)	1427	1440
70	δ HCH(46), τ HCCN(19)	1443	1452
71	δ HCH(36)	1444	1457
72	δ HCH(38)	1446	1462
73	δ HCH(48)	1457	1467

Tablo 3.14	4' ün devamı		
74	δ HCH(30)	1464	1471
75	δ HCC(11), δ CCC(14)	1497	1519
76	ν CC(30), δ CCC(12)	1551	1585
77	v NC(40), v CC(19)	1593	1635
78	v NC(23), v CC(21)	1600	1688
79	v NC(44), v CC(17)	1615	1711
80	v OC(74), v NC(12)	1752	1772
81	v CH(33)	2917	2859
82	v CH(48)	2923	2863
83	v CH(48)	2927	2870
84	v CH(92)	2945	2889
85	v CH(49)	2989	2917
86	v CH(47)	2995	2924
87	v CH(48)	3001	2927
88	v CH(36)	3002	2930
89	v CH(100)	3003	2950
90	v CH(92	3044	2980
91	v CH(45)	3050	3003
92	v CH(37)	3055	3006
93	v CH(64)	3056	3022
94	v CH(51)	3071	3035
95	v CH(26)	3092	3043
96	v NH(100)	3557	3556

Şekil 3.2. 5 tipi bileşiğin deneysel (a) ve teorik (B3LYP 6-31G(d,p)((b) ve HF 6-31G(d,p) (c)) IR spetktrumları

Şekil 3.3. 5 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(31)-C(1)-N(32)	111.488	111.366	28	C(5)-C(6)-H(17)	119.365	119.144
2	N(31)-N(30)-C(2)	114.518	113.713	29	H(17)-C(6)-C(7)	119.089	119.391
3	N(31)-N(30)-H(14)	120.443	121.033	30	C(4)-C(9)-C(8)	120.824	120.863
4	H(14)-N(30)-C(2)	125.039	125.254	31	C(9)-C(8)-C(7)	121.009	120.894
5	N(30)-C(2)-O(34)	129.875	129.322	32	C(7)-C(6)-C(5)	121.546	117.895
6	O(34)-C(2)-N(32)	128.946	128.723	33	H(18)-C(8)-C(7)	119.893	120.158
7	N(32)-C(1)-C(13)	123.391	123.253	34	H(18)-C(8)-C(9)	119.098	118.948
8	N(31)-C(1)-C(13)	125.121	125.381	35	H(19)-C(9)-C(8)	119.835	119.472
9	C(1)-C(13)-H(27)	110.978	110.520	36	C(8)-C(7)-C(6)	117.846	117.895
10	C(1)-C(13)-H(28)	110.980	110.529	37	C(8)-C(7)-C(10)	121.533	121.637
11	C(1)-C(13)-H(29)	108.651	108.563	38	C(6)-C(7)-C(10)	120.621	120.468
12	H(27)-C(13)-H(28)	107.318	107.844	39	C(7)-C(10)-C(11)	111.831	111.880
13	H(27)-C(13)-H(29)	109.446	109.686	40	C(7)-C(10)-H(20)	106.935	106.925
14	H(28)-C(13)-H(29)	109.445	109.692	41	H(20)-C(10)-C(11)	107.442	107.309
15	N(30)-C(2)- N(32)	101.179	101.954	42	H(20)-C(10)-C(12)	107.444	107.309
16	C(2)-N(32)-C(1)	108.364	108.115	43	H(21)-C(11)-H(22)	108.179	108.131
17	C(2)-N(32)- N(33)	130.587	130.985	44	H(21)-C(11)-H(23)	107.744	107.848
18	C(1)-N(32)-N(33)	121.049	120.901	45	H(22)-C(11)-H(23)	107.631	107.691
19	N(32)-N(33)-C(3)	118.689	119.682	46	C(10)-C(11)-H(21)	111.281	111.112
20	N(33)-C(3)-H(15)	121.927	122.163	47	C(10)-C(11)-H(22)	110.562	110.447
21	H(15)-C(3)-C(4)	117.890	117.314	48	C(10)-C(11)-H(23)	111.296	110.470
22	N(33)-C(3)-C(4)	120.183	120.522	49	C(10)-C(12)-H(24)	110.560	110.448
23	C(3)-C(4)-C(5)	122.779	122.766	50	C(10)-C(12)-H(25)	111.299	111.471
24	C(3)-C(4)-C(9)	118.779	118.657	51	C(10)-C(12)-H(26)	111.281	111.113
25	C(4)-C(9)-H(19)	119.340	119.665	52	H(24)-C(12)-H(25)	107.629	107.692
26	C(4)-C(5)-H(16)	119.007	119.454	53	H(24)-C(12)-H(26)	108.178	108.129
27	H(16)-C(5)-C(6)	120.659	120.241	54	H(25)-C(12)-H(26)	107.745	107.845

Tablo 3.15. 5 tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.16. 5 tipi bileşiğin B3LYP ve HF yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ Uz	zunlukları	B3LYP	HF	Bağ U	zunlukları	B3LYP	HF
1	C(1)-N(31)	1.3006	1.2691	19	C(5)-C(6)	1.3894	1.3806
2	C(1)-N(32)	1.3881	1.3782	20	C(6)-H(17)	1.0873	1.0763
3	C(1)-C(13)	1.4867	1.4881	21	C(6)-C(7)	1.4043	1.3934
4	N(31)-N(30)	1.3822	1.3714	22	C(7)-C(8)	1.4022	1.3903
5	N(30)-H(14)	1.0067	0.9905	23	C(8)-H(18)	1.0864	1.0755
6	N(30)-C(2)	1.3704	1.3464	24	C(8)-C(9)	1.3918	1.3835
7	C(2)-O(34)	1.2235	1.2028	25	C(9)-C(19)	1.0870	1.0767
8	C(2)-N(32)	1.4180	1.3863	26	C(7)-C(10)	1.5220	1.5218
9	N(32)-N(33)	1.3734	1.3674	27	C(10)-H(20)	1.0978	1.0868
10	C(13)-H(27)	1.0941	1.0834	28	C(10)-C(11)	1.5404	1.5348
11	C(13)-H(28)	1.0941	1.0833	29	C(11)-H(21)	1.0942	1.0850
12	C(13)-H(29)	1.0908	1.0807	30	C(11)-H(22)	1.0953	1.0861
13	N(33)-C(3)	1.2902	1.2609	31	C(11)-H(23)	1.0953	1.0858
14	C(3)-H(15)	1.0885	1.0752	32	C(10)-C(12)	1.5404	1.5348
15	C(3)-C(4)	1.4639	1.4738	33	C(12)-H(24)	1.0953	1.0861
16	C(4)-C(5)	1.4049	1.3915	34	C(12)-H(25)	1.0954	1.0858
17	C(4)-C(9)	1.4041	1.3894	35	C(12)-H(26)	1.0942	1.0850
18	C(5)-H(16)	1.0847	1.0740				

	R3LVP	HF		B3LVP	HF
C1	0.522	0.502	U10	0.085	0.152
	0.322	0.392	1110	0.085	0.152
C2	0.815	1.051	H19	0.094	0.164
C3	0.112	0.179	H20	0.090	0.124
C4	0.083	-0.086	H21	0.109	0.122
C5	-0.095	-0.111	H22	0.102	0.114
C6	-0.141	-0.176	H23	0.104	0.110
C7	0.151	0.022	H24	0.102	0.114
C8	-0.129	-0.156	H25	0.104	0.110
С9	-0.127	-0.144	H26	0.109	0.122
C10	-0.131	-0.153	H27	0.142	0.155
C11	-0.305	-0.314	H28	0.142	0.155
C12	-0.305	-0.314	H29	0.140	0.160
C13	-0.360	-0.359	N30	-0.435	-0.566
H14	0.288	.339	N31	-0.336	-0.352
H15	0.157	0.227	N32	-0.410	-0.619
H16	0.103	0.177	N33	-0.325	-0.329
H17	0.083	0.149	O34	-0.541	-0.658

Tablo 3.17. 5 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

E_{HOMO} (B3LYP) : -0.21576 Hatree

E_{HOMO} (HF) : -0.30778 Hatree

 $E_{LUMO}(B3LYP)$: -0.05440 Hatree

E_{LUMO}(HF): 0.08991 Hatree

Şekil 3.4. 5 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Dipol Moment	B3LYP	HF
μ _x	1.3227	1.7277
$\mu_{\rm y}$	2.1647	2.5281
μ_z	0.1634	0.2092
μ _{Toplam}	2.5421	3.0692

Tablo 3.18. 5 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Tablo 3.19. 5 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-799.255	-794.278

3.4.2. 3-Etil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (6)

Şekil 3.5. 6 tipi bileşiğin (6-31G (d,p)) gausview görünümü

III [,] , D		$\frac{130}{130} VC I$	Early	$\frac{O}{D^2 I V D}$	Early/		Fault		Fault/
INO	Deney	BSLYP	гагк	BSLYP/	Fark/	HF	Fark	HF/	Fark/
~ 1				DMSO	DMSO			DMSO	DMSO
C1	151.92	152.57	-0.65	153.99	-2.07	146.84	5.08	148.82	3.10
C2	154.08	152.30	1.78	153.04	1.04	146.01	8.07	146.76	7.32
C3	152.58	154.47	-1.89	155.21	-2.63	148.84	3.74	149.79	2.79
C4	131.77	137.24	-5.47	136.25	-4.48	126.63	5.14	125.58	6.19
C5	128.17	127.71	0.46	127.28	0.89	123.16	5.01	122.75	5.42
C6	127.36	132.14	-4.78	132.45	-5.09	123.35	4.01	123.45	3.91
C7	148.45	154.68	-6.23	156.63	-8.18	148.04	0.41	149.71	-1.26
C8	127.36	128.73	-1.37	129.36	-2.00	120.70	6.66	121.07	6.29
С9	128.17	136.29	-8.12	136.58	-8.41	130.23	-2.06	130.60	-2.43
C10	33.93	47.63	-13.70	47.43	-13.50	29.47	4.46	29.22	4.71
C11	23.99	33.19	-9.20	32.76	-8.77	20.27	3.72	19.80	4.19
C12	23.99	33.08	-9.09	32.65	-8.66	20.28	3.71	19.82	4.17
C13	19.03	30.94	-11.91	30.95	-11.92	17.49	1.54	17.56	1.47
C14	10.50	22.66	-12.16	22.50	-12.00	10.01	0.49	9.78	0.72
H15	11.87	7.95	3.92	8.42	3.45	7.17	4.70	7.60	4.27
H16	9.71	11.10	-1.39	11.04	-1.33	10.28	-0.57	10.24	-0.53
H17	7.75	9.10	-1.35	9.13	-1.38	8.86	-1.11	8.92	-1.17
H18	7.36	8.08	-0.72	8.27	-0.91	7.75	-0.39	7.95	-0.59
H19	7.36	8.34	-0.98	8.54	-1.18	7.89	-0.53	8.10	-0.74
H20	7.75	8.22	-0.47	8.35	-0.60	8.05	-0.30	8.23	-0.48
H21	2.94	3.58	-0.64	3.72	-0.78	2.75	0.19	2.92	0.02
H22	1.22	2.11	-0.89	2.07	-0.85	1.47	-0.25	1.41	-0.19
H23	1.22	2.10	-0.88	2.16	-0.94	1.48	-0.26	1.55	-0.33
H24	1.22	2.14	-0.92	2.18	-0.96	1.55	-0.33	1.60	-0.38
H25	1.22	2.09	-0.87	2.16	-0.94	1.48	-0.26	1.55	-0.33
H26	1.22	2.14	-0.92	2.19	-0.97	1.55	-0.33	1.60	-0.38
H27	1.22	2.10	-0.88	2.06	-0.84	1.48	-0.26	1.41	-0.19
H28	2.69	3.78	-1.09	3.88	-1.19	2.97	-0.28	3.11	-0.42
H29	2.69	3.27	-0.58	3.34	-0.65	2.61	0.08	2.68	0.01

Tablo 3.20. 6 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimvasal kavma değerleri (δ /ppm)

Tablo 3.21. 6 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	B3LYP	HF
1	τ NCCC(40), τ CNNC(14), τ CCCC(17)	20	16
2	τ NCNN(16), τ CCCC(20), τ NNCN(13)	30	30
3	τ CCCC(25)	44	44
4	δ NCC(30), δ CCC(22)	52	52
5	τ NCNN(10), τ CNNC(11), τ CCCN(18), τ CNNC(15)	74	73
6	τ CNNC(17), τ CCCN(26)	93	95
7	δ CCC(11), τ CNNC(11), τ NNCN(15), τ CNNC(28)	112	112
8	δ CCC(11), τ NCCC(15), τ CNNC(18), τ CCCC(13)	145	133
9	δ CNN(10), δ CCN(11), δ CCC(20)	156	157
10	ν CC(13), δ CCC(12), δ NNC(11)	171	172
11	δ CCN(20), δ CCC(17), τ HCCN(16)	204	201
12	δ CCC(15), τ HCCC(12), τ CNNC(36)	216	208
13	τ HCCC(27)	223	218
14	δ CCC(12), τ NCCC(11), τ NCNN(11)	234	228
15	τ HCCC(29), τ HCCN(13)	248	246

Tablo 3.21.'in devamı

16	δ CCC(13), τ HCCC(13), τ HCCN(16)	268	267
17	δ CCC(12), τ HNNC(10), τ NCNN(19), τ CCCC(18), τ NNCN(17)	299	299
18	δ CCC(48)	304	304
19	τ NNCN(12)	342	345
20	δ CCC(11)	368	372
21	τ CCCC(78)	399	410
22	δ NNC(11), δ OCN(13), δ CCC(20)	411	414
23	δ CCC(13), τ CCCC(23), τ NNCN(12)	430	436
24	v CC(10), δ CCC(14)	454	455
25	τ HNNC(43), τ ONNC(11)	462	463
26	$\delta CCC(12), \tau CCCC(15)$	545	548
27	$\delta CCC(11)$, $\tau CCCC(24)$	551	561
28	$\delta OCN(26), \delta CNN(18)$	563	571
29	v CC(17)	595	599
30	δ CCCO	632	632
31	τ ΟΝΝC(20), τ CNNC(13)	676	694
32	ν CC(17), τ ONNC(19)	696	706
33	τ ONNC(38)	699	740
34	τ CCCC(40)	727	756
35	τ HCCN(12)	757	771
36	δ NNC(17)	768	775
37	v NC(13), v NN(17), δ CNN(13)	790	800
38	τ HCCC(42)	820	851
39	τ HCCC(41)	826	857
40	δ NNC(13), δ NCC(14), δ CCC(12)	856	861
41	v CC(54)	866	865
42	δ HCH(10), τ HCCC(44)	898	907
43	ν CC(50), δ NNC(11)	927	930
44	ν CC(27), τ HCCC(15)	928	933
45	ν CC(10), τ HCCC(27)	934	980
46	τ HCCC(43)	944	997
47	τ HCNN(83)	981	1001
48	δ HCC(16), δ CCC(50)	995	1019
49	ν CC(24), δ NNC(14)	1001	1035
50	ν CC(11), τ HCCC(13)	1038	1045
51	v NN(17)	1040	1060
52	τ HCCN(14), τ HCCC(14)	1058	1078
53	ν CC(45), τ HCCC(10)	1081	1083
54	v NN(12), τ HCCN(18), τ HCCC(10), τ CCCN(10)	1086	1096
55	v CC(16), 8 HCC(48)	1096	1112
56	τ HCCC(10)	1133	1123
57	$v CC(10), \delta HCC(44)$	1158	1166
58	$v NC(16), v NN(10), \delta HCC(29)$	1168	11/6
59	$v CC(21), \delta HCC(17)$	1191	1193
60	V CC(20)	1209	1213
01	$0 HCC(4/), \tau HCCN(11)$	1239	1220
02 63	V NN(15), 0 NCN(10), T HCCN(12) 8 HCC(27)	1230	1205
64	$0 \Pi C (27)$ v CC(12) S HCC(40)	1212	1290
65	$\tau = \Pi(CC(12), 0 \Pi(CC(40)))$	1294	1221
66	$\tau HCCN(20)$	1277	1347
67	δ HCC(39)	1337	1346
68	$v NC(16) \delta HNN(47) \delta HCN(11)$	1341	1378
60	$\frac{1}{8} \text{HNN}(10) \text{ & HCN}(26)$	1356	1384
70	δ HCH(34)	1358	1390
71	δ HCN(10). δ HCH(57)	1368	1395
· · -	(),()		

1 ablo 3.21. in devami	ablo 3.21.'in dev	amı
------------------------	-------------------	-----

72	δ HCH(63)	1378	1400
73	ν CC(22), δ HCC(28)	1404	1420
74	ν NC(18), δ HCN(17)	1416	1444
75	δ HCH(37)	1425	1448
76	δ HCH(36)	1444	1452
77	δ HCH(39)	1447	1457
78	δ HCH(49)	1454	1461
79	δ HCH(53)	1459	1467
80	δ HCH(33)	1465	1471
81	δ HCH(35)	1467	1474
82	δ HCC(51), δ CCC(12)	1497	1519
83	v CC(30)	1551	1585
84	v NC(54)	1588	1635
85	ν NC(25), ν CC(34), δ HCC(11)	1596	1682
86	v NC(35), v CC(20)	1614	1711
87	v OC(74), v NC(13)	1751	1771
88	v CH(33)	2917	2859
89	v CH(46)	2923	2863
90	v CH(50)	2927	2870
91	v CH(39)	2938	2873
92	v CH(60)	2950	2902
93	v CH(50)	2989	2917
94	v CH(45)	2995	2924
95	v CH(52)	2996	2927
96	v CH(39)	3001	2930
97	v CH(55)	3002	2933
98	v CH(41)	3008	2941
99	v CH(58)	3023	2958
100	v CH(47)	3051	3003
101	v CH(90)	3054	3006
102	v CH(66)	3056	3022
103	v CH(49)	3073	3036
104	v CH(26)	3091	3043
105	v NH(100)	3556	3556

Şekil 3.6. 6 tipi bileşiğin deneysel (a) ve teorik (B3LYP 6-31G(d,p)(b) ve HF 6-31G(d,p)(c)) IR spektrumları

269.43/192.46	4.6018/6.4420
Şekil 3.7. 6 tipi bileşiğin teorik ()	B3LYP ve HF) UV-vis spektrumları ve değerleri (cm ⁻¹)

Tablo 3.22. 6 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(34)-C(1)-N(35)	111.330	111.199	31	C(4)-C(9)-H(20)	119.330	119.660
2	N(34)-N(33)-C(2)	114.507	113.689	32	C(4)-C(5)-H(17)	119.061	119.480
3	N(34)-N(33)-H(15)	120.491	121.055	33	H(17)-C(5)-C(6)	120.604	120.206
4	H(15)-N(33)-C(2)	124.993	125.239	34	C(5)-C(6)-H(18)	119.357	119.142
5	N(33)-C(2)-O(37)	129.810	129.278	35	H(18)-C(6)-C(7)	119.097	119.393
6	O(37)-C(2)-N(35)	128.989	128.728	36	C(4)-C(9)-C(8)	120.843	120.870
7	N(35)-C(1)-C(13)	123.864	123.923	37	C(9)-C(8)-C(7)	121.009	120.896
8	N(34)-C(1)-C(13)	124.796	124.870	38	C(7)-C(6)-C(5)	121.546	121.465
9	C(1)-C(13)-C(14)	113.417	112.950	39	H(19) -C(8)-C(7)	119.887	120.157
10	C(1)-C(13)-H(28)	108.794	108.855	40	H(19) -C(8)-C(9)	119.104	118.947
11	C(1)-C(13)-H(29)	106.581	106.449	41	H(20) -C(9)-C(8)	119.827	119.470
12	H(28)-C(13)-H(29)	107.856	108.085	42	C(8)-C(7)-C(6)	117.843	117.891
13	H(28)-C(13)-C(14)	109.642	110.056	43	C(8)-C(7)-C(10)	121.472	121.634
14	H(29)-C(13)-C(14)	110.364	110.274	44	C(6)-C(7)-C(10)	120.685	120.476
15	C(13)-C(14)-H(30)	110.849	110.737	45	C(7)-C(10)-C(11)	111.790	111.879
16	C(13)-C(14)-H(31)	110.154	109.925	46	C(7)-C(10)-H(21)	106.988	106.928
17	C(13)-C(14)-H(32)	110.899	111.235	47	H(21) -C(10)-(11)	107.429	107.310
18	H(30)-C(14)-H(31)	108.139	108.093	48	H(21) -C(10)-(12)	107.441	107.312
19	H(30)-C(14)-H(32)	108.479	108.556	49	H(22)-C(11)-(23)	108.178	108.130
20	H(31)-C(14)-H(32)	108.229	108.200	50	H(22)-C(11)-(24)	107.740	107.847
21	N(33)-C(2)-N(35)	101.201	101.994	51	H(23)-C(11)-(24)	107.648	107.690
22	C(2)-N(35)-C(1)	108.392	108.131	52	C(10)-C(11)-(22)	111.271	111.111
23	C(2)-N(35)-N(36)	130.319	130.661	53	C(10)-C(11)-(23)	110.557	110.445
24	C(1)-N(35)-N(36)	121.256	121.142	54	C(10)-C(11)-(24)	111.298	111.475
25	N(35)-N(36)-C(3)	118.685	119.740	55	C(10)-C(12)-(25)	110.555	110.446
26	N(36)-C(3)-H(16)	121.868	122.168	56	C(10)-C(12)-(26)	111.306	111.472
27	H(16)-C(3)-C(4)	117.798	117.293	57	C(10)-C(12)-(27)	111.306	111.109

Tablo 3.22.'nin devamı

28	N(36)-C(3)-C(4)	120.334	120.539	58	H(25)-C(12)-(26)	107.621	107.693
29	C(3)-C(4)-C(5)	122.942	122.807	59	H(25)-C(12)-(27)	108.165	108.131
30	C(3)-C(4)-C(9)	118.634	118.628	60	H(26)-C(12)-(27)	107.751	107.846

Tablo 3.23. 6 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	Uzunlukları	B3LYP	HF	B	ağ Uzunlukları	B3LYP	HF
1	C(1)-N(34)	1.3011	1.2697	20	C(4)-C(9)	1.4041	1.3894
2	C(1)-N(35)	1.3899	1.3800	21	C(5)-H(17)	1.0847	1.0739
3	C(1)-C(13)	1.4928	1.4943	22	C(5)-C(6)	1.3895	1.3806
4	N(34)-N(33)	1.3816	1.3709	23	C(6)-H(18)	1.0872	1.0763
5	N(33)-H(15)	1.0067	0.9905	24	C(6)-C(7)	1.4042	1.3933
6	N(33)-C(2)	1.3700	1.3459	25	C(7)-C(8)	1.4021	1.3903
7	C(2)-O(37)	1.2237	1.2030	26	C(8)-H(19)	1.0863	1.0755
8	C(2)-N(35)	1.4179	1.3864	27	C(8)-C(9)	1.3915	1.3834
9	N(35)-N(36)	1.3740	1.3676	28	C(9)-H(20)	1.0870	1.0766
10	C(13)-H(28)	1.0950	1.0838	29	C(7)-C(10)	1.5219	1.5217
11	C(13)-H(29)	1.0935	1.0828	30	C(10)-H(21)	1.0978	1.0868
12	C(13)-C(14)	1.5387	1.5325	31	C(10)-C(11)	1.5405	1.5347
13	C(14)-H(30)	1.0939	1.0847	32	C(11)-H(22)	1.0942	1.0849
14	C(14)-H(31)	1.0941	1.0848	33	C(11)-H(23)	1.0952	1.0860
15	C(14)-H(32)	1.0928	1.0831	34	C(11)-H(24)	1.0954	1.0857
16	N(36)-C(3)	1.2901	1.2609	35	C(10)-C(12)	1.5404	1.5347
17	C(3)-H(16)	1.0883	1.0751	36	C(12)-H(25)	1.0952	1.0860
18	C(3)-C(4)	1.4639	1.4739	37	C(12)-H(26)	1.0953	1.0857
19	C(4)-C(5)	1.4049	1.3914	38	C(12)-H(27)	1.0942	1.0849

Tablo 3.24. 6 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.529	0.604	H20	0.095	0.164
C2	0.815	1.051	H21	0.090	0.124
C3	0.111	0.178	H22	0.109	0.122
C4	0.084	-0.085	H23	0.103	0.114
C5	-0.098	-0.112	H24	0.104	0.110
C6	-0.141	-0.176	H25	0.103	0.114
C7	0.150	0.022	H26	0.104	0.110
C8	-0.128	-0.156	H27	0.110	0.122
С9	-0.127	-0.144	H28	0.129	0.153
C10	-0.131	-0.153	H29	0.129	0.159
C11	-0.305	-0.314	H30	0.130	0.141
C12	-0.305	-0.314	H31	0.109	0.123
C13	-0.223	-0.252	H32	0.118	0.130
C14	-0.325	-0.348	N33	-0.435	-0.566
H15	0.288	0.338	N34	-0.339	-0.352
H16	0.158	0.228	N35	-0.417	-0.625
H17	0.104	0.177	N36	-0.324	-0.329
H18	0.083	0.150	O37	-0.542	-0.659
H19	0.085	0.152			

E_{HOMO} (B3LYP) : -0.21565 Hatree

E_{LUMO} (B3LYP) : -0.05459 Hatree

E_{HOMO} (HF) : -0.30779 Hatree

E_{LUMO} (HF) : 0.08987 Hatree

Şekil 3.8. 6 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.25. 6 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	-1.8485	-2.3189
$\mu_{ m y}$	1.7832	2.0808
μ _z	-1.4982	-1.6703
μ _{Toplam}	2.9734	3.5351

Tablo 3.26. 6 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) öntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-838.575	-833.307

3.4.3. 3-(*n*-Propil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (7)

Şekil 3.9. 7 tipi bileşiğin(6-31G(d,p)) gausview görünümü

Tablo 3.27. 7 tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR deneysel ve teorik	(B3LYP,
HF, B3LYP (DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ/ppm)	

No	Donovaol	D21 VD	Fork	B3LYP/	Fark/	шБ	Fork	HF/	Fark/
INO	Deneysei	DJLYP	гагк	DMSO	DMSO	пг	гагк	DMSO	DMSO
C1	153.73	152.13	1.60	153.51	0.22	146.60	-145.00	148.54	5.19
C2	151.34	152.30	-0.96	153.04	-1.70	146.01	-146.97	146.75	4.59
C3	152.15	154.33	-2.18	155.08	-2.93	148.76	-150.94	149.73	2.42
C4	131.27	137.27	-6.00	136.28	-5.01	126.66	-132.66	125.59	5.68
C5	127.71	127.78	-0.07	127.36	0.35	123.14	-123.21	122.74	4.97
C6	126.94	132.17	-5.23	132.49	-5.55	123.34	-128.57	123.45	3.49
C7	146.86	154.62	-7.76	156.58	-9.72	148.00	-155.76	149.69	-2.83
C8	126.94	128.73	-1.79	129.36	-2.42	120.70	-122.49	121.06	5.88
С9	127.71	136.23	-8.52	136.53	-8.82	130.22	-138.74	130.59	-2.88
C10	33.44	47.63	-14.19	47.44	-14.00	29.47	-43.66	29.22	4.22
C11	23.54	33.16	-9.62	32.73	-9.19	20.27	-29.89	19.80	3.74
C12	23.54	33.06	-9.52	32.63	-9.09	20.28	-29.80	19.82	3.72
C13	26.75	38.73	-11.98	38.57	-11.82	24.38	-36.36	24.25	2.50
C14	18.94	33.16	-14.22	33.32	-14.38	17.35	-31.57	17.40	1.54
C15	13.47	24.14	-10.67	23.75	-10.28	12.25	-22.92	11.84	1.63
H16	11.85	7.94	3.91	8.41	3.44	7.17	-3.26	7.60	4.25
H17	9.69	11.08	-1.39	11.02	-1.33	10.28	-11.67	10.24	-0.55

H18	7.74	9.10	-1.36	9.14	-1.40	8.85	-10.21	8.91	-1.17
H19	7.38	8.08	-0.70	8.27	-0.89	7.74	-8.44	7.95	-0.57
H20	7.38	8.34	-0.96	8.54	-1.16	7.89	-8.85	8.10	-0.72
H21	7.74	8.22	-0.48	8.35	-0.61	8.05	-8.53	8.22	-0.48
H22	2.95	3.57	-0.62	3.71	-0.76	2.75	-3.37	2.92	0.03
H23	1.22	2.10	-0.88	2.06	-0.84	1.47	-2.35	1.41	-0.19
H24	1.22	2.10	-0.88	2.17	-0.95	1.48	-2.36	1.56	-0.34
H25	1.22	2.14	-0.92	2.18	-0.96	1.55	-2.47	1.60	-0.38
H26	1.22	2.09	-0.87	2.16	-0.94	1.48	-2.35	1.55	-0.33
H27	1.22	2.15	-0.93	2.20	-0.98	1.55	-2.48	1.60	-0.38
H28	1.22	2.11	-0.89	2.06	-0.84	1.48	-2.37	1.41	-0.19
H29	2.64	3.67	-1.03	3.77	-1.13	2.84	-3.87	2.98	-0.34
H30	2.64	3.18	-0.54	3.24	-0.60	2.50	-3.04	2.56	0.08
H31	1.69	2.99	-1.30	2.94	-1.25	2.20	-3.50	2.16	-0.47
H32	1.69	2.34	-0.65	2.37	-0.68	1.65	-2.30	1.66	0.03
H33	0.96	1.90	-0.94	1.97	-1.01	1.34	-2.28	1.43	-0.47
H34	0.96	2.05	-1.09	2.07	-1.11	1.51	-2.60	1.52	-0.56
H35	0.96	1.84	-0.88	1.89	-0.93	1.29	-2.17	1.34	-0.38

Tablo 3.27.'nin devamı

Tablo 3.28. 7 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ NCCC(33), τ CCCC(27)	19	15
2	τ NCNN(22), τ NNCN(15), τ CCCC(11)	31	29
3	δ NCC(17), δ CCC(10), τ CCCN(20)	39	36
4	τ NCCC(21), τ CCCC(22)	48	47
5	τ CNNC(19), τ CCCN(11)	67	66
6	δ CCC(10), τ CCCN(15), τ CNNC(11)	79	76
7	τ HCCN(19), τ CCCN(54)	90	88
8	τ NCNN(16), τ CCCC(11), τ NNCN(12), τ CNNC(14)	99	101
9	δ CCC(10), τ NCCC(17), τ CNNC(23), τ CCCC(17)	142	129
10	δ CNN(14), δ CCC(27)	164	164
11	ν CC(18), δ NNC(10)	171	171
12	δ CCC(16), τ CNNC(45)	199	195
13	τ HCCC(26)	224	212
14	τ HCCC(49)	229	227
15	δ CCC(10), τ HCCC(15), τ NCNN(11)	236	231
16	τ HCCC(17)	245	244
17	τ HCCC(31)	262	261
18	δ CCC(25)	294	295
19	τ NCNN(13), τ CCCC(10), τ NNCN(12)	299	299
20	δ CCC(47)	302	303
21	τ NNCN(19)	333	337
22	δ CCN(11), δ CCC(10)	363	366
23	τ HCCC(19), τ CCCC(70)	400	410
24	δ NNC(12), δ OCN(13), δ CCC(18)	412	415
25	δ CCC(12), τ CCCC(21)	429	436
26	τ HNNC(28)	454	455
27	τ HNNC(27)	458	459
28	δ CCC(11), τ CCCC(16)	549	550

Tablo	3.28.'	in	devamı
-------	--------	----	--------

30 δ OCN(35), CNN(15) 572 31 v CC(11), δ CCC(14) 623 32 δ OCN(35), CNN(15) 572	582 627 635
31 v CC(11), δ CCC(14) 623	627 635
	635
32 8 6 CCC(29) 631	(02
33 τ ONNC(19) 679	093
34 τ ONNC(53) 695	710
35 ν CC(11), τ HCCN(16) 704	730
36 τ HCCN(12) τ CCCC(20) 727	740
τ HCCN(22) τ CCCC(11) 728	758
$\frac{1}{38} \qquad	784
$\frac{39}{1000} v NC(18) \delta CNN(21) $	803
40 τ HCCC(38) 820	851
41 τ HCCC(60) 828	857
47 δ HCC(13) τ HCCN(18) τ HCCC(16) 849	857
$\begin{array}{c} 42 \\ 43 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ $	861
$\nu CC(54)$ 866	865
45 $V CC(50) = HCCC(17)$ 870	872
46 δ HCH(11) τ HCCC(43) 000	0/2 007
40 0 $11(11), 11000(45)$ 000	022
$\frac{47}{49} \qquad	933
40 $t \operatorname{HCCC}(20)$ 534 40 $\tau \operatorname{HCCC}(46) = \tau \operatorname{CCCC}(15)$ 645	900
49 $t \operatorname{HCCN}(40), t \operatorname{CCCC}(15)$ 50 $r \operatorname{HCNN}(20)$ 091	007
50 1 HCININ(80) 961 51 8 CCC(60) 905	997 1001
51 $0 CCC(00)$ 57 52 $11 CC(25) \le NNC(12)$ 007	1001
52 $V CC(55), 0 INIC(15)$ 53	1029
53 $V CC(49)$ 1014 54 $U CC(12) = HCCC(17)$ 1029	1030
54 $V CC(15), t HCCC(17)$ 1056 55 $V NC(14) \times NN(28)$ 1046	1045
56 $V \operatorname{RC}(14), V \operatorname{RC}(26)$ 1040 56 $V \operatorname{CC}(20), \delta \operatorname{CCC}(14), \tau \operatorname{HCCC}(21)$ 1073	1071
57 $V CC(47), \sigma HCCC(10)$ 1075	1081
58 $\nu CC(12) \delta HCC(25) \tau HCCN(12)$ 1002	1006
50 $V CC(12), 0 HCC(25), t HCCN(12)$ 1094	1110
$\frac{\delta HCC(10)}{\delta HCC(10)} \neq HCCC(10) \qquad 1134$	1173
$\begin{array}{c} 61 \\ & \delta HCC(48) \\ & 1158 \end{array}$	1125
$\begin{array}{c} 67 \\ 1150$	1176
$\begin{array}{c} 62 \\ 63 \\ \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	1193
V CC(18) 1200	1213
65 δ HCC(47) τ HCCC(16) 1218	1215
$\frac{66}{1210} = \frac{1210}{1210}$	1220
$\begin{array}{c} 67 \\ 67 \\ 67 \\ 8 \\ HCC(23) \\ 1270 \\ 1$	1255
$\begin{array}{c} 68 \\ \hline \tau \ HCCN(35) \\ 1273 \end{array}$	1270
$\begin{array}{c} 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 $	1295
70 $v CC(31) \delta HCC(38)$ 1205	1277
71 τ HCCC(26) 1294	1321
72 $v CC(20) \delta HCC(40)$ 1336	1345
73 τ HCCN(48) 1340	1368
73 $V NC(15) \delta HNN(49) \delta HCN(11)$ 1342	1381
75 δ HNN(16) δ HCN(26) δ HCCN(11) 1358	1384
76 δ HCH(26) 1250	1395
77 δ HCH(38) 1272	1397
78 δ HCH(66) 1379	1400
79 $v CC(27) \delta HCC(25)$ 1404	1420
80 $v NC(14) \delta HCN(18)$ 1416	1442
81 δ HCH(27) 1425	1451

82	δ HCH(37)	1444	1452
83	δ HCH(36)	1448	1457
84	δ HCH(44), τ HCCC(12)	1451	1460
85	δ HCH(35), τ HCCC(19)	1455	1463
86	δ HCH(52)	1460	1467
87	δ HCH(60), τ HCCC(10)	1464	1471
88	δ HCH(34)	1465	1472
89	ν CC(10), δ HCC(53), δ CCC(12)	1497	1519
90	ν CC(26), δ CCC(12), δ HCC(13)	1551	1585
91	v NC(54)	1587	1635
92	ν NC(24), ν CC(40), δ HCC(11)	1596	1682
93	v NC(35), v CC(13)	1614	1711
94	v OC(73), v NC(12)	1751	1771
95	v CH(33)	2917	2858
96	v CH(93)	2923	2859
97	v CH(47)	2924	2863
98	v CH(32)	2927	2870
99	v CH(85)	2931	2874
100	v CH(86)	2944	2896
101	v CH(57)	2968	2904
102	v CH(52)	2987	2917
103	v CH(49)	2990	2922
104	v CH(47)	2995	2924
105	v CH(90)	2997	2925
106	v CH(43)	3001	2927
107	v CH(62)	3001	2930
108	v CH(44)	3002	2946
109	v CH(28)	3051	3003
110	v CH(85)	3054	301
111	v CH(63)	3056	3022
112	v CH(49)	3072	3036
113	v CH(26)	3092	3043
114	v NH(100)	3557	3556

Şekil 3.10. 7 tipi bileşiğin deneysel (a) ve teorik (B3LYP 6-31G(d,p)(b) ve HF 6-31G(d,p)(c) IR spektrumları (cm⁻¹)

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF
311.43/237.37	3.9812/5.2231
274.83/214.00	4.5113/5.7935
269.90/192.54	4.5937/6.4395

Şekil 3.11. 7 tipi bileşiğin teorik (B3LYP, HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(37)-C(1)-N(38)	111.302	111.178	32	C(3)-C(4)-C(9)	118.706	118.631
2	N(37)-N(36)-C(2)	114.510	113.689	33	C(4)-C(9)-H(21)	119.339	119.659
3	N(37)-N(36)-(16)	120.485	121.057	34	C(4)-C(5)-H(18)	119.039	119.472
4	H(16)-N(36)-C(2)	125.000	125.235	35	H(18)-C(5)-C(6)	120.616	120.211
5	N(36)-C(2)-O(40)	129.827	129.274	36	C(5)-C(6)-H(19)	119.359	119.145
6	O(40)-C(2)-N(38)	128.971	128.729	37	H(19)-C(6)-C(7)	119.097	119.390
7	N(38)-C(1)-C(13)	123.870	123.923	38	C(4)-C(9)-C(8)	120.835	120.871
8	N(37)-C(1)-C(13)	124.812	124.890	39	C(9)-C(8)-C(7)	121.013	120.897
9	C(1)-C(13)-C(14)	113.599	113.099	40	C(7)-C(6)-C(5)	121.544	121.465
10	C(1)-C(13)-H(29)	109.009	108.911	41	H(20)-C(8)-C(7)	119.886	120.157
11	C(1)-C(13)-H(30)	106.787	106.559	42	H(20)-C(8)-C(9)	119.101	118.946
12	H(29)-C(13)-H(30)	107.832	108.059	43	H(21)-C(9)-C(8)	119.827	119.470
13	H(29)-C(13)-C(14)	109.354	109.943	44	C(8)-C(7)-C(6)	117.839	117.889
14	H(30)-C(13)-C(14)	110.082	110.100	45	C(8)-C(7)-C(10)	121.500	121.637
15	C(13)-C(14)-H(31)	108.908	109.419	46	C(6)-C(7)-C(10)	120.661	120.474
16	C(13)-C(14)-H(32)	108.832	108.859	47	C(7)-C(10)-C(11)	111.760	111.883
17	H(31)-C(14)-H(32)	106.894	107.041	48	C(7)-C(10)-H(22)	106.966	106.927
18	H(31)-C(14)-C(15)	109.959	109.742	49	H(22)-C(10)-C(11)	107.440	107.309
19	H(32)-C(14)-C(15)	109.948	109.747	50	H(22)-C(10)-C(12)	107.440	107.310
20	C(14)-C(15)-H(33)	111.261	111.191	51	H(23)-C(11)-H(24)	108.184	108.130
21	C(14)-C(15)-H(34)	111.096	110.896	52	H(23)-C(11)-H(25)	107.738	107.847
22	C(14)-C(15)-H(35)	111.350	111.287	53	H(24)-C(11)-H(25)	107.644	107.689
23	N(36)-C(2)- N(38)	101.202	101.997	54	C(10)-C(11)-H(23)	111.261	111.111
24	C(2)-N(38)-C(1)	108.404	108.136	55	C(10)-C(11)-H(24)	110.576	110.446
25	C(2)-N(38)-N(39)	130.279	130.638	56	C(10)-C(11)-H(25)	111.290	111.474
26	C(1)-N(38)-N(39)	121.275	121.164	57	C(10)-C(12)-H(26)	110.561	110.447
27	N(38)-N(39)-C(3)	118.758	119.749	58	C(10)-C(12)-H(27)	111.311	111.471
28	N(39)-C(3)-H(17)	121.903	122.174	59	C(10)-C(12)-H(28)	111.279	111.110
29	H(17)-C(3)-C(4)	117.840	117.292	60	H(26)-C(12)-H(27)	107.634	107.693
30	N(39)-C(3)-C(4)	120.257	120.535	61	H(26)-C(12)-H(27)	108.172	107.693
31	C(3)-C(4)-C(5)	122.871	122.809	62	H(27)-C(12)-H(28)	107.735	107.845

Tablo 3.29. 7 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.30. 7 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	g Uzunlukları	B3LYP	HF	Ba	ğ Uzunlukları	B3LYP	HF
1	C(1)-N(37)	1.3012	1.2698	22	C(4)-C(5)	1.4048	1.3914
2	C(1)-N(38)	1.3902	1.3802	23	C(4)-C(9)	1.4042	1.3894
3	C(1)-C(13)	1.4918	1.4937	24	C(5)-H(18)	1.0847	1.0739
4	N(37)-N(36)	1.3817	1.3708	25	C(5)-C(6)	1.3894	1.3806
5	N(36)-H(16)	1.0067	0.9905	26	C(6)-H(19)	1.0872	1.0763
6	N(36)-C(2)	1.3700	1.3458	27	C(6)-C(7)	1.4042	1.3933
7	C(2)-O(40)	1.2237	1.2031	28	C(7)-C(8)	1.4022	1.3902
8	C(2)-N(38)	1.4179	1.3864	29	C(8)-H(20)	1.0864	1.0755
9	N(38)-N(39)	1.3736	1.3675	30	C(8)-C(9)	1.3916	1.3834
10	C(13)-H(29)	1.0959	1.0845	31	C(9)-C(21)	1.0870	1.0766
11	C(13)-H(30)	1.0943	1.0836	32	C(7)-C(10)	1.5220	1.5217
12	C(13)-C(14)	1.5423	1.5351	33	C(10)-H(22)	1.0978	1.0868
13	C(14)-H(31)	1.0951	1.0849	34	C(10)-C(11)	1.5403	1.5347
14	C(14)-H(32)	1.0965	1.0866	35	C(11)-H(23)	1.0942	1.0849
15	C(14)-C(15)	1.5305	1.5271	36	C(11)-H(24)	1.0952	1.0860

Tablo 3.30.' un devamı 1.0959 1.0864 37 1.0953 16 C(15)-H(33) C(11)-H(25) 1.0857 17 C(15)-H(34) 1.0944 1.0851 38 C(10)-C(12) 1.5403 1.5347 18 1.0958 39 1.0952 C(15)-H(35) 1.0863 C(12)-H(26) 1.0860 19 N(39)-C(3) 1.2901 1.2608 40 C(12)-H(27) 1.0953 1.0857 20 C(3)-H(17) 1.0884 1.0751 41 C(12)-H(28) 1.0942 1.0849 C(3)-C(4)1.4640 1.4739 21

Tablo 3.31. 7 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.522	0.601	H21	0.095	0.164
C2	0.815	1.051	H22	0.090	0.124
C3	0.111	0.178	H23	0.109	0.122
C4	0.084	-0.085	H24	0.102	0.114
C5	-0.097	-0.112	H25	0.102	0.110
C6	-0.141	-0.176	H26	0.104	0.114
C7	0.150	0.022	H27	0.104	0.110
C8	-0.128	-0.156	H28	0.110	0.122
С9	-0.127	-0.144	H29	0.124	0.151
C10	-0.131	-0.153	H30	0.125	0.157
C11	-0.305	-0.314	H31	0.120	0.140
C12	-0.305	-0.314	H32	0.107	0.128
C13	-0.212	-0.241	Н33	0.105	0.113
C14	-0.184	-0.232	H34	0.106	0.121
C15	-0.320	-0.339	H35	0.106	0.115
H16	0.287	0.338	N36	-0.435	-0.567
H17	0.157	0.228	N37	-0.342	-0.353
H18	0.104	0.176	N38	-0.418	-0.627
H19	0.083	0.149	N39	-0.323	-0.329
H20	0.085	0.152	O40	-0.542	-0.659

E_{HOMO} (B3LYP) : -0.21537 Hatree

E_{HOMO} (HF) : -0.30759 Hatree

E_{LUMO} (B3LYP) : -0.05441 Hatree

 E_{LUMO} (HF) : 0.09004 Hatree

Şekil 3.12. 7 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.32. 7 tipi bileşiğin B3LYP 6-31G (d,p) ve HF 6-31G (d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ_{x}	1.7606	2.2219
$\mu_{\rm v}$	1.7470	2.0467
μ_z	1.6259	1.8241
μ _{Toplam}	2.9657	3.5289

Tablo 3.33. 7 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-877.892	-872.345

3.4.4. 3-Benzil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (8)

Şekil 3.13. 8 tipi bileşiğin (6-31G(d,p)) gausview görünümü

Tablo 3.34. 8 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP (DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ/ppm)

No	Danaysa	I BALV	D Farlz	B3LYP	/ Fark	/ нғ	Fork	HF/	Fark/
110	Deneyse	I DJLI		DMSO	DMS	0 111	I' AI K	DMSO	DMSO
C1	151.27	151.96	-0.69	153.51	-2.24	145.97	5.30	148.24	3.03
C2	153.49	152.10	1.39	152.78	0.71	145.94	7.55	146.63	6.86
C3	152.19	154.26	-2.07	155.12	-2.93	148.86	3.33	149.93	2.26
C4	131.21	137.25	-6.04	136.24	-5.03	126.59	4.62	125.51	5.70
C5	127.78	127.95	-0.17	127.50	0.28	123.28	4.50	122.86	4.92
C6	126.95	132.16	-5.21	132.46	-5.51	123.36	3.59	123.44	3.51
C7	146.18	154.72	-8.54	156.70	-10.52	148.08	-1.90	149.79	-3.61
C8	126.95	128.78	-1.83	129.43	-2.48	120.69	6.26	121.08	5.87
C9	127.78	136.16	-8.38	136.51	-8.73	130.22	-2.44	130.65	-2.87
C10	33.44	47.71	-14.27	47.52	-14.08	29.48	3.96	29.23	4.21
C11	23.55	33.27	-9.72	32.84	-9.29	20.27	3.28	19.81	3.74
C12	23.55	33.27	-9.72	32.84	-9.29	20.28	3.27	19.81	3.74
C13	31.08	43.11	-12.03	42.61	-11.53	28.02	3.06	27.58	3.50
C14	135.82	137.76	-1.94	138.19	-2.37	129.77	6.05	130.16	5.66
C15	128.74	133.44	-4.70	133.38	-4.64	126.53	2.21	126.44	2.30
C16	128.43	130.98	-2.55	131.31	-2.88	124.56	3.87	124.81	3.62
C17	126.69	129.75	-3.06	130.08	-3.39	123.30	3.39	123.56	3.13
C18	128.43	130.98	-2.55	131.31	-2.88	124.56	3.87	124.81	3.62
C19	128.74	133.44	-4.70	133.38	-4.64	126.53	2.21	126.44	2.30
H20	11.99	7.91	4.08	8.37	3.62	7.15	4.84	7.56	4.43
H21	9.66	11.06	-1.40	11.01	-1.35	10.30	-0.64	10.27	-0.61
H22	7.71	9.12	-1.41	9.15	-1.44	8.89	-1.18	8.95	-1.24
H23	7.36	8.09	-0.73	8.27	-0.91	7.75	-0.39	7.95	-0.59
H24	7.36	8.37	-1.01	8.57	-1.21	7.90	-0.54	8.12	-0.76
H25	7.71	8.23	-0.52	8.37	-0.66	8.07	-0.36	8.25	-0.54
H26	2.94	3.59	-0.65	3.73	-0.79	2.76	0.18	2.92	0.02
H27	1.22	2.10	-0.88	2.06	-0.84	1.48	-0.26	1.42	-0.20
H28	1.22	2.10	-0.88	2.16	-0.94	1.49	-0.27	1.56	-0.34
H29	1.22	2.15	-0.93	2.20	-0.98	1.56	-0.34	1.61	-0.39
H30	1.22	2.10	-0.88	2.16	-0.94	1.49	-0.27	1.56	-0.34
H31	1.22	2.15	-0.93	2.20	-0.98	1.56	-0.34	1.61	-0.39

Tablo 3.34.' ün devamı

1 4010	ete il an a	e i unin							
H32	1.22	2.10	-0.88	2.06	-0.84	1.48	-0.26	1.42	-0.20
H33	4.05	4.71	-0.66	4.85	-0.80	4.01	0.04	4.20	-0.15
H34	4.05	4.70	-0.65	4.85	-0.80	4.00	0.05	4.20	-0.15
H35	7.30	8.19	-0.89	8.35	-1.05	7.88	-0.58	8.08	-0.78
H36	7.33	8.25	-0.92	8.42	-1.09	7.92	-0.59	8.12	-0.79
H37	7.23	8.20	-0.97	8.37	-1.14	7.87	-0.64	8.06	-0.83
H38	7.33	8.25	-0.92	8.42	-1.09	7.92	-0.59	8.12	-0.79
H39	7.30	8.19	-0.89	8.35	-1.05	7.88	-0.58	8.08	-0.78

Tablo 3.35. 8 tipi bileşiğin Deneysel ve Teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR Değerleri (cm⁻¹)

	TITREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ CNNC(27), τ CCCN(32)	12	14
2	τ CCCC(85)	17	17
3	τ CNNC(18), τ NNCC(11), τ CCCC(13)	23	31
4	δ NCC(17), δ CCN(23)	30	32
5	τ CCCN(20), τ CCNN(19), τ NNCC(11), τ CCCC(16)	33	33
6	τ CCCN(24), τ CCCC(43)	48	50
7	δ CCN(13), δ CCC(13), τ CCCC(26)	72	79
8	τ CNNC(14), τ CCCN(12), τ CNNC(13), τ NNCC(19)	87	93
9	δ NCC(20), δ CCC(14)	126	131
10	τ CCCN(10), τ CNNC(11), τ NNCC(18), τ NCNC(14)	128	136
11	τ CNNC(27), τ NNCC(11)	158	160
12	ν CC(11), δ CCC(14), δ NCN(23), δ NNC(10)	170	183
13	δ NCC(16), δ CCC(26), τ CCCC(13)	203	221
14	τ HCCC(33), τ CCCN(14)	219	224
15	v CC(12), δ CCC(11), τ CCCC(19)	226	243
16	δ CCC(12), τ CCCN(20), τ NNCC(15)	233	246
17	τ HCCC(36)	251	271
18	τ HNNC(23), τ CNNC(30), τ NNCC(17)	269	294
19	δ CCC(46)	299	321
20	δ CCC(14), τ CCCN(16), τ CCNN(27)	301	324
21	δ CCC(32), τ HCCC(13)	318	349
22	δ NNC(11), δ CCC(19)	341	365
23	τ CCCC(80), τ HCCC(17)	399	437
24	τ HCCC(17), τ CCCN(57), τ CCCC(80)	400	437
25	δ CCC(12), δ OCN(18), δ NCN(18)	405	438
26	τ HNNC(22), τ CCCN(16), τ NCNC(10)	422	458
27	τ HNNC(35), τ ONNC(12)	440	476
28	ν CC(12), δ CCC(17), τ CCCC(15)	453	487
29	τ HCCC(11), τ CCCC(28)	465	505
30	δ OCN(13), δ CCC(13)	537	578
31	τ HCCC(29), τ CCCC(27)	551	593
32	δ CCC(22), τ CCCC(10)	553	600
33	δ OCN(18), δ CCC(13), δ NNC(11)	595	643
34	δ CCC(51)	611	655
35	δ CCC(42), τ NNCC(13), τ NCNC(39)	629	676
36	τ HNNC(12), τ CCNN(13)	630	692
37	τ CCCC(25)	664	717
38	τ HCCC(28), τ CCCC(27)	686	744
39	τ ONNC(79)	692	765
40	ν CC(12), τ HCCC(21)	707	791
41	τ CCCC(49)	726	806
42	δ CNN()	751	812

Tablo 3.3	5.' in devamı		
43	v NC(15), δ CNN(24)	774	843
44	v NN(14), v CC(13)	786	846
45	τ HCCC()	817	886
46	τ HCCC(39)	819	910
47	τ HCCC(99)	824	916
48	τ HCCC(24)	828	917
49	δ NCN(10), δ CCC(23), δ CCN(13)	856	921
50	v CC(55)	866	925
51	τ HCCC(32)	896	970
52	τ HCCC(32)	900	979
53	δ HCH(10) τ HCCC(43)	901	998
54	ν CC(23) τ HCCC(18)	929	1001
55	τ HCCC(85) τ CCCC(12)	931	1048
56	ν CC(11) τ HCCC(21)	933	1049
57	τ HCCC(52)	945	1056
58	τ HCCC(35) τ CCCC(26)	959	1066
59	v C(25), v CC(25)	979	1070
60	τ HCNN(83)	982	1080
61	δ HCC(14) δ CCC(33)	995	1085
62	δ NNC(34)	998	1101
63	$v CC(20) \delta HCC(23)$	1017	1107
64	$\nu CC(13) \delta HCC(15) \tau HCCC(17)$	1038	1118
65	v NC(12) v NN(39)	1060	1086
66	$v CC(28) \delta HCC(27)$	1068	1155
67	$v CC(47) \tau HCCC(10)$	1082	1166
68	$v CC(24) \delta HCC(49)$	1096	1166
69	τ HCCC(11)	1134	1172
70	δ HCC(37)	1142	1201
71	δ HCC(47)	1158	1246
72	δ HCC(45)	1162	1247
73	γ CC(17). δ HCC(74). τ HCCC(29)	1162	1253
74	$v NC(14), v NN(11), \delta HCC(26)$	1167	1258
75	$v CC(18), \delta HCC(13), \tau HCCC(14)$	1179	1266
76	$v CC(24), \delta HCC(13)$	1190	1276
77	v CC(21)	1209	1297
78	ν NN(10). τ HCCC(17)	1243	1311
79	v CC(10), δ HCC(31)	1270	1312
80	v NC(11), v NN(12), δ HCN(11), τ HCCC(20)	1279	1365
81	v CC(26), δ HCC(37)	1296	1391
82	τ HCCC(26), τ CCCC(11)	1300	1413
83	v CC(51), δ HCC(22)	1306	1422
84	v CC(19), δ HCC(53)	1311	1427
85	v CC(24), δ HCC(43)	1336	1439
86	v NC(11), δ HNN(64)	1342	1480
87	δ HCN(35)	1359	1482
88	v CC(10), δ HCH(36), τ HCCC(14)	1360	1492
89	δ HCH(65)	1379	1497
90	ν CC(29), δ HCN(27)	1404	1519
91	v NC(16), δ HCN(20)	1414	1542
92	δ HCH(81), τ HCCC(17)	1426	1551
93	v CC(25), δ HCC(27)	1439	1553
94	δ HCH(39)	1444	1554
95	δ HCH(28), τ HCCC(10)	1447	1558
96	δ HCH(47)	1459	1569
97	δ HCH(30)	1464	1574
98	v CC(12), δ HCC(60), δ CCC(13)	1484	1605

Tablo 3.3	5.' in devamı		
99	v CC(12), δ HCC(55), δ CCC(11)	1497	1625
100	ν CC(25), δ CCC(16)	1551	1695
101	ν CC(27), δ CCC(13)	1581	1718
102	v NC(53)	1589	1744
103	ν NC(25), ν CC(37), δ HCC(12)	1596	1749
104	ν CC(45), δ HCC(18)	1602	1800
105	v NC(34), v CC(12)	1614	1830
106	v OC(74), v NC(12)	1752	1895
107	v CH(33)	2917	3058
108	v CH(48)	2923	3062
109	v CH(48)	2927	3069
110	v CH(100)	2934	3095
111	v CH(100)	2964	3120
112	v CH(50)	2989	3127
113	v CH(47)	2995	3130
114	v CH(47)	3000	3131
115	v CH(48)	3002	3134
116	v CH(48)	3051	3206
117	v CH(87)	3052	3210
118	v CH(70)	3054	3211
119	v CH(90)	3054	3215
120	v CH(64)	3058	3220
121	v CH(51)	3064	3230
122	v CH(51)	3070	3233
123	v CH(89)	3073	3242
124	v CH(48)	3084	3246
125	v CH(26)	3092	3254
126	v NH(100)	3556	3803

Şekil 3.14. 8 tipi bileşiğin deneysel (a) ve teorik B3LYP6-31G(d,p) (b) ve HF6-31G(d,p) (c) IR spektrumları

Şekil 3.15. 8 tipi bileşiğin teorik (B3LYP, HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.36. 8 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(41)-C(1)-N(42)	111.478	111.274	35	H(21)-C(3)-C(4)	117.888	117.316
2	N(41)-N(40)-C(2)	114.593	113.783	36	N(43)-C(3)-C(4)	120.212	120.537
3	N(41)-N(40)-H(20)	120.327	120.892	37	C(3)-C(4)-C(5)	122.803	122.782
4	H(20)-N(40)-C(2)	125.080	125.325	38	C(3)-C(4)-C(9)	118.745	118.645
5	N(40)-C(2)-O(41)	129.916	129.335	39	C(4)-C(9)-H(25)	119.340	119.664
6	O(41)-C(2)-N(42)	128.945	128.744	40	C(4)-C(5)-H(22)	119.027	119.471
7	N(42)-C(1)-C(13)	122.141	121.897	41	H(22)-C(5)-C(6)	120.643	120.219
8	N(41)-C(1)-C(13)	126.381	126.829	42	C(5)-C(6)-H(23)	119.365	119.141
9	C(1)-C(13)-C(14)	113.823	113.736	43	H(23) -C(6)-C(7)	119.103	119.395
10	C(1)-C(13)-H(33)	108.043	107.841	44	C(4)-C(9)-C(8)	120.820	120.864
11	C(1)-C(13)-H(34)	108.047	107.840	45	C(9)-C(8)-C(7)	120.999	120.895
12	H(33)-C(13)-C(14)	110.617	110.611	46	C(7)-C(6)-C(5)	121.532	121.463
13	H(34)-C(13)-C(14)	110.614	110.612	47	H(24)-C(8)-C(7)	119.872	120.158
14	H(33)-C(13)-H(34)	105.298	105.842	48	H(24)-C(8)-C(9)	119.128	118.947
15	C(13)-C(14)-C(15)	120.618	120.597	49	H(25)-C(9)-C(8)	119.840	119.472
16	C(13)-C(14)-C(19)	120.615	120.596	50	C(8)-C(7)-C(6)	117.867	117.895
17	C(14)-C(15)-H(35)	119.487	119.683	51	C(8)-C(7)-C(10)	121.455	121.632
18	H(35)-C(15)-C(16)	119.804	119.629	52	C(6)-C(7)-C(10)	120.678	120.474
19	C(15)-C(16)-H(36)	119.789	119.789	53	C(7)-C(10)-C(11)	111.777	111.875
20	H(36)-C(16)-C(17)	120.126	120.110	54	C(7)-C(10)-H(26)	106.977	106.927
21	C(16)-C(17)-H(37)	120.177	120.191	55	H(26)-C(10)-C(11)	107.462	107.310
22	H(37)-C(17)-C(18)	120.177	120.192	56	H(26)-C(10)-C(12)	107.462	107.309
23	C(17)-C(18)-H(38)	120.126	120.110	57	H(27)-C(11)-H(28)	108.170	108.130
24	H(38)-C(18)-C(19)	119.789	119.788	58	H(27)-C(11)-H(29)	107.732	107.848
25	C(14)-C(19)-C(18)	120.709	120.688	59	H(28)-C(11)-H(29)	107.646	107.692
26	C(18)-C(17)-C(16)	119.646	119.617	60	C(10)-C(11)-H(27)	111.264	111.109
27	C(17)-C(16)-C(15)	120.085	120.102	61	C(10)-C(11)-H(28)	110.598	110.446
28	C(16)-C(15)-C(14)	120.709	120.688	62	C(10)-C(11)-H(29)	111.282	111.474
29	N(40)-C(2)-N(42)	101.139	101.921	63	C(10)-C(12)-H(30)	110.599	110.445
30	C(2)-N(42)-C(1)	108.339	108.110	64	C(10)-C(12)-H(31)	111.282	111.476
31	C(2)-N(42)-N(43)	130.544	130.855	65	C(10)-C(12)-H(32)	111.264	111.109
32	C(1)-N(42)-N(43)	121.117	121.035	66	H(30)-C(12)-H(31)	107.646	107.691
33	N(42)-N(43)-C(3)	118.763	119.746	67	H(30)-C(12)-H(32)	108.170	108.130
34	N(43)-C(3)-H(21)	121.900	122.147	68	H(31)-C(12)-H(32)	107.731	107.847

Bağ	g Uzunlukları	B3LYP	HF	Bağ	g Uzunlukları	B3LYP	HF
1	C(1)-N(41)	1.2995	1.2681	24	N(43)-C(3)	1.2902	1.2610
2	C(1)-N(42)	1.3896	1.3806	25	C(3)-H(21)	1.0884	1.0752
3	C(1)-C(13)	1.4997	1.4991	26	C(3)-C(4)	1.4639	1.4737
4	N(40)-N(41)	1.3815	1.3704	27	C(4)-C(5)	1.4049	1.3914
5	N(40)-H(20)	1.0067	0.9905	28	C(4)-C(9)	1.4041	1.3894
6	N(40)-C(2)	1.3702	1.3461	29	C(5)-H(22)	1.0847	1.0739
7	C(2)-O(44)	1.2235	1.2029	30	C(5)-C(6)	1.3894	1.3805
8	C(2)-N(42)	1.4177	1.3858	31	C(6)-H(23)	1.0872	1.0763
9	N(42)-N(43)	1.3731	1.3672	32	C(6)-C(7)	1.4041	1.3933
10	C(13)-H(33)	1.0964	1.0847	33	C(7)-C(8)	1.4023	1.3903
11	C(13)-H(34)	1.0964	1.0847	34	C(8)-H(24)	1.0864	1.0755
12	C(13)-C(14)	1.5141	1.5127	35	C(8)-C(9)	1.3916	1.3834
13	C(14)-C(19)	1.3993	1.3881	36	C(9)-H(25)	1.0870	1.0766
14	C(14)-C(15)	1.3993	1.3881	37	C(7)-C(10)	1.5221	1.5217
15	C(15)-H(35)	1.0870	1.0766	38	C(10)-H(26)	1.0978	1.0868
16	C(15)-C(16)	1.3947	1.3846	39	C(10)-C(11)	1.5403	1.5347
17	C(16)-H(36)	1.0861	1.0758	40	C(11)-H(27)	1.0942	1.0849
18	C(16)-C(17)	1.3956	1.3849	41	C(11)-H(28)	1.0952	1.0860
19	C(17)-H(37)	1.0860	1.0757	42	C(11)-H(29)	1.0953	1.0857
20	C(17)-C(18)	1.3956	1.3849	43	C(10)-C(12)	1.5403	1.5347
21	C(18)-H(38)	1.0861	1.0758	44	C(12)-H(30)	1.0952	1.0860
22	C(18)-C(19)	1.3947	1.3846	45	C(12)-H(31)	1.0953	1.0857
23	C(19)-H(39)	1.0870	1.0766	46	C(12)-H(32)	1.0942	1.0849

Tablo 3.37. 8 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Tablo 3.38. 8 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.539	0.609	H23	0.083	0.150
C2	0.817	1.052	H24	0.085	0.152
C3	0.113	0.180	H25	0.095	0.164
C4	0.083	-0.085	H26	0.091	0.124
C5	-0.096	-0.111	H27	0.109	0.122
C6	-0.141	-0.176	H28	0.102	0.114
C7	0.150	0.022	H29	0.104	0.110
C8	-0.129	-0.156	H30	0.102	0.114
С9	-0.127	-0.144	H31	0.104	0.110
C10	-0.131	-0.153	H32	0.109	0.122
C11	-0.305	-0.314	H33	0.139	0.167
C12	-0.305	-0.314	H34	0.139	0.167
C13	-0.311	-0.273	H35	0.082	0.148
C14	0.128	0.002	H36	0.086	0.150
C15	-0.107	-0.140	H37	0.085	0.149
C16	-0.085	-0.145	H38	0.086	0.150
C17	-0.084	-0.150	H39	0.082	0.148
C18	-0.085	-0.145	N40	-0.434	-0.564
C19	-0.106	-0.140	N41	-0.334	-0.341
H20	0.288	0.339	N42	-0.418	-0.628
H21	0.157	0.227	N43	-0.325	-0.332
H22	0.104	0.177	O44	-0.542	-0.658

Şekil 3.16. 8 Molekülünün B3LYP 6-31G(d,p) ve HF6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.39. 8 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	0.9283	1.2347
$\mu_{ m y}$	-2.0227	-2.4418
μ _z	-1.3831	-1.5242
μ _{Toplam}	2.6203	3.1321

Tablo 3.40. 8 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1030.312	-1030.312

3.4.5. 3-(*p*-Metilbenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (9)

Şekil 3.17. 9 tipi bileşiğin (6-31G(d,p)) gausview görünümü

Tablo 3.41. 9 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP (DMSO) ve HF (DMSO)) NMR kimyasal kayma değerleri (δ/ppm)

N	D	DET/(211		DFT/631d	Fark/					HF/631d/	Fark/
NO	Deney.	DF1/631d	Fark	/DMSO	DMSO	HF/631a	Fark	DMSO	DMSO		
C1	151.29	152.01	-0.72	153.55	-2.26	146.09	5.20	148.36	2.93		
C2	153.37	152.13	1.24	152.82	0.55	145.97	7.40	146.65	6.72		
C3	152.13	154.25	-2.12	155.12	-2.99	148.76	3.37	149.86	2.27		
C4	131.23	137.26	-6.03	136.22	-4.99	126.65	4.58	125.54	5.69		
C5	127.75	127.92	-0.17	127.46	0.29	123.28	4.47	122.85	4.90		
C6	126.91	132.18	-5.27	132.49	-5.58	123.36	3.55	123.44	3.47		
C7	146.32	154.66	-8.34	156.68	-10.36	148.01	-1.69	149.75	-3.43		
C8	126.91	128.75	-1.84	129.42	-2.51	120.68	6.23	121.07	5.84		
C9	127.75	136.20	-8.45	136.56	-8.81	130.19	-2.44	130.63	-2.88		
C10	33.44	47.77	-14.33	47.58	-14.14	29.47	3.97	29.23	4.21		
C11	23.51	33.28	-9.77	32.85	-9.34	20.28	3.23	19.82	3.69		
C12	23.51	33.28	-9.77	32.85	-9.34	20.28	3.23	19.81	3.70		
C13	30.69	42.69	-12.00	42.19	-11.50	27.63	3.06	27.18	3.51		
C14	132.69	134.98	-2.29	135.09	-2.40	126.37	6.32	126.47	6.22		
C15	128.97	133.58	-4.61	133.36	-4.39	127.34	1.63	127.16	1.81		
C16	128.60	131.89	-3.29	132.09	-3.49	124.57	4.03	124.69	3.91		
C17	135.72	140.30	-4.58	141.53	-5.81	133.18	2.54	134.24	1.48		
C18	128.60	131.90	-3.30	132.09	-3.49	124.59	4.01	124.67	3.93		
C19	128.97	133.58	-4.61	133.36	-4.39	127.37	1.60	127.13	1.84		
C20	20.56	30.29	-9.73	29.87	-9.31	17.53	3.03	17.09	3.47		
H21	12.00	7.90	4.10	8.36	3.64	7.14	4.86	7.55	4.45		
H22	9.67	11.07	-1.40	11.01	-1.34	10.29	-0.62	10.26	-0.59		
H23	7.72	9.11	-1.39	9.14	-1.42	8.89	-1.17	8.95	-1.23		
H24	7.36	8.09	-0.73	8.28	-0.92	7.75	-0.39	7.95	-0.59		
H25	7.36	8.36	-1.00	8.56	-1.20	7.90	-0.54	8.11	-0.75		
H26	7.72	8.23	-0.51	8.36	-0.64	8.06	-0.34	8.25	-0.53		
H27	2.93	3.60	-0.67	3.75	-0.82	2.75	0.18	2.92	0.01		
H28	1.21	2.10	-0.89	2.06	-0.85	1.48	-0.27	1.42	-0.21		
H29	1.21	2.10	-0.89	2.17	-0.96	1.48	-0.27	1.56	-0.35		
H30	1.21	2.14	-0.93	2.19	-0.98	1.56	-0.35	1.61	-0.40		
H31	1.21	2.10	-0.89	2.17	-0.96	1.48	-0.27	1.56	-0.35		
H32	1.21	2.14	-0.93	2.19	-0.98	1.56	-0.35	1.61	-0.40		

Tablo	3.41	' in	devamı
-------	------	------	--------

	••••								
H33	1.21	2.10	-0.89	2.06	-0.85	1.48	-0.27	1.42	-0.21
H34	4.00	4.67	-0.67	4.80	-0.80	3.96	0.04	4.14	-0.14
H35	4.00	4.66	-0.66	4.80	-0.80	3.96	0.04	4.15	-0.15
H36	7.22	8.10	-0.88	8.25	-1.03	7.81	-0.59	8.00	-0.78
H37	7.10	8.08	-0.98	8.24	-1.14	7.74	-0.64	7.94	-0.84
H38	7.10	8.08	-0.98	8.24	-1.14	7.76	-0.66	7.93	-0.83
H39	7.22	8.10	-0.88	8.25	-1.03	7.82	-0.60	7.99	-0.77
H40	2.24	3.33	-1.09	3.40	-1.16	2.78	-0.54	2.84	-0.60
H41	2.24	2.95	-0.71	3.04	-0.80	2.45	-0.21	2.56	-0.32
H42	2.24	2.95	-0.71	3.04	-0.80	2.50	-0.26	2.55	-0.31

Tablo 3.42. 9 Tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ CNNC(40)	5	9
2	$\tau CCCC(75)$	15	13
3	τ CNNC(23), τ CCCN(10), τ NNCC(11), τ CCCC(17)	21	20
4	δ NCC(18), δ CCN(18), τ CCCC(10)	26	26
5	τHCCC(78)	30	30
6	τ CCCN(22), τ CCNN(19), τ NNCC(12), τ CCCC(15)	32	31
7	τ CCCN(23), τ CCCC(40)	49	47
8	δ CCN(19), τ CCCC(19)	60	61
9	τ CNNC(14), τ CCCN(10), τ NNCC(20)	87	87
10	δ NCC(27), δ CCC(12)	119	120
11	τ NNCC(18), τ CCCC(10), τ NCNC(14)	127	122
12	δ CCC(12), τ CCCC(29)	151	148
13	τ CNNC(29), τ NNCC(10)	158	154
14	ν CC(11), δ CCC(15), δ NCN(20)	171	172
15	δ NCC(12), δ CCC(30), τ CCCC(14)	205	208
16	τ HCCC(30), τ CCCN(16)	219	210
17	δ CCC(11), τ CCCN(22), τ NNCC(14)	233	227
18	τ HCCC(37)	250	253
19	δ CCC(42), τ HNNC(12), τ CNNC(25)	262	266
20	δ CCC(37), τ HNNC(10), τ HCCC(15), τ NNCC(16)	279	285
21	δ CCC(39)	296	298
22	δ CCC(14), τ CCCN(16), τ CCNN(27), τ NNCC(10)	302	303
23	$\tau CCCC(37)$	312	316
24	δ CCC(20)	339	339
25	δ CCC(39)	363	369
26	τ CCCN(46), τ CCCC(19)	400	409
27	τ HCCC(16), τ CCCC(82)	401	410
28	δ CCC(11), δ OCN(19), δ NCN(18)	405	410
29	τ HNNC(22), τ CCCN(15), τ NCNC(10)	422	429
30	τ HNNC(36), τ ONNC(11)	441	445
31	$V(C(12), \delta CCC(17), \tau CCCC(17))$	454	456
32	0 CCC(18), t CCCC(24)	40/	4/1
33	$V CC(10), \delta CCC(16), \tau CCCC(26)$	508	514
34 25	= CCCN(19), TCCCC(15)	544	545 561
35	1 CCCN(10), 1 CCCC(22) $S CCC(14) S OCN(27), S CCN(11), S NNC(10)$	501	500
30 37	0 CCC(14), 0 OCN(27), 0 CCN(11), 0 NINC(10)	303 626	390 620
3/	$\frac{0 \operatorname{CCC}(10), \operatorname{TNCNC}(27)}{8 \operatorname{CCC}(42)}$	630	632
30 20	$\frac{0}{\delta} CCC(42) = \delta CCC(42)$	636	648
	$\frac{1}{8} NCN(10) \tau CCCC(15)$	667	668
υF		002	000

Tablo	3.42.	'nin	devamı
1 4010	J. 74.	11111	uvvann

41	$\tau \text{ONNC}(80)$	692	600
42	$\tau CCCC(27)$	603	716
42	$\mathcal{C}\mathcal{C}\mathcal{C}\mathcal{C}(21)$	095	710
43	VCC(20)	/1/	/40
44	τ CCCC(38)	727	754
45	ν CC(14), τ HCCC(30)	746	755
46	δ CNN(17), δ NNC(13)	768	777
47	v NC(11), v NN(16), δ NCN(10), δ CNN(10), τ HCCC(14)	786	796
48	v CC(21), τ HCCC(18)	807	813
49	τ HCCC(40)	820	851
50	τ HCCC(99)	821	853
51	τ HCCC(45)	828	855
51	UCC(16) - UCCC(19)	020 926	055 957
52	V CC(10), T HCCC(10) S NON(10) S CCC(22) S CCN(12)	830 857	0.57
55	0 NCN(10), 0 CCC(22), 0 CCN(13)	857	801
54	VCC(54)	866	865
55	v CC(12), δ HCC(33), τ HCCC(31)	899	907
56	δ HCH(10), τ HCCC(43)	901	913
57	τ CCCC(13)	926	933
58	τ HCCC(85), τ CCCC(19)	926	969
59	ν CC(27), τ HCCC(12)	928	980
60	τ HCCC(25), τ CCCC(12)	934	982
61	τ HCCC(45)	945	984
62	γ CC(10) δ HCH(11) τ HCCC(50)	975	997
63	τ HCNN(83)	981	1001
64	δ HCC(14) δ CCC(22)	005	1001
04 65	S CCC(17), S NNC(25)	007	1004
05	0 CCC(17), 0 ININC(23) S LICC(10) S CCC(29) S NINC(12)	997	1026
00	0 HCC(10), 0 CCC(28), 0 INNC(15)	1001	1033
67	τ HCCC(60)	1025	1045
68	δ HCC(), τ HCCC()	1043	1048
69	v NC(12), v NN(39)	1060	1072
70	τ HCCC(47)	1081	1080
71	ν CC(24), δ HCC(49)	1096	1090
72	ν CC(23), δ HCC(52)	1100	1096
73	τ HCCC(11)	1133	1123
74	δ HCC(46)	1159	1149
75	v CC(11), δ HCC(45), τ HCCC(29)	1161	1165
76	ν CC(17) δ HCC(73)	1167	1173
77	$v NC(14) v NN(10) \delta HCC(26)$	1168	1176
78	$\nu CC(34) \tau HCCC(13)$	1180	1170
70	$v CC(25), \delta HCC(13)$	1100	1103
00	V CC(23), 0 HCC(13)	1190	1195
0U 01	V CC(21), 0 HCC(20), 0 CCC(11)	1210	1195
ð1 00	V CC(21)	1210	1213
82	$v NN(10), \tau HCCC(17)$	1243	1219
83	δ HCC(32)	1272	1226
84	ν NC(11), ν NN(11), δ HCN(11), τ HCCC(20)	1278	1277
85	ν CC(16), δ HCC(59)	1293	1301
86	ν CC(26), δ HCC(36)	1297	1317
87	τ HCCC(27), τ CCCC(10)	1300	1321
88	v CC(43), δ HCC(24)	1304	1334
89	v CC(24), δ HCC(44)	1337	1346
90	ν NC(11), δ HNN(63)	1342	1384
91	δ HCH(16)	1359	1385
92	δ HCN(35) δ HCH(35) τ HCCC(14)	1359	1394
03	δ Η/Η(01)	1372	1395
04	\$ UCU(6A)	1270	1400
74 05	$\frac{0.11(14)}{0.12}$	12/9	1400
93 07	$\psi CC(24), 0 BCC(24)$	1377	1411
96	V CC(27), 8 HCC(26)	1404	1420

97	v NC(15), δ HCN(21)	1413	1441
98	δ HCH(81), τ HCCC(12)	1426	1450
99	δ HCH(38)	1444	1452
100	δ HCH(37), τ HCCC(22)	1445	1455
101	δ HCH(34)	1447	1457
102	δ HCH(37), τ HCCC(17)	1450	1459
103	δ HCH(48)	1459	1467
104	δ HCH(31)	1464	1471
105	v CC(12), δ HCC(55), δ CCC(11)	1497	1519
106	δ CCC(13), δ HCC(57)	1502	1522
107	ν CC(25), δ CCC(16)	1551	1585
108	ν CC(25), δ CCC(12)	1569	1594
109	v NC(54)	1589	1635
110	ν NC(26), ν CC(37), δ HCC(12)	1596	1642
111	ν CC(57), δ HCC(19)	1612	1683
112	v NC(34), v CC(12)	1614	1711
113	v OC(74), v NC(12)	1751	1771
114	v CH(33)	2917	2859
115	v CH(98)	2920	2861
116	v CH(48)	2923	2863
117	v CH(48)	2927	2870
118	v CH(100)	2933	2892
119	v CH(100)	2963	2914
120	v CH(98)	2978	2917
121	v CH(50)	2989	2924
122	v CH(46)	2995	2926
123	v CH(48)	3000	2927
124	v CH(46)	3002	2930
125	v CH(100)	3005	2935
126	v CH(99)	3048	2986
127	v CH(100)	3048	2995
128	v CH(46)	3050	3003
129	v CH(84)	3054	3006
130	v CH(63)	3056	3012
131	v CH(99)	3063	3015
132	v CH(99)	3066	3022
133	v CH(50)	3072	3035
134	v CH(26)	3092	3043
135	v NH(100)	3556	3556

Şekil 3.18. 9 tipi bileşiğin deneysel (a) ve teorik (B3LYP(d,p) (b) ve HF(d,p) (c)) IR spektrumları

Şekil 3.19. 9 tipi bileşiğin teorik (B3LYP, HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(44)-C(1)-N(45)	111.450	111.251	39	C(1)-N(45)-N(46)	121.140	121.044
2	N(44)-N(43)-C(2)	114.597	113.788	40	N(45)-N(46)-C(3)	118.723	119.761
3	N(44)-N(43)-H(21)	120.338	120.894	41	N(46)-C(3)-H(22)	121.875	122.155
4	H(21)-N(43)-C(2)	125.064	125.318	42	H(22)-C(3)-C(4)	117.867	117.319
5	N(43)-C(2)-O(47)	129.902	129.332	43	N(46)- C(3)-C(4)	120.258	120.526
6	O(47)-C(2)-N(45)	128.959	128.747	44	C(3)-C(4)-C(5)	122.854	122.779
7	N(44)-C(1)-C(13)	126.355	126.849	45	C(3)-C(4)-C(9)	118.709	118.651
8	N(45)-C(1)-C(13)	122.195	121.899	46	C(4)-C(9)-H(26)	119.331	119.662
9	C(1)-C(13)-C(14)	113.82	113.828	47	C(4)-C(5)-H(23)	119.035	119.467
10	C(1)-C(13)-H(34)	108.018	107.797	48	H(23)-C(5)-C(6)	120.631	120.223
11	C(1)-C(13)-H(35)	108.012	107.795	49	C(5)-C(6)-H(24)	119.361	119.140
12	H(34)-C(13)-C(14)	110.650	110.621	50	H(24) -C(6)-C(7)	119.098	119.395
13	H(35)-C(13)-C(14)	110.652	110.626	51	C(4)-C(9)-C(8)	120.831	120.866
14	H(34)-C(13)-H(35)	105.273	105.804	52	C(9)-C(8)-C(7)	121.003	120.895
15	C(13)-C(14)-C(15)	120.875	120.881	53	C(7)-C(6)-C(5)	121.540	121.465
16	C(13)-C(14)-C(19)	120.879	120.891	54	H(25)-C(8)-C(7)	119.885	120.158
17	C(14)-C(15)-H(36)	119.561	119.730	55	H(25)-C(8)-C(9)	119.113	118.947
18	H(36)-C(15)-C(16)	119.588	119.390	56	H(26)-C(9)-C(8)	119.838	119.472
19	C(15)-C(16)-H(37)	119.451	119.319	57	C(8)-C(7)-C(6)	117.854	117.893
20	H(37)-C(16)-C(17)	119.457	119.636	58	C(8)-C(7)-C(10)	121.477	121.633
21	C(16)-C(17)-C(20)	121.059	120.996	59	C(6)-C(7)-C(10)	120.670	120.474
22	C(17)-C(20)-H(40)	111.266	111.005	60	C(7)-C(10)-C(11)	111.769	111.876
23	C(17)-C(20)-H(41)	111.462	111.254	61	C(7)-C(10)-H(27)	106.978	106.927
24	C(17)-C(20)-H(42)	111.462	111.264	62	H(27)-C(10)-C(11)	107.463	107.309
25	H(40)-C(20)-H(41)	107.214	107.573	63	H(27)-C(10)-C(12)	107.464	107.308
26	H(40)-C(20)-H(42)	107.216	107.596	64	H(28)-C(11)-H(29)	108.171	108.131
27	H(41)-C(20)-H(42)	108.004	107.977	65	H(28)-C(11)-H(30)	107.723	107.847
28	C(17)-C(18)-H(38)	119.457	119.647	66	H(29)-C(11)-H(30)	107.649	107.692
29	H(38)-C(18)-C(19)	119.451	119.311	67	C(10)-C(11)-H(28)	111.256	111.107
30	C(18)-C(19)-H(39)	119.587	119.379	68	C(10)-C(11)-H(29)	110.622	110.448
31	H(39)-C(19)-C(14)	119.562	119.738	69	C(10)-C(11)-H(30)	111.271	111.473
32	C(14)-C(19)-C(18)	120.851	120.882	70	C(10)-C(12)-H(31)	110.622	110.447
33	C(18)-C(17)-C(16)	117.867	117.923	71	C(10)-C(12)-H(32)	111.272	111.475
34	C(17)-C(16)-C(15)	121.092	121.045	72	C(10)-C(12)-H(33)	111.256	111.108
35	C(16)-C(15)-C(14)	120.851	120.880	73	H(31)-C(12)-H(32)	107.649	107.691
36	N(43)-C(2)-N(45)	101.139	101.920	74	H(31)-C(12)-H(33)	108.170	108.131
37	C(2)-N(45)-C(1)	108.349	108.123	75	H(32)-C(12)-H(33)	107.723	107.846
38	C(2)-N(45)-N(46)	130.511	130.833				

Tablo 3.43. 9 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.44. 9 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	g Uzunlukları	B3LYP	HF	Ba	ğ Uzunlukları	B3LYP	HF
1	C(1)-N(44)	1.2996	1.2682	26	C(19)-H(39)	1.0871	1.0768
2	C(1)-N(45)	1.3899	1.3809	27	N(46)-C(3)	1.2902	1.2609
3	C(1)-C(13)	1.4999	1.4993	28	C(3)-H(22)	1.0884	1.0752
4	N(44)-N(43)	1.3816	1.3706	29	C(3)-C(4)	1.4638	1.4738
5	N(43)-H(21)	1.0067	0.9905	30	C(4)-C(5)	1.4049	1.3914
6	N(43)-C(2)	1.3700	1.3459	31	C(4)-C(9)	1.4042	1.3894

Tab	olo 3.44.'ün devamı						
7	C(2)-O(47)	1.2236	1.2030	32	C(5)-H(23)	1.0847	1.0739
8	C(2)-N(45)	1.4177	1.3857	33	C(5)-C(6)	1.3894	1.3806
9	N(45)-N(46)	1.3732	1.3671	34	C(6)-H(24)	1.0872	1.0763
10	C(13)-H(34)	1.0965	1.0848	35	C(6)-C(7)	1.4041	1.3933
11	C(13)-H(35)	1.0965	1.0848	36	C(7)-C(8)	1.4023	1.3903
12	C(13)-C(14)	1.5135	1.5122	37	C(8)-H(25)	1.0865	1.0755
13	C(14)-C(19)	1.3984	1.3868	38	C(8)-C(9)	1.3916	1.3834
14	C(14)-C(15)	1.3985	1.3873	39	C(9)-H(26)	1.0870	1.0766
15	C(15)-H(36)	1.0871	1.0768	40	C(7)-C(10)	1.5221	1.5217
16	C(15)-C(16)	1.3936	1.3836	41	C(10)-H(27)	1.0978	1.0868
17	C(16)-H(37)	1.0872	1.0767	42	C(10)-C(11)	1.5403	1.5347
18	C(16)-C(17)	1.4005	1.3894	43	C(11)-H(28)	1.0942	1.0849
19	C(17)-C(20)	1.5105	1.5106	44	C(11)-H(29)	1.0953	1.0860
20	C(20)-H(40)	1.0973	1.0870	45	C(11)-H(30)	1.0953	1.0857
21	C(20)-H(41)	1.0941	1.0844	46	C(10)-C(12)	1.5403	1.5347
22	C(20)-H(42)	1.0941	1.0843	47	C(12)-H(31)	1.0953	1.0860
23	C(17)-C(18)	1.4005	1.3889	48	C(12)-H(32)	1.0953	1.0857
24	C(18)-H(38)	1.0872	1.0767	49	C(12)-H(33)	1.0942	1.0849
25	C(18)-C(19)	1.3936	1.3841				

Tablo 3.45. 9 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.539	0.609	H25	0.085	0.152
C2	0.817	1.052	H26	0.094	0.164
C3	0.113	0.180	H27	0.090	0.124
C4	0.084	-0.085	H28	0.109	0.122
C5	-0.096	-0.111	H29	0.102	0.114
C6	-0.141	-0.176	H30	0.104	0.110
C7	0.150	0.022	H31	0.102	0.114
C8	-0.129	-0.156	H32	0.104	0.110
С9	-0.127	-0.144	Н33	0.109	0.122
C10	-0.130	-0.153	H34	0.138	0.166
C11	-0.305	-0.314	H35	0.138	0.166
C12	-0.305	-0.314	H36	0.0.80	0.148
C13	-0.311	-0.271	H37	0.077	0.144
C14	0.126	-0.009	H38	0.077	0.144
C15	-0.106	-0.133	H39	0.080	0.147
C16	-0.120	-0.157	H40	0.125	0.133
C17	0.126	-0.006	H41	0.114	0.125
C18	-0.120	-0.157	H42	0.114	0.124
C19	-0.106	-0.134	N43	-0.434	-0.564
C20	-0.381	-0.342	N44	-0.334	-0.341
H21	0.288	0.339	N45	-0.419	-0.628
H22	0.157	0.227	N46	-0.324	-0.337
H23	0.104	0.177	O47	-0.542	-0.659
H24	0.083	0.150			

Şekil 3.20. 9 Molekülünün B3LYP 6-31G(d,p) ve HF6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.46. 9 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	0.4189	0.7450
$\mu_{\rm v}$	-2.1752	-2.5895
μ _z	-1.3809	-1.5244
μ _{Toplam}	2.6104	3.0958

Tablo 3.47. 9 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) Yöntemlerine Göre Hesaplanan Enerji Değerleri

Enerji	B3LYP	HF
(a.u.)	-1069.633	-1062.859

3.4.6. 3-(*p*-metoksibenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (10)

Şekil 3.21. 10 tipi bileşiğin(6-31G(d,p)) gausview görünümü

Tablo 3.48. 10 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP (DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ/ppm)

No	Donov	DET/6214	Fork	DFT/631d	Fark/	UF/621J	Fork	HF/631d/	Fark/
INU	Deney.	DF 1/031u	гагк	/DMSO	DMSO	nr/031a	гагк	DMSO	DMSO
C1	151.28	152.17	-0.89	153.67	-2.39	145.93	-146.82	148.24	3.04
C2	153.47	152.19	1.28	152.87	0.60	145.95	-144.67	146.64	6.83
C3	152.18	154.23	-2.05	155.12	-2.94	148.83	-150.88	149.90	2.28
C4	131.23	137.26	-6.03	136.21	-4.98	126.61	-132.64	125.52	5.71
C5	127.79	127.87	-0.08	127.41	0.38	123.24	-123.32	122.85	4.94
C6	126.97	132.19	-5.22	132.50	-5.53	123.34	-128.56	123.43	3.54
C7	146.50	154.60	-8.10	156.65	-10.15	148.05	-156.15	149.77	-3.27
C8	126.97	128.72	-1.75	129.39	-2.42	120.71	-122.46	121.07	5.90
C9	127.79	136.24	-8.45	136.60	-8.81	130.23	-138.68	130.64	-2.85
C10	33.45	47.80	-14.35	47.61	-14.16	29.48	-43.83	29.23	4.22
C11	23.56	33.23	-9.67	32.80	-9.24	20.28	-29.95	19.81	3.75
C12	23.56	33.30	-9.74	32.87	-9.31	20.27	-30.01	19.81	3.75
C13	30.22	42.34	-12.12	41.82	-11.60	27.50	-39.62	27.04	3.18
C14	127.58	129.23	-1.65	129.50	-1.92	124.36	-126.01	125.12	2.46
C15	129.81	134.53	-4.72	134.94	-5.13	129.05	-133.77	129.13	0.68
C16	113.83	112.44	1.39	113.47	0.36	118.06	-116.67	118.12	-4.29
C17	158.04	160.70	-2.66	160.84	-2.80	153.50	-156.16	153.11	4.93
C18	113.83	120.98	-7.15	120.28	-6.45	118.06	-125.21	118.12	-4.29
C19	129.81	134.89	-5.08	134.51	-4.70	129.05	-134.13	129.13	0.68
C20	54.96	60.55	-5.59	60.76	-5.80	53.76	-59.35	53.79	1.17
H21	11.95	7.91	4.04	8.38	3.57	7.16	-3.12	7.56	4.39
H22	9.66	11.07	-1.41	11.01	-1.35	10.30	-11.71	10.26	-0.60
H23	7.73	9.10	-1.37	9.13	-1.40	8.88	-10.25	8.94	-1.21
H24	7.37	8.09	-0.72	8.28	-0.91	7.74	-8.46	7.95	-0.58
H25	7.37	8.34	-0.97	8.54	-1.17	7.90	-8.87	8.11	-0.74
H26	7.73	8.22	-0.49	8.36	-0.63	8.07	-8.56	8.25	-0.52
H27	2.94	3.61	-0.67	3.75	-0.81	2.75	-3.42	2.92	0.02
H28	1.22	2.09	-0.87	2.05	-0.83	1.48	-2.35	1.42	-0.20
H29	1.22	2.10	-0.88	2.17	-0.95	1.48	-2.36	1.56	-0.34
H30	1.22	2.13	-0.91	2.18	-0.96	1.56	-2.47	1.61	-0.39
H31	1.22	2.10	-0.88	2.17	-0.95	1.48	-2.36	1.56	-0.34

Tablo 3.48.'in deva	amı
---------------------	-----

H32	1.22	2.13	-0.91	2.18	-0.96	1.56	-2.47	1.61	-0.39
H33	1.22	2.10	-0.88	2.05	-0.83	1.48	-2.36	1.42	-0.20
H34	3.97	4.76	-0.79	4.88	-0.91	3.96	-4.75	4.16	-0.19
H35	3.97	4.53	-0.56	4.68	-0.71	3.96	-4.52	4.16	-0.19
H36	7.24	8.04	-0.80	8.24	-1.00	7.86	-8.66	8.09	-0.85
H37	6.87	7.48	-0.61	7.77	-0.90	7.67	-8.28	7.83	-0.96
H38	6.87	7.78	-0.91	7.82	-0.95	7.67	-8.58	7.83	-0.96
H39	7.24	8.13	-0.89	8.27	-1.03	7.86	-8.75	8.09	-0.85
H40	3.70	4.45	-0.75	4.59	-0.89	3.50	-4.25	3.68	0.02
H41	3.70	4.78	-1.08	4.89	-1.19	3.50	-4.58	3.68	0.02
H42	3.70	4.43	-0.73	4.59	-0.89	4.18	-4.91	4.27	-0.57

Tablo 3.49. 10 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ CNNC(24), τ CCCC(28)	11	12
2	τ CNNC(24), τ CCCC(18)	16	14
3	δ NCC(10), τ CCCC(12)	23	23
4	τ CNNC(13), τ CCCC(19)	27	23
5	τ CCCN(17), τ CCNN(18), τ NNCC(13), τ CCCC(14)	31	31
6	τ CCCN(27), τ CCCC(34)	48	40
7	δ CCN(17), τ CCCC(12), τ COCC(10)	53	47
8	τ CNNC(14), τ CCCN(11), τ NNCC(19)	87	56
9	τ COCC(55)	90	87
10	δ NCC(21), δ CCC(10)	119	116
11	τ NNCC(16), τ CCCC(10), τ NCNC(14)	126	121
12	τ CNNC(28)	156	122
13	τ CCC(10), τ CCCC(29), τ COCC(18)	160	147
14	v CC(11), δ CCC(15), δ NCN(20)	171	162
15	δ CCC(29), τ CCCC(13)	202	171
16	δ OCC(13), τ HCCC(20), τ CCCN(14)	220	204
17	δ OCC(22), δ COC(10), τ HCCC(10)	223	210
18	δ CCC(10), τ HCCC(17), τ CCCN(19), τ NNCC(12)	234	227
19	τ HCOC(66)	240	250
20	τ HCCC(43)	252	257
21	τ HNNC(22), τ CNNC(25), τ NNCC(19)	272	273
22	δ CCC(43)	297	300
23	δ CCC(14), τ CCCN(16), τ CCNN(27), τ NNCC(10)	302	300
24	δ CCC(22), δ COC(16)	321	305
25	δ CCC(14)	338	336
26	τ CCCC(20), τ OCCC(16)	342	373
27	τ CCCN(46), τ CCCC(19)	401	410
28	δ CCC(10), δ OCN(19), δ NCN(16)	405	412
29	τ HCCC(14), τ CCCC(77)	410	416
30	τ HNNC(20), τ CCCN(15), τ CCNN(10)	422	419
31	δ CCC(15), δ OCC(19), δ COC(12)	438	429
32	τ HNNC(35), τ ONNC(11)	442	446
33	ν CC(13), δ CCC(17), τ δ CCCC(17)	455	456
34	δ COC(10), τ HCCC(20), τ OCCC(27)	505	500
35	δ COC(15), τ HCCC(11), τ OCCC(11)	529	541
36	δ CCC(19), τ CCCC(15)	544	559
37	τ CCCN(18), τ CCCC(22)	551	561
38	δ CCC(13), δ OCN(26), δ CCN(10), δ NNC(10)	584	593
39	δ CCC(24), τ NCNC(19)	623	630

Tablo 3.49.' t	ın devamı
----------------	-----------

40	δ CCC(42)	629	632
41	δ CCC(19), τ NCNC(22)	634	649
42	τ CCCC(20)	661	668
43	$\tau ONNC(79)$	692	708
44	τ CCCC(28)	694	732
45	$v OC(10) v CC(13) \delta CCC(11)$	719	740
46	$\tau CCCC(38)$	727	754
40	$\tau CCCC(34)$	750	762
48	$\delta CNN(20) \delta NNC(13)$	769	782
40	$v NN(15) \neq HCCC(11)$	788	702
50	τ HCCC(79)	705	828
50	$\gamma CC(14) = HCCC(20)$	81 <i>4</i>	844
57	$\tau = HCCC(40)$	821	851
52	$\tau = \Pi C C C (45)$	021	851
55	\mathcal{L} HCCC(45)	828	857
54	V CC(11), V HCCC(21) S NCN(10), S CCC(22), S CCN(12)	033 957	801 865
55 5(0 NCN(10), 0 CCC(25), 0 CCN(15)	837 965	803
50 57	V CC(54)	803	8/0
5/	$\frac{1}{1} \operatorname{HCCC}(22)$	900	907
58	0 HCH(10), 0 HCC(24), th HCC(58)	900	918
59	τ HCCC(32)	910	933
60	τ HCCC(48)	925	969
61	$V CC(27), \tau HCCC(12)$	928	980
62	τ HCCC(25), τ CCCC(12)	934	983
63	τ HCCC(45)	945	997
64	τ HCNN(83)	981	1000
65	δ HCC(14), δ CCC(43)	991	1001
66	δ HCC(14), δ CCC(33)	995	1028
67	δ NNC(33)	998	1035
68	v OC(72)	1037	1045
69	ν CC(), δ HCC(), τ HCCC()	1038	1046
70	v NC(12), v NN(39)	1060	1062
71	$v CC(46), \tau HCCC(10)$	1081	1080
72	ν CC(24), δ NNC(48)	1095	1090
73	v CC(13), 8 HCC(56)	1095	1096
74	τ HCCC(11)	1133	1123
75	δ HCH(26), τ HCCC(11), τ HCOC(29)	1134	1131
76	δ HCC(29)	1158	1152
77	δ HCC(27)	1159	1155
78	ν CC(10), δ HCC(29), τ HCCC(18)	1163	1165
79	δ HCH(15), τ HCOC(28)	1167	1176
80	ν NC(15), ν NN(11), δ HCC(24)	1168	1183
81	ν CC(17), δ HCC(15), τ HCCC(14)	1183	1185
82	ν CC(24), δ HCC(13)	1190	1193
83	v CC(21)	1210	1213
84	τ HCCC(14)	1242	1213
85	v OC(36)	1247	1226
86	δ HCC(32)	1272	1263
87	v NC(11), v NN(11), δ HCN(10), τ HCCC(18)	1278	1277
88	δ HCC(75)	1291	1299
89	ν CC(26), δ HCC(35)	1296	1301
90	τ HCCC(27), τ CCCC(10)	1300	1321
91	ν CC(21), δ HCC(11)	1317	1334
92	ν CC(23), δ HCC(44)	1337	1346
93	ν NC(11), δ HNN(63)	1342	1384
94	δ HCN(28), τ HCCC(10)	1358	1385
95	δ HCN(11), δ HCH(11), τ HCCC(25)	1359	1395

Tablo 3.49.' un devam

96	δ HCH(67)	1378	1400
97	ν CC(27), δ HCC(25)	1403	1412
98	ν CC(24), δ HCC(32)	1409	1418
99	ν NC(14), δ HCN(19)	1413	1441
100	δ HCH(78), τ HCCC(13)	1425	1449
101	δ HCH(79)	1432	1451
102	δ HCH(38)	1444	1452
103	δ HCH(37), τ HCOC(11)	1447	1457
104	δ HCH(73), τ HCOC(13)	1447	1462
105	δ HCH(52)	1459	1467
106	δ HCH(71), τ HCOC(11)	1461	1471
107	δ HCH(30)	1463	1475
108	ν CC(12), δ HCC(55), δ CCC(11)	1497	1519
109	δ HCC(45), δ CCC(13)	1504	1525
110	ν CC(25), δ CCC(16)	1551	1585
111	ν CC(34), δ CCC(13)	1572	1598
112	v NC(55)	1589	1635
113	v NC(26), v CC(37), δ HCC(12)	1596	1639
114	ν CC(51), δ HCC(17)	1611	1683
115	v NC(33), v CC(12)	1614	1711
116	v OC(74), v NC(12)	1751	1771
117	v CH(91)	2899	2856
118	v CH(33)	2917	2859
119	v CH(50)	2923	2863
120	v CH(46)	2927	2870
121	v CH(99)	2931	2893
122	v CH(50)	2958	2912
123	v CH(99)	2961	2953
124	v CH(51)	2989	2924
125	v CH(44)	2994	2926
126	v CH(55)	3000	2927
127	v CH(42)	3002	2930
128	v CH(46)	3028	2962
129	v CH(46)	3051	3003
130	v CH(88)	3054	3005
131	V CH(40)	3056	3005
132	V UH(04)	3056	3006
133	V CH(4/)	3059	3022
134	v CH(49)	30/2	3029
135	V UH(38)	3089	3031
136	V CH(26)	3092	3035
137	V CH(35)	3101	3043
138	v NH(100)	3556	3355

Şekil 3.22. 10 tipi bileşiğin deneysel (a) ve teorik (B3LYP 6-31G(d,p) (b) ve HF 6-31G(d,p) (c)) IR spektrumları

Şekil 3.23. 10 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.50. 10 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(44)-C(1)-N(45)	111.425	111.270	38	C(1)-N(45)-N(46)	121.156	121.041
2	N(44)-N(43)-C(2)	114.597	113.783	39	N(45)-N(46)-C(3)	118.708	119.745
3	N(44)-N(43)-H(21)	120.340	120.880	40	N(46)-C(3)-H(22)	121.869	122.145
4	H(21)-N(43)-C(2)	125.062	125.337	41	H(22)-C(3)-C(4)	117.844	117.316
5	N(43)-C(2)-O(47)	129.893	129.346	42	N(46)-C(3)-C(4)	120.287	120.539
6	O(47)-C(2)-N(45)	128.969	128.734	43	C(3)-C(4)-C(5)	122.896	122.785
7	N(45)-C(1)-C(13)	122.246	121.931	44	C(3)-C(4)-C(9)	118.676	118.645
8	N(44)-C(1)-C(13)	126.329	126.799	45	C(4)-C(9)-H(26)	119.324	119.663
9	C(1)-C(13)-C(14)	113.907	113.788	46	C(4)-C(5)-H(23)	119.042	119.467
10	C(1)-C(13)-H(34)	107.874	107.820	47	H(23)-C(5)-C(6)	120.628	120.222
11	C(1)-C(13)-H(35)	108.080	107.820	48	C(5)-C(6)-H(24)	119.355	119.144
12	H(34)-C(13)-H(35)	105.173	105.774	49	H(24)-C(6)-C(7)	119.092	119.393
13	H(34)-C(13)-C(14)	110.787	110.634	50	C(4)-C(9)-C(8)	120.844	120.866
14	H(35)-C(13)-C(14)	110.599	110.635	51	C(9)-C(8)-C(7)	121.005	120.896
15	C(13)-C(14)-C(15)	121.093	120.784	52	C(7)-C(6)-C(5)	121.552	121.464
16	C(13)-C(14)-C(19)	120.889	120.783	53	H(25)-C(8)-C(7)	119.897	120.158
17	C(14)-C(15)-H(36)	119.538	119.700	54	H(25)-C(8)-C(9)	119.098	118.946
18	H(36)-C(15)-C(16)	118.805	119.253	55	H(26)-C(9)-C(8)	119.832	119.471
19	C(15)-C(16)-H(37)	119.398	120.919	56	C(8)-C(7)-C(6)	117.841	117.893
20	H(37)-C(16)-C(17)	121.126	119.326	57	C(8)-C(7)-C(10)	121.492	121.632

Tabl	o 3.50.' nin devamı						
21	C(16)-C(17)-O(48)	124.752	120.005	58	C(6)-C(7)-C(10)	120.667	120.475
22	C(17)-O(48)-C(20)	118.159	115.549	59	C(7)-C(10)-C(11)	111.816	111.875
23	O(48)-C(20)-H(40)	111.697	111.199	60	C(7)-C(10)-H(27)	106.975	106.928
24	O(48)-C(20)-H(41)	106.053	111.198	61	H(27)-C(10)-C(11)	107.434	107.309
25	O(48)-C(20)-H(42)	111.715	106.942	62	H(27)-C(10)-C(12)	107.457	107.309
26	H(40)-C(20)-H(41)	109.172	109.312	63	H(28)-C(11)-H(29)	108.167	108.131
27	H(40)-C(20)-H(42)	108.986	108.835	64	H(28)-C(11)-H(30)	107.730	107.847
28	H(41)-C(20)-H(42)	109.134	109.313	65	H(29)-C(11)-H(30)	107.628	107.692
29	C(17)-C(18)-H(38)	118.542	119.327	66	C(10)-C(11)-H(28)	111.251	111.108
30	H(38)-C(18)-C(19)	121.385	120.918	67	C(10)-C(11)-H(29)	110.609	110.446
31	C(14)-C(19)-C(18)	121.230	121.047	68	C(10)-C(11)-H(30)	111.306	111.474
32	C(18)-C(17)-C(16)	119.546	119.971	69	C(10)-C(12)-H(31)	110.626	110.446
33	C(17)-C(16)-C(15)	119.475	119.752	70	C(10)-C(12)-H(32)	111.267	111.476
34	C(16)-C(15)-C(14)	121.657	121.046	71	C(10)-C(12)-H(33)	111.257	111.109
35	N(43)-C(2)-N(45)	101.138	101.920	72	H(31)-C(12)-H(32)	107.653	107.691
36	C(2)-N(45)-C(1)	108.363	108.108	73	H(31)-C(12)-H(33)	108.164	108.131
37	C(2)-N(45)-N(46)	130.481	130.851	74	H(32)-C(12)-H(33)	107.725	107.846

Tablo 3.51. 10 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Ba	ğUzunlukları	B3LYP	HF	Bağ	Uzunlukları	B3LYP	HF
1	C(1)-N(44)	1.2996	1.2681	26	C(18)-C(19)	1.3876	1.3838
2	C(1)-N(45)	1.3901	1.3806	27	C(19)-H(39)	1.0869	1.0765
3	C(1)-C(13)	1.5003	1.4993	28	N(46)-C(3)	1.2902	1.2610
4	N(44)-N(43)	1.3817	1.3703	29	C(3)-H(22)	1.0884	1.0752
5	N(43)-H(21)	1.0066	0.9906	30	C(3)-C(4)	1.4639	1.4738
6	N(43)-C(2)	1.3699	1.3461	31	C(4)-C(5)	1.4049	1.3914
7	C(2)-O(47)	1.2237	1.2029	32	C(4)-C(9)	1.4042	1.3894
8	C(2)-N(45)	1.4177	1.3858	33	C(5)-H(23)	1.0847	1.0739
9	N(45)-N(46)	1.3732	1.3672	34	C(5)-C(6)	1.3895	1.3805
10	C(13)-H(34)	1.0968	1.0848	35	C(6)-H(24)	1.0873	1.0763
11	C(13)-H(35)	1.0964	1.0848	36	C(6)-C(7)	1.4042	1.3933
12	C(13)-C(14)	1.5129	1.5123	37	C(7)-C(8)	1.4022	1.3903
13	C(14)-C(19)	1.4029	1.3879	38	C(8)-H(25)	1.0864	1.0755
14	C(14)-C(15)	1.3946	1.3879	39	C(8)-C(9)	1.3916	1.3834
15	C(15)-H(36)	1.0871	1.0765	40	C(9)-H(26)	1.0870	1.0766
16	C(15)-C(16)	1.3977	1.3838	41	C(7)-C(10)	1.5219	1.5217
17	C(16)-H(37)	1.0833	1.0751	42	C(10)-H(27)	1.0978	1.0868
18	C(16)-C(17)	1.3984	1.3844	43	C(10)-C(11)	1.5404	1.5347
19	C(17)-O(48)	1.3662	1.3627	44	C(11)-H(28)	1.0942	1.0849
20	O(48)-C(20)	1.4183	1.4052	45	C(11)-H(29)	1.0953	1.0860
21	C(20)-H(40)	1.0976	1.0862	46	C(11)-H(30)	1.0953	1.0857
22	C(20)-H(41)	1.0909	1.0862	47	C(10)-C(12)	1.5403	1.5347
23	C(20)-H(42)	1.0977	1.0810	48	C(12)-H(31)	1.0953	1.0860
24	C(17)-C(18)	1.4027	1.3844	49	C(12)-H(32)	1.0953	1.0857
25	C(18)-H(38)	1.0849	1.0751	50	C(12)-H(33)	1.0942	1.0849

	DFT	HF	0	DFT	HF
C1	0.538	0.609	H25	0.085	0.152
C2	0.817	1.052	H26	0.094	0.164
C3	0.112	0.180	H27	0.090	0.124
C4	0.084	-0.085	H28	0.109	0.122
C5	-0.096	-0.111	H29	0.102	0.114
C6	-0.141	-0.176	H30	0.104	0.110
C7	0.150	0.022	H31	0.102	0.114
C8	-0.129	-0.156	H32	0.104	0.110
С9	-0.127	-0.144	H33	0.109	0.122
C10	-0.130	-0.153	H34	0.138	0.167
C11	-0.305	-0.314	H35	0.136	0.167
C12	-0.305	-0.314	H36	0.081	0.152
C13	-0.311	-0.271	H37	0.084	0.161
C14	0.128	-0.011	H38	0.094	0.161
C15	-0.126	-0.136	H39	0.083	0.152
C16	-0.132	-0.170	H40	0.112	0.105
C17	0.348	0.364	H41	0.111	0.105
C18	-0.114	-0.170	H42	0.124	0.130
C19	-0.108	-0.136	N43	-0.434	-0.564
C20	-0.078	-0.010	N44	-0.334	-0.340
H21	0.288	0.340	N45	-0.419	-0.628
H22	0.157	0.228	N46	-0.324	-0.332
H23	0.104	0.176	O47	-0.542	-0.658
H24	0.083	0.150	O48	-0.518	-0.672

Tablo 3.52. 10 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

E_{HOMO} (B3LYP) : -0.21395 Hatree

 $E_{HOMO}\,(HF)$: -0.30768 Hatree

 $\begin{array}{lll} E_{LUMO}\left(B3LYP\right): -0.05367 \ \text{Hatree} & E_{LUMO}\left(\text{HF}\right): 0.08945 \ \text{Hatree} \\ \hline \textbf{Sekil 3.24. 10 Molekülünün B3LYP 6-31G(d,p) ve \ \text{HF 6-31G(d,p) yöntemlerine göre} \\ \hline \textbf{hesaplanan HOMO-LUMO enerjileri} \end{array}$

Tablo 3.53. 10 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	1.4864	1.9315
$\mu_{\rm v}$	-3.3359	-4.0002
μ _z	-1.6258	-1.8127
μ_{Toplam}	3.9976	4.7977

Tablo 3.54. 10 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1144.837	-1137.700

3.4.7. 3-(*p*-Klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (11)

Şekil 3.25. 11 tipi bileşiğin(6-31G (d,p)) gausview görünümü

	D			DFT/631d	 Fark/			HF/631d/	Fark/
No	Deney.	DF1/631d	Fark	/DMSO	DMSO	HF/631d	Fark	DMSO	DMSO
C1	151.15	151.44	-0.29	153.02	-1.87	145.49	5.66	147.74	3.41
C2	153.52	152.02	1.50	152.73	0.79	145.81	7.71	146.54	6.98
C3	152.16	154.68	-2.52	155.39	-3.23	149.28	2.88	150.15	2.01
C4	131.06	136.94	-5.88	136.07	-5.01	126.30	4.76	125.39	5.67
C5	127.72	127.85	-0.13	127.45	0.27	123.24	4.48	122.87	4.85
C6	126.89	132.24	-5.35	132.52	-5.63	123.36	3.53	123.42	3.47
C7	145.77	155.04	-9.27	156.80	-11.03	148.39	-2.62	149.88	-4.11
C8	126.89	128.85	-1.96	129.42	-2.53	120.75	6.14	121.06	5.83
C9	127.72	136.41	-8.69	136.69	-8.97	130.34	-2.62	130.70	-2.98
C10	33.35	47.82	-14.47	47.61	-14.26	29.48	3.87	29.23	4.12
C11	23.48	33.22	-9.74	32.80	-9.32	20.24	3.24	19.80	3.68
C12	23.48	33.27	-9.79	32.85	-9.37	20.25	3.23	19.79	3.69
C13	30.31	42.44	-12.13	41.94	-11.63	27.53	2.78	27.10	3.21
C14	131.29	136.51	-5.22	137.88	-6.59	129.10	2.19	130.59	0.70
C15	130.60	134.56	-3.96	135.08	-4.48	127.47	3.13	127.83	2.77
C16	128.28	131.73	-3.45	131.83	-3.55	125.16	3.12	125.25	3.03
C17	134.71	146.13	-11.42	144.77	-10.06	133.31	1.40	131.66	3.05
C18	128.28	131.74	-3.46	131.82	-3.54	125.16	3.12	125.25	3.03
C19	130.60	134.59	-3.99	135.09	-4.49	127.47	3.13	127.83	2.77
H20	11.99	7.94	4.05	8.38	3.61	7.17	4.82	7.57	4.42
H21	9.65	11.05	-1.40	11.00	-1.35	10.29	-0.64	10.25	-0.60
H22	7.71	9.08	-1.37	9.12	-1.41	8.85	-1.14	8.93	-1.22
H23	7.37	8.09	-0.72	8.27	-0.90	7.75	-0.38	7.94	-0.57
H24	7.37	8.36	-0.99	8.54	-1.17	7.90	-0.53	8.11	-0.74
H25	7.71	8.22	-0.51	8.36	-0.65	8.07	-0.36	8.25	-0.54
H26	2.95	3.61	-0.66	3.75	-0.80	2.75	0.20	2.91	0.04
H27	1.22	2.09	-0.87	2.05	-0.83	1.47	-0.25	1.41	-0.19
H28	1.22	2.11	-0.89	2.16	-0.94	1.49	-0.27	1.55	-0.33
H29	1.22	2.13	-0.91	2.18	-0.96	1.55	-0.33	1.60	-0.38
H30	1.22	2.11	-0.89	2.16	-0.94	1.49	-0.27	1.55	-0.33
H31	1.22	2.13	-0.91	2.17	-0.95	1.55	-0.33	1.60	-0.38
H32	1.22	2.09	-0.87	2.05	-0.83	1.47	-0.25	1.41	-0.19
H33	4.06	4.69	-0.63	4.85	-0.79	3.96	0.10	4.18	-0.12
H34	4.06	4.62	-0.56	4.79	-0.73	3.96	0.10	4.18	-0.12
H35	7.38	8.09	-0.71	8.33	-0.95	7.82	-0.44	8.09	-0.71
H36	7.34	8.10	-0.76	8.24	-0.90	7.84	-0.50	8.01	-0.67
H37	7.34	8.10	-0.76	8.24	-0.90	7.84	-0.50	8.01	-0.67
H38	7.38	8.11	-0.73	8.34	-0.96	7.82	-0.44	8.09	-0.71

Tablo 3.55. 11 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP (DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ/ppm)

	TITREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ CNNC(33), τ CCCC(11)	4	11
2	τ CNNC(10), τ CCCC(68)	11	15
3	τ CNNC(21), τ NNCC(10)	21	23
4	δ NCC(17), δ CCN(14), δ CCC(10), τ CCCC(23)	23	25
5	τ CCCN(22), τ CCNN(19), τ NNCC(11), τ CCCC(14)	31	31
6	τ CCCN(26), τ CCCC(37)	49	47
7	δ CCN(21), τ CCCC(20)	53	54
8	τ CNNC(14), τ CCCN(11), τ NNCC(20)	87	87
9	δ NCC(29), δ CCC(11)	115	116
10	τ CCCN(10), τ NNCC(18), τ NCNC(14)	126	122
11	δ CCC(16), τ CCCC(22), τ CICCC(17)	138	141
12	τ CNNC(29), τ CCCN(10), τ NNCC(10)	157	147
13	v CC(11), δ CCC(14), δ NCN(22)	171	171
14	δ NCC(11), δ CCC(31), τ CCCC(14)	203	205
15	τ HCCC(27), τ CCCN(18)	221	209
16	τ HCCC(13), τ CCCN(15), τ NNCC(10)	233	227
17	δ CICC(43)	239	243
18	τ HCCC(39)	250	253
19	τ HNNC(21), τ HCCC(10), τ CNNC(20), τ NNCC(20)	274	280
20	δ CCC(36)	295	297
21	δ CCC(14), τ CCCN(16), τ CCNN(26)	302	303
22	τ CCCC(13), τ CICCC(26)	302	308
23	δ CCC(23)	334	335
24	δ CCC(22), δ CICC(31)	351	359
25	ν CIC(12), δ OCN(20), δ NCN(10)	398	406
26	τ HCCC(10), τ CCCN(55)	400	409
27	τ HCCC(16), τ CCCC(81)	404	411
28	v CIC(18), δ NCN(10)	415	417
29	τ HNNC(20), τ CCCN(17), τ CCNN(11)	423	429
30	τ HNNC(38), τ ONNC(12)	443	446
31	v CC(13), δ CCC(17), τ CCCC(17)	455	456
32	τ HCCC(21), τ CCCC(18), τ CICCC(22)	488	501
33	δ CCC(15), τ CCCC(15)	542	545
34	τ HCCC(28), τ CCCC(27)	551	560
35	δ CCC(16), δ OCN(28), δ CCN(22)	576	583
36	δ CCC(37), τ NCNC(10)	621	626
37	δ CCC(41)	629	631
38	δ CCC(12), τ HNNC(10), τ NNCC(10), τ NCNC(30)	631	647
39	ν CC(13), ν CIC(21), δ CCC(16)	642	648
40	τ CCCC(38)	660	671
41	τ ONNC(80)	692	701
42	ν CC(13), τ CCCC(23)	695	740
43	τ CCCC(56)	727	746
44	τ HCCC(13)	734	753
45	δ CNN(24)	766	778
46	ν NN(20), δ NCN(11)	785	793
47	ν CC(14), τ HCCC(20)	798	810
48	τ HCCC(99)	806	846
49	τ HCCC(38)	821	851
50	τ HCCC(61)	827	857
51	τ HCCC(29), τ CCCC(12)	836	861
52	δ NCN(10), δ CCC(23), δ CCN(12)	857	865
53	v CC(54)	865	866
54	δ HCH(10), τ HCCC(43)	900	907

Tablo 3.56. 11 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

Tablo 3.56.' nın devamı

55	δ HCC(33), τ HCCC(31)	903	919
56	τ HCCC(72), τ CCCC(15)	925	933
57	τ HCCC(85), τ CCCC(13)	927	974
58	ν CC(29), τ HCCC(13)	928	980
59	τ HCCC(34), τ CCCC(11)	935	986
60	τ HCCC(54)	945	997
61	τ HCNN(83)	982	1000
62	δ CCC(61)	992	1001
63	δ HCC(14), δ CCC(33)	995	1029
64	δ NNC(38)	998	1036
65	v CC(13), δ HCC(14), τ HCCC(17)	1038	1045
66	v NC(12), v NN(38)	1062	1067
67	v CC(52), v CIC(19), δ HCC(15)	1066	1080
68	v CC(47), τ HCCC(10)	1081	1082
69	ν CC(18), δ HCC(57)	1091	1091
70	ν CC(24), δ HCC(49)	1095	1096
71	τ HCCC(11)	1134	1123
72	δ HCC(42)	1158	1131
73	δ HCC(43), τ HCCC(27)	1159	1165
74	v CC(20), δ HCC(74)	1161	1168
75	v NC(13), v NN(10), δ HCC(30)	1167	1176
76	v CC(18), δ HCC(13), τ HCCC(16)	1179	1184
77	ν CC(25), δ HCC(13)	1190	1193
78	v CC(21)	1209	1212
79	v NN(11), τ HCCC(16)	1243	1213
80	δ HCC(33)	1272	1225
81	v NC(10), v NN(10), τ HCCC(18)	1278	1278
82	ν CC(18), δ HCN(10), δ HCC(64)	1278	1301
83	ν CC(26), δ HCC(35)	1297	1305
84	ν CC(43), δ HCC(11)	1299	1321
85	τ CCCC(27)	1300	1334
86	ν CC(24), δ HCC(44)	1337	1346
87	ν NC(11), δ HNN(64)	1343	1384
88	δ HCH(34)	1359	1386
89	δ HCN(37), δ HCH(13)	1359	1395
90	δ HCH(37)	1379	1400
91	ν CC(31), δ HCC(38)	1392	1406
92	ν CC(30), δ HCC(28)	1404	1418
93	ν NC(18), δ HCN(29)	1416	1442
94	δ HCH(82), τ HCCC(10)	1427	1452
95	δ HCH(35)	1444	1452
96	δ HCH(39)	1447	1457
97	δ HCH(49)	1459	1467
98	δ HCH(32)	1463	1471
99	ν CC(12), δ HCC(58), δ CCC(11)	1477	1503
100	ν CC(12), δ HCC(55), δ CCC(11)	1497	1519
101	ν CC(25), δ CCC(16)	1551	1585
102	ν CC(28), δ CCC(15)	1568	1594
103	v NC(43)	1588	1627
104	ν NC(11), ν CC(34), δ HCC(14)	1593	1635
105	ν NC(26), ν CC(32), δ HCC(10)	1596	1683
106	v NC(33), v CC(13)	1614	1710
107	v OC(74), v NC(12)	1753	1773
108	v CH(33)	2918	2859
109	v CH(48)	2923	2864
110	v CH(48)	2927	2870
111	v CH(100)	2935	2895

Tablo 3.5	6.' nın devamı		
112	v CH(100)	2966	2917
113	v CH(50)	2989	2925
114	v CH(46)	2995	2927
115	v CH(47)	3000	2929
116	v CH(48)	3002	2930
117	v CH(45)	3051	3003
118	v CH(87)	3055	3007
119	v CH(63)	3057	3012
120	v CH(67)	3064	3012
121	v CH(67)	3064	3023
122	v CH(49)	3073	3035
123	v CH(26)	3092	3043
124	v CH(68)	3097	3043
125	v CH(72)	3098	3044
126	v NH(100)	3555	3554

Şekil 3.26. 11 tipi bileşiğin deneysel (a) ve teorik (B3LYP 6-31G(d,p) (b) ve HF 6-31G(d,p) (c)) IR spektrumları

Şekil 3.27. 11 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(40)-C(1)-N(41)	111.551	111.360	36	N(42)-C(3)-H(21)	121.829	122.115
2	N(40)-N(40)-C(2)	114.579	113.765	37	H(21)-C(3)-C(4)	117.824	117.302
3	N(40)-N(40)-H(20)	120.343	120.897	38	N(42)-C(3)-C(4)	120.347	120.584
4	H(20)-N(40)-C(2)	125.078	125.338	39	C(3)-C(4)-C(5)	122.910	122.795
5	N(40)-C(2)-O(43)	129.908	129.347	40	C(3)-C(4)-C(9)	118.646	118.622
6	O(43)-C(2)-N(41)	128.951	128.734	41	C(4)-C(9)-H(25)	119.337	119.673
7	N(40)-C(1)-C(13)	126.186	126.685	42	C(4)-C(5)-H(22)	119.067	119.488
8	N(41)-C(1)-C(13)	122.263	121.955	43	H(22)-C(5)-C(6)	120.608	120.205
9	C(1)-C(13)-C(14)	113.492	113.523	44	C(5)-C(6)-H(23)	119.363	119.148
10	C(1)-C(13)-H(33)	108.216	107.961	45	H(23)-C(6)-C(7)	119.092	119.395
11	C(1)-C(13)-H(34)	108.216	107.961	46	C(4)-C(9)-C(8)	120.831	120.856
12	H(33)-C(13)-C(14)	110.669	110.603	47	C(9)-C(8)-C(7)	121.004	120.894
13	H(34)-C(13)-C(14)	110.639	110.605	48	C(7)-C(6)-C(5)	121.545	121.457
14	H(33)-C(13)-H(34)	105.307	105.849	49	H(24)-C(8)-C(7)	119.897	120.158
15	C(13)-C(14)-C(15)	120.773	120.718	50	H(24)-C(8)-C(9)	119.099	118.948
16	C(13)-C(14)-C(19)	120.711	120.718	51	H(25)-C(9)-C(8)	119.833	119.471
17	C(14)-C(15)-H(35)	119.671	119.845	52	C(8)-C(7)-C(6)	117.852	117.902
18	H(35)-C(15)-C(16)	119.138	119.048	53	C(8)-C(7)-C(10)	121.485	121.627
19	C(15)-C(16)-H(36)	120.818	120.681	54	C(6)-C(7)-C(10)	120.664	120.471
20	H(36)-C(16)-C(17)	120.163	120.166	55	C(7)-C(10)-C(11)	111.786	111.868
21	C(16)-C(17)-CI(44)	119.474	119.540	56	C(7)-C(10)-H(26)	106.978	106.927
22	CI(44)-C(17)-C(18)	119.465	119.541	57	H(26)-C(10)-C(11)	107.459	107.313
23	C(17)-C(18)-H(37)	120.156	120.167	58	H(26)-C(10)-C(12)	107.451	107.313
24	H(37)-C(18)-C(19)	120.823	120.680	59	H(27)-C(11)-H(28)	108.162	108.128
25	C(18)-C(19)-H(38)	119.148	119.047	60	H(27)-C(11)-H(29)	107.730	107.852
26	H(38)-C(19)-C(14)	119.660	119.846	61	H(28)-C(11)-H(29)	107.640	107.691
27	C(14)-C(19)-C(18)	121.192	121.107	62	C(10)-C(11)-H(27)	111.265	111.115
28	C(18)-C(17)-C(16)	121.060	120.918	63	C(10)-C(11)-H(28)	110.604	110.436
29	C(17)-C(16)-C(15)	119.019	119.153	64	C(10)-C(11)-H(29)	111.289	111.477
30	C(16)-C(15)-C(14)	121.191	121.107	65	C(10)-C(12)-H(30)	110.606	110.435
31	N(39)-C(2)-N(41)	101.142	101.920	66	C(10)-C(12)-H(31)	111.289	111.480
32	C(2)-N(41)-C(1)	108.296	108.071	67	C(10)-C(12)-H(32)	111.259	111.115
33	C(2)-N(41)-N(42)	130.600	130.940	68	H(30)-C(12)-H(31)	107.641	107.690
34	C(1)-N(41)-N(42)	121.104	120.989	69	H(30)-C(12)-H(32)	108.164	108.127
35	N(41)-N(42)-C(3)	118.628	119.683	70	H(31)-C(12)-H(32)	107.733	107.851

Tablo 3.57. 11 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.58. 11 tipi bileşiğin B3LYP 6-31G (d,p) ve HF 6-31G (d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	ğ Uzunlukları	B3LYP	HF	Bağ	Uzunlukları	B3LYP	HF
1	C(1)-N(40)	1.2996	1.2681	24	N(42)-C(3)	1.2904	1.2612
2	C(1)-N(41)	1.3885	1.3794	25	C(3)-H(21)	1.0884	1.0752
3	C(1)-C(13)	1.4998	1.4990	26	C(3)-C(4)	1.4634	1.4734
4	N(40)-N(39)	1.3809	1.3699	27	C(4)-C(5)	1.4049	1.3915
5	N(39)-H(20)	1.0068	0.9906	28	C(4)-C(9)	1.4042	1.3894
6	N(39)-C(2)	1.3706	1.3466	29	C(5)-H(22)	1.0847	1.0739
7	C(2)-O(43)	1.2231	1.2024	30	C(5)-C(6)	1.3894	1.3805
8	C(2)-N(41)	1.4182	1.3862	31	C(6)-H(23)	1.0872	1.0762
9	N(41)-N(42)	1.3739	1.3678	32	C(6)-C(7)	1.4043	1.3934
10	C(13)-H(33)	1.0963	1.0845	33	C(7)-C(8)	1.4022	1.3903
11	C(13)-H(34)	1.0963	1.0845	34	C(8)-H(24)	1.0864	1.0754
12	C(13)-C(14)	1.5133	1.5122	35	C(8)-C(9)	1.3915	1.3834
13	C(14)-C(19)	1.3989	1.3875	36	C(9)-H(25)	1.0870	1.0766

Tablo 3.58.' in devamı

14	C(14)-C(15)	1.3986	1.3875	37	C(7)-C(10)	1.5219	1.5217
15	C(15)-H(35)	1.0866	1.0760	38	C(10)-H(26)	1.0978	1.0868
16	C(15)-C(16)	1.3942	1.3839	39	C(10)-C(11)	1.5403	1.5347
17	C(16)-H(36)	1.0842	1.0736	40	C(11)-H(27)	1.0942	1.0849
18	C(16)-C(17)	1.3933	1.3818	41	C(11)-H(28)	1.0952	1.0860
19	C(17)-CI(44)	1.7600	1.7444	42	C(11)-H(29)	1.0953	1.0857
20	C(17)-C(18)	1.3936	1.3818	43	C(10)-C(12)	1.5404	1.5347
21	C(18)-H(37)	1.0842	1.0736	44	C(12)-H(30)	1.0952	1.0860
22	C(18)-C(19)	1.3938	1.3839	45	C(12)-H(31)	1.0953	1.0857
23	C(19)-H(38)	1.0865	1.0760	46	C(12)-H(32)	1.0942	1.0849

Tablo 3.59. 11 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p)yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.539	0.609	H23	0.084	0.150
C2	0.818	1.052	H24	0.086	0.153
C3	0.113	0.182	H25	0.095	0.165
C4	0.084	-0.086	H26	0.091	0.125
C5	-0.096	-0.111	H27	0.110	0.122
C6	-0.141	-0.176	H28	0.103	0.114
C7	0.151	0.022	H29	0.104	0.110
C8	-0.128	-0.156	H30	0.103	0.114
С9	-0.127	-0.144	H31	0.104	0.110
C10	-0.131	-0.154	H32	0.110	0.122
C11	-0.305	-0.314	H33	0.142	0.170
C12	-0.305	-0.314	H34	0.141	0.170
C13	-0.311	-0.272	H35	0.093	0.160
C14	0.128	-0.003	H36	0.110	0.178
C15	-0.105	-0.133	H37	0.110	0.178
C16	-0.069	-0.112	H38	0.093	0.160
C17	-0.094	-0.164	N39	-0.434	-0.564
C18	-0.070	-0.112	N40	-0.334	-0.342
C19	-0.102	-0.133	N41	-0.419	-0.627
H20	0.290	0.341	N42	-0.326	-0.335
H21	0.158	0.228	O43	-0.540	-0.656
H22	0.102	0.176	CI44	-0.026	-0.005

E_{HOMO} (B3LYP) : -0.21936 Hatree

E_{HOMO} (HF) : -0.31090 Hatree

E_{LUMO} (B3LYP) : -0.05802 Hatree

E_{LUMO}(HF): 0.08626 Hatree

Şekil 3.28. 11 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.60. 11 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	-2.8818	-3.4323
$\mu_{\rm v}$	-1.7148	-2.1045
μ _z	1.4961	1.6534
μ _{Toplam}	3.6720	4.3524

Tablo 3.61. 11 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) Yöntemlerine Göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1489.907	-1482.718

3.4.8. 3-(m-Klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4triazol-5-on (12)

Şekil 3.29.12 tipi bileşiğin(6-31G(d,p)) gausview görünümü

Tablo 3.62. 1	2 tipi bileşiğin	TMS'ye gör	$e^{13}C$ ve ¹ H-N	MR deney	sel ve teorik ((B3LYP,
HF, B3LYP(DMSO) ve HF	(DMSO)) kir	nyasal kayma	değerleri (δ/ppm)	

No	Deney.	DFT	Fark	DFT/ DMSO	Fark/ DMSO	HF	Fark	HF/ DMSO	Fark/ DMSO
C1	151.23	151.22	0.01	152.83	-1.60	145.32	5.91	147.63	3.60
C2	153.59	152.00	1.59	152.72	0.87	145.80	7.79	146.53	7.06
C3	152.26	154.64	-2.38	155.35	-3.09	149.31	2.95	150.18	2.08
C4	131.16	136.99	-5.83	136.11	-4.95	126.29	4.87	125.37	5.79
C5	127.81	127.86	-0.05	127.45	0.36	123.26	4.55	122.88	4.93
C6	126.94	132.20	-5.26	132.48	-5.54	123.36	3.58	123.43	3.51
C7	145.68	155.00	-9.32	156.79	-11.11	148.39	-2.71	149.90	-4.22
C8	126.94	128.80	-1.86	129.38	-2.44	120.75	6.19	121.07	5.87
C9	127.81	136.31	-8.50	136.59	-8.78	130.35	-2.54	130.71	-2.90
C10	33.44	47.83	-14.39	47.63	-14.19	29.48	3.96	29.24	4.20
C11	23.55	33.22	-9.67	32.80	-9.25	20.25	3.30	19.80	3.75
C12	23.55	33.24	-9.69	32.82	-9.27	20.24	3.31	19.79	3.76
C13	30.69	42.76	-12.07	42.29	-11.60	27.74	2.95	27.31	3.38
C14	132.92	140.01	-7.09	140.80	-7.88	131.75	1.17	132.28	0.64
C15	130.25	134.23	-3.98	133.85	-3.60	126.99	3.26	126.75	3.50
C16	138.20	147.08	-8.88	145.64	-7.44	134.57	3.63	132.82	5.38
C17	126.74	130.55	-3.81	130.73	-3.99	123.83	2.91	124.07	2.67
C18	128.90	131.88	-2.98	132.84	-3.94	125.43	3.47	126.12	2.78
C19	127.56	131.53	-3.97	132.57	-5.01	125.28	2.28	126.45	1.11
H20	12.01	7.95	4.06	8.40	3.61	7.18	4.83	7.58	4.43
H21	9.65	11.05	-1.40	10.99	-1.34	10.29	-0.64	10.25	-0.60

Table	3.62. '	nin devamı							
H22	7.71	9.09	-1.38	9.13	-1.42	8.86	-1.15	8.93	-1.22
H23	7.37	8.08	-0.71	8.26	-0.89	7.75	-0.38	7.95	-0.58
H24	7.37	8.37	-1.00	8.55	-1.18	7.91	-0.54	8.11	-0.74
H25	7.71	8.23	-0.52	8.36	-0.65	8.07	-0.36	8.25	-0.54
H26	2.94	3.60	-0.66	3.73	-0.79	2.76	0.18	2.92	0.02
H27	1.22	2.09	-0.87	2.04	-0.82	1.48	-0.26	1.41	-0.19
H28	1.22	2.11	-0.89	2.17	-0.95	1.49	-0.27	1.56	-0.34
H29	1.22	2.13	-0.91	2.18	-0.96	1.56	-0.34	1.61	-0.39
H30	1.22	2.11	-0.89	2.17	-0.95	1.49	-0.27	1.55	-0.33
H31	1.22	2.14	-0.92	2.19	-0.97	1.55	-0.33	1.61	-0.39
H32	1.22	2.09	-0.87	2.04	-0.82	1.47	-0.25	1.41	-0.19
H33	4.08	4.64	-0.56	4.82	-0.74	3.99	0.09	4.22	-0.14
H34	4.08	4.69	-0.61	4.84	-0.76	3.95	0.13	4.16	-0.08
H35	7.43	8.07	-0.64	8.20	-0.77	7.80	-0.37	7.97	-0.54
H36	7.30	8.06	-0.76	8.21	-0.91	7.80	-0.50	7.97	-0.67
H37	7.32	8.15	-0.83	8.39	-1.07	7.87	-0.55	8.14	-0.82
H38	7.30	8.00	-0.70	8.25	-0.95	7.75	-0.45	8.05	-0.75

Tablo 3.63. 12 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ CNNC(17), τ CCCC(12)	8	9
2	τ CNNC(18), τ CNNC(23), τ CCCC(16)	17	13
3	τ CNNC(16), τ CCCN(12), τ CCCC(21)	24	23
4	δ NCC(17), δ CCN(22)	29	29
5	τ CCNN(17), τ NNCC(12), τ CCCC(19)	31	31
6	τ CCCN(32), τ CCCC(30)	47	47
7	δ CCN(13), δ CCC(13), τ CCCC(28)	68	70
8	τ CNNC(13), τ CCCN(12), τ NNCC(19)	87	87
9	δ NCC(16)	118	119
10	τ NCNC(13)	128	124
11	τ CNNC(27), τ CCCN(11)	156	146
12	ν CC(), δ CCC(), δ NCN(), δ NNC()	170	171
13	τ CCCC(32), τ ClCCC(43)	180	185
14	δ NCC(11), δ CCC(27), τ CCCC(13)	201	205
15	δ CCC(13), τ CCCC(14), τ CICC(18)	217	209
16	τ HCCC(31), τCCCN(15)	220	220
17	δ CCC(12), τ HCCC(14), τ CCCN(19), τ NNCC(13)	232	227
18	δ CCC(22), τ CICC(21)	237	240
19	τ HCCC(44)	255	254
20	τ HNNC(21), τ HCCC(10), τ CNNC(20), τ NNCC(20)	274	280
21	δ CCC(45)	299	300
22	δ CCC(14), τ CCCN(16), τ CCNN(26)	301	303
23	δ NNC(10), δ CCC(18)	340	341
24	δ CCC(23), τCICCC(33)	367	372
25	δ CCC(16), τ CCCN(12)	399	404
26	ν ClC(29), δ CCC(21), τ CCCN(36)	399	409
27	δ CCC(11), δOCN(16), δ NCN(17)	405	409
28	δ CCC(10), τ HNNC(18), τ CCCN(17), τ CCNN(12)	422	429
29	τ HCCC(21), τ CCCC(31), τCICCC(11)	429	439
30	τ HNNC(39), τ ONNC(12)	443	446
31	v CC(12), δ CCC(17), τ CCCC(16)	454	456
32	δ CCC(10), τ CCCC(12), τCICCC(21)	505	513
Tablo 3.63.' ün devamı

33	δ CCC()	544	550
34	δΟϹΝΟ	503	560
35	$\delta CCC(18)$	553	560
36	δ OCN(16) δ CCC(19) δ NNC(10)	597	603
37	τ HNNC(13)	629	632
38	$\delta CCC(42) \tau NNCC(13) \tau NCNC(40)$	629	6 <u>4</u> 6
39	$\tau CCCC(41)$	659	669
40	$\gamma CC(10) \delta ClC(13)$	670	677
40	V CC(10), 0 CC(13)	600	604
41	= ONNC(75)	602	740
42	= CCCC(50)	092	740
43	$\tau CCCC(50)$	727	740
44	t HUUU(28)	729	/33
45	0 CNN(12), f HCCC(14)	/04	777
46	$v NC(12), \delta CNN(18), \tau HCCC(14)$	//6	/95
47	v NN(19)	/95	815
48	τ HCCC(41)	818	851
49	τ HCCC(58)	827	856
50	δ CCC(11), τ HCCC(10)	845	857
51	δ NCN(10), δ CCC(22), δ CCN(13)	857	861
52	v CC(54)	866	865
53	τ HCCC(45)	867	907
54	τ HCCC(49)	884	915
55	δ HCH(10), τ HCCC(43)	900	925
56	δ HCC(28), τ HCCC(32)	909	931
57	ν CC(20), τ HCCC(21), τ CCCC(10)	928	933
58	ν CC(14), τ HCCC(25)	933	979
59	τ HCCC(52), τ CCCC(18)	943	980
60	τ HCCC(52)	945	997
61	ν CC(10), δ CCC(57)	976	999
62	τ HCNN(83)	981	1001
63	δ HCC(14), δ CCC(33)	995	1030
64	δ NNC(36)	999	1036
65	v CC(12), δ HCC(14), τ HCCC(17)	1038	1045
66	v NC(12), v NN(38)	1062	1069
67	v CC(22), δ HCC(28)	1065	1080
68	v CC(35), δ HCC(39)	1079	1081
69	$v CC(47), \tau HCCC(10)$	1081	1092
70	$v CC(24)$, $\delta HCC(49)$	1096	1096
71	τ HCCC(11)	1133	1100
72	δ HCC(63)	1151	1123
73	δ HCC(40)	1159	1165
74	δ HCC(15), τ HCCC(19)	1161	1169
75	v NC(13), v NN(10), δ HCC(33)	1167	1176
76	v CC(16), δ HCC(16), τ HCCC(14)	1183	1190
77	$v CC(24), \delta HCC(13)$	1191	1193
78	ν CC(21)	1209	1213
79	$v \operatorname{NC}(10) \tau \operatorname{HCCC}(17)$	1242	1213
80	δ HCC(22)	1271	1225
81	δ HCC(28)	1271	1277
87	δ HCC(15) τ HCCC(19)	1275	1300
83	$v CC(26) \ \delta HCC(25)$	1200	1303
8/ 8/	τ HCCC(26), τ CCCC(10)	1297	1305
85 85	v CC(62) + HCC(24)	1299	1321
86 86	v CC(02), 0 HCC(24) v CC(24) & HCC(43)	1302	1346
87	$v C(2\tau), 0 HC(\tau)$	13.7	139/
07 99	δ HCN()	1345	1304
00	U HCNU	1337	1300

89	δ HCN(37), δ HCH(39), τ HCCC(13)	1359	1395
90	δ HCH(69)	1379	1400
91	ν CC(30), δ HCC(28)	1404	1420
92	ν CC(14), δ HCC(18), δ CCC(15)	1414	1429
93	ν NC(16), δ HCN(17)	1416	1429
94	δ HCH(84)	1428	1452
95	δ HCH(39)	1444	1452
96	δ HCH(35)	1447	1457
97	δ HCH(53)	1459	1467
98	ν CC(26), δ HCC(20)	1464	1471
99	δ HCH(30)	1465	1484
100	ν CC(12), δ HCC(55), δ CCC(11)	1497	1519
101	ν CC(24), δ CCC(16)	1551	1585
102	ν CC(31), δ CCC(13)	1569	1600
103	v NC(41), v CC(14)	1588	1624
104	v NC(14), v CC(37)	1593	1635
105	ν NC(27), ν CC(32), δ HCC(10)	1596	1684
106	v NC(10), v CC(33)	1614	1710
107	v OC(74), v NC(12)	1753	1773
108	v CH(33)	2917	2859
109	v CH(55)	2924	2864
110	v CH(41)	2927	2870
111	v CH(100)	2937	2896
112	v CH(100)	2968	2917
113	v CH(55)	2989	2925
114	v CH(42)	2995	2927
115	v CH(58)	3001	2930
116	v CH(44)	3002	2931
117	v CH(45)	3050	3003
118	v CH(76)	3055	3007
119	v CH(58)	3056	3009
120	v CH(56)	3064	3023
121	v CH(50)	3072	3026
122	v CH(75)	3079	3033
123	v CH(28)	3087	3035
124	v CH(26)	3092	3043
125	v CH(47)	3100	3046
126	v NH(100)	3555	3554

Tablo 3.63.' ün devamı

Şekil 3.30. 12 tipi bileşiğin deneysel (a) ve teorik (B3LYP 6-31G(d,p) (b) ve HF 6-31G(d,p) (c)) IR spektrumları

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF
310.19/237.73	3.9971/5.2154
274.40/214.15	4.5184/5.7896
270.05/204.79	4.5912/6.0541

Şekil 3.31. 12 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.64. 12 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(40)-C(1)-N(41)	111.568	111.375	35	N(42)-C(3)-C(4)	120.312	120.586
2	N(40)-N(39)-C(2)	114.580	113.763	36	C(3)-C(4)-C(5)	122.865	122.796
3	N(40)-N(39)-H(20)	120.332	120.892	37	C(3)-C(4)-C(9)	118.686	118.620
4	H(20)-N(39)-C(2)	125.086	125.340	38	C(4)-C(9)-H(25)	119.344	119.673
5	N(39-C(2)-O(43)	129.923	129.348	39	C(4)-C(5)-H(22)	119.057	119.490
6	O(43)-C(2)-N(41)	128.938	128.732	40	H(22)-C(5)-C(6)	120.617	120.203
7	N(41)-C(1)-C(13)	122.198	121.932	41	C(5)-C(6)-H(23)	119.361	119.147
8	N(40)-C(1)-C(13)	126.234	126.693	42	H(23)-C(6)-C(7)	119.098	119.396
9	C(1)-C(13)-C(14)	113.489	113.469	43	C(4)-C(9)-C(8)	120.821	120.856
10	C(1)-C(13)-H(33)	108.266	108.000	44	C(9)-C(8)-C(7)	121.010	120.894
11	C(1)-C(13)-H(34)	108.209	108.009	45	C(7)-C(6)-C(5)	121.541	121.457
12	H(33)-C(13)-C(14)	110.468	110.500	46	H(24)-C(8)-C(7)	119.889	120.158
13	H(34)-C(13)-C(14)	110.660	110.634	47	H(24)-C(8)-C(9)	119.101	118.948
14	H(33)-C(13)-H(34)	105.391	105.902	48	H(25)-C(9)-C(8)	119.835	119.471
15	C(13)-C(14)-C(15)	120.109	120.154	49	C(8)-C(7)-C(6)	117.852	117.903
16	C(13)-C(14)-C(19)	120.744	120.708	50	C(8)-C(7)-C(10)	121.510	121.627
17	C(14)-C(15)-H(35)	120.49	120.567	51	C(6)-C(7)-C(10)	120.638	120.471
18	H(35)-C(15)-C(16)	119.811	119.647	52	C(7)-C(10)-C(11)	111.829	111.866
19	C(15)-C(16)-CI(44)	119.155	119.189	53	C(7)-C(10)-H(26)	106.951	106.927
20	C(16)-C(17)-H(36)	120.234	120.272	54	H(26)-C(10)-C(11)	107.439	107.313
21	H(36)-C(17)-C(18)	121.210	121.084	55	H(26)-C(10)-C(12)	107.441	107.313
22	C(17)-C(18)-H(37)	119.455	119.516	56	H(27)-C(11)-H(28)	108.165	108.128
23	H(37)-C(18)-C(19)	119.972	119.954	57	H(27)-C(11)-H(29)	107.748	107.852
24	C(14)-C(19)-C(18)	120.521	120.502	58	H(28)-C(11)-H(29)	107.624	107.692
25	C(18)-C(17)-C(16)	118.555	118.644	59	C(10)-C(11)-H(27)	111.268	111.114
26	C(17)-C(16)-C(15)	121.505	121.403	60	C(10)-C(11)-H(28)	110.575	110.436
27	C(16)-C(15)-C(14)	119.700	119.786	61	C(10)-C(11)-H(29)	111.311	111.477
28	N(39)-C(2)-N(41)	101.138	101.920	62	C(10)-C(12)-H(30)	110.570	110.435
29	C(2)-N(41)-C(1)	108.287	108.061	63	C(10)-C(12)-H(31)	111.315	111.480
30	C(2)-N(41)-N(42)	130.617	130.953	64	C(10)-C(12)-H(32)	111.274	111.115
31	C(1)-N(41)-N(42)	121.096	120.986	65	H(30)-C(12)-H(31)	107.619	107.690
32	N(41)-N(42)-C(3)	118.658	119.678	66	H(30)-C(12)-H(32)	108.161	108.127
33	N(42)-C(3)-H(21)	121.851	122.111	67	H(31)-C(12)-H(32)	107.753	107.851
34	H(21)-C(3)-C(4)	117.836	117.303				

Bağ	g Uzunlukları	B3LYP	HF	Bağ	g Uzunlukları	B3LYP	HF
1	C(1)-N(40)	1.2995	1.2680	24	N(42)-C(3)	1.2903	1.2612
2	C(1)-N(41)	1.3883	1.3792	25	C(3)-H(21)	1.0884	1.0752
3	C(1)-C(13)	1.4996	1.4988	26	C(3)-C(4)	1.4635	1.4734
4	N(40)-N(39)	1.3808	1.3698	27	C(4)-C(5)	1.4050	1.3915
5	N(39)-H(20)	1.0068	0.9906	28	C(4)-C(9)	1.4042	1.3894
6	N(39)-C(2)	1.3707	1.3467	29	C(5)-H(22)	1.0847	1.0739
7	C(2)-O(43)	1.2230	1.2024	30	C(5)-C(6)	1.3893	1.3805
8	C(2)-N(41)	1.4182	1.3862	31	C(6)-H(23)	1.0872	1.0762
9	N(41)-N(42)	1.3738	1.3678	32	C(6)-C(7)	1.4043	1.3934
10	C(13)-H(33)	1.0961	1.0845	33	C(7)-C(8)	1.4022	1.3903
11	C(13)-H(34)	1.0963	1.0843	34	C(8)-H(24)	1.0862	1.0754
12	C(13)-C(14)	1.5141	1.5127	35	C(8)-C(9)	1.3915	1.3834
13	C(14)-C(19)	1.3986	1.3877	36	C(9)-H(25)	1.0870	1.0766
14	C(14)-C(15)	1.3989	1.3873	37	C(7)-C(10)	1.5219	1.5217
15	C(15)-H(35)	1.0848	1.0743	38	C(10)-H(26)	1.0977	1.0868
16	C(15)-C(16)	1.3926	1.3820	39	C(10)-C(11)	1.5404	1.5347
17	C(16)-CI(44)	1.7608	1.7449	40	C(11)-H(27)	1.0942	1.0849
18	C(16)-C(17)	1.3935	1.3815	41	C(11)-H(28)	1.0952	1.0860
19	C(17)-H(36)	1.0840	1.0735	42	C(11)-H(29)	1.0954	1.0857
20	C(17)-C(18)	1.3947	1.3844	43	C(10)-C(12)	1.5403	1.5347
21	C(18)-H(37)	1.0857	1.0752	44	C(12)-H(30)	1.0952	1.0860
22	C(18)-C(19)	1.3943	1.3835	45	C(12)-H(31)	1.0953	1.0857
23	C(19)-H(38)	1.0862	1.0758	46	C(12)-H(32)	1.0942	1.0849

Tablo 3.65. 12 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Tablo 3.66. 12 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.540	0.609	H23	0.084	0.150
C2	0.818	1.053	H24	0.086	0.153
C3	0.114	0.182	H25	0.095	0.165
C4	0.08	-0.086	H26	0.091	0.125
C5	-0.096	-0.110	H27	0.110	0.123
C6	-0.141	-0.176	H28	0.103	0.114
C7	0.151	0.022	H29	0.104	0.110
C8	-0.128	-0.156	H30	0.103	0.114
С9	-0.127	-0.144	H31	0.104	0.110
C10	-0.131	-0.154	H32	0.109	0.122
C11	-0.305	-0.314	H33	0.142	0.171
C12	-0.305	-0.314	H34	0.143	0.172
C13	-0.310	-0.273	H35	0.106	0.176
C14	0.125	0.004	H36	0.109	0.177
C15	-0.085	-0.105	H37	0.097	0.161
C16	-0.096	-0.159	H38	0.089	0.157
C17	-0.069	-0.118	N39	-0.434	-0.564
C18	-0.084	-0.141	N40	-0.334	-0.341
C19	-0.103	-0.137	N41	-0.418	-0.627
H20	0.290	0.341	N42	-0.326	-0.335
H21	0.158	0.228	O43	-0.540	-0.656
H22	0.103	0.176	CI 44	-0.026	-0.005

E_{HOMO} (B3LYP) : -0.21903 Hatree

E_{LUMO} (B3LYP) : -0.05774 Hatree

E_{HOMO} (HF) : -0.31049 Hatree

E_{LUMO} (HF) : 0.08662 Hatree

Şekil 3.32. 12 Molekülünün B3LYP 6-31G(d,p) ve HF6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.67. 12 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre Hesaplanan Dipol Moment Değerleri

Dipol Moment	B3LYP	HF
μ_{x}	2.1441	2.5753
$\mu_{\rm v}$	-1.9643	-2.3880
μ_z	0.2543	0.3569
μ _{Toplam}	2.9189	3.5301

Tablo 3.68. 12 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1489.907	-1482.717

3.4.9. 3-Fenil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (13)

Şekil 3.33. 13 tipi bileşiğin (6-31G (d,p)) gausview görünümü

Tablo 3.69. 13 tipi bileşiğin TM	IS'ye göre ¹³ C ve ¹ H-NMR	deneysel ve teorik (B3LYP,
HF, B3LYP(DMSO) ve HF (DM	ISO)) kimyasal kayma değe	erleri (δ/ppm)

No	Damary	DET	Fault	DFT/	Fark/	IIE	Eault	HF/	Fark/
	Deney.	ney. DF I	гагк	DMSO	DMSO	HF	гагк	DMSO	DMSO
C1	151.45	150.68	0.77	151.01	0.44	145.62	5.83	146.55	4.90
C2	156.71	152.66	4.05	153.38	3.33	146.33	10.38	147.03	9.68
C3	152.49	154.74	-2.25	155.53	-3.04	149.23	3.26	150.29	2.20
C4	131.05	137.41	-6.36	136.41	-5.36	126.73	4.32	125.66	5.39
C5	127.86	128.31	-0.45	127.82	0.04	123.71	4.15	123.10	4.76
C6	127.07	132.29	-5.22	132.56	-5.49	123.35	3.72	123.40	3.67
C7	144.50	154.74	-10.24	156.71	-12.21	148.00	-3.50	149.73	-5.23
C8	127.07	128.69	-1.62	129.37	-2.30	120.54	6.53	121.04	6.03
C9	127.86	136.27	-8.41	136.62	-8.76	130.10	-2.24	130.56	-2.70
C10	33.48	47.71	-14.23	47.52	-14.04	29.45	4.03	29.21	4.27
C11	23.55	33.23	-9.68	32.79	-9.24	20.27	3.28	19.79	3.76
C12	23.55	33.19	-9.64	32.75	-9.20	20.27	3.28	19.81	3.74
C13	126.71	132.22	-5.51	131.53	-4.82	123.54	3.17	122.43	4.28
C14	128.50	133.02	-4.52	132.96	-4.46	128.25	0.25	128.29	0.21
C15	128.00	130.37	-2.37	131.20	-3.20	122.32	5.68	123.15	4.85
C16	130.04	132.28	-2.24	133.37	-3.33	127.50	2.54	128.80	1.24
C17	128.00	131.05	-3.05	131.66	-3.66	123.33	4.67	123.85	4.15
C18	128.50	132.02	-3.52	131.44	-2.94	127.46	1.04	126.88	1.62

Table	Tablo 3.69.' un devami								
H19	12.37	8.23	4.14	8.75	3.62	7.46	4.91	7.95	4.42
H20	9.61	11.21	-1.60	11.16	-1.55	10.33	-0.72	10.31	-0.70
H21	7.74	9.09	-1.35	9.09	-1.35	8.74	-1.00	8.73	-0.99
H22	7.39	8.07	-0.68	8.25	-0.86	7.67	-0.28	7.87	-0.48
H23	7.39	8.37	-0.98	8.56	-1.17	7.88	-0.49	8.11	-0.72
H24	7.74	8.26	-0.52	8.40	-0.66	8.07	-0.33	8.27	-0.53
H25	2.95	3.59	-0.64	3.73	-0.78	2.73	0.22	2.89	0.06
H26	1.22	2.11	-0.89	2.07	-0.85	1.45	-0.23	1.42	-0.20
H27	1.22	2.10	-0.88	2.17	-0.95	1.46	-0.24	1.55	-0.33
H28	1.22	2.14	-0.92	2.19	-0.97	1.53	-0.31	1.61	-0.39
H29	1.22	2.09	-0.87	2.16	-0.94	1.48	-0.26	1.54	-0.32
H30	1.22	2.13	-0.91	2.18	-0.96	1.55	-0.33	1.59	-0.37
H31	1.22	2.09	-0.87	2.04	-0.82	1.48	-0.26	1.37	-0.15
H32	7.92	9.19	-1.27	9.26	-1.34	8.55	-0.63	8.67	-0.75
H33	7.54	8.34	-0.80	8.56	-1.02	8.00	-0.46	8.25	-0.71
H34	7.51	8.33	-0.82	8.56	-1.05	8.13	-0.62	8.40	-0.89
H35	7.54	8.35	-0.81	8.55	-1.01	8.02	-0.48	8.25	-0.71
H36	7.90	9.00	-1.10	9.01	-1.11	8.64	-0.74	8.67	-0.77

Tablo 3.70. 13 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ NCCC(33), τ CNNC(14), τ CCCC(13)	24	16
2	τ CCNN(32), τ NNCN(13), τ CCCC(14)	30	28
3	δ NCC(16), δ CCN(12)	31	31
4	δ NCC(11), τ CCCN(13), τ CCCC(26)	43	40
5	τ NCCC(14), τ CCCC(14), τ CCCN(13), τ CCCC(19)	57	56
6	τ CCCN(22), τ CNNC(21), τ CCNN(12), τ NNCC(11)	73	72
7	τ NNCN(19), τ NNCN(18)	101	98
8	δ CCC(12), δ CCN(25), τ CCCC(23)	107	104
9	τ NCCC(25), τ CNNC(22), τ CCCC(11)	140	126
10	δ CCC(13)	168	168
11	δ NNC(13), δ CNN(14), δ CCC(10)	174	174
12	δ CCC(13), τ CNNC(37)	205	200
13	τ HCCC(32)	219	212
14	δ CCC(11), τ HCCC(17), τ CCCC(12)	230	227
15	δ CCC(11), τ HCCC(25)	239	238
16	δ CCC(11), τ HCCC(32)	260	259
17	δ CCC(11), τ HNNC(14), τ CCNN(11), τ NNCN(17)	293	295
18	δ CCC(31)	304	304
19	ν CC(17), δ CCC(17)	314	311
20	δ CCC(20), τ NNCN(17)	319	328
21	δ OCN(19)	386	386
22	τ HCCC(16), τ CCCC(64)	399	408
23	τ HCCC(15), τ CCCC(67)	401	410
24	δ CCC(14)	414	415
25	τ CCCC(20)	429	435
26	τ HNNC(35)	451	454
27	ν CC(10), δ CCC(15), τ CCCC(12)	457	458
28	τ HNNC(17), τ HCCC(11), τ CCCN(10), τ CCCC(25)	499	505
29	δ CCC(14), τ CCCC(23)	552	555
30	δ CCC(11), τ CCCC(18)	554	561
31	δ OCN0(3), δ CCN(14)	602	607

Tablo 3.7	0.' in devamı		
32	δ CCC(59)	609	615
33	δ CCC(39)	630	633
34	δ NCN(11) δ CCC(29)	651	654
35	τ NNCN(12) τ NNCN(11) τ ONNC(11) τ NNCC(22)	672	691
36	τ HCCC(26) τ CCCC(35)	679	697
37	$\tau ONNC(65)$	695	706
37	v CC(12)	608	700
30	= CCCC(49)	098	740
39	$\frac{1}{10000}$	121	/56
40	τ HCCC(19), τ CCCC(27)	/55	/68
41	δ CNN(13), δ NNC(13)	761	784
42	ν NC(15), ν NN(18), δ NCN(10), δ CNN(16)	/8/	799
43	τ HCCC(48)	820	851
44	τ HCCC(60)	827	858
45	τ HCCC(38)	830	861
46	δ NCC(15), δ NNC(15)	856	862
47	v CC(55)	866	865
48	δ HCH(10), τ HCCC(43)	901	907
49	τ HCCC(34)	905	933
50	ν CC(27), τ HCCC(14)	928	949
51	τ HCCC(22)	934	961
52	δ NNC(18), δ CCC(11)	935	980
53	τ HCCC(73)	944	981
54	τ HCCC(48)	948	997
55	τ HCCC(41), τ CCCC(23)	964	1001
56	$\gamma CC(14) \delta CCC(17) \tau HCNN(48)$	978	1001
57	$v CC(24)$ $\delta CCC(26)$ τ HCCN(37)	979	1015
58	δ CCC(50)	995	1017
59	γ CC(38) δ HCC(24) δ CCC(21)	1017	1033
60	$v CC(13) \tau HCCC(16)$	1038	1045
61	$v CC(19) v NN(21) \delta HNN(10)$	1060	1063
62	$v CC(24) v NN(13) \delta HCC(17)$	1076	1079
63	$v CC(46) \tau HCCC(10)$	1082	1080
64	$v CC(21) \delta HCC(17)$	1095	1096
65	$v NC(10) \delta NCN(10) \delta CNN(10)$	1116	1101
66	τ HCCC(10)	1134	1122
67	ν CC(15) δ HCC(38)	1144	1141
68	$\delta HCC(22)$	1158	1166
69	$v CC(18) \delta HCC(56)$	1165	1169
70	$v NC(13) \delta HCC(19)$	1169	1176
70	$v CC(21) \delta HCC(16)$	1190	1193
72	v CC(14)	1210	1202
73	$v NN(20) \delta NCN(12)$	1263	1213
74	$v CC(11) \delta HCC(12)$	1203	1213
75	$v CC(15), \delta HCC(29)$	1290	1298
76	$v CC(31) \delta HCC(13)$	1293	1321
70	τ HCCC(26)	1300	1321
78	$v CC(39) \delta HCC(37)$	1313	1324
70	δ HNN(10) δ HCN(10) δ HCC(25)	1315	1346
80	$v CC(19) NC(10) \delta HNN(15) \delta HCC(18)$	1335	1340
<u>81</u>	δ HNN(Δ 0) δ HCN(2 0)	1356	1384
87	δ ΗCH(33)	1350	1304
82 82	δ HCH(63)	1378	1300
Q/	$\gamma NC(12) \gamma HCN(16)$	1307	1416
85	$v CC(23) \delta HCN(10) \delta HCC(10)$	1408	1432
86 86	v CC(23), 0 HCR(10), 0 HCC(10)	1433	1450
87	δ ΗCH(35)	1444	1452
0/	0 1101(55)	1 777	1104

Tablo 3.7	0.' in devamı		
88	δ HCH(38)	1448	1457
89	δ HCH(44)	1459	1467
90	δ HCH(30)	1464	1471
91	δ HCC(49), δ CCC(13)	1482	1504
92	v CC(10), δ HCC(14), δ CCC(13)	1497	1519
93	v NC(32), v CC(11)	1542	1584
94	ν CC(25), δ CCC(12)	1551	1597
95	v CC(20)	1579	1626
96	v NC(17), v CC(40)	1594	1635
97	ν CC(48), δ HCC(19)	1598	1664
98	v NC(25), v CC(15)	1613	1710
99	v OC(75), v NC(11)	1753	1772
100	v CH(33)	2917	2859
101	v CH(50)	2923	2863
102	v CH(45)	2927	2870
103	v CH(49)	2989	2917
104	v CH(43)	2995	2924
105	v CH(58)	3001	2927
106	v CH(45)	3002	2930
107	v CH(66)	3053	3002
108	v CH(44)	3055	3006
109	v CH(67)	3057	3007
110	v CH(46)	3061	3019
111	v CH(29)	3071	3022
112	v CH(70)	3072	3030
113	v CH(52)	3083	3038
114	v CH(26)	3091	3042
115	v CH(41)	3097	3045
116	v CH(34)	3119	3057
117	v NH(100)	3552	3554

Şekil 3.34. 13 tipi bileşiğin deneysel (a) ve Teorik (B3LYP 6-31G (d,p) (b) ve HF 6-31G(d,p) (c)) IR spektrumları

Şekil 3.35. 13 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.71. 13 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(38)-C(1)-N(39)	110.779	110.959	34	C(3)-C(4)-C(5)	122.818	122.629
2	N(38)-N(37)-C(2)	114.500	113.666	35	C(3)-C(4)-C(9)	118.710	118.739
3	N(38)-N(37)-H(19)	120.420	120.987	36	C(4)-C(9)-H(24)	119.339	119.680
4	H(19)-N(37)-C(2)	124.948	125.291	37	C(4)-C(5)-H(21)	119.099	119.456
5	N(37)-C(2)-O(41)	129.560	129.159	38	H(21)-C(5)-C(6)	120.618	120.298
6	O(41)-C(2)-N(39)	128.991	128.642	39	C(5)-C(6)-H(22)	119.349	119.126
7	N(39)-C(1)-C(13)	126.786	125.851	40	H(22)-C(6)-C(7)	119.085	119.391
8	N(38)-C(1)-C(13)	122.433	123.188	41	C(4)-C(9)-C(8)	120.832	120.845
9	C(1)-C(13)-C(14)	122.922	122.124	42	C(9)-C(8)-C(7)	120.988	120.882
10	C(1)-C(13)-C(18)	117.861	118.248	43	C(7)-C(6)-C(5)	121.566	121.483
11	C(13)-C(14)-H(32)	119.808	120.154	44	H(23)-C(8)-C(7)	119.903	120.162
12	H(32)-C(14)-C(15)	120.146	119.864	45	H(23)-C(8)-C(9)	119.109	118.956
13	C(13)-C(14)-C(15)	120.046	119.982	46	H(24)-C(9)-C(8)	119.829	119.475
14	C(14)-C(15)-H(33)	119.416	119.607	47	C(8)-C(7)-C(6)	117.860	117.911
15	H(33)-C(15)-C(16)	120.070	120.120	48	C(8)-C(7)-C(10)	121.477	121.620
16	C(15)-C(16)-H(34)	120.170	120.033	49	C(6)-C(7)-C(10)	120.663	120.468
17	H(34)-C(16)-C(17)	120.164	120.070	50	C(7)-C(10)-C(11)	111.784	111.882
18	C(16)-C(17)-H(35)	120.169	120.207	51	C(7)-C(10)-H(25)	106.982	106.926
19	H(35)-C(17)-C(18)	119.638	119.745	52	H(25)-C(10)-C(11)	107.454	107.309
20	C(17)-C(18)-H(36)	120.646	120.409	53	H(25)-C(10)-C(12)	107.445	107.308
21	H(36)-C(18)-C(13)	118.935	119.356	54	H(26)-C(11)-H(27)	108.169	108.127
22	C(13)-C(18)-C(17)	120.419	120.235	55	H(26)-C(11)-H(28)	107.750	107.846
23	C(18)-C(17)-C(16)	120.193	120.048	56	H(27)-C(11)-H(28)	107.636	107.688
24	C(17)-C(16)-C(15)	119.666	119.897	57	C(10)-C(11)-H(26)	111.277	111.109
25	C(16)-C(15)-C(14)	120.513	120.273	58	C(10)-C(11)-H(27)	110.587	110.451
26	N(37)-C(2)-N(39)	101.447	102.198	59	C(10)-C(11)-H(28)	111.273	111.476
27	C(2)-N(39)-C(1)	108.244	107.917	60	C(10)-C(12)-H(29)	110.572	110.449
28	C(2)-N(39)-N(40)	128.829	129.363	61	C(10)-C(12)-H(30)	111.274	111.472
29	C(1)-N(39)-N(40)	122.424	121.958	62	C(10)-C(12)-H(31)	111.269	111.102
30	N(39)-N(40)-C(3)	119.034	119.811	63	H(29)-C(12)-H(30)	107.654	107.695
31	N(40)-C(3)-H(20)	122.213	122.452	64	H(29)-C(12)-H(31)	108.185	107.845
32	H(20)-C(3)-C(4)	117.842	117.367	65	H(30)-C(12)-H(31)	107.738	107.845
33	N(40)-C(3)-C(4)	119.944	120.181				

Bağ	g Uzunlukları	B3LYP	HF	Bağ	Uzunlukları	B3LYP	HF
1	C(1)-N(38)	1.3071	1.2721	23	C(3)-C(4)	1.4643	1.4740
2	C(1)-N(39)	1.3962	1.3840	24	C(4)-C(5)	1.4051	1.3917
3	C(1)-C(13)	1.4702	1.4774	25	C(4)-C(9)	1.4041	1.3893
4	N(38)-N(37)	1.3736	1.3661	26	C(5)-H(21)	1.0848	1.0741
5	N(37)-H(19)	1.0070	0.9906	27	C(5)-C(6)	1.3895	1.3806
6	N(37)-C(2)	1.3698	1.3454	28	C(6)-H(22)	1.0872	1.0763
7	C(2)-O(41)	1.2229	1.2023	29	C(6)-C(7)	1.4042	1.3933
8	C(2)-N(39)	1.4183	1.3872	30	C(7)-C(8)	1.4023	1.3903
9	N(39)-N(40)	1.3743	1.3684	31	C(8)-H(23)	1.0864	1.0755
10	C(13)-C(14)	1.4039	1.3906	32	C(8)-C(9)	1.3916	1.3834
11	C(13)-C(18)	1.4056	1.3906	33	C(9)-H(24)	1.0870	1.0767
12	C(14)-H(32)	1.0820	1.0724	34	C(7)-C(10)	1.5219	1.5218
13	C(14)-C(15)	1.3942	1.3837	35	C(10)-H(25)	1.0978	1.0868
14	C(15)-H(33)	1.0860	1.0754	36	C(10)-C(11)	1.5403	1.5347
15	C(15)-C(16)	1.3951	1.3853	37	C(11)-H(26)	1.0941	1.0849
16	C(16)-C(34)	1.0860	1.0757	38	C(11)-H(27)	1.0952	1.0860
17	C(16)-C(17)	1.3968	1.3851	39	C(11)-H(28)	1.0953	1.0857
18	C(17)-H(35)	1.0859	1.0753	40	C(10)-C(12)	1.5403	1.5347
19	C(17)-C(18)	1.3913	1.3832	41	C(12)-H(29)	1.0953	1.0860
20	C(18)-H(36)	1.0843	1.0738	42	C(12)-H(30)	1.0953	1.0857
21	N(40)-C(3)	1.2899	1.2607	43	C(12)-H(31)	1.0942	1.0850
22	C(3)-H(20)	1.0879	1.0749				

Tablo 3.72. 13 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Tablo 3.73. 13 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.492	0.617	H22	0.084	0.150
C2	0.822	1.052	H23	0.085	0.151
C3	0.111	0.181	H24	0.094	0.163
C4	0.083	-0.088	H25	0.091	0.124
C5	-0.100	-0.115	H26	0.109	0.123
C6	-0.142	-0.176	H27	0.103	0.113
C7	0.151	0.022	H28	0.104	0.110
C8	-0.129	-0.157	H29	0.102	0.114
С9	-0.127	-0.144	H30	0.104	0.110
C10	-0.131	-0.153	H31	0.110	0.122
C11	-0.305	-0.314	H32	0.111	0.179
C12	-0.305	-0.314	H33	0.090	0.155
C13	0.092	-0.044	H34	0.089	0.155
C14	-0.091	-0.106	H35	0.091	0.157
C15	-0.101	-0.164	H36	0.110	0.182
C16	-0.076	-0.136	N37	-0.427	-0.562
C17	-0.096	-0.159	N38	-0.348	-0.349
C18	-0.096	-0.118	N39	-0.451	-0.648
H19	0.289	0.340	N40	-0.321	-0.327
H20	0.157	0.225	O41	-0.541	-0.657
H21	0.110	0.185			

E_{LUMO} (B3LYP) : -0.05440 Hatree

E_{LUMO} (HF) : 0.08991 Hatree

Şekil 3.36. 13 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.74. 13 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	-1.4845	-1.8479
μ_{v}	2.3086	2.8359
μ_z	-1.3913	-1.5397
μ _{Toplam}	3.0772	3.7186

Tablo 3.75. 13 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-990.998	-984.781

3.4.10. 1-Asetil-3-metil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (15)

Şekil 3.37: 15 tipi bileşiğin(6-31G) gausview görünümü

Tablo 3.76. 15 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

		/			5	U)	
No	Denev	DFT	Fark	DFT/	Fark/	HF	Fark	HF/	Fark/
110	Deney.	DII	I al K	DMSO	DMSO		Iark	DMSO	DMSO
C1	147.90	149.45	-1.55	152.10	-4.20	144.70	3.20	147.42	0.48
C2	156.00	150.41	5.59	151.70	4.30	142.96	13.04	144.42	11.58
C3	152.79	155.22	-2.43	156.18	-3.39	149.84	2.95	150.82	1.97
C4	130.67	136.74	-6.07	135.83	-5.16	125.98	4.69	125.07	5.60
C5	128.11	127.99	0.12	127.73	0.38	123.33	4.78	123.04	5.07
C6	127.02	132.19	-5.17	132.53	-5.51	123.27	3.75	123.38	3.64
C7	146.67	155.45	-8.78	157.28	-10.61	148.75	-2.08	150.24	-3.57
C8	127.02	128.93	-1.91	129.45	-2.43	120.78	6.24	121.03	5.99
C9	128.11	136.64	-8.53	136.92	-8.81	130.63	-2.52	130.95	-2.84
C10	33.48	47.75	-14.27	47.54	-14.06	29.51	3.97	29.25	4.23
C11	23.53	33.05	-9.52	32.63	-9.10	20.21	3.32	19.77	3.76
C12	23.53	33.06	-9.53	32.63	-9.10	20.22	3.31	19.77	3.76
C13	11.22	21.05	-9.83	20.90	-9.68	10.70	0.52	10.61	0.61
C14	165.97	167.85	-1.88	171.34	-5.37	159.55	6.42	163.67	2.30
C15	23.69	31.78	-8.09	32.19	-8.50	20.34	3.35	20.73	2.96
H16	9.54	11.10	-1.56	11.00	-1.46	10.31	-0.77	10.25	-0.71

Table	o 3.76.'n	ın devamı							
H17	7.79	9.06	-1.27	9.11	-1.32	8.83	-1.04	8.91	-1.12
H18	7.40	8.08	-0.68	8.27	-0.87	7.74	-0.34	7.95	-0.55
H19	7.40	8.38	-0.98	8.56	-1.16	7.91	-0.51	8.11	-0.71
H20	7.79	8.25	-0.46	8.38	-0.59	8.09	-0.30	8.26	-0.47
H21	2.96	3.58	-0.62	3.72	-0.76	2.75	0.21	2.92	0.04
H22	1.24	2.10	-0.86	2.06	-0.82	1.47	-0.23	1.41	-0.17
H23	1.24	2.11	-0.87	2.17	-0.93	1.49	-0.25	1.55	-0.31
H24	1.24	2.14	-0.90	2.19	-0.95	1.56	-0.32	1.60	-0.36
H25	1.24	2.11	-0.87	2.17	-0.93	1.49	-0.25	1.55	-0.31
H26	1.24	2.14	-0.90	2.19	-0.95	1.56	-0.32	1.60	-0.36
H27	1.24	2.10	-0.86	2.06	-0.82	1.47	-0.23	1.41	-0.17
H28	2.34	3.20	-0.86	3.34	-1.00	2.69	-0.35	2.85	-0.51
H29	2.34	3.20	-0.86	3.33	-0.99	2.69	-0.35	2.85	-0.51
H30	2.34	2.83	-0.49	2.97	-0.63	2.41	-0.07	2.55	-0.21
H31	2.49	3.34	-0.85	3.52	-1.03	2.66	-0.17	2.88	-0.39
H32	2.49	3.34	-0.85	3.52	-1.03	2.66	-0.17	2.88	-0.39
H33	2.49	2.56	-0.07	2.61	-0.12	2.18	0.31	2.22	0.27

Tablo 3.77. 15 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ NCCC(28), τ NCNN(22), τ CNNC(10), τ NNCC(10), τ CCCC(13)	14	16
2	τ NCNN(18), τ CCCC(18)	24	24
3	τ NCCC(12), τ CNNC(18), τ CCCC(38)	39	39
4	δ NCC(34), δ CCC(25), δ NNC(15)	45	46
5	τ NCCC(10), τ CCCC(13), τ CCNC(35)	58	57
6	τ CNNC(11), τ CCNC(37), τ CCNN(32)	68	64
7	τ CCCC(12), τ CCNN(28)	112	115
8	δ CNN(15), δ CCC(18)	131	126
9	τ HCCN(47)	133	134
10	τ HCCN(19), τ CNNC(11)	136	160
11	τ HCCN(62), τ CCNN(10)	154	162
12	δ CCC(21), τ CCCC(12)	161	163
13	τ NCCC(12), τ CNNC(34)	169	171
14	δ CNN(35), δ CCN(24)	193	197
15	τ HCCC(25)	223	211
16	δ CCC(10), τ HCCC(15)	232	227
17	δ CCN(14), δ CCC(14), τ HCCC(12)	236	238
18	δ CCC(10), τ HCCC(29)	261	260
19	δ CCC(55), τ NCNN(18)	303	303
20	τ CCCC(17), τ NNCC(19)	303	305
21	v NC(16), δ OCC(14), δ OCN(27), δ CCN(12)	316	324
22	τ HCCN(10), τ CNNC(20), τ CCNN(33)	344	349
23	δ CCN(42)	376	378
24	τ HCCC(19), τ CCCC(70)	398	409
25	δ NNC(16), δ OCN(15), δ CCC(11)	406	411
26	δ CCC(12), τ CCCC(22), τ NNCC(11)	428	434
27	δ CCN(12)	448	455
28	v CC(10), δ CCC(15), τ CCCC(13)	459	461
29	τ CCCC(15)	542	546
30	τ ONNC(11), τ CCCC(26)	550	560
31	τ HCCN(17), τ ONNC(39)	553	572
32	ν CC(14), δ OCC(24), δ CNN(12)	587	594

Tabla	3 77 'nin	dovomi
I abio	3 . / /. ² nin	devami

33	ν CC(12), δ NCN(12), δ CNN(11)	607	610
34	τ NNCC(37), τ CNNC(15)	621	629
35	δ CCC(36)	626	644
36	$v CC(10)$, $\delta OCN(11)$, $\delta CNN(12)$, $\delta CCN(11)$	653	661
37	$\tau ONNC(51)$	695	709
38	γ CC(21) δ CCC(13)	709	740
30	τ CCCC(28)	726	758
40	$v NC(11) v NN(22) \delta NCN(12)$	720	786
40	τ HCCC(46)	819	838
42	τ HCCC(58)	876	851
42	v CC(15)	820	857
43	V CC(13)	850	864
44	V CC(37)	800	004
43	$\delta = HCH(10) - HCCC(42)$	8/4	007
40	0 HCH(10), 1 HCCC(45)	099	907
4/	V CC(25), T HCCC(15)	929	933
48	$\frac{tHCCC(27)}{HCCC(45)}$	934	9/3
49	τ HCCC(45), τ CCCC(15)	944	980
50	V CC(17), 0 HCH(11), T HCCN(30)	948	997
51	τ HCNN(81)	984	1001
52	δ HCH(15), τ HCCN(42)	990	1018
53	ð CCC(51)	994	1036
54	δ HCH(17), τ HCCN(58)	1017	1045
55	δ HCH(22), τ HCCN(57)	1029	1047
56	v CC(12), δ HCC(12), τ HCCC(14)	1037	1051
57	v NC(10), δ NNC(10), τ HCCN(11)	1044	1075
58	ν CC(47), τ HCCC(10)	1081	1082
59	ν CC(28), δ HCC(15)	1094	1096
60	ν NC(16), τ HCCN(23)	1111	1123
61	τ HCCC(10)	1133	1143
62	v NN(31), δ CNN(13)	1145	1169
63	ν CC(14), δ HCC(25)	1161	1180
64	ν CC(22), δ HCC(12)	1190	1199
65	ν CC(17), δ HCC(12)	1196	1209
66	ν CC(11), ν NN(12), δ NCN(18)	1246	1218
67	ν CC(11), δ HCC(11)	1270	1288
68	v NC(27)	1289	1301
69	ν CC(27), δ HCC(13)	1294	1321
70	τ HCCC(26), τ CCCC(10)	1299	1343
71	ν CC(20), δ HCC(43)	1336	1347
72	δ HCN(30), δ HCH(18)	1340	1364
73	δ HCH(85)	1355	1384
74	δ HCH(35)	1358	1392
75	δ HCN(14), δ HCH(52)	1376	1398
76	δ HCH(52)	1378	1404
77	v CC(22), δ HCC(13), δ HCH(10)	1404	1421
78	δ HCN(13), δ HCH(28)	1413	1431
79	δ HCH(72), τ HCCN(25)	1417	1343
80	δ HCH68), τ HCCN(17)	1426	1439
81	δ HCH(68), τ HCCN(21)	1427	1442
82	δ HCH(38)	1442	1452
83	δ HCH(37)	1444	1457
84	δ HCH(40)	1447	1465
85	δ HCH(51)	1459	1467
86	δ HCH(33)	1464	1471
87	δ HCC(15), δ CĆC(16)	1497	1519
88	ν CC(15), δ CCC(14)	1550	1585

Tablo 3	3.77.' nin devamı		
89	v NC(23), v CC(36)	1594	1635
90	v NC(42), v CC(14)	1607	1700
91	v NC(59)	1618	1709
92	v OC(85)	1727	1765
93	v OC(83)	1793	1853
94	v CH(33)	2916	2859
95	v CH(48)	2923	2864
96	v CH(48)	2927	2870
97	v CH(93)	2948	2891
98	v CH(93)	2954	2896
99	v CH(50)	2989	2917
100	v CH(48)	2996	2925
101	v CH(48)	3001	2927
102	v CH(48)	3002	2930
103	v CH(100)	3007	2954
104	v CH(100)	3020	2961
105	v CH(92)	3047	2983
106	v CH(84)	3055	2991
107	v CH(60)	3056	3004
108	v CH(64)	3059	3007
109	v CH(93)	3060	3024
110	v CH(50)	3073	3041
111	v CH(26)	3091	3043

Şekil 3.38. 15 tipi bileşiğin deneysel (a) ve teorik (B3LYP 6-31G(d,p) (b) ve HF 6-31G(d,p) (c)) IR spektrumları

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF	
301.75/237.61	4.1088/5.2179	
279.85/214.41	4.4304/5.7825	
270.51/182.54	4.5834/6.7921	
		_

Г

Şekil 3.39. 15 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm^{-1})

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(35)-C(1)-N(36)	111.942	111.786	33	C(3)-C(4)-C(5)	122.880	122.807
2	N(35)-N(34)-C(2)	112.476	111.905	34	C(3)-C(4)-C(9)	118.627	118.575
3	N(35)-N(34)-H(14)	120.654	120.617	35	C(4)-C(9)-H(20)	119.376	119.694
4	N(34)-H(14)-O(39)	120.889	121.254	36	C(4)-C(5)-H(17)	119.058	119.496
5	O(39)-C(14)-C(15)	124.662	123.870	37	H(17)-C(5)-C(6)	120.643	120.216
6	N(34)–C(14)-C(15)	114.449	114.876	38	C(5)-C(6)-H(18)	119.357	119.156
7	C(14)-C(15)-H(31)	110.863	110.690	39	H(18)-C(6)-C(7)	119.109	119.394
8	C(14)-C(15)-H(32)	110.859	110.685	40	C(4)-C(9)-C(8)	120.796	120.835
9	C(14)-C(15)-H(33)	107.631	107.435	41	C(9)-C(8)-C(7)	121.004	120.888
10	H(31)-C(15)-H(32)	106.812	107.409	42	C(7)-C(6)-C(5)	121.534	121.450
11	H(31)-C(15)-H(33)	110.353	110.325	43	H(19)-C(8)-C(7)	119.891	120.165
12	H(32)-C(15)-H(33)	110.350	110.321	44	H(19)-C(8)-C(9)	119.105	118.947
13	C(14)-N(34)-C(2)	126.870	127.478	45	H(20)-C(9)-C(8)	119.827	119.471
14	N(34)–C(2)-O(38)	130.579	130.385	46	C(8)-C(7)-C(6)	117.873	117.921
15	N(34)-C(2)-N(36)	101.516	102.005	47	C(8)-C(7)-C(10)	121.438	121.615
16	O(38)-C(2)- N(36)	127.904	127.610	48	C(6)-C(7)-C(10)	120.689	120.463
17	C(2)-N(36)-C(1)	108.740	108.660	49	C(7)-C(10)-C(11)	111.805	111.862
18	C(2)-N(36)-N(37)	130.620	130.817	50	C(7)-C(10)-H(21)	107.010	106.928
19	N(36)-C(1)-C(13)	123.174	123.157	51	H(21)-C(10)-C(11)	107.434	107.319
20	C(1)-N(36)-N(37)	120.640	120.523	52	H(21)-C(10)-C(12)	107.434	107.319
21	C(1)-C(13)-H(28)	110.743	110.331	53	H(22)-C(11)-H(23)	108.162	108.127
22	C(1)-C(13)-H(29)	110.743	110.331	54	H(22)-C(11)-H(24)	107.756	107.852
23	C(1)-C(13)-H(30)	108.825	108.680	55	H(23)-C(11)-H(24)	107.634	107.691
24	H(28)-C(13)-H(29)	107.279	107.845	56	C(10)-C(11)-H(22)	111.298	111.121
25	H(28)-C(13)-H(30)	109.617	109.825	57	C(10)-C(11)-H(23)	110.532	110.425
26	H(29)-C(13)-H(30)	109.617	109.823	58	C(10)-C(11)-H(24)	111.311	111.481
27	N(35)-C(1)-C(13)	124.884	125.057	59	C(10)-C(12)-H(25)	110.531	110.426
28	N(36)-C(1)-C(13)	123.174	123.157	60	C(10)-C(12)-H(26)	111.311	111.480
29	N(36)-N(37)-C(3)	118.953	119.989	61	C(10)-C(12)-H(27)	111.298	111.121
30	N(37)-C(3)-H(16)	122.108	122.325	62	H(25)-C(12)-H(26)	107.634	107.691
31	H(16)-C(3)-C(4)	117.685	117.181	63	H(25)-C(12)-H(27)	108.162	108.162
32	N(37)-C(3)-C(4)	120.207	120.494	64	H(26)-C(12)-H(27)	107.756	107.853

Tablo 3.78. 15 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.79. 15 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	ğ Uzunlukları	B3LYP	HF	Bağ	Uzunlukları	B3LYP	HF
1	C(1)-N(35)	1.2968	1.2667	21	C(4)-C(5)	1.4050	1.3915
2	C(1)-N(36)	1.3850	1.3734	22	C(4)-C(9)	1.4043	1.3895
3	C(1)-C(13)	1.4865	1.4879	23	C(5)-H(17)	1.0848	1.0740
4	N(35)-N(34)	1.3958	1.3845	24	C(5)-C(6)	1.3893	1.3804
5	N(34)-C(14)	1.4190	1.4026	25	C(6)-H(18)	1.0872	1.0763
6	C(14)-O(39)	1.2092	1.1847	26	C(6)-C(7)	1.4044	1.3935
7	C(14)-C(15)	1.5117	1.5072	27	C(7)-C(8)	1.4024	1.3904
8	C(15)-H(31)	1.0932	1.0828	28	C(8)-H(19)	1.0862	1.0754
9	C(15)-H(32)	1.0932	1.0828	29	C(8)-C(9)	1.3914	1.3833
10	C(15)-H(33)	1.0895	1.0798	30	C(9)-C(20)	1.0870	1.0767
11	N(34)-C(2)	1.4048	1.3808	31	C(7)-C(10)	1.5218	1.5217

1 40	un ut un	1					
12	C(2)-O(38)	1.2133	1.1903	32	C(10)-H(21)	1.0978	1.0868
13	C(2)-N(36)	1.4152	1.3863	33	C(10)-C(11)	1.5406	1.5348
14	N(36)-N(37)	1.3754	1.3690	34	C(11)-H(22)	1.0942	1.0850
15	C(13)-H(28)	1.0939	1.0831	35	C(11)-H(23)	1.0952	1.0860
16	C(13)-H(29)	1.0939	1.0831	36	C(11)-H(24)	1.0954	1.0857
17	C(13)-H(30)	1.0905	1.0805	37	C(10)-C(12)	1.5405	1.5348
18	N(37)-C(3)	1.2905	1.2615	38	C(12)-H(25)	1.0952	1.0860
19	C(3)-H(16)	1.0879	1.0647	39	C(12)-H(26)	1.0953	1.0857
20	C(3)-C(4)	1.4633	1.4732	40	C(12)-H(27)	1.0942	1.0850

Tablo 3.79.' un devami

Tablo 3.80. 15 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.541	0.622	H21	0.091	0.125
C2	0.847	1.113	H22	0.110	0.122
C3	0.116	0.184	H23	0.104	0.115
C4	0.082	-0.088	H24	0.105	0.111
C5	-0.095	-0.109	H25	0.104	0.115
C6	-0.141	-0.176	H26	0.105	0.111
C7	0.151	0.023	H27	0.110	0.122
C8	-0.128	-0.156	H28	0.147	0.160
С9	-0.126	-0.143	H29	0.147	0.160
C10	-0.131	-0.154	H30	0.142	0.161
C11	-0.305	-0.314	H31	0.147	0.159
C12	-0.305	-0.314	H32	0.147	0.159
C13	-0.359	-0.359	H33	0.139	0.161
C14	0.561	0.734	N34	-0.434	-0.666
C15	-0.378	-0.408	N35	-0.352	-0.360
H16	0.160	0.230	N36	-0.431	-0.641
H17	0.103	0.176	N37	-0.328	-0.334
H18	0.084	0.150	O38	-0.489	-0.596
H19	0.088	0.154	O39	-0.424	-0.514
H20	0.097	0.167			

E_{HOMO} (B3LYP) : -0.22515Hatree

E_{HOMO}(HF) : -0.31360 Hatree

E_{LUMO} (B3LYP) : -0.06093 Hatree

 E_{LUMO} (HF) : 0.08422 Hatree

Şekil 3.40. 15 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.81. 15 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	4.8487	5.2987
$\mu_{\rm v}$	5.0269	5.8105
μ_z	0.7798	0.9055
μ _{Toplam}	7.0277	7.9157

Tablo 3.82.15 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-951.912	-946.049

3.4.11. 1-Asetil-3-etil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (16)

Şekil 3.41.16 tipi bileşiğin(6-31G) gausview görünümü

Tablo 3.83. 16 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ/ppm)

No	Donov	DFT	Ford	DFT/	Fark/	ПЕ	E Fark	HF/	Fark/
INU	Deney.	DFI	гагк	DMSO	DMSO	пг	гагк	DMSO	DMSO
C1	150.17	153.24	-3.07	155.56	-5.39	148.23	1.94	150.63	-0.46
C2	156.15	150.58	5.57	151.87	4.28	143.14	13.01	144.59	11.56
C3	152.82	155.26	-2.44	156.20	-3.38	149.79	3.03	150.74	2.08
C4	130.71	136.78	-6.07	135.86	-5.15	126.06	4.65	125.14	5.57
C5	128.09	127.79	0.30	127.59	0.50	123.20	4.89	122.99	5.10
C6	127.05	132.27	-5.22	132.61	-5.56	123.31	3.74	123.42	3.63
C7	148.15	155.51	-7.36	157.34	-9.19	148.73	-0.58	150.22	-2.07
C8	127.05	129.00	-1.95	129.50	-2.45	120.82	6.23	121.04	6.01
C9	128.09	136.72	-8.63	136.99	-8.90	130.68	-2.59	130.98	-2.89
C10	33.49	47.72	-14.23	47.52	-14.03	29.51	3.98	29.25	4.24
C11	23.53	33.13	-9.60	32.71	-9.18	20.22	3.31	19.77	3.76
C12	23.53	33.03	-9.50	32.61	-9.08	20.22	3.31	19.78	3.75
C13	18.64	31.04	-12.40	31.05	-12.41	17.60	1.04	17.65	0.99
C14	9.49	22.29	-12.80	22.07	-12.58	9.57	-0.08	9.29	0.20
C15	165.97	167.98	-2.01	171.47	-5.50	159.59	6.38	163.71	2.26
C16	23.53	31.77	-8.24	32.18	-8.65	20.35	3.18	20.73	2.80
H17	9.53	11.15	-1.62	11.04	-1.51	10.33	-0.80	10.26	-0.73
H18	7.76	9.08	-1.32	9.14	-1.38	8.84	-1.08	8.93	-1.17
H19	7.38	8.09	-0.71	8.28	-0.90	7.75	-0.37	7.96	-0.58
H20	7.38	8.39	-1.01	8.56	-1.18	7.92	-0.54	8.11	-0.73
H21	7.76	8.27	-0.51	8.39	-0.63	8.10	-0.34	8.26	-0.50
H22	2.95	3.59	-0.64	3.73	-0.78	2.76	0.19	2.92	0.03
H23	1.23	2.11	-0.88	2.07	-0.84	1.47	-0.24	1.41	-0.18
H24	1.23	2.10	-0.87	2.16	-0.93	1.49	-0.26	1.56	-0.33
H25	1.23	2.15	-0.92	2.19	-0.96	1.56	-0.33	1.60	-0.37
H26	1.23	2.11	-0.88	2.16	-0.93	1.49	-0.26	1.56	-0.33
H27	1.23	2.15	-0.92	2.19	-0.96	1.56	-0.33	1.60	-0.37
H28	1.23	2.11	-0.88	2.07	-0.84	1.48	-0.25	1.41	-0.18
H29	2.72	3.81	-1.09	3.92	-1.20	3.02	-0.30	3.16	-0.44
H30	2.72	3.27	-0.55	3.40	-0.68	2.61	0.11	2.74	-0.02
H31	1.24	2.57	-1.33	2.49	-1.25	1.99	-0.75	1.91	-0.67

Tablo 3.83.'ün devamı

H32	1.24	2.07	-0.83	2.23	-0.99	1.57	-0.33	1.74	-0.50
H33	1.24	1.91	-0.67	1.96	-0.72	1.40	-0.16	1.43	-0.19
H34	2.49	3.35	-0.86	3.52	-1.03	2.66	-0.17	2.88	-0.39
H35	2.49	3.34	-0.85	3.50	-1.01	2.65	-0.16	2.87	-0.38
H36	2.49	2.56	-0.07	2.61	-0.12	2.18	0.31	2.22	0.27

Tablo 3.84. 16 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ NCCC(34), τ CNNC(14), τ CCCC(24)	22	15
2	τ NCNN(37), τ NNCN(11), τ CCCC(15)	25	24
3	τ CNNC(17), τ CCCC(34)	41	39
4	δ NCC(26), δ CCC(17), δ NNC(11)	43	43
5	τ CCNC(45)	58	56
6	τ CNNC(18), τ CCNN(33)	63	62
7	τ CNNC(11), τ CCNC(17), τ CCCN(19)	70	72
8	δ CCC(11), τ CNNC(25), τ CCNC(12)	105	107
9	τ NNCN(18). τ CCNN(17)	119	117
10	$\delta \text{CNN}(13), \delta \text{CCC}(16)$	132	133
11	τ HCCN(64)	134	143
12	τ NCCC(18) τ CNNC(19) τ CCNN(13)	154	160
13	δ CCC(16)	159	160
14	$\delta CNN(19) \delta CCN(21)$	181	181
15	τ NNCN(18) τ CCCC(17) τ CCNN(12)	119	209
16	δ CNN()	122	216
17	τ HCCC(10) τ NCNN(14) τ CNNC(11)	228	226
18	$\delta CCC(10) \tau HCCC(12)$	240	236
19	τ HCCC(29)	245	248
20	$\delta CCC(13) \tau HCCN(17)$	268	269
20	δ CCC(53)	304	303
22	$\delta CCC(14) \tau NCNN(16) \tau CCCC(15) \tau NNCN(18)$	311	308
23	v NC(15) & OCC(13) & OCN(26) & CCN(10)	318	326
20	δ (CN(30)	376	379
25	$\delta CCN(10)$	395	400
26	τ HCCC(19) τ CCCC(68)	399	410
20	δ NNC(13) δ OCN(11) δ CCC(12)	410	413
28	δ CCC(11) τ CCCC(20)	429	435
20	δ CCC(10)	459	461
30	$\delta OCC(12) \tau CCCC(11)$	462	468
31	$\tau CCCC(14)$	544	546
32	$\tau \text{ONNC}(17) \tau \text{CCCC}(19)$	551	560
33	τ HCCN(13) τ ONNC(25)	554	573
34	$v CC(19) \delta OCC(18)$	584	590
35	δ CNN(13)	594	601
36	δ CCC(38)	625	627
37	0 000(00)	646	654
38	τ NNCN(10) τ ONNC(15) τ CNNC(16)	676	708
39	τ NNCN(10), τ ONNC(34)	702	709
40	$v CC(21) \delta CCC(13)$	702	740
41	τ CCCC(27)	727	762
42	τ HCCN(12)	767	778
43	$v NN(16) \tau HCCN(15)$	781	791
44	τ HCCC(47)	821	830
45	τ HCCC(55)	827	851

	Tablo 3.8	4.' ün devamı		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	46	v CC(13)	828	856
48 $v CC(11)$, $\delta NNC(16)$, $\delta NCC(13)$ 871 879 49 $\delta HCH(10)$, $\tau HCCC(13)$ 899 907 50 $v CC(36)$ 925 933 51 $v CC(29)$, $\tau HCCC(12)$ 929 2732 52 $\tau HCCC(32)$, $\tau HCCC(10) 935 980 53 \tau HCCC(17), \tau HCCN(12) 945 982 54 v NC(10), v CC(17), \tau HCCN(12) 959 997 55 \tau HCCN(10), v CC(17), \tau HONC(14) 1017 1044 56 \delta CCC(11), \tau HCCN(17) 1038 1047 59 v CC(213), \delta NNC(10) 1021 1047 60 \delta CCC(14), \tau HCCC(17) 1038 1047 60 \delta CCC(14), \tau HCCC(15) 1095 1096 61 \tau HCCN(16), \tau HCCC(17) 1038 1047 60 \delta CC(21), \tau HCCN(16) 1112 1123 63 v CC(13), \delta HCC(10) 1112 1123 64 v NC(16), \delta TCC(24) 1161 11490 65 $	47	v CC(60)	866	864
	48	v CC(11), δ NNC(16), δ NCC(13)	871	879
50 $v CC(3b)$ $v C(2)$ $v C(1)$ <t< th=""><th>49</th><th>δ HCH(10), τ HCCC(43)</th><th>899</th><th>907</th></t<>	49	δ HCH(10), τ HCCC(43)	899	907
51 $v CC(29), \tau HCCC(12)$ 929 2732 52 $\tau HCCC(32), \tau CCCC(10)$ 935 980 53 $\tau HCCC(46), \tau CCCC(14)$ 945 982 54 $v NC(10), v C(17), \tau HCCN(12)$ 959 997 55 $\tau HCN(80)$ 982 1001 56 $\delta CCC(51)$ 995 1036 57 $\delta HCH(22), \tau HCCN(17), \tau ONNC(14)$ 1017 1044 59 $v CC(13), \delta HCC(14), \tau HCCC(17)$ 1038 1047 60 $\delta CCC(12), \tau HCCN(16)$ 1055 1076 61 $\tau HCCN(18), \tau HCCC(13)$ 1068 1081 62 $v CC(14), \tau HCCC(10)$ 1133 1144 66 $v NC(16), \tau HCCN(10)$ 1112 1123 67 $v CC(12), \delta CC(12)$ 1190 1199 69 $v CC(13), \delta CN(11)$ 1146 1169 67 $v CC(13), \delta CN(10), T HCCN(13)$ 1248 1233 72 $v CC(14), \delta HCC(12)$ 117 1404 1462 60 <th< th=""><th>50</th><th>v CC(36)</th><th>925</th><th>933</th></th<>	50	v CC(36)	925	933
52 τ HCCC(32), τ CCCC(10) 935 980 53 τ HCCC(46), τ CCCC(14) 945 982 54 ν NC(10), ν CCC(17), τ HCCN(12) 959 997 55 τ HCNN(80) 982 1001 56 δ CCC(17), τ TONNC(14) 1017 1044 57 δ HCH(22), τ HCCN(17), τ ONNC(14) 1017 1044 59 ν CC(13), δ NNC(10) 1021 1047 60 δ CCC(12), τ HCCC(13) 1068 1081 62 ν CC(13), δ HCCC(10) 1012 1123 63 ν CC(23), δ HCC(10) 1112 1123 64 ν NC(16), τ HCCN(10) 1112 1123 65 τ HCCC(11) 1133 1144 66 ν NC(23), δ CNC(10) 1112 1123 65 τ HCCC(14), τ HCCC(12) 1196 1208 70 δ HCC(23), δ CNC(10) 1235 1218 71 δ HCC(13), δ HCC(13) 1248 1253 72 <td< th=""><th>51</th><th>ν CC(29), τ HCCC(12)</th><th>929</th><th>2732</th></td<>	51	ν CC(29), τ HCCC(12)	929	2732
53 t HCCC(46), t CCCC(14) 945 982 54 v NC(10), v C(17), t HCCN(12) 959 997 55 r HCNN(80) 982 1001 56 δ CCC(51) 995 1036 57 δ HCH(22), t HCCN(17), r ONNC(14) 1017 1044 58 v CC(24), δ NNC(10) 1021 1047 59 v CC(13), δ HCC(14), t HCCC(17) 1038 1047 60 δ CCC(12), t HCCN(16) 1055 1076 61 r HCCN(18), r HCCC(10) 1082 1093 63 v CC(28), δ HCC(15) 1095 1096 64 v NC(16), r HCCN(10) 1112 1123 61 r HCCC(11) 1133 1144 66 v NX(32), δ CNN(11) 1146 1169 67 v CC(24), δ HCC(12) 1190 1199 69 v CC(17), δ HCC(12) 1248 1253 71 δ HCC(36), δ HCC(13) 1248 1253 72 v CC(13), δ HCC(10) 1271	52	τ HCCC(32), τ CCCC(10)	935	980
54 $v NC(10), v CC(17), \tau HCCN(12)$ 959 997 55 $\tau HCNN(80)$ 982 1001 56 $\delta CCC(51)$ 995 1036 57 $\delta HCH(22), \tau HCCN(17), \tau ONNC(14)$ 1017 1044 58 $v CC(24), \delta NNC(10)$ 1021 1047 59 $v CC(13), \delta HCCV(14), \tau HCCC(17)$ 1038 1047 60 $\delta CCC(12), \tau HCCC(13)$ 1068 1081 62 $v CC(43), \delta HCC(15)$ 1095 1096 64 $v N(16), t HCCN(10)$ 1112 1123 65 $\tau HCCV(1), \delta HCC(12)$ 1095 1096 64 $v N(32), \delta CNN(11)$ 1146 1169 67 $v C(13), \delta HCC(12)$ 1096 1208 68 $\delta HCC(22), \delta CCC(12)$ 1196 1208 70 $\delta HCC(36)$ 1235 1218 71 $\delta HCC(13), \delta NCN(10), t HCCN(13)$ 1248 1231 75 $\tau C(17), \delta HCC(13)$ 1294 1321 76 $\tau HCCN(27), \tau HCCN(13)$	53	τ HCCC(46) τ CCCC(14)	945	982
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	54	$v NC(10) v CC(17) \tau HCCN(12)$	959	997
10 11 10 11	55	τ HCNN(80)	982	1001
57 δ HCH(22), ϵ HCCN(17), ϵ ONNC(14)1017104458 v CC(24), δ NNC(10)1021104760 δ CCC(12), τ HCCN(16)1055107661 τ HCCN(18), τ HCCC(17)1008108162 v CC(47), τ HCCC(10)1082109363 v CC(28), δ HCC(15)1095109664 v NC(16), τ HCCC(11)1112112365 τ HCC(21)1113114466 v NN(32), δ CNN(11)1146116967 v CC(17), δ HCC(12)1190119969 v CC(17), δ HCC(12)1190119969 v CC(17), δ HCC(13)1248125371 δ HCC(20), δ CCC(12)1190119969 v CC(11), δ HCC(10)1271128871 δ HCC(20), δ HCC(13)1294132173 v CC(21)1287130074 v CC(29), δ HCC(13)1294132175 τ HCC2(6), τ CCC(10)1299132676 τ HCC2(6), δ HCH(27)1310134577 v CC(24), δ HCH(27)1310134578 δ HCH(36)1358139181 δ HCN(20, δ HCH(27)1349137879 δ HCH(27)1349135684 δ HCH(17)1443145289 δ HCH(35)1466137981 δ HCH(27)1443145289 δ HCH(47)14431452<	56	δ CCC(51)	995	1036
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	57	δ HCH(22) τ HCCN(17) τ ONNC(14)	1017	1044
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	58	$v CC(24) \delta NNC(10)$	1021	1047
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	59	$v CC(13) \delta HCC(14) \tau HCCC(17)$	1021	1047
00 $O CCC(13), THCC(13)$ 1005100361 $\tau HCCCN(18), \tau HCCC(10)$ 1082109362 $v CC(28), \delta HCC(15)$ 1095109664 $v CC(28), \delta HCC(15)$ 1095109664 $v CC(28), \delta HCC(10)$ 1112112365 $\tau HCCC(11)$ 1133114466 $v NN(32), \delta CNN(11)$ 1146116967 $v CC(14), \delta HCC(24)$ 1161118068 $\delta HCC(22), \delta CCC(12)$ 1190119969 $v CC(17), \delta HCC(12)$ 1196120870 $\delta HCC(36)$ 1235121871 $\delta HCC(13), \delta NCN(10), \tau HCCN(13)$ 1248125372 $v CC(11), \delta HCC(10)$ 1271128873 $v NC(21)$ 1287130074 $v CC(29), \delta HCC(13)$ 1294132175 $\tau HCCN(26), \tau CCCC(10)$ 1299132676 $\tau HCN(26), \delta HCH(27)$ 1310134577 $v CC(24), \delta HCC(45)$ 1337135378 $\delta HCN(26), \delta HCH(27)$ 1349137880 $\delta HCH(36)$ 1358139181 $\delta HCH(13), \delta HCN(15)$ 142084 $\delta HCH(71), \tau HCCN(12)$ 1417143185 $v NC(13), \delta HCN(15)$ 142084 $\delta HCH(35), \sigma HCH(35)$ 1448145289 $\delta HCH(35), \sigma HCC(13)$ 1405142084 $\delta HCH(71), \tau HCCN(12)$ 1417143185 $v NC(16), \sigma CC(16)$ 1477145186 $\delta $	60	$\delta CCC(12) \tau HCCN(16)$	1055	1076
61CHCC(10)1005100663 $v CC(28), \delta HCC(15)$ 1095109664 $v NC(16), \tau HCCN(10)$ 1112112365 $\tau THCC(11)$ 1133114466 $v NN(32), \delta CNN(11)$ 1146116967 $v CC(14), \delta HCC(24)$ 1161118068 $\delta HCC(22), \delta CCC(12)$ 1190119969 $v CC(17), \delta HCC(12)$ 1196120870 $\delta HCC(36)$ 1235121871 $\delta HCC(13), \delta NCN(10), \tau HCCN(13)$ 1248125372 $v CC(11), \delta HCC(10)$ 1271128873 $v NC(21)$ 1287130074 $v CC(29), \delta HCC(13)$ 1294132175 $\tau HCCN(27)$ 1310134576 $\tau HCCN(27)$ 1310134577 $v CC(24), \delta HCH(27)$ 1349137879 $\delta HCH(59)$ 1356138480 $\delta HCH(59)$ 1356138480 $\delta HCH(53)$ 1366139682 $\delta HCH(51)$ 1405142084 $\delta HCH(71), \tau HCCN(12)$ 1417143185 $v NC(13), \delta HCN(15)$ 1420144286 $\delta HCH(25), \tau HCCN(12)$ 1417143187 $\delta HCH(53)$ 1448145289 $\delta HCH(53)$ 1448145290 $\delta HCH(50, \delta CCC(14)$ 1459146791 $\delta HCH(50, \delta CCC(16)$ 1477151992 $\delta HCH(30)$ 1444145193 δ	61	τ HCCN(18) τ HCCC(13)	1055	1070
62 $V CC(28)$, $\delta HCC(15)$ 1002103263 $V CC(28)$, $\delta HCC(15)$ 1095109664 $v NC(16)$, $\tau HCCN(10)$ 1112112365 $\tau HCCC(11)$ 1133114466 $v N(32)$, $\delta CNN(11)$ 1146116967 $v CC(14)$, $\delta HCC(24)$ 1161118068 $\delta HCC(23)$, $\delta CC(12)$ 1190119969 $v CC(17)$, $\delta HCC(12)$ 1196120870 $\delta HCC(36)$ 1235121871 $\delta HCC(13)$, $\delta NCN(10)$, $\tau HCCN(13)$ 1248125372 $v CC(11)$, $\delta HCC(10)$ 1271128873 $v NC(21)$ 1287130074 $v CC(26)$, $\tau CCCC(10)$ 1299133675 $\tau HCCC(26)$, $\tau CCCC(10)$ 1299133676 $\tau HCCN(27)$ 1310134577 $v CC(24)$, $\delta HCC(45)$ 1337135378 $\delta HCH(36)$ 1358139181 $\delta HCN(13)$, $\delta HCN(15)$ 1366138480 $\delta HCH(35)$ 1366139682 $\delta HCH(35)$ 1405142084 $\delta HCH(37)$ 1443145285 $v NC(13)$, $\delta HCN(15)$ 1420144286 $\delta HCH(37)$ 1448145790 $\delta HCH(30)$ 1464147193 $\delta HCH(30)$ 1464147194 $\delta HCH(30)$ 1464147195 $v NC(21)$, $v CC(22)$ 1593163597 $v NC(30)$, $v CC(21)$ 1602<	62	$v CC(47) \tau HCCC(10)$	1082	1001
60 $v \operatorname{CC}(10)$, $v \operatorname{HCCN}(10)$ 1112112365 $\tau \operatorname{HCCN}(10)$ 1112112366 $v \operatorname{NN}(32)$, $\delta \operatorname{CNN}(11)$ 1133114466 $v \operatorname{NN}(32)$, $\delta \operatorname{CNN}(11)$ 1161118068 $\delta \operatorname{HCC}(22)$, $\delta \operatorname{CCC}(12)$ 1190119969 $v \operatorname{CC}(17)$, $\delta \operatorname{HCC}(12)$ 1196120870 $\delta \operatorname{HCC}(36)$ 1235121871 $\delta \operatorname{HCC}(13)$, $\delta \operatorname{NCN}(10)$, $\tau \operatorname{HCCN}(13)$ 1248125372 $v \operatorname{CC}(11)$, $\delta \operatorname{HCC}(10)$ 1271128873 $v \operatorname{NC}(21)$ 1287130074 $v \operatorname{CC}(29)$, $\delta \operatorname{HCC}(13)$ 1294132175 $\tau \operatorname{HCCC}(26)$, $\tau \operatorname{CCCC}(10)$ 1299136676 $\tau \operatorname{HCCN}(27)$ 1310134577 $v \operatorname{CC}(24)$, $\delta \operatorname{HCH}(51)$ 1356138480 $\delta \operatorname{HCH}(56)$ 1379140081 $\delta \operatorname{HCH}(50)$ 1379140082 $\delta \operatorname{HCH}(66)$ 1379140083 $v \operatorname{CC}(24)$, $\delta \operatorname{HCN}(13)$ 1420144286 $\delta \operatorname{HCH}(71)$, $\tau \operatorname{HCN}(12)$ 1417143185 $v \operatorname{NC}(13)$, $\delta \operatorname{HCH}(53)$ 1420144286 $\delta \operatorname{HCH}(25)$, $\tau \operatorname{HCCN}(21)$ 1448145790 $\delta \operatorname{HCH}(37)$ 1443145289 $\delta \operatorname{HCH}(36)$ 1467147491 $\delta \operatorname{HCH}(36)$ 1467147492 $\delta \operatorname{HCH}(36)$ 1467151993 $\delta \operatorname{HCH}(36)$ 14671519 <t< th=""><th>63</th><th>$v CC(28) \delta HCC(15)$</th><th>1002</th><th>1095</th></t<>	63	$v CC(28) \delta HCC(15)$	1002	1095
07CHC(10)11121112111266 v HCC(11)1133114466 v NN(32), δ CNN(11)1146116967 v CC(14), δ HCC(24)1161118068 δ HCC(22), δ CCC(12)1190119969 v CC(17), δ HCC(12)1196120870 δ HCC(36)1235121871 δ HCC(13), δ NCN(10), r HCCN(13)1248123572 v CC(11), δ HCC(10)1271128873 v NC(21)1287130074 v CC(29), δ HCC(13)1294132175 τ HCCC(26), τ CCCC(10)1299132676 τ HCCC(26), τ CCCC(10)1299133678 δ HCN(26), δ HCH(27)1349137879 δ HCH(59)1356138480 δ HCH(35)1356138481 δ HCN(3), δ HCH(35)1356138482 δ HCH(36)1379140083 v CC(24), δ HCC(13)1405142084 δ HCH(35)1405142085 v NC(13), δ HCN(15)1420144286 δ HCH(25), τ HCCN(21)1426144587 δ HCH(37)1448145290 δ HCH(37)1448145791 δ HCH(35)1467144792 δ HCH(36)1467147493 δ HCH(36)1467147494 δ HCH(36)146714	64	v = C(20), 0 = HCC(10) v = NC(16) + HCCN(10)	1112	1123
6311121113114466 $v NN(32), \delta CNN(11)$ 1146116967 $v CC(14), \delta HCC(24)$ 1161118068 $\delta HCC(22), \delta CCC(12)$ 1196120869 $v CC(17), \delta HCC(12)$ 1196120870 $\delta HCC(36)$ 1235121871 $\delta HCC(13), \delta NCN(10), \tau HCCN(13)$ 1248125372 $v CC(11), \delta HCC(10)$ 1271128873 $v VC(21)$ 1287130074 $v CC(29), \delta HCC(13)$ 1294132175 $\tau HCCC(26), \tau CCCC(10)$ 1299132676 $\tau HCCN(27)$ 1310134577 $v CC(24), \delta HCL(45)$ 1337135378 $\delta HCN(26), \delta HCH(27)$ 1349137880 $\delta HCH(36)$ 1358139181 $\delta HCN(13), \delta HCH(53)$ 1366139682 $\delta B HCH(36)$ 1379140083 $v CC(24), \delta HCC(12)$ 1417143184 $\delta HCH(71), \tau HCCN(12)$ 1417143185 $v NC(13), \delta HCN(15)$ 1420144286 $\delta HCH(35)$ 1448145790 $\delta HCH(47)$ 1443145289 $\delta HCH(36)$ 1467147491 $\delta HCH(36)$ 1467147492 $\delta HCH(36)$ 1467147493 $\delta HCH(36)$ 1467147494 $\delta HCH(36)$ 1467147495 $v CC(25), \delta CCC(16)$ 1497151996 $v N$	65	τ HCCC(11)	1112	1125
00 $V \operatorname{Cl}(2), b \operatorname{Cl}(1)$ 1140118067 $V \operatorname{Cl}(2), b \operatorname{HCC}(2)$ 1190119969 $V \operatorname{Cl}(2), \delta \operatorname{HCC}(12)$ 1190119970 $\delta \operatorname{HCC}(36)$ 1235121871 $\delta \operatorname{HCC}(1), \delta \operatorname{HCC}(10)$ 1248125372 $v \operatorname{Cl}(1), \delta \operatorname{HCC}(10)$ 1271128873 $v \operatorname{NC}(2)$ 1287130074 $v \operatorname{CC}(29), \delta \operatorname{HCC}(13)$ 1294132175 $\tau \operatorname{HCC}(26), \tau \operatorname{CCCC}(10)$ 1299132676 $\tau \operatorname{HCC}(24), \delta \operatorname{HCC}(45)$ 1337135378 $\delta \operatorname{HCN}(26), \delta \operatorname{HCH}(27)$ 1349137879 $\delta \operatorname{HCH}(59)$ 1356138480 $\delta \operatorname{HCH}(36)$ 1358139181 $\delta \operatorname{HCH}(36)$ 1379140082 $\delta \operatorname{HCH}(71), \tau \operatorname{HCN}(12)$ 1417143185 $v \operatorname{NC}(13), \delta \operatorname{HCC}(13)$ 1405142084 $\delta \operatorname{HCH}(57)$ 1440144285 $v \operatorname{NC}(13), \delta \operatorname{HCC}(12)$ 1426144587 $\delta \operatorname{HCH}(53)$ 1466144589 $\delta \operatorname{HCH}(35)$ 1448145790 $\delta \operatorname{HCH}(36)$ 1467147491 $\delta \operatorname{HCH}(36)$ 1467147492 $\delta \operatorname{HCH}(36)$ 1467147493 $\delta \operatorname{HCH}(36)$ 1467147494 $\delta \operatorname{HCH}(36)$ 1467147495 $v \operatorname{NC}(22), v \operatorname{CC}(22)$ 1602169496 $v \operatorname{NC}(4), v \operatorname{CC}(12)$ 16151709 <th>66</th> <th>$v NN(32) \delta CNN(11)$</th> <th>1135</th> <th>1144</th>	66	$v NN(32) \delta CNN(11)$	1135	1144
07 1101 1101 1101 1101 68 δ HCC(22), δ CCC(12)1190119969 v CC(17), δ HCC(12)1196120870 δ HCC(36)1235121871 δ HCC(13), δ NCN(10), τ HCCN(13)1248125372 v CC(11), δ HCC(10)1271128873 v NC(21)1287130074 v CC(29), δ HCC(13)1294132175 τ HCCC(26), τ CCCC(10)1299132676 τ HCCN(27)1310134577 v CC(24), δ HCH(27)1349137878 δ HCN(66), δ HCH(27)1349137880 δ HCH(36)1358139181 δ HCN(13), δ HCH(53)1366139682 δ HCH(66)1379140083 v CC(24), δ HCC(13)1405142084 δ HCH(71), τ HCCN(12)1417143185 v NC(13), δ HCN(15)1420144286 δ HCH(25), τ HCCN(21)1426144587 δ HCH(37)1443145289 δ HCH(37)1443145289 δ HCH(36)1467147490 δ HCH(49)1454146791 δ HCH(47)1459146792 δ HCH(36)1467147493 δ HCH(36)1467147494 δ HC(16), δ CC(16)1497151995 v NC(30), v CC(22) <td< th=""><th>67</th><th>$v CC(14) \delta HCC(24)$</th><th>1140</th><th>1180</th></td<>	67	$v CC(14) \delta HCC(24)$	1140	1180
000 HCC(12), 0 HCC(12)1136113770 δ HCC(12)1196120871 δ HCC(13), δ NCN(10), T HCCN(13)1248125372 v CC(11), δ HCC(10)1271128873 v CC(21)1287130074 v CC(29), δ HCC(13)1294132175 τ HCCC(26), τ CCCC(10)1299132676 τ HCCN(27)1310134577 v CC(24), δ HCC(45)1337135378 δ HCN(26), δ HCH(27)1349137879 δ HCN(26), δ HCH(27)1349137880 δ HCN(36)1358139181 δ HCN(13), δ HCH(53)1366138480 δ HCH(71), τ HCCN(12)1417143182 δ HCH(71), τ HCCN(12)1417143184 δ HCH(71), τ HCCN(21)1420144286 δ HCH(25), τ HCCN(21)1426144587 δ HCH(35)1443145290 δ HCH(36)1444145791 δ HCH(36)1467147192 δ HCH(36)1467147193 δ HCC(16), δ CCC(16)1497151994 δ HCC(16), δ CCC(16)1497151995 v NC(32), v CC(32)1593163596 v NC(32), v CC(22)1593163597 v NC(30), v CC(12)1615170998 v NC(44), v CC(12)16151709<	68	δ HCC(22) δ CCC(12)	1101	1100
00 $i \in Cc(17), 0 \in IEC(12)$ 11301200 $\delta \in Cc(13), \delta \in NCN(10), \tau \in HCCN(13)$ 1248125372 $v \in Cc(11), \delta \in HCC(10)$ 1271128873 $v \in Cc(21), \delta \in HCC(10)$ 1287130074 $v \in Cc(29), \delta \in HCC(13)$ 1294132175 $\tau \in HCCN(27)$ 1310134576 $\tau \in HCCN(27)$ 1310134577 $v \in C(24), \delta \in HC(45)$ 1337135378 $\delta \in HCN(26), \delta \in HCH(27)$ 1349137879 $\delta \in HCH(59)$ 1356138480 $\delta \in HCH(59)$ 1356138481 $\delta \in HCH(66)$ 1379140082 $v \in Cc(24), \delta \in HC(13)$ 1405142084 $\delta \in HCH(66)$ 1379140083 $v \in Cc(24), \delta \in HC(12)$ 1417143185 $v \in NC(13), \delta \in HCH(25)$ 1420144286 $\delta \in HCH(25), \tau \in HCCN(21)$ 1426144587 $\delta \in HCH(35)$ 1448145790 $\delta \in HCH(35)$ 1448145291 $\delta \in HCH(36)$ 1467147192 $\delta \in HCH(36)$ 1467147193 $\delta \in HCC(16), \delta \in CC(16)$ 1497151994 $\delta \in HCC(16), \delta \in CC(16)$ 1497151995 $v \in C(25), \delta \in CC(14)$ 1551158596 $v NC(32), v \in C(22)$ 1593163597 $v NC(30), v \in C(21)$ 1602169498 $v NC(44), v \in C(12)$ 16151709 <td< th=""><th>60</th><th>$v CC(17) \delta HCC(12)$</th><th>1196</th><th>1208</th></td<>	60	$v CC(17) \delta HCC(12)$	1196	1208
70Diffection1235121571 δ HCC(13), δ NCN(10), τ HCCN(13)1248125372 v CC(11), δ HCC(10)1271128873 v NC(21)1287130074 v CC(29), δ HCC(13)1294132175 τ HCCC(26), τ CCCC(10)1299132676 τ HCCC(26), δ HCC(45)1337135378 δ HCH(26), δ HCH(27)1349137879 δ HCH(59)1356138480 δ HCH(36)1358139181 δ HCN(13), δ HCH(53)1366139682 δ HCH(66)1379140083 v CC(24), δ HCC(13)1405142084 δ HCH(71), τ HCCN(12)1417143185 v NC(13), δ HCN(15)1420144286 δ HCH(25), τ HCCN(21)1426144587 δ HCH(37)1443145290 δ HCH(36)1467147191 δ HCH(36)1467147192 δ HCH(30)1464147193 δ HCH(36)1467147494 δ HCC(16), δ CCC(16)1497151995 v NC(32), v CC(32)1593163596 v NC(32), v CC(32)1593163597 v NC(30), v CC(21)1602169498 v NC(44), v CC(12)1615170999 v OC(85)17271764100 v OC(83)1792	70	δ HCC(36)	1235	1208
710 Hec(16) (Hec(17))1270125372 $v C(21)$ 1271128873 $v C(21)$ 1287130074 $v C(29)$, $\delta HCC(13)$ 1294132175 $\tau HCCC(26)$, $\tau CCCC(10)$ 1299132676 $\tau HCCN(27)$ 1310134577 $v C(24)$, $\delta HCC(45)$ 1337135378 $\delta HCN(26)$, $\delta HCH(27)$ 1349137879 $\delta HCH(59)$ 1356138480 $\delta HCH(36)$ 1358139181 $\delta HCN(13)$, $\delta HCH(53)$ 1366139682 $\delta HCH(66)$ 1379140083 $v CC(24)$, $\delta HCC(13)$ 1405142084 $\delta HCH(71)$, $\tau HCCN(12)$ 1417143185 $v NC(13)$, $\delta HCN(15)$ 1420144286 $\delta HCH(25)$, $\tau HCCN(21)$ 1426144587 $\delta HCH(54)$ 1427145188 $\delta HCH(37)$ 1443145289 $\delta HCH(30)$ 1464147191 $\delta HCH(30)$ 1464147192 $\delta HCH(30)$ 1464147193 $\delta HCH(36)$ 1467147494 $\delta HCC(16)$, $\delta CCC(16)$ 1497151995 $v CC(25)$, $\delta CCC(16)$ 1497151996 $v NC(32)$, $v CC(32)$ 1593163597 $v NC(30)$, $v CC(21)$ 1602169498 $v NC(44)$, $v CC(12)$ 1615170999 $v OC(85)$ 17271764100<	70	δ HCC(13) δ NCN(10) τ HCCN(13)	1233	1218
72 $v \ C(21)$ 1211123373 $v \ C(21)$ 1287130074 $v \ C(29)$, $\delta \ HCC(13)$ 1294132175 $\tau \ HCCC(26)$, $\tau \ CCCC(10)$ 1299132676 $\tau \ HCCN(27)$ 1310134577 $v \ C(24)$, $\delta \ HCC(45)$ 1337135378 $\delta \ HCN(26)$, $\delta \ HCH(27)$ 1349137879 $\delta \ HCN(26)$, $\delta \ HCH(27)$ 1349137880 $\delta \ HCN(36)$ 1358139181 $\delta \ HCN(36)$ 1366139682 $\delta \ HCH(66)$ 1379140083 $v \ CC(24)$, $\delta \ HCC(13)$ 1405142084 $\delta \ HCH(71)$, $\tau \ HCCN(12)$ 1417143185 $v \ NC(13)$, $\delta \ HCN(15)$ 1420144286 $\delta \ HCH(47)$ 1427145187 $\delta \ HCH(35)$ 1448145289 $\delta \ HCH(36)$ 1467147490 $\delta \ HCH(36)$ 1467147491 $\delta \ HCH(36)$ 1467147492 $\delta \ HCH(36)$ 1467147494 $\delta \ HCC(16)$, $\delta \ CCC(16)$ 1497151995 $v \ NC(32)$, $v \ CC(32)$ 1551158596 $v \ NC(44)$, $v \ CC(12)$ 1615170999 $v \ NC(44)$, $v \ CC(12)$ 1615170999 $v \ NC(44)$, $v \ CC(12)$ 1615170999 $v \ NC(43)$ 29182859	71	$v CC(11) \delta HCC(10)$	1240	1233
73 $v \operatorname{RC}(21)$ 1207130074 $v \operatorname{CC}(29), \delta \operatorname{HCC}(13)$ 1294132175 $\tau \operatorname{HCCC}(26), \tau \operatorname{CCCC}(10)$ 1299132676 $\tau \operatorname{HCCN}(27)$ 1310134577 $v \operatorname{CC}(24), \delta \operatorname{HCC}(45)$ 1337135378 $\delta \operatorname{HCN}(26), \delta \operatorname{HCH}(27)$ 1349137879 $\delta \operatorname{HCH}(59)$ 1356138480 $\delta \operatorname{HCH}(59)$ 1356138481 $\delta \operatorname{HCN}(13), \delta \operatorname{HCH}(53)$ 1366139682 $\delta \operatorname{HCH}(66)$ 1379140083 $v \operatorname{CC}(24), \delta \operatorname{HCC}(13)$ 1405142084 $\delta \operatorname{HCH}(71), \tau \operatorname{HCCN}(12)$ 1417143185 $v \operatorname{NC}(13), \delta \operatorname{HCN}(15)$ 1420144286 $\delta \operatorname{HCH}(35), \tau \operatorname{HCCN}(21)$ 1426144287 $\delta \operatorname{HCH}(35), \sigma \operatorname{HCH}(54)$ 1427145188 $\delta \operatorname{HCH}(35)$ 1448145790 $\delta \operatorname{HCH}(47)$ 1459146791 $\delta \operatorname{HCH}(36)$ 1467147492 $\delta \operatorname{HCH}(30)$ 1464147193 $\delta \operatorname{HCH}(36)$ 1467147494 $\delta \operatorname{HCC}(16), \delta \operatorname{CCC}(16)$ 1477151995 $v \operatorname{CC}(25), \delta \operatorname{CCC}(14)$ 1551158596 $v \operatorname{NC}(30), v \operatorname{CC}(21)$ 1602169498 $v \operatorname{NC}(44), v \operatorname{CC}(12)$ 1615170999 $v \operatorname{NC}(43), 0$ 17271764100 $v \operatorname{OC}(83)$ 17921852101 $v \operatorname{CH}(33)$ 2918 <th>72</th> <th>$v \operatorname{ec}(11), 0 \operatorname{Hcc}(10)$</th> <th>1271</th> <th>1200</th>	72	$v \operatorname{ec}(11), 0 \operatorname{Hcc}(10)$	1271	1200
74 $r + CC(2)$, $r + CCC(2)$ 1274 1321 75 $\tau + CCC(2)$, $\tau + CCC(2)$ 1299 1326 76 $\tau + CCN(27)$ 1310 1345 77 $v + CC(24)$, $\delta + HCC(45)$ 1337 1353 78 $\delta + HCN(26)$, $\delta + HCH(27)$ 1349 1378 79 $\delta + HCH(59)$ 1356 1384 80 $\delta + HCH(36)$ 1358 1391 81 $\delta + HCN(13)$, $\delta + HCH(53)$ 1366 1396 82 $\delta + HCH(66)$ 1379 1400 83 $v + CC(24)$, $\delta + HCC(13)$ 1405 1420 84 $\delta + HCH(71)$, $\tau + HCN(15)$ 1420 1442 86 $\delta + HCH(71)$, $\tau + HCN(15)$ 1420 1442 87 $\delta + HCH(35)$ 1443 1452 89 $\delta + HCH(35)$ 14443 1452 89 $\delta + HCH(35)$ 14443 1452 90 $\delta + HCH(36)$ 1467 1474 91 $\delta + HCH(36)$ 1467 1474 93 $\delta + HCH(36)$ 1467 1474 94 $\delta + HCC(16)$, $\delta + CC(16)$ 1497 1519 95 $v + C(25)$, $\delta + CC(14)$ 1551 1585 96 $v + C(25)$, $\delta + CC(12)$ 1602 1694 98 $v + NC(44)$, $v + CC(12)$ 1615 1709 99 $v + OC(83)$ 1727 1764 100 $v + OC(83)$ 1792 1852	73	v CC(29) & HCC(13)	1207	1300
75 $r(c) C(c)(b)$ $r(c) C(c)(b)$ $r(c) T(c)(c)$ $r(c) T(c)(c)$ 76 τ C(24), δ HCC(27)1310134577 ν CC(24), δ HCC(27)1337135378 δ HCN(26), δ HCH(27)1349137879 δ HCH(59)1356138480 δ HCH(36)1358139181 δ HCN(13), δ HCH(53)1366139682 δ HCH(66)1379140083 ν CC(24), δ HCC(13)1405142084 δ HCH(71), τ HCCN(12)1417143185 ν NC(13), δ HCN(15)1420144286 δ HCH(25), τ HCCN(21)1426144587 δ HCH(37)1443145288 δ HCH(35)1448145790 δ HCH(35)1448145791 δ HCH(36)1467147192 δ HCH(36)1467147193 δ HCH(36)1467147194 δ HCC(16), δ CCC(16)1497151995 ν CC(25), δ CCC(14)1551158596 ν NC(32), ν CC(32)1593163597 ν NC(30), ν CC(21)1602169498 ν NC(44), ν CC(12)1615170999 ν OC(85)17271764100 ν OC(83)17921852101 ν CH(33)29182859	75	τ HCCC(26) τ CCCC(10)	1294	1326
77 $v CC(24), \delta HCC(45)$ 1317135378 $\delta HCC(26), \delta HCC(27)$ 1337135379 $\delta HCH(59)$ 1356138480 $\delta HCH(36)$ 1358139181 $\delta HCN(13), \delta HCH(53)$ 1366139682 $\delta HCH(66)$ 1379140083 $v CC(24), \delta HCC(13)$ 1405142084 $\delta HCH(71), \tau HCCN(12)$ 1417143185 $v NC(13), \delta HCCI(15)$ 1420144286 $\delta HCH(71), \tau HCCN(21)$ 1426144587 $\delta HCH(54)$ 1427145188 $\delta HCH(37)$ 1443145289 $\delta HCH(35)$ 1448145790 $\delta HCH(36)$ 1467147491 $\delta HCH(36)$ 1467147492 $\delta HCH(36)$ 1467147493 $\delta HCC(16), \delta CCC(16)$ 1497151995 $v NC(32), v CC(32)$ 1593163596 $v NC(32), v CC(21)$ 1615170999 $v NC(30), v CC(21)$ 1615170999 $v OC(83)$ 17921852101 $v OC(83)$ 17921852	76	τ HCCN(27)	1310	1320
78 δ HCN(26), δ HCH(27)1349135379 δ HCH(59)1356138480 δ HCH(36)1358139181 δ HCN(13), δ HCH(53)1366139682 δ HCH(66)1379140083 v CC(24), δ HCC(13)1405142084 δ HCH(71), τ HCCN(12)1417143185 v NC(13), δ HCN(15)1420144286 δ HCH(25), τ HCCN(21)1426144587 δ HCH(54)1427145188 δ HCH(37)1443145289 δ HCH(35)1448145790 δ HCH(47)1459146791 δ HCH(47)1459146792 δ HCH(36)1467147493 δ HCC(16), δ CCC(16)1497151995 v NC(32), v CC(32)1593163596 v NC(32), v CC(21)1602169498 v NC(44), v CC(12)1615170999 v NC(33)29182859	70	$v CC(24) \delta HCC(45)$	1310	1353
79 δ HCH(20)1379137379 δ HCH(59)1356138480 δ HCH(36)1358139181 δ HCN(13), δ HCH(53)1366139682 δ HCH(66)1379140083 v CC(24), δ HCC(13)1405142084 δ HCH(71), τ HCCN(12)1417143185 v NC(13), δ HCN(15)1420144286 δ HCH(25), τ HCCN(21)1426144587 δ HCH(54)1427145188 δ HCH(35)1448145289 δ HCH(35)1448145790 δ HCH(47)1459146791 δ HCH(30)1464147193 δ HCC(16), δ CCC(16)1497151994 δ HCC(16), δ CCC(14)1551158596 v NC(32), v CC(32)1593163597 v NC(30), v CC(21)1602169498 v NC(44), v CC(12)1615170999 v OC(85)17271764100 v OC(83)17921852101 v CH(33)29182859	78	δ HCN(26) δ HCH(27)	1349	1378
30 3 HCH(36) 1353 1391 81 δ HCN(13), δ HCH(53) 1366 1396 82 δ HCH(66) 1379 1400 83 v CC(24), δ HCC(13) 1405 1420 84 δ HCH(71), τ HCCN(12) 1417 1431 85 v NC(13), δ HCN(15) 1420 1442 86 δ HCH(25), τ HCCN(21) 1426 1445 87 δ HCH(54) 1427 1451 88 δ HCH(37) 1443 1452 89 δ HCH(35) 1448 1457 90 δ HCH(47) 1454 1462 91 δ HCH(36) 1467 1471 93 δ HCH(30) 1464 1471 94 δ HCC(16), δ CCC(16) 1497 1519 95 v CC(25), δ CCC(14) 1551 1585 96 v NC(30), v CC(21) 1602 1694 98 v NC(44), v CC(12) 1615 1709 99 v OC(83) 1792 1852 100 v OC(83) 1792 1852	70	δ HCH(20), 0 HCH(27)	1356	1384
81 δ HCN(13), δ HCH(53)1356139182 δ HCN(66)1379140083 v CC(24), δ HCC(13)1405142084 δ HCH(71), τ HCCN(12)1417143185 v NC(13), δ HCN(15)1420144286 δ HCH(25), τ HCCN(21)1426144587 δ HCH(25), τ HCCN(21)1426144588 δ HCH(25), τ HCCN(21)1443145289 δ HCH(37)1443145290 δ HCH(49)1454146291 δ HCH(49)1454146291 δ HCH(30)1464147193 δ HCC(16), δ CCC(16)1497151995 v NC(32), v CC(32)1593163596 v NC(32), v CC(21)1602169498 v NC(40), v CC(12)1615170999 v OC(85)17271764100 v OC(83)17921852101 v NC(33)29182859	80	δ HCH(36)	1358	1391
8115001500150082 δ HCH(15), 0 HCH(15)1379140083 v CC(24), δ HCC(13)1405142084 δ HCH(71), τ HCCN(12)1417143185 v NC(13), δ HCN(15)1420144286 δ HCH(25), τ HCCN(21)1426144587 δ HCH(25), τ HCCN(21)1426144588 δ HCH(37)1443145289 δ HCH(35)1448145790 δ HCH(49)1454146291 δ HCH(36)1467147492 δ HCH(36)1467147493 δ HCC(16), δ CCC(16)1497151995 v NC(32), v CC(32)1593163596 v NC(30), v CC(21)1602169498 v NC(30), v CC(12)1615170999 v OC(85)17271764100 v OC(83)17921852101 v NC(33)29182859	81	δ HCN(13) δ HCH(53)	1366	1396
62 $161(30)$ 1617 1420 83 $v CC(24), \delta HCC(13)$ 1405 1420 84 $\delta HCH(71), \tau HCCN(12)$ 1417 1431 85 $v NC(13), \delta HCN(15)$ 1420 1442 86 $\delta HCH(25), \tau HCCN(21)$ 1426 1445 87 $\delta HCH(54)$ 1427 1451 88 $\delta HCH(37)$ 1443 1452 89 $\delta HCH(35)$ 1448 1457 90 $\delta HCH(49)$ 1454 1462 91 $\delta HCH(49)$ 1454 1462 91 $\delta HCH(30)$ 1464 1471 93 $\delta HCH(30)$ 1464 1471 94 $\delta HCC(16), \delta CCC(16)$ 1497 1519 95 $v NC(32), v CC(32)$ 1551 1585 96 $v NC(30), v CC(21)$ 1602 1694 98 $v NC(44), v CC(12)$ 1615 1709 99 $v OC(85)$ 1727 1764 100 $v OC(83)$ 1792 1852 101 $v CH(33)$ 2918 2859	82	δ HCH(66)	1379	1400
84 δ HCH(71), τ HCCN(12)1417143185 v NC(13), δ HCN(15)1420144286 δ HCH(25), τ HCCN(21)1426144287 δ HCH(37)1443145288 δ HCH(37)1443145289 δ HCH(35)1448145790 δ HCH(49)1454146291 δ HCH(47)1459146792 δ HCH(30)1464147193 δ HCC(16), δ CCC(16)1497151995 v CC(25), δ CCC(14)1551158596 v NC(30), v CC(21)1602169497 v NC(30), v CC(12)1615170999 v OC(85)17271764100 v OC(83)17921852101 v CH(33)29182859	83	$v CC(24) \delta HCC(13)$	1405	1420
85 $v NC(13), \delta HCN(15)$ 1410145186 $\delta HCH(25), \tau HCCN(21)$ 1426144286 $\delta HCH(25), \tau HCCN(21)$ 1426144587 $\delta HCH(54)$ 1427145188 $\delta HCH(37)$ 1443145289 $\delta HCH(35)$ 1448145790 $\delta HCH(49)$ 1454146291 $\delta HCH(47)$ 1459146792 $\delta HCH(30)$ 1464147193 $\delta HCC(16), \delta CCC(16)$ 1497151995 $v CC(25), \delta CCC(14)$ 1551158596 $v NC(32), v CC(32)$ 1593163597 $v NC(30), v CC(21)$ 1602169498 $v NC(44), v CC(12)$ 1615170999 $v OC(83)$ 17921852101 $v OC(83)$ 29182859	84	δ HCH(71) τ HCCN(12)	1403	1420
86 δ HCH(25), τ HCCN(21)1426144587 δ HCH(54)1427145188 δ HCH(37)1443145289 δ HCH(35)1448145790 δ HCH(49)1454146291 δ HCH(47)1459146792 δ HCH(30)1464147193 δ HCC(16), δ CCC(16)1497151994 δ HCC(16), δ CCC(16)1497151995 v CC(25), δ CCC(14)1551158596 v NC(32), v CC(21)1602169498 v NC(44), v CC(12)1615170999 v OC(83)17271764100 v OC(83)17921852101 v CH(33)29182859	85	$v NC(13) \delta HCN(15)$	1420	1442
87 δ HCH(2), VHECH(21)1420141587 δ HCH(54)1427145188 δ HCH(37)1443145289 δ HCH(35)1448145790 δ HCH(49)1454146291 δ HCH(47)1459146792 δ HCH(30)1464147193 δ HCH(36)1467147494 δ HCC(16), δ CCC(16)1497151995 v CC(25), δ CCC(14)1551158596 v NC(32), v CC(32)1593163597 v NC(30), v CC(21)1615170998 v NC(44), v CC(12)1615170999 v OC(85)17271764100 v OC(83)17921852101 v CH(33)29182859	86	δ HCH(25), τ HCCN(21)	1426	1445
δ δ	87	δ HCH(54)	1427	1451
89 δ HCH(35)1448145790 δ HCH(49)1454146291 δ HCH(47)1459146792 δ HCH(30)1464147193 δ HCC(16), δ CCC(16)1467147494 δ HCC(16), δ CCC(16)1497151995 v CC(25), δ CCC(14)1551158596 v NC(32), v CC(32)1593163597 v NC(30), v CC(21)1602169498 v NC(44), v CC(12)1615170999 v OC(85)17271764100 v OC(83)17921852101 v CH(33)29182859	88	δ HCH(37)	1443	1452
90 δ HCH(49)1454146291 δ HCH(47)1459146792 δ HCH(30)1464147193 δ HCC(16), δ CCC(16)1467147494 δ HCC(16), δ CCC(16)1497151995 v CC(25), δ CCC(14)1551158596 v NC(32), v CC(21)1602169498 v NC(30), v CC(12)1615170999 v OC(85)17271764100 v OC(83)17921852101 v CH(33)29182859	89	δ HCH(35)	1448	1457
91 δ HCH(47)1151116292 δ HCH(30)1464147193 δ HCC(16), δ CCC(16)1467147494 δ HCC(16), δ CCC(16)1497151995 v CC(25), δ CCC(14)1551158596 v NC(32), v CC(32)1593163597 v NC(30), v CC(21)1602169498 v NC(44), v CC(12)1615170999 v OC(85)17271764100 v OC(83)17921852101 v CH(33)29182859	90	δ HCH(49)	1454	1462
92 δ HCH(30)1464147193 δ HCH(36)1467147494 δ HCC(16), δ CCC(16)1497151995 v CC(25), δ CCC(14)1551158596 v NC(32), v CC(32)1593163597 v NC(30), v CC(21)1602169498 v NC(44), v CC(12)1615170999 v OC(85)17271764100 v OC(83)17921852101 v CH(33)29182859	91	δ HCH(47)	1459	1467
93 δ HCH(36)1467147494 δ HCC(16), δ CCC(16)1497151995 v CC(25), δ CCC(14)1551158596 v NC(32), v CC(32)1593163597 v NC(30), v CC(21)1602169498 v NC(44), v CC(12)1615170999 v OC(85)17271764100 v OC(83)17921852101 v CH(33)29182859	92	δ HCH(30)	1464	1471
94 δ HCC(16), δ CCC(16)1497151995v CC(25), δ CCC(14)1551158596v NC(32), v CC(32)1593163597v NC(30), v CC(21)1602169498v NC(44), v CC(12)1615170999v OC(85)17271764100v OC(83)17921852101v CH(33)29182859	93	δ HCH(36)	1467	1474
95 v CC(25), & CCC(14) 1551 1585 96 v NC(32), v CC(32) 1593 1635 97 v NC(30), v CC(21) 1602 1694 98 v NC(44), v CC(12) 1615 1709 99 v OC(85) 1727 1764 100 v OC(83) 1792 1852 101 v CH(33) 2918 2859	94	δ HCC(16) δ CCC(16)	1497	1519
96 v NC(32), v CC(32) 1593 1635 97 v NC(30), v CC(21) 1602 1694 98 v NC(44), v CC(12) 1615 1709 99 v OC(85) 1727 1764 100 v OC(83) 1792 1852 101 v CH(33) 2918 2859	95	$v CC(25) \delta CCC(14)$	1551	1585
97 v NC(30), v CC(21) 1602 1694 98 v NC(44), v CC(12) 1615 1709 99 v OC(85) 1727 1764 100 v OC(83) 1792 1852 101 v CH(33) 2918 2859	96	v NC(32) v CC(32)	1593	1635
98 v NC(44), v CC(12) 1602 1004 99 v OC(85) 1727 1764 100 v OC(83) 1792 1852 101 v CH(33) 2918 2859	97	v NC(30) v CC(21)	1602	1694
99 v OC(85) 1727 1764 100 v OC(83) 1792 1852 101 v CH(33) 2918 2859	98	v NC(44) v CC(12)	1615	1709
100 v OC(83) 1792 1852 101 v CH(33) 2918 2859	99	v OC(85)	1727	1764
101 v CH(33) 2918 2859	100	v OC(83)	1792	1852
	101	v CH(33)	2918	2859

Tablo 3.8	4.' ün devamı		
102	v CH(53)	2925	2864
103	v CH(43)	2928	2870
104	v CH(39)	2940	2875
105	v CH(60)	2952	2896
106	v CH(93)	2954	2905
107	v CH(54)	2991	2917
108	v CH(41)	2996	2925
109	v CH(49)	2999	2927
110	v CH(52)	3001	2930
111	v CH(42)	3003	2935
112	v CH(42)	3011	2945
113	v CH(50)	3020	2961
114	v CH(60)	3027	2961
115	v CH(77)	3055	2991
116	v CH(52)	3056	3004
117	v CH(54)	3060	3007
118	v CH(47)	3060	3024
119	v CH(51)	3073	3042
120	v CH(26)	3092	3043

Şekil 3.42. 16 tipi bileşiğin deneysel (a) ve teorik (B3LYP 6-31G(d,p) (b) ve HF 6-31G(d,p) (c)) IR spektrumları

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF
302.10/237.65	4.1041/5.2171
280.72/214.42	4.4166/5.7824
270.49/199.61	4.5838/6.2113

Şekil 3.43. 16 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(38)-C(1)-N(39)	111.766	111.610	36	H(17)-C(3)-C(4)	117.694	117.157
2	N(38)-N(37)-C(2)	112.453	111.876	37	N(40)-C(3)-C(4)	120.261	120.508
3	N(38)-N(37)-H(15)	120.672	120.638	38	C(3)-C(4)-C(5)	122.932	122.850
4	H(15)-N(37)-C(2)	126.875	127.485	39	C(3)-C(4)-C(9)	118.585	118.547
5	N(37)-C(15)-O(42)	120.907	121.277	40	C(4)-C(9)-H(21)	119.357	119.689
6	O(42)-C(15)-C(16)	124.657	123.852	41	H(21)-C(9)-C(8)	119.839	119.469
7	N(37)-C(15)-C(16)	114.436	114.870	42	C(4)-C(5)-H(18)	119.121	119.522
8	C(15)-C(16)-H(34)	110.882	110.688	43	H(18)-C(5)-C(6)	120.572	120.182
9	C(15)-C(16)-H(35)	110.844	110.688	44	C(5)-C(6)-H(19)	119.376	119.155
10	C(15)-C(16)-H(36)	107.636	107.438	45	H(19)-C(6)-C(7)	119.091	119.394
11	H(34)-C(16)-H(35)	106.799	107.401	46	C(4)-C(9)-C(8)	120.804	120.843
12	H(34)-C(16)-H(36)	110.366	110.320	47	C(9)-C(8)-C(7)	120.997	120.891
13	H(35)-C(16)-H(36)	110.341	110.331	48	C(7)-C(6)-C(5)	121.532	121.451
14	N(37)-C(2)-O(41)	130.552	130.345	49	H(20)-C(8)-C(7)	119.880	120.165
15	N(37)-C(2)-N(39)	101.545	102.049	50	H(20)-C(8)-C(9)	119.123	118.944
16	O(41)-C(2)-N(39)	127.903	127.606	51	C(8)-C(7)-C(6)	117.878	117.915
17	C(2)-N(39)-C(1)	108.776	108.679	52	C(8)-C(7)-C(10)	121.473	121.620
18	C(2)-N(39)-N(40)	130.313	130.471	53	C(6)-C(7)-C(10)	120.649	120.465
19	N(38)-C(1)-C(13)	124.517	124.527	54	C(7)-C(10)-C(11)	111.787	111.862
20	N(39)-C(1)-C(13)	123.706	123.854	55	C(7)-C(10)-H(22)	106.972	106.929
21	C(1)-N(39)-N(40)	120.876	120.772	56	H(22)-C(10)-C(11)	107.461	107.319
22	C(1)-C(13)-H(29)	108.647	108.723	57	H(22)-C(10)-C(12)	107.442	107.321
23	C(1)-C(13)-H(30)	106.670	106.514	58	C(10)-C(11)-H(23)	111.288	111.122
24	H(29)-C(13)-H(30)	107.996	108.207	59	C(10)-C(11)-H(24)	110.542	110.424
25	H(29)-C(13)-C(14)	109.678	110.121	60	C(10)-C(11)-H(25)	111.302	111.482
26	H(30)-C(13)-C(14)	110.459	110.338	61	H(23)-C(11)-H(24)	108.168	108.127
27	C(1)-C(13)-C(14)	113.217	112.775	62	H(23)-C(11)-H(25)	107.745	107.854
28	C(13)-C(14)-H(31)	110.849	111.255	63	H(25)-C(11)-H(24)	107.649	107.690
29	C(13)-C(14)-H(32)	110.021	109.801	64	C(10)-C(12)-H(26)	110.535	110.425
30	C(13)-C(14)-H(33)	110.892	110.780	65	C(10)-C(12)-H(27)	111.310	111.480
31	H(31)-C(14)-H(32)	108.292	108.223	66	C(10)-C(12)-H(28)	111.277	111.121
32	H(31)-C(14)-H(33)	108.565	108.609	67	H(26)-C(12)-H(27)	107.640	107.692
33	H(32)-C(14)-H(33)	108.135	108.079	68	H(26)-C(12)-H(28)	108.181	108.128
34	N(39)-N(40)-C(3)	119.015	120.048	69	H(27)-C(12)-H(28)	107.749	107.852
35	N(40)-C(3)-H(17)	122.045	122.335				

Tablo 3.85. 16 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.86. 16 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	Uzunlukları	B3LYP	HF Bağ Uzunlukları		ğ Uzunlukları	B3LYP	HF
1	C(1)-N(38)	1.2973	1.2672	23	C(3)-C(4)	1.4634	1.4733
2	C(1)-N(39)	1.3867	1.3753	24	C(4)-C(5)	1.4050	1.3915
3	C(1)-C(13)	1.4929	1.4944	25	C(4)-C(9)	1.4044	1.3895
4	N(38)-N(37)	1.3955	1.3841	26	C(5)-H(18)	1.0847	1.0740
5	N(37)-C(15)	1.4190	1.4025	27	C(5)-C(6)	1.3893	1.3805
6	C(15)-O(42)	1.2092	1.1848	28	C(6)-H(19)	1.0872	1.0763
7	C(15)-C(16)	1.5117	1.5072	29	C(6)-C(7)	1.4044	1.3935
8	C(16)-H(34)	1.0932	1.0828	30	C(7)-C(8)	1.4024	1.3904
9	C(16)-H(35)	1.0933	1.0828	31	C(8)-H(20)	1.0863	1.0754
10	C(16)-H(36)	1.0895	1.0799	32	C(8)-C(9)	1.3914	1.3833
11	N(37)-C(2)	1.4043	1.3802	33	C(9)-C(21)	1.0870	1.0766

Tab	lo 3.86.'nın devam	1					
12	C(2)-O(41)	1.2135	1.1906	34	C(7)-C(10)	1.5219	1.5217
13	C(2)-N(39)	1.4153	1.3865	35	C(10)-H(22)	1.0978	1.0868
14	N(39)-N(40)	1.3757	1.3692	36	C(10)-C(11)	1.5404	1.5348
15	C(13)-H(29)	1.0949	1.0835	37	C(11)-H(23)	1.0942	1.0850
16	C(13)-H(30)	1.0933	1.0827	38	C(11)-H(24)	1.0952	1.0860
17	C(13)-C(14)	1.5392	1.5328	39	C(11)-H(25)	1.0953	1.0857
18	C(14)-H(31)	1.0925	1.0829	40	C(10)-C(12)	1.5404	1.5348
19	C(14)-H(32)	1.0939	1.0846	41	C(12)-H(26)	1.0952	1.0860
20	C(14)-H(33)	1.0939	1.0847	42	C(12)-H(27)	1.0953	1.0857
21	N(40)-C(3)	1.2905	1.2615	43	C(12)-H(28)	1.0942	1.0850
22	C(3)-H(17)	1.0878	1.0746				

Tablo 3.87. 16 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p)yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.548	0.635	H22	0.091	0.125
C2	0.847	1.113	H23	0.110	0.122
C3	0.115	0.184	H24	0.104	0.115
C4	0.083	-0.088	H25	0.105	0.111
C5	-0.097	-0.110	H26	0.104	0.115
C6	-0.141	-0.176	H27	0.105	0.111
C7	0.151	0.023	H28	0.110	0.123
C8	-0.128	-0.156	H29	0.134	0.159
С9	-0.126	-0.143	H30	0.131	0.160
C10	-0.131	-0.154	H31	0.134	0.145
C11	-0.305	-0.314	H32	0.113	0.127
C12	-0.305	-0.314	Н33	0.119	0.131
C13	-0.223	-0.253	H34	0.147	0.159
C14	-0.327	-0.350	H35	0.147	0.159
C15	0.561	0.734	H36	0.139	0.161
C16	-0.378	-0.408	N37	-0.434	-0.666
H17	0.161	0.230	N38	-0.356	-0.360
H18	0.104	0.176	N39	-0.437	-0.647
H19	0.084	0.151	N40	-0.327	-0.334
H20	0.088	0.154	O41	-0.490	-0.597
H21	0.098	0.167	O42	-0.424	-0.515

Şekil 3.44. 16 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.88. 16 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	-3.1739	-3.2829
$\mu_{\rm v}$	4.8016	5.5144
μ _z	-0.6105	-0.9515
μ _{Toplam}	5.7881	6.4878

Tablo 3.89. 16 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-991.228	-985.086

3.4.12. 1-Asetil-3-benzil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (17)

Şekil 3.45. 17 tipi bileşiğin(6-31G) gausview görünümü

Tablo 3.90. 17 tipi bileşiğin TMS'ye göre ¹³ C ve ¹ H-NMR deneysel ve teorik (B3LYP
HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ/ppm)

No	Donor	DET	Fault	DFT/	Fark/	UE	Farls	HF/	Fark/
INO	Deney.	DFI	гагк	DMSO	DMSO	пг	гагк	DMSO	DMSO
C1	148.26	152.83	-4.57	155.26	-7.00	147.45	0.81	150.15	-1.89
C2	155.58	150.40	5.18	151.61	3.97	143.07	12.51	144.43	11.15
C3	152.76	155.21	-2.45	156.29	-3.53	149.76	3.00	150.85	1.91
C4	130.67	136.74	-6.07	135.79	-5.12	126.04	4.63	125.08	5.59
C5	128.10	127.93	0.17	127.71	0.39	123.33	4.77	123.09	5.01
C6	127.02	132.26	-5.24	132.60	-5.58	123.32	3.70	123.41	3.61
C7	148.07	155.44	-7.37	157.34	-9.27	148.74	-0.67	150.29	-2.22
C8	127.02	128.96	-1.94	129.49	-2.47	120.81	6.21	121.05	5.97
C9	128.10	136.72	-8.62	137.05	-8.95	130.66	-2.56	131.02	-2.92
C10	33.48	47.67	-14.19	47.47	-13.99	29.51	3.97	29.26	4.22
C11	23.50	33.16	-9.66	32.74	-9.24	20.22	3.28	19.78	3.72
C12	23.50	33.17	-9.67	32.75	-9.25	20.23	3.27	19.78	3.72
C13	31.03	43.09	-12.06	42.64	-11.61	28.09	2.94	27.69	3.34
C14	134.66	137.15	-2.49	137.41	-2.75	129.11	5.55	129.38	5.28
C15	128.76	133.35	-4.59	133.45	-4.69	126.48	2.28	126.60	2.16
C16	128.49	131.21	-2.72	131.46	-2.97	124.76	3.73	124.88	3.61
C17	126.95	130.12	-3.17	130.40	-3.45	123.72	3.23	123.93	3.02
C18	128.49	131.20	-2.71	131.45	-2.96	124.76	3.73	124.88	3.61
C19	128.76	133.38	-4.62	133.47	-4.71	126.48	2.28	126.60	2.16
C20	165.91	168.12	-2.21	171.43	-5.52	159.75	6.16	163.67	2.24
C21	23.50	31.49	-7.99	31.85	-8.35	20.09	3.41	20.44	3.06
H22	9.51	11.12	-1.61	11.03	-1.52	10.35	-0.84	10.29	-0.78
H23	7.73	9.09	-1.36	9.15	-1.42	8.87	-1.14	8.95	-1.22
H24	7.36	8.10	-0.74	8.29	-0.93	7.76	-0.40	7.96	-0.60
H25	7.36	8.39	-1.03	8.57	-1.21	7.93	-0.57	8.12	-0.76
H26	7.73	8.28	-0.55	8.41	-0.68	8.12	-0.39	8.29	-0.56
H27	2.94	3.58	-0.64	3.72	-0.78	2.76	0.18	2.93	0.01
H28	1.22	2.11	-0.89	2.07	-0.85	1.48	-0.26	1.42	-0.20
H29	1.22	2.10	-0.88	2.16	-0.94	1.50	-0.28	1.56	-0.34
H30	1.22	2.16	-0.94	2.20	-0.98	1.57	-0.35	1.61	-0.39
H31	1.22	2.10	-0.88	2.16	-0.94	1.50	-0.28	1.56	-0.34
H32	1.22	2.16	-0.94	2.20	-0.98	1.57	-0.35	1.61	-0.39
H33	1.22	2.11	-0.89	2.07	-0.85	1.48	-0.26	1.42	-0.20

Tablo	3.90.	'nın	devamı
-------	-------	------	--------

H34	4.13	4.72	-0.59	4.89	-0.76	4.04	0.09	4.25	-0.12
H35	4.13	4.72	-0.59	4.89	-0.76	4.04	0.09	4.25	-0.12
H36	7.37	8.20	-0.83	8.38	-1.01	7.90	-0.53	8.11	-0.74
H37	7.32	8.29	-0.97	8.44	-1.12	7.97	-0.65	8.14	-0.82
H38	7.24	8.24	-1.00	8.40	-1.16	7.92	-0.68	8.09	-0.85
H39	7.32	8.29	-0.97	8.45	-1.13	7.97	-0.65	8.14	-0.82
H40	7.37	8.21	-0.84	8.38	-1.01	7.90	-0.53	8.11	-0.74
H41	2.50	3.02	-0.52	3.16	-0.66	2.32	0.18	2.49	0.01
H42	2.50	3.03	-0.53	3.17	-0.67	2.32	0.18	2.49	0.01
H43	2.50	2.37	0.13	2.44	0.06	1.97	0.53	2.02	0.48

Tablo 3.91. 17 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR Değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ CNNC(14), τ CCCC(32)	3	13
2	τ CNNC(33), τ CCCN(11)	21	17
3	τ CCCN(15), τ CCNN(17), τ NNCC(16), τ CCCC(10)	24	23
4	τ CNNC(30), τ CCCC(23)	29	30
5	δ NCC(17), δ CCN(23)	30	30
6	τ CNNC(16), τ CCCC(28)	41	40
7	δ NCC(11), δ CCC(13), τ CCCC(19)	54	55
8	τ CCCN(27), τ CCCC(12)	59	57
9	τ CCCN(11), τ CNNC(11), τ CCCC(16), τ CCNN(35)	68	64
10	τ CCNN(30)	114	115
11	δ NCC(22), δ CCC(11), τ CCCC(10)	126	122
12	τ NNCC(25)	129	127
13	δ NCN(10), δ CNN(11), δ NNC(14)	129	131
14	τ HCCN(65)	133	153
15	τ CNNC(28), τ NNCC(13)	163	158
16	δ CCC(10)	176	177
17	δ CCC(27), τ CCCC(10)	218	210
18	τ HCCC(26), τ CCCN(19)	221	220
19	δ CCC(10), τ CCCC(18)	228	227
20	δ CCC(10), τ HCCC(13), τ CCCN(18), τ NNCC(14)	233	232
21	τ HCCC(36)	256	254
22	τ CCNN(23), τ NNCC(14)	302	302
23	δ CCC(54), τ CCCN(15)	302	304
24	δ OCC(10), δ OCN(16), δ CNN(20)	315	321
25	δ CCC(31)	319	324
26	τ HCCC(11), τ CNNC(28), τ CCNN(13), τ NCNC(15)	335	339
27	δ CCN(25)	370	371
28	τ CCCN(47), τ CCCC(20)	399	409
29	τ HCCC(16), τ CCCC(81)	401	409
30	δ CCC(10), δ OCN(16), δ NCN(16)	405	411
31	δ CCC(15), τ CCCN(21), v CCNN(22)	428	434
32	δ CCN(15), τ CCCC(17)	436	444
33	ν CC(10), δ CCC(15), τ CCCC(13)	459	461
34	τ CCCC(15)	478	486
35	δ CCC(20), τ CCCC(14)	545	548
36	τ CCCN(14), τ ONNC(10), τ CCCC(19)	551	559
37	τ HCCN(40), τ ONNC(20)	553	560
38	δ CCC(28), δ CNN(11)	554	572
39	δ OCC(21), δ NNC(12)	590	597

Tablo 3.91.'	in devamı		
40	δ CCC(42)	610	612
41	δ CCC(10), τ NNCC(13), τ NCNC(32)	618	623
42	δ CCC(14)	621	639
43	$\delta CCC(18)$	635	639
44	τ HCCC(12), τ CCCC(48)	683	694
45	$\tau \text{ONNC}(50)$	694	704
46	τ HCCC(20)	698	724
47	γ CC(11) τ HCCC(19)	714	740
48	τ CCCC(39)	727	758
49	v CC(10)	758	767
50	$v NC(11), v NN(20), \delta NCN(10)$	774	786
51	$v CC(14) \delta CCC(10)$	818	827
52	τ HCCC(40)	821	846
53	τ HCCC(99)	825	851
54	τ HCCC(45)	827	857
55	δ CCC(15)	843	858
56	$\nu CC(59)$	866	864
57	$v CC(14) \delta CCC(10) \delta CCN(10)$	874	886
58	δ HCC(32) τ HCCC(30)	897	907
59	τ HCCC(28)	899	914
60	δ HCH(10), τ HCCC(44)	899	933
61	$v CC(30)$, $\tau HCCC(13)$	929	939
62	τ HCCC(85), τ CCCC(13)	933	977
63	τ HCCC(12), τ CCCC(32)	935	980
64	τ HCCC(45)	945	981
65	δ HCH(), τ HCCN()	950	988
66	τ HCCC(36), τ CCCC(25)	960	997
67	v CC(25), δ CCC(59)	979	1001
68	τ HCNN(83)	984	1012
69	δ CCC(33)	995	1015
70	v CC(13), δ HCC(12), δ NNC(10)	1015	1037
71	δ HCH(18), τ HCCN(57)	1016	1045
72	δ HCC(10), δ NNC(15)	1020	1047
73	v CC(13), δ HCC(14), τ HCCC(17)	1039	1057
74	ν CC(33), δ HCC(27)	1068	1061
75	ν CC(46), τ HCCC(10)	1081	1081
76	ν CC(24), δ HCC(19)	1097	1091
77	ν NC(18), τ HCCN(21)	1111	1096
78	τ HCCC(10)	1134	1123
79	ν NN(36), δ CNN(11)	1142	1144
80	δ HCC(38)	1142	1166
81	δ HCC(45), τ HCCC(27)	1161	1169
82	ν CC(13), δ HCC(24)	1162	1172
83	ν CC(17), δ HCC(71)	1163	1180
84	ν CC(18), δ HCC(14), τ HCCC(14)	1178	1183
85	ν CC(23), δ HCC(13)	1191	1199
86	ν CC(17), δ HCC(10)	1197	1205
87	v CC(12)	1237	1217
88	δ HCC(11)	1271	1227
89	ν CC(10), ν NC(10), τ HCCC(18)	1274	1275
90	v NC(35)	1288	1300
91	τ HCCC(19)	1298	1312
92	v CC(26), δ HCC(12), τ HCCC(26), τ CCCC(11)	1299	1321
93	ν CC(57), δ HCC(17)	1306	1330
94	ν CC(13), δ HCC(58)	1311	1345
95	ν CC(24), δ HCC(44)	1337	1348

Tablo 3.91.'	in devamı		
96	δ HCN(11), δ HCH(66)	1353	1384
97	δ HCH(35)	1359	1385
98	δ HCN(30)	1360	1396
99	δ HCH(64)	1379	1401
100	v CC(30), δ HCC(13)	1405	1421
101	δ HCH(23)	1416	1429
102	δ HCH(47), τ HCCN(16)	1417	1439
103	δ HCH(61), τ HCCC(16)	1422	1442
104	δ HCH(76), τ HCCN(23)	1427	1452
105	v CC(28), δ HCC(25)	1439	1453
106	δ HCH(39)	1444	1453
107	δ HCH(42)	1447	1457
108	δ HCH(52)	1458	1467
109	δ HCH(33)	1465	1471
110	v CC(12), δ HCC(60), δ CCC(13)	1484	1501
111	$v CC(10), \delta HCC(15), \delta CCC(11)$	1497	1519
112	ν CC(24), δ CCC(16)	1551	1585
113	v CC(28), δ CCC(12)	1581	1606
114	v NC(31), v CC(33)	1593	1630
115	v NC(11), v CC(28), δ HCC(11)	1599	1635
116	v NC(23), v CC(20)	1604	1695
117	v NC(46), v CC(11)	1615	1709
118	v OC(85)	1727	1764
119	v OC(83)	1793	1852
120	v CH(33)	2917	2859
121	v CH(48)	2924	2864
122	v CH(48)	2928	2870
123	v CH(100)	2936	2896
124	v CH(94)	2955	2896
125	v CH(100)	2967	2917
126	v CH(50)	2990	2925
127	v CH(47)	2996	2927
128	v CH(49)	3001	2930
129	v CH(46)	3003	2930
130	v CH(100)	3020	2962
131	v CH(87)	3053	2901
132	v CH(52)	3055	2998
133	v CH(88)	3056	3001
134	v CH(94)	3057	3004
135	v CH(70)	3059	3007
136	v CH(70)	3060	3012
137	v CH(51)	3065	3021
138	v CH(49)	3074	3024
139	v CH(87)	3074	3032
140	v CH(47)	3085	3042
141	v CH(26)	3092	3043

Şekil 3.46. 17 tipi bileşiğin deneysel (a) ve teorik (B3LYP 6-31G(d,p) (b) ve HF 6-31G(d,p)(c)) IR spektrumları

Şekil 3.47. 17 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.92. 17 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(45)-C(1)-N(46)	111.889	111.164	38	C(18)-C(19)-H(40)	119.795	119.622
2	N(45)-N(44)-C(2)	112.551	111.974	39	H(40)-C(19)-C(14)	119.529	119.717
3	N(45)-N(44)-H(20)	120.489	120.442	40	N(46)-N(47)-C(3)	118.983	120.062
4	N(44)-C(20)-O(49)	120.845	121.208	41	N(47)-C(3)-H(22)	122.029	122.312
5	O(49)-C(20)-C(21)	124.759	123.954	42	H(22)-C(3)-C(4)	117.703	117.186
6	N(44)-C(20)-C(21)	114.396	114.837	43	C(3)-C(4)-C(5)	122.923	122.826
7	C(20)-C(21)-H(41)	110.862	110.702	44	C(3)-C(4)-C(9)	118.595	118.563
8	C(20)-C(21)-H(42)	110.856	110.696	45	C(4)-C(9)-H(26)	119.366	119.690
9	C(20)-C(21)-H(43)	107.648	107.431	46	H(26)-C(9)-C(8)	119.837	119.472
10	H(41)-C(21)-H(42)	106.661	107.270	47	C(4)-C(5)-H(23)	119.084	119.513
11	H(41)-C(21)-H(43)	110.423	110.385	48	H(23)-C(5)-C(6)	120.608	120.194
12	H(42)-C(21)-H(43)	110.420	110.384	49	C(5)-C(6)-H(24)	119.363	119.152
13	H(20)-N(44)-C(2)	126.961	127.584	50	H(24)-C(6)-C(7)	119.103	119.398
14	N(44)–C(2)-O(48)	130.642	130.409	51	C(4)-C(9)-C(8)	120.797	120.838
15	N(44)-C(2)-N(46)	101.472	101.968	52	C(9)-C(8)-C(7)	121.013	120.889
16	O(48)-C(2)-N(46)	127.887	127.623	53	C(7)-C(6)-C(5)	121.534	121.450
17	C(2)-N(46)-C(1)	108.721	108.661	54	H(25)-C(8)-C(7)	119.892	120.165
Tablo	3.92.'nin devamı						
-------	-------------------	---------	---------	----	-------------------	---------	---------
18	C(2)-N(46)-N(47)	130.531	130.679	55	H(25)-C(8)-C(9)	119.095	118.946
19	N(45)-C(1)-C(13)	125.959	126.416	56	C(8)-C(7)-C(6)	117.866	117.919
20	N(46)-C(1)-C(13)	122.153	121.920	57	C(8)-C(7)-C(10)	121.493	121.619
21	C(1)-N(46)-N(47)	120.747	120.661	58	C(6)-C(7)-C(10)	120.641	120.462
22	C(1)-C(13)-C(14)	113.723	113.753	59	C(7)-C(10)-C(11)	111.816	111.864
23	C(1)-C(13)-H(34)	107.864	107.656	60	C(7)-C(10)-H(27)	106.962	106.928
24	C(1)-C(13)-H(35)	107.859	107.656	61	H(27)-C(10)-C(11)	107.450	107.320
25	H(34)-C(13)-H(35)	105.284	105.826	62	H(27)-C(10)-C(12)	107.449	107.320
26	H(34)-C(13)-C(14)	110.847	110.787	63	C(10)-C(11)-H(28)	111.303	111.122
27	H(35)-C(13)-C(14)	110.854	110.786	64	C(10)-C(11)-H(29)	110.519	110.425
28	C(13)-C(14)-C(19)	120.585	120.574	65	C(10)-C(11)-H(30)	111.315	111.480
29	C(13)-C(14)-C(15)	120.595	120.574	66	H(28)-C(11)-H(29)	108.161	108.127
30	C(14)-C(15)-H(36)	119.530	119.717	67	H(28)-C(11)-H(30)	107.763	107.853
31	H(36)-C(15)-C(16)	119.798	119.622	68	H(30)-C(11)-H(29)	107.631	107.691
32	C(15)-C(16)-H(37)	119.791	119.792	69	C(10)-C(12)-H(31)	110.516	110.426
33	H(37)-C(16)-C(17)	120.128	120.113	70	C(10)-C(12)-H(32)	111.317	111.479
34	C(16)-C(17)-H(38)	120.162	120.180	71	C(10)-C(12)-H(33)	111.303	111.121
35	H(38)-C(17)-C(18)	120.164	120.180	72	H(31)-C(12)-H(32)	107.630	107.692
36	C(17)-C(18)-H(39)	120.131	120.113	73	H(31)-C(12)-H(33)	108.162	108.127
37	H(39)-C(18)-C(19)	119.791	119.792	74	H(32)-C(12)-H(33)	107.764	107.853

Tablo 3.93. 17 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	Uzunlukları	B3LYP	HF	Bağ	ğ Uzunlukları	B3LYP	HF
1	C(1)-N(45)	1.2956	1.2655	27	C(18)-C(19)	1.3949	1.3847
2	C(1)-N(46)	1.3867	1.3760	28	C(19)-H(40)	1.0871	1.0766
3	C(1)-C(13)	1.4996	1.4991	29	N(47)-C(3)	1.2906	1.2615
4	N(45)-N(44)	1.3948	1.3833	30	C(3)-H(22)	1.0879	1.0746
5	N(44)-C(20)	1.4196	1.4031	31	C(3)-C(4)	1.4633	1.4732
6	C(20)-O(49)	1.2092	1.1848	32	C(4)-C(5)	1.4050	1.3915
7	C(20)-C(21)	1.5114	1.5070	33	C(4)-C(9)	1.4042	1.3896
8	C(21)-H(41)	1.0932	1.0827	34	C(5)-H(23)	1.0848	1.0740
9	C(21)-H(42)	1.0932	1.0827	35	C(5)-C(6)	1.3893	1.3805
10	C(21)-H(43)	1.0895	1.0799	36	C(6)-H(24)	1.0872	1.0763
11	N(44)-C(2)	1.4043	1.3802	37	C(6)-C(7)	1.4044	1.3935
12	C(2)-O(48)	1.2135	1.1906	38	C(7)-C(8)	1.4023	1.3904
13	C(2)-N(46)	1.4153	1.3860	39	C(8)-H(25)	1.0862	1.0754
14	N(46)-N(47)	1.3752	1.3688	40	C(8)-C(9)	1.3915	1.3833
15	C(13)-H(34)	1.0963	1.0846	41	C(9)-H(26)	1.0870	1.0766
16	C(13)-H(35)	1.0964	1.0846	42	C(7)-C(10)	1.5219	1.5217
17	C(13)-C(14)	1.5140	1.5126	43	C(10)-H(27)	1.0978	1.0868
18	C(14)-C(19)	1.3993	1.3882	44	C(10)-C(11)	1.5405	1.5348
19	C(14)-C(15)	1.3994	1.3882	45	C(11)-H(28)	1.0942	1.0850
20	C(15)-H(36)	1.0871	1.0766	46	C(11)-H(29)	1.0952	1.0860
21	C(15)-C(16)	1.3948	1.3847	47	C(11)-H(30)	1.0954	1.0857
22	C(16)-H(37)	1.0861	1.0757	48	C(10)-C(12)	1.5405	1.5348
23	C(16)-C(17)	1.3957	1.3850	49	C(12)-H(31)	1.0952	1.0860
24	C(17)-H(38)	1.0860	1.0756	50	C(12)-H(32)	1.0954	1.0857
25	C(17)-C(18)	1.3956	1.3850	51	C(12)-H(33)	1.0942	1.0850
26	C(18)-H(39)	1.0861	1.0757				

	DFT	HF	<u> </u>	DFT	HF
C1	0.557	0.639	H26	0.098	0.167
C2	0.849	1.114	H27	0.091	0.125
C3	0.116	0.186	H28	0.110	0.122
C4	0.082	-0.088	H29	0.104	0.115
C5	-0.095	-0.110	H30	0.105	0.111
C6	-0.141	-0.176	H31	0.104	0.115
C7	0.151	0.023	H32	0.105	0.111
C8	-0.128	-0.156	H33	0.110	0.122
С9	-0.126	-0.143	H34	0.144	0.173
C10	-0.131	-0.154	H35	0.144	0.173
C11	-0.305	-0.314	H36	0.083	0.149
C12	-0.305	-0.314	H37	0.088	0.152
C13	-0.312	-0.274	H38	0.087	0.152
C14	0.126	-0.000	H39	0.088	0.152
C15	-0.108	-0.142	H40	0.083	0.149
C16	-0.085	-0.145	H41	0.149	0.161
C17	-0.084	-0.150	H42	0.149	0.161
C18	-0.085	-0.145	H43	0.137	0.159
C19	-0.108	-0.142	N44	-0.433	-0.664
C20	0.560	0.732	N45	-0.352	-0.350
C21	-0.377	-0.408	N46	-0.438	-0.650
H22	0.161	0.230	N47	-0.328	-0.337
H23	0.103	0.176	O48	-0.491	0.597
H24	0.085	0.151	O49	-0.425	0.515
H25	0.088	0.154			

Tablo 3.94. 17 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

Şekil 3.48. 17 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.95. 17 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	1.1022	-1.5600
$\mu_{\rm v}$	-5.3364	-5.7129
μ _z	-0.3377	-0.0322
μ _{Toplam}	5.4595	5.9221

Tablo 3.96. 17 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1182.965	-1175.599

3.4.13. 1-Asetil-3-(*p*-metilbenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (18)

Şekil 3.49.18 tipi bileşiğin(6-31G) gausview görünümü

				DFT/	Fark/			HF/	Fark/
No	Deney.	DFT	Fark	DMSO	DMSO	HF	Fark	DMSO	DMSO
C1	148.42	152.88	-4.46	155.32	-6.90	147.58	0.84	150.28	-1.86
C2	155.70	150.43	5.27	151.63	4.07	143.10	12.60	144.46	11.24
C3	153.45	155.06	-1.61	156.17	-2.72	149.65	3.80	150.78	2.67
C4	131.52	136.84	-5.32	135.85	-4.33	126.10	5.42	125.10	6.42
C5	128.12	128.01	0.11	127.78	0.34	123.33	4.79	123.07	5.05
C6	127.05	132.22	-5.17	132.57	-5.52	123.31	3.74	123.42	3.63
C7	148.08	155.37	-7.29	157.32	-9.24	148.67	-0.59	150.27	-2.19
C8	127.05	128.97	-1.92	129.52	-2.47	120.79	6.26	121.06	5.99
C9	128.12	136.63	-8.51	136.98	-8.86	130.63	-2.51	131.00	-2.88
C10	33.48	47.71	-14.23	47.51	-14.03	29.51	3.97	29.26	4.22
C11	23.52	33.22	-9.70	32.79	-9.27	20.23	3.29	19.78	3.74
C12	23.52	33.23	-9.71	32.80	-9.28	20.23	3.29	19.78	3.74
C13	30.64	42.70	-12.06	42.25	-11.61	27.71	2.93	27.30	3.34
C14	130.68	134.29	-3.61	134.24	-3.56	125.65	5.03	125.65	5.03
C15	129.06	133.48	-4.42	133.42	-4.36	127.29	1.77	127.31	1.75
C16	128.82	132.09	-3.27	132.24	-3.42	124.75	4.07	124.77	4.05
C17	136.06	140.85	-4.79	141.95	-5.89	133.78	2.28	134.70	1.36
C18	128.82	132.13	-3.31	132.27	-3.45	124.77	4.05	124.74	4.08
C19	129.06	133.46	-4.40	133.41	-4.35	127.32	1.74	127.29	1.77
C20	20.60	30.31	-9.71	29.91	-9.31	17.51	3.09	17.10	3.50
C21	165.95	168.14	-2.19	171.45	-5.50	159.77	6.18	163.69	2.26
C22	23.52	31.61	-8.09	31.98	-8.46	20.11	3.41	20.45	3.07
H23	9.50	11.12	-1.62	11.02	-1.52	10.35	-0.85	10.28	-0.78
H24	7.75	9.09	-1.34	9.15	-1.40	8.86	-1.11	8.95	-1.20
H25	7.39	8.1	-0.71	8.29	-0.90	7.75	-0.36	7.96	-0.57
H26	7.39	8.40	-1.01	8.59	-1.20	7.92	-0.53	8.12	-0.73
H27	7.75	8.28	-0.53	8.41	-0.66	8.11	-0.36	8.28	-0.53
H28	2.95	3.58	-0.63	3.73	-0.78	2.76	0.19	2.93	0.02
H29	1.22	2.11	-0.89	2.07	-0.85	1.48	-0.26	1.42	-0.20
H30	1.22	2.10	-0.88	2.16	-0.94	1.49	-0.27	1.56	-0.34
H31	1.22	2.16	-0.94	2.21	-0.99	1.57	-0.35	1.61	-0.39
H32	1.22	2.10	-0.88	2.16	-0.94	1.49	-0.27	1.56	-0.34
H33	1.22	2.16	-0.94	2.20	-0.98	1.57	-0.35	1.61	-0.39
H34	1.22	2.11	-0.89	2.07	-0.85	1.48	-0.26	1.42	-0.20
H35	4.07	4.68	-0.61	4.84	-0.77	4.00	0.07	4.20	-0.13
H36	4.07	4.68	-0.61	4.85	-0.78	4.00	0.07	4.21	-0.14
H37	7.25	8.12	-0.87	8.28	-1.03	7.83	-0.58	8.04	-0.79
H38	7.12	8.12	-1.00	8.27	-1.15	7.78	-0.66	7.97	-0.85
H39	7.12	8.11	-0.99	8.26	-1.14	7.80	-0.68	7.96	-0.84
H40	7.25	8.11	-0.86	8.27	-1.02	7.84	-0.59	8.03	-0.78
H41	2.25	3.36	-1.11	3.41	-1.16	2.81	-0.56	2.86	-0.61
H42	2.25	3.00	-0.75	3.08	-0.83	2.47	-0.22	2.60	-0.35
H43	2.25	2.95	-0.70	3.03	-0.78	2.52	-0.27	2.56	-0.31
H44	2.51	3.04	-0.53	3.18	-0.67	2.32	0.19	2.50	0.01
H45	2.51	3.04	-0.53	3.18	-0.67	2.32	0.19	2.50	0.01
H46	2.51	2.36	0.15	2.44	0.07	1.96	0.55	2.02	0.49

Tablo 3.97. 18 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

	TITREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ HCCC(57), τ CCCC(17)	9	12
2	τ CNNC(19), τ CCCN(10), τ CNNC(32)	11	13
3	τ CNNC(15), τ CCNN(13), τ NNCC(21)	19	19
4	τ CCCN(18), τ CCCC(10)	25	25
5	τ CNNC(13)	25	26
6	τ HCCC(10), τ CCCC(37)	28	30
7	τ CNNC(11), τ CCCC(37)	41	40
8	δ NCN(12), δ CCN(17), τ CCCC(13)	47	48
9	τ CCCN(23), τ CCCC(20)	58	57
10	τ CCCN(10), τ CNNC(10), τ CCCC(15), τ CCNN(36)	67	64
11	δ NCC(25), τ CCCC(20)	108	110
12	τ CCCC(10), τ CCNN(28)	114	115
13	τ HCCN(43)	125	122
14	δ CCC(14), δ NNC(16), δ CCC(15)	127	128
15	τ HCCN(18), τ NNCC(23), τ NCNC(11)	129	152
16	τ CCCC(13)	153	155
17	τ CNNC(28), τ NNCC(12)	162	158
18	δ CCN(10)	186	189
19	δ CCC(66)	120	210
20	τ HCCC(25), τ CCCN(19)	219	221
21	δ CCC(12), τ HCCC(10), τ CCCN(18), τ NNCC(16)	231	227
22	τ HCCC(37)	254	254
23	δ CCC(69)	272	276
24	δ CCC(25), τ CCCC(16)	300	302
25	δ CCC(13), τ CCCN(15), τ CCNN(23), τ NNCC(14)	302	305
26	δ CCC(31), τ CCCC(15)	304	344
27	δ OCN(18), τ CCCC(10)	317	322
28	τ HCCC(10), τ CNNC(28), τ CCNN(14), τ NCNC(16)	336	338
29	δ CCC(39)	365	369
30	δ CCN(26)	368	369
31	τ HCCC(20), τ CCCN(52)	399	409
32	τ HCCC(18), τ CCCC(81)	402	411
33	δ CCC(10), δ OCN(15), δ NCN(18)	405	411
34	δ CCC(15), τ CCCN(17), τ CCNN(22)	428	434
35	δ CCN(15)	447	455
36	δ CCC(14)	459	462
37	δ CCC(19), τ CCCC(16)	471	475
38	δ CCC(16), τ CCCC(22)	516	522
39	δ CCC(21), τ CCCC(12)	546	548
40	τ CCCN(21), τ CCCC(16)	550	560
41	τ HCCN(19), τ ONNC(41)	553	572
42	δ OCC(22), δ NNC(11)	583	591
43	τ NNCC(16), τ NCNC(37)	616	623
44	δ CCC(12)	621	630
45	δ CCC(18)	635	639
46	ð CCC(43)	635	642
47	$\frac{\tau \text{ CCCC}(24)}{-\text{ ODD}(51)}$	687	696
48	$\frac{\tau \text{ UNNC(51)}}{-\cos(11)}$	694	/04
49	$\tau CCCC(14)$	099	/1/
50		/18	/40
51	= HCCC(22)	/26	158
52	T HUU(52)	/36	/00
55	V INC(12), V ININ(21)	//0	/89

Tablo 3.98. 18 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

Tablo 3.98. ⁹	' in devamı		
54	v CC(14), τ HCCC(30)	799	808
55	τ HCCC(47)	819	838
56	τ HCCC(99)	821	851
57	τ HCCC(58)	827	853
58	v CC(21)	832	857
59	δ CCC(12)	849	861
60	v CC(58)	866	865
61	δ CCN(10)	875	887
62	ν CC(11) δ HCC(33) τ HCCC(29)	897	907
63	δ HCH(10) τ HCCC(45)	900	912
64	τ HCCC(59) τ CCCC(19)	927	933
65	τ HCCC(78)	928	970
66	ν CC(27) τ HCCC(15)	929	977
67	$\nu CC(11) \tau HCCC(29)$	933	980
68	τ HCCC(46)	945	983
69	δ HCH(13) τ HCCN(33)	951	985
70	ν CC(10) δ HCH(11) τ HCCC(49)	975	997
71	τ HCNN(83)	984	1001
72	δ CCC(40)	995	1004
73	δ CCC(14), δ HCC(15), δ CCC(53)	1000	1036
74	δ HCH(18), τ HCCN(58)	1017	1045
75	v NC(11), δ NNC(26)	1018	1047
76	τ HCCC(57)	1024	1048
77	$v CC(13)$, $\tau HCCC(16)$	1038	1057
78	$v CC(44)$, $\tau HCCC(10)$	1082	1072
79	ν CC(24), δ HCC(50)	1095	1081
80	v CC(23), δ HCC(52)	1101	1096
81	v NC(17), v NN(10), τ HCCN(22)	1112	1123
82	δ HCC(10), τ HCCC(10)	1134	1144
83	v NN(34), δ CNN(16)	1141	1150
84	v CC(13), δ HCC(70)	1161	1169
85	v CC(11), δ HCC(45), τ HCCC(28)	1162	1174
86	ν CC(17), δ HCC(76)	1168	1178
87	$v CC(36), \tau HCCC(13)$	1180	1180
88	v CC(20), δ HCC(17)	1190	1195
89	ν CC(13), δ HCC(18)	1191	1199
90	v CC(18)	1196	1204
91	v CC(11)	1237	1217
92	δ HCC(29)	1270	1219
93	v NC(10), δ HCN(11), τ HCCC(21)	1275	1275
94	v NC(25), δ CNN(13)	1289	1300
95	ν CC(16), δ HCC(57)	1294	1313
96	ν CC(24), δ HCC(35)	1297	1317
97	τ HCCC(27)	1299	1321
98	ν CC(42), δ HCC(26)	1304	1345
99	ν CC(23), δ HCC(39)	1336	1348
100	δ HCN(13), δ HCH(63)	1353	1384
101	δ HCH(26)	1360	1385
102	δ HCN(29), δ HCH(35)	1360	1395
103	δ HCH(91)	1371	1396
104	δ HCH(64)	1379	1401
105	ν CC(24), δ HCC(39)	1399	1411
106	ν CC(31), δ HCC(25)	1404	1421
107	δ HCN(12), δ HCH(22)	1415	1429
108	δ HCH(47), τ HCCN(16)	1416	1438
109	δ HCH(60), τ HCCC(17)	1421	1442

Tablo 3.98.'	in devamı		
110	δ HCH(76), τ HCCN(23)	1426	1452
111	δ HCH(39)	1444	1453
112	δ HCH(45), τ HCCC(21)	1444	1455
113	δ HCH(31)	1447	1457
114	δ HCH(44), τ HCCC(16)	1449	1459
115	δ HCH(50)	1458	1467
116	δ HCH(31)	1465	1471
117	ν CC(11), δ HCC(57), δ CCC(11)	1497	1519
118	δ CCC(13), δ HCC(56)	1503	1522
119	ν CC(24), δ HCC(12), δ CCC(15)	1550	146
120	ν CC(25), δ CCC(12)	1569	1594
121	v NC(30), v CC(34)	1593	1635
122	v NC(32), v CC(11)	1602	1642
123	ν CC(52), δ HCC(18)	1612	1695
124	v NC(44), v CC(10)	1615	1709
125	v OC(85)	1727	1764
126	v OC(83)	1792	1852
127	v CH(28)	2918	2859
128	v CH(98)	2921	2862
129	v CH(49)	2924	2864
130	v CH(47)	2928	2870
131	v CH(100)	2935	2895
132	v CH(94)	2955	2896
133	v CH(100)	2966	2915
134	v CH(97)	2979	2917
135	v CH(51)	2990	2925
136	v CH(46)	2996	2927
137	v CH(51)	3001	2929
138	v CH(44)	3002	2930
139	v CH(98)	3005	2936
140	v CH(100)	3020	2962
141	v CH(12)	3048	2901
142	v CH(88)	3049	2995
143	v CH(47)	3054	2996
144	v CH(51)	3055	3003
145	v CH(52)	3058	3007
146	v CH(94)	3060	3012
147	v CH(99)	3064	3015
148	v CH(99)	306/	3023
149	v CH(53)	30/1	3042
150	v CH(26)	3091	3043

Şekil 3.50. 18 tipi bileşiğin deneysel (a) ve teorik (B3LYP 6-31G(d,p) (b) ve HF 6-31G(d,p) (c)) IR spektrumları

Şekil 3.51. 18 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.99. 18 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

1)					
	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(48)-C(1)-N(49)	111.874	111.640	41	H(42)-C(20)-H(43)	108.027	107.996
2	N(48)-N(47)-C(2)	112.551	111.977	42	C(17)-C(18)-H(39)	119.461	119.648
3	N(48)-N(47)-C(21)	120.496	120.436	43	H(39)-C(18)-C(19)	119.446	119.309
4	C(21)-N(47)-C(2)	126.953	127.587	44	C(18)-C(19)-H(40)	119.578	119.371
5	N(47)-C(21)-O(52)	120.872	121.229	45	H(40)-C(19)-C(14)	119.602	119.772
6	O(52)-C(21)-C(22)	124.723	123.937	46	N(49)-N(50)-C(3)	119.043	120.080
7	N(47)-C(21)-C(22)	114.405	114.834	47	N(50)-C(3)-H(23)	122.068	122.321
8	C(21)-C(22)-H(44)	110.869	110.694	48	H(23)-C(3)-C(4)	117.723	117.188
9	C(21)-C(22)-H(45)	110.876	110.697	49	C(3)-C(4)-C(5)	122.874	122.822
10	C(21)-C(22)-H(46)	107.632	107.433	50	C(3)-C(4)-C(9)	118.635	118.569
11	H(44)-C(22)-H(45)	106.669	107.264	51	C(4)-C(9)-H(27)	119.362	119.689
12	H(44)-C(22)-H(46)	110.410	110.389	52	H(27)-C(9)-C(8)	119.838	119.471
13	H(45)-C(22)-H(46)	110.415	110.391	53	C(4)-C(5)-H(24)	119.079	119.508
14	N(47)-C(2)-O(51)	130.643	130.404	54	H(24)-C(5)-C(6)	120.621	120.199
15	N(47)-C(2)-N(49)	101.474	101.967	55	C(5)-C(6)-H(25)	119.372	119.152

Table	o 3.99.' un devamı						
16	O(51)-C(2)-N(49)	127.883	127.629	56	H(25)-C(6)-C(7)	119.098	119.397
17	C(2)-N(49)-C(1)	108.741	108.676	57	C(4)-C(9)-C(8)	120.799	120.840
18	C(2)-N(49)-N(50)	130.507	130.656	58	C(9)-C(8)-C(7)	120.997	120.890
19	N(48)-C(1)-C(13)	126.064	126.434	59	C(7)-C(6)-C(5)	121.530	121.451
20	N(49)-C(1)-C(13)	122.062	121.926	60	H(26)-C(8)-C(7)	119.900	120.166
21	C(1)-N(49)-N(50)	120.752	120.668	61	H(26)-C(8)-C(9)	119.103	118.944
22	C(1)-C(13)-C(14)	113.977	113.847	62	C(8)-C(7)-C(6)	117.881	117.917
23	C(1)-C(13)-H(35)	107.790	107.610	63	C(8)-C(7)-C(10)	121.450	121.620
24	C(1)-C(13)-H(36)	107.796	107.609	64	C(6)-C(7)-C(10)	120.669	120.463
25	H(35)-C(13)-H(36)	105.219	105.786	65	C(7)-C(10)-C(11)	111.782	111.863
26	H(35)-C(13)-C(14)	110.811	110.797	66	C(7)-C(10)-H(28)	106.967	106.929
27	H(36)-C(13)-C(14)	110.811	110.801	67	H(28)-C(10)-C(11)	107.461	107.318
28	C(13)-C(14)-C(19)	120.848	120.871	68	H(28)-C(10)-C(12)	107.462	107.318
29	C(13)-C(14)-C(15)	120.857	120.860	69	C(10)-C(11)-H(29)	111.287	111.119
30	C(14)-C(15)-H(37)	119.609	119.763	70	C(10)-C(11)-H(30)	110.549	110.428
31	H(37)-C(15)-C(16)	119.574	119.382	71	C(10)-C(11)-H(31)	111.301	111.119
32	C(15)-C(16)-H(38)	119.448	119.319	72	H(29)-C(11)-H(30)	108.165	107.692
33	H(38)-C(16)-C(17)	119.458	119.636	73	H(29)-C(11)-H(31)	107.755	108.128
34	C(16)-C(17)-C(20)	121.081	120.985	74	H(31)-C(11)-H(30)	107.634	107.852
35	C(18)-C(17)-C(20)	121.023	121.070	75	C(10)-C(12)-H(32)	110.545	110.428
36	C(17)-C(20)-H(41)	111.228	110.962	76	C(10)-C(12)-H(33)	111.311	111.480
37	C(17)-C(20)-H(42)	111.468	111.259	77	C(10)-C(12)-H(34)	111.291	111.119
38	C(17)-C(20)-H(43)	111.466	111.270	78	H(32)-C(12)-H(33)	107.631	107.692
39	H(41)-C(20)-H(42)	107.242	107.578	79	H(32)-C(12)-H(34)	108.161	108.128
40	H(41)-C(20)-H(43)	107.195	107.605	80	H(33)-C(12)-H(34)	107.751	107.852

Tablo 3.100. 18 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	Uzunlukları	B3LYP	HF	Ba	ğ Uzunlukları	B3LYP	HF
1	C(1)-N(48)	1.2957	1.2656	28	C(18)-H(39)	1.0872	1.0767
2	C(1)-N(49)	1.3870	1.3763	29	C(18)-C(19)	1.3938	1.3842
3	C(1)-C(13)	1.4997	1.4993	30	C(19)-H(40)	1.0872	1.0768
4	N(48)-N(47)	1.3952	1.3835	31	N(50)-C(3)	1.2905	1.2615
5	N(47)-C(21)	1.4192	1.4028	32	C(3)-H(23)	1.0879	1.0746
6	C(21)-O(52)	1.2093	1.1849	33	C(3)-C(4)	1.4634	1.4733
7	C(22)-H(44)	1.0932	1.0827	34	C(4)-C(5)	1.4050	1.3915
8	C(22)-H(45)	1.0932	1.0827	35	C(4)-C(9)	1.4043	1.3895
9	C(22)-H(46)	1.0895	1.0799	36	C(5)-H(24)	1.0847	1.0740
10	N(47)-C(2)	1.4043	1.3802	37	C(5)-C(6)	1.3894	1.3804
11	C(2)-O(51)	1.2135	1.1907	38	C(6)-H(25)	1.0872	1.0763
12	C(2)-N(49)	1.4149	1.3858	39	C(6)-C(7)	1.4044	1.3935
13	N(49)-N(50)	1.3749	1.3687	40	C(7)-C(8)	1.4023	1.3904
14	C(13)-H(35)	1.0964	1.0847	41	C(8)-H(26)	1.0863	1.0754
15	C(13)-H(36)	1.0964	1.0847	42	C(8)-C(9)	1.3915	1.3834
16	C(13)-C(14)	1.5133	1.5121	43	C(9)-H(27)	1.0870	1.0767
17	C(14)-C(19)	1.3985	1.3869	44	C(7)-C(10)	1.5220	1.5218
18	C(14)-C(15)	1.3987	1.3874	45	C(10)-H(28)	1.0978	1.0868
19	C(15)-H(37)	1.0872	1.0768	46	C(10)-C(11)	1.5404	1.5348
20	C(15)-C(16)	1.3935	1.3837	47	C(11)-H(29)	1.0942	1.0850

Tablo	3.100.	ün	devam
-------	--------	----	-------

21	C(16)-H(38)	1.0872	1.0767	48	C(11)-H(30)	1.0952	1.0860
22	C(16)-C(17)	1.4008	1.3896	49	C(11)-H(31)	1.0954	1.0857
23	C(17)-C(20)	1.5103	1.5106	50	C(10)-C(12)	1.5405	1.5348
24	C(20)-H(41)	1.0973	1.0870	51	C(12)-H(32)	1.0952	1.0860
25	C(20)-H(42)	1.0942	1.0844	52	C(12)-H(33)	1.0954	1.0857
26	C(20)-H(43)	1.0940	1.0843	53	C(12)-H(34)	1.0942	1.0850
27	C(17)-C(18)	1.4005	1.3890				

Tablo 3.101. 18 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

J • • • -	0r		0		
	DFT	HF		DFT	HF
C1	0.557	0.639	H27	0.097	0.166
C2	0.849	1.114	H28	0.091	0.125
C3	0.116	0.185	H29	0.110	0.122
C4	0.082	-0.088	H30	0.103	0.115
C5	-0.095	-0.110	H31	0.105	0.111
C6	-0.141	-0.176	H32	0.103	0.115
C7	0.151	0.023	Н33	0.105	0.111
C8	-0.128	-0.156	H34	0.110	0.122
С9	-0.126	-0.143	H35	0.143	0.172
C10	-0.131	-0.154	H36	0.143	0.172
C11	-0.305	-0.314	H37	0.082	0.149
C12	-0.305	-0.314	H38	0.079	0.147
C13	-0.312	-0.273	H39	0.079	0.147
C14	0.124	-0.011	H40	0.082	0.149
C15	-0.108	-0.135	H41	0.127	0.135
C16	-0.120	-0.157	H42	0.116	0.126
C17	0.125	-0.006	H43	0.115	0.125
C18	-0.120	-0.158	H44	0.149	0.161
C19	-0.108	-0.135	H45	0.149	0.161
C20	-0.381	-0.342	H46	0.137	0.159
C21	0.560	0.732	N47	-0.433	-0.663
C22	-0.377	-0.408	N48	-0.352	-0.350
H23	0.160	0.230	N49	-0.438	-0.650
H24	0.103	0.176	N50	-0.327	-0.336
H25	0.084	0.151	051	-0.491	-0.598
H26	0.087	0.154	052	-0.425	-0.516

E_{LUMO}(B3LYP) : -0.22388 Hatree

E_{LUMO}(HF) : -0.31242 Hatree

Şekil 3.52.18 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.102. 18 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ_{x}	-0.3042	-0.1531
μ_{v}	-5.5578	-6.2772
μ_z	0.3333	0.5849
μ _{Toplam}	5.5761	6.3063

Tablo 3.103. 18 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1222.286	-1214.639

3.4.14. 1-Asetil-3-(p-klorobenzil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on (19)

Şekil 3.53. 19 tipi bileşiğin(6-31G(d,p)) gausview görünümü

T	ablo	3.104	. 19	tipi	bileşiğ	in TM	S'ye	göre	^{13}C	ve	¹ H-NMR	deneysel	ve	teorik
(]	B3LY	P, HF,	B3L	YP(DMSO)	ve HF	(DM	SO))	kimy	asal	kayma de	ğerleri (δ/μ	opm)

		DET		DFT/	 Fark/		<u> </u>	HF/	 Fark/
No	Deney.	DFT	Fark	DMSO	DMSO	HF	Fark	DMSO	DMSO
C1	148.08	152.18	-4.10	154.68	-6.60	146.94	1.14	149.67	-1.59
C2	155.71	150.29	5.42	151.53	4.18	142.94	12.77	144.35	11.36
C3	152.83	155.39	-2.56	156.34	-3.51	150.15	2.68	151.05	1.78
C4	131.67	136.56	-4.89	135.73	-4.06	125.77	5.90	124.97	6.70
C5	128.42	127.98	0.44	127.80	0.62	123.28	5.14	123.10	5.32
C6	127.06	132.26	-5.20	132.57	-5.51	123.31	3.75	123.40	3.66
C7	147.98	155.77	-7.79	157.47	-9.49	149.04	-1.06	150.38	-2.40
C8	127.06	129.09	-2.03	129.56	-2.50	120.86	6.20	121.05	6.01
С9	128.42	136.75	-8.33	137.03	-8.61	130.78	-2.36	131.08	-2.66
C10	33.48	47.82	-14.34	47.60	-14.12	29.52	3.96	29.25	4.23
C11	23.52	33.24	-9.72	32.82	-9.30	20.20	3.32	19.76	3.76
C12	23.52	33.24	-9.72	32.82	-9.30	20.19	3.33	19.77	3.75
C13	30.36	42.45	-12.09	41.99	-11.63	27.60	2.76	27.21	3.15
C14	130.64	135.82	-5.18	137.00	-6.36	128.40	2.24	129.77	0.87
C15	130.89	134.45	-3.56	135.12	-4.23	127.42	3.47	127.97	2.92
C16	128.14	131.94	-3.80	131.98	-3.84	125.36	2.78	125.34	2.80
C17	133.68	146.54	-12.86	145.11	-11.43	133.78	-0.10	132.05	1.63
C18	128.14	131.94	-3.80	131.98	-3.84	125.36	2.78	125.34	2.80
C19	130.89	134.45	-3.56	135.12	-4.23	127.42	3.47	127.97	2.92
C20	165.92	168.07	-2.15	171.39	-5.47	159.58	6.34	163.56	2.36
C21	23.52	31.59	-8.07	31.94	-8.42	20.03	3.49	20.37	3.15
H22	9.52	11.10	-1.58	11.00	-1.48	10.34	-0.82	10.28	-0.76
H23	7.74	9.06	-1.32	9.13	-1.39	8.83	-1.09	8.93	-1.19
H24	7.38	8.10	-0.72	8.28	-0.90	7.75	-0.37	7.95	-0.57
H25	7.38	8.41	-1.03	8.58	-1.20	7.93	-0.55	8.12	-0.74
H26	7.74	8.28	-0.54	8.41	-0.67	8.11	-0.37	8.28	-0.54
H27	2.95	3.60	-0.65	3.74	-0.79	2.76	0.19	2.92	0.03
H28	1.22	2.10	-0.88	2.06	-0.84	1.47	-0.25	1.41	-0.19
H29	1.22	2.11	-0.89	2.16	-0.94	1.50	-0.28	1.55	-0.33
H30	1.22	2.15	-0.93	2.20	-0.98	1.56	-0.34	1.61	-0.39
H31	1.22	2.11	-0.89	2.16	-0.94	1.50	-0.28	1.55	-0.33
H32	1.22	2.15	-0.93	2.20	-0.98	1.56	-0.34	1.61	-0.39
H33	1.22	2.10	-0.88	2.06	-0.84	1.47	-0.25	1.41	-0.19

Tablo	3.104.	'ün	devamı
-------	--------	-----	--------

H34	4.14	4.67	-0.53	4.87	-0.73	4.00	0.14	4.24	-0.10
H35	4.14	4.66	-0.52	4.86	-0.72	4.00	0.14	4.24	-0.10
H36	7.40	8.11	-0.71	8.36	-0.96	7.84	-0.44	8.13	-0.73
H37	7.39	8.14	-0.75	8.27	-0.88	7.89	-0.50	8.03	-0.64
H38	7.39	8.14	-0.75	8.27	-0.88	7.89	-0.50	8.03	-0.64
H39	7.40	8.11	-0.71	8.36	-0.96	7.84	-0.44	8.13	-0.73
H40	2.50	3.03	-0.53	3.18	-0.68	2.30	0.20	2.49	0.01
H41	2.50	3.03	-0.53	3.18	-0.68	2.30	0.20	2.49	0.01
H42	2.50	2.40	0.10	2.45	0.05	2.00	0.50	2.03	0.47

Tablo 3.105. 19 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ CNNC(12)	11	12
2	τ CCCC(50)	17	16
3	τ CNNC(19), τ CCNN(12), τ NNCC(22)	19	22
4	δ NCC(18), δ CCN(11), δ CCC(12), τ CCCC(22)	22	22
5	τ CCCN(24), τ CNNC(20)	26	27
6	τ CCCN(17), τ CCCC(37)	43	40
7	δ NCN(13), δ CCN(22), τ CNNC(17), τ CCCC(15)	44	44
8	τ CCCN(25), τ NNCC(10), τ CCCC(17)	58	56
9	τ CCCN(11), τ CNNC(10), τ CCCC(14), τ CCNN(37)	66	63
10	δ NCC(26), τ CCCC(21), τ CICCC(10)	99	102
11	τ CCNN(10), τ NNCC(29)	114	115
12	δ CCC(14), δ NNC(13)	124	121
13	τ NNCC(22), τ NCNC(12)	126	125
14	τ HCCN(59)	130	149
15	$\tau CCCC(10)$	146	151
16	τ CNNC(29), τ NNCC(10)	161	158
17	δ CCN(38)	183	185
18	δ CNN(14), δ CCC(23)	215	209
19	τ HCCC(27), τ CCCN(18)	218	220
20	δ CCC(11), τ CCCN(19), τ NNCC(15)	231	227
21	δ CICC(49)	241	246
22	τ HCCC(36)	251	254
23	τ CCCC(18), τ CICCC(31)	295	302
24	δ CCC(49)	301	303
25	τ CCCN(14), τ CCNN(24), τ NNCC(14)	302	304
26	δ OCN(11), δ CNN(16)	312	316
27	τ CNNC(30), τ CCNN(14), τ NCNC(16)	335	338
28	δ CCC(21), δ CICC(32)	352	359
29	δ CCN(25)	361	364
30	τ CCCN(47), τ CCCC(20)	399	409
31	τ HCCC(16), τ CCCC(81)	403	411
32	δ OCN(16), δ NCN(14)	405	412
33	δ CIC(28)	414	417
34	δ CCC(15), τ CCCN(21), τ CCNN(22)	428	434
35	δ CCN(15)	448	456
36	δ CCC(14)	460	462
37	τ HCCC(18), τ CCCC(14), τ CICCC(16)	495	508
38	δ CCC(20), τ CCCC(13)	546	548
39	τ CCCN(13), τ ONNC(10), τ CCCC(19)	550	560
40	τ HCCN(17), τ ONNC(40)	553	572
41	ν CC(11), δ OCC(22)	579	587

Tablo 3.10	5.' in devamı		
42	δ CCC(10), τ HCCC(10), τ NNCC(14), τ NCNC(32)	614	623
43	δ CCC(11)	620	625
44	δ CCC(39)	626	638
45	$\delta CCC(23)$	634	640
46	v CC(14), v CIC(22), δ CCC(17)	643	648
47	τ HCCC(13), τ CCCC(47)	681	697
48	$\tau ONNC(50)$	694	709
49	ν CC(18)	706	740
50	τ CCCC(38)	726	755
51	τ HCCC(14)	743	757
52	v NC(13) v NN(21)	774	787
53	τ HCCC(36)	793	808
54	τ HCCC(99)	806	838
55	τ HCCC(41)	820	847
56	τ HCCC(45)	827	851
57	γ CC(10) τ HCCC(12)	829	856
58	δ CCC(13) τ HCCC(10)	850	864
59	v CC(58)	866	869
60	$v CC(17) \delta CCN(10)$	875	888
61	δ HCC(14), τ HCCC(21)	901	907
62	δ HCC(18), τ HCCC(25)	901	918
63	τ HCCC(72) τ CCCC(15)	926	934
64	τ HCCC(85) τ CCCC(13)	927	975
65	ν CC(29) τ HCCC(12)	929	977
66	τ HCCC(27) τ CCCC(13)	934	981
67	τ HCCC(45)	945	988
68	v CC(10) δ HCH(12) τ HCCN(33)	951	997
69	τ HCNN(83)	984	1000
70	δ CCC(61)	992	1001
71	δ CCC(33)	995	1037
72	v NC(11) τ HCCN(57)	1017	1045
73	δ HCH(18) δ NNC(26)	1018	1047
74	$v CC(13), \tau HCCC(16)$	1039	1056
75	v CC(53), v CIC(18), δ HCC(15)	1067	1067
76	v CC(46), τ HCCC(10)	1082	1081
77	v CC(18), δ HCC(57)	1091	1083
78	v CC(24), δ HCC(20)	1096	1096
79	$v NC(18), \tau HCCN(22)$	1111	1123
80	τ HCCC(10)	1134	1131
81	v NN(36), δ CNN(11)	1142	1143
82	v CC(12), δ HCC(22)	1161	1169
83	δ HCC(45), τ HCCC(27)	1162	1169
84	ν CC(18), δ HCC(68)	1162	1180
85	v CC(19), δ HCC(13), τ HCCC(14)	1179	1184
86	v CC(21), δ HCC(17)	1190	1199
87	$v CC(17), \delta HCC(10)$	1196	1205
88	v CC(12)	1238	1212
89	δ HCC(12)	1271	1217
90	ν NC(14), δ HCN(10), τ HCCC(24)	1275	1275
91	ν CC(22), δ HCC(70)	1278	1300
92	v NC(37)	1287	1306
93	ν CC(26), δ HCC(12)	1298	1312
94	v CC(43), δ HCC(17), τ CCCC(27)	1300	1321
95	δ HCC(27), τ HCCC(10)	1300	1346
96	ν CC(22), δ HCC(40)	1337	1347
97	δ HCN(10), δ HCH(70)	1354	1384

Tablo 1	3.105.	' in	devamı
---------	--------	------	--------

98	δ HCH(35)	1360	1385
99	δ HCN(33), δ HCH(19)	1361	1396
100	δ HCH(65)	1380	1401
101	ν CC(31), δ HCC(37)	1392	1406
102	ν CC(31), δ HCC(12)	1405	1421
103	δ HCH(69), τ HCCN(24)	1416	1430
104	ν NC(11), δ HCN(11), δ HCH(32)	1419	1440
105	δ HCH(56), τ HCCC(16)	1423	1442
106	δ HCH(76), τ HCCN(23)	1427	1479
107	δ HCH(39)	1444	1455
108	δ HCH(30)	1447	1457
109	δ HCH(48)	1459	1467
110	δ HCH(30)	1464	1471
111	ν CC(12), δ HCC(57), δ CCC(11)	1478	1503
112	ν CC(11), δ HCC(16), δ CCC(11)	1497	1519
113	ν CC(24), δ CCC(16)	1551	1585
114	ν CC(29), δ CCC(14)	1568	1594
115	v NC(15), v CC(32), δ HCC(13)	1592	1627
116	v NC(14), v CC(27)	1594	1634
117	v NC(34), v CC(10)	1603	1695
118	v NC(45), v CC(11)	1615	1708
119	v OC(85)	1728	1765
120	v OC(83)	1793	1853
121	v CH(33)	2917	2860
122	v CH(47)	2924	2864
123	v CH(49)	2928	2870
124	ν CH(100)	2938	2896
125	v CH(93)	2955	2898
126	ν CH(100)	2970	2918
127	v CH(49)	2990	2925
128	v CH(48)	2996	2927
129	v CH(46)	3001	2964
130	v CH(49)	3002	2932
131	v CH(100)	3020	2961
132	v CH(48)	3055	2991
133	v CH(50)	3056	3004
134	v CH(63)	3059	3007
135	v CH(93)	3061	3011
136	v CH(69)	3064	3012
137	v CH(73)	3064	3024
138	v CH(52)	3072	3042
139	v CH(26)	3092	3043
140	v CH(31)	3097	3044
141	v CH(69)	3098	3045

Şekil 3.54. 19 tipi bileşiğin deneysel(a) ve teorik (B3LYP(d,p) (b) ve HF(d,p) (c)) IR spektrumları

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF
302.17/238.01	4.1032/5.2092
280.62/214.54	4.4182/5.7791
271.17/204.94	4.5722/6.0499

Şekil 3.55. 19 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.106. 19 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(44)-C(1)-N(45)	111.983	111.751	38	C(18)-C(19)-H(39)	119.130	119.040
2	N(44)-N(43)-C(2)	112.542	111.962	39	H(39)-C(19)-C(14)	119.706	119.879
3	N(44)-N(43)-C(20)	120.540	120.492	40	N(45)-N(46)-C(3)	118.985	119.995
4	N(43)-C(20)-O(48)	120.775	121.131	41	N(46)-C(3)-H(22)	122.022	122.276
5	O(48)-C(20)-C(21)	124.799	124.002	42	H(22)-C(3)-C(4)	117.744	117.175
6	N(43)-C(20)-C(21)	114.426	114.867	43	C(3)-C(4)-C(5)	122.859	122.838
7	C(20)-C(21)-H(40)	110.885	110.702	44	C(3)-C(4)-C(9)	118.634	118.542
8	C(20)-C(21)-H(41)	110.890	110.725	45	C(4)-C(9)-H(26)	119.373	119.700
9	C(20)-C(21)-H(42)	107.646	107.429	46	H(26)-C(9)-C(8)	119.847	119.469
10	H(40)-C(21)-H(41)	106.719	107.313	47	C(4)-C(5)-H(23)	119.096	119.527
11	H(40)-C(21)-H(42)	110.363	110.341	48	H(23)-C(5)-C(6)	120.601	120.182
12	H(41)-C(21)-H(42)	110.367	110.357	49	C(5)-C(6)-H(24)	119.378	119.161
13	C(20)-N(43)-C(2)	126.918	127.546	50	H(24)-C(6)-C(7)	119.105	119.395
14	N(43)-C(2)-O(47)	130.664	130.425	51	C(4)-C(9)-C(8)	120.780	120.831
15	N(43)-C(2)-N(45)	101.477	101.971	52	C(9)-C(8)-C(7)	120.780	120.889
16	O(47)-C(2)- N(45)	127.859	127.604	53	C(7)-C(6)-C(5)	121.517	121.444

Tabl	o 3.106.' nin devamı						
17	C(2)-N(45)-C(1)	108.681	108.616	54	H(25)-C(8)-C(7)	119.877	120.167
18	C(2)-N(45)-N(46)	130.622	130.761	55	H(25)-C(8)-C(9)	119.128	118.944
19	N(44)-C(1)-C(13)	125.969	126.306	56	C(8)-C(7)-C(6)	117.896	117.925
20	N(45)-C(1)-C(13)	122.047	121.943	57	C(8)-C(7)-C(10)	121.445	121.616
21	N(44)-C(1)-N(45)	111.983	111.751	58	C(6)-C(7)-C(10)	120.659	120.459
22	C(1)-C(13)-C(14)	113.743	113.579	59	C(7)-C(10)-C(11)	111.750	111.857
23	C(1)-C(13)-H(34)	107.929	107.768	60	C(7)-C(10)-H(27)	106.981	106.928
24	C(1)-C(13)-H(35)	107.932	107.766	61	H(27)-C(10)-C(11)	107.475	107.323
25	H(34)-C(13)-H(35)	105.227	105.827	62	H(27)-C(10)-C(12)	107.478	107.323
26	H(34)-C(13)-C(14)	110.803	110.771	63	C(10)-C(11)-H(28)	111.281	111.127
27	H(35)-C(13)-C(14)	110.797	110.771	64	C(10)-C(11)-H(29)	110.563	110.416
28	C(13)-C(14)-C(19)	120.723	120.699	65	C(10)-C(11)-H(30)	111.292	111.484
29	C(13)-C(14)-C(15)	120.725	120.700	66	H(28)-C(11)-H(29)	108.166	108.124
30	C(14)-C(15)-H(36)	119.707	119.878	67	H(28)-C(11)-H(30)	107.745	107.857
31	H(36)-C(15)-C(16)	119.129	119.041	68	H(30)-C(11)-H(29)	107.645	107.690
32	C(15)-C(16)-H(37)	120.814	120.674	69	C(10)-C(12)-H(31)	110.565	110.415
33	H(37)-C(16)-C(17)	120.149	120.160	70	C(10)-C(12)-H(32)	111.293	111.483
34	C(16)-C(17)-CI(49)	119.477	119.546	71	C(10)-C(12)-H(33)	111.284	111.126
35	CI(49)-C(17)-C(18)	119.476	119.546	72	H(31)-C(12)-H(32)	107.644	107.691
36	C(17)-C(18)-H(38)	120.149	120.160	73	H(31)-C(12)-H(33)	108.164	108.125
37	H(38)-C(18)-C(19)	120.814	120.674	74	H(32)-C(12)-H(33)	107.742	107.857

Tablo 3.107. 19 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	Uzunlukları	B3LYP	HF	Bağ	ğ Uzunlukları	B3LYP	HF
1	C(1)-N(44)	1.2957	1.2655	27	C(18)-C(19)	1.3940	1.3839
2	C(1)-N(45)	1.3855	1.3748	28	C(19)-H(39)	1.0866	1.0761
3	C(1)-C(13)	1.4997	1.4990	29	N(46)-C(3)	1.2907	1.2617
4	N(44)-N(43)	1.3947	1.3829	30	C(3)-H(22)	1.0879	1.0747
5	N(43)-C(20)	1.4206	1.4040	31	C(3)-C(4)	1.4631	1.4729
6	C(20)-O(48)	1.2089	1.1845	32	C(4)-C(5)	1.4050	1.3916
7	C(20)-C(21)	1.5112	1.5070	33	C(4)-C(9)	1.4044	1.3896
8	C(21)-H(40)	1.0932	1.0828	34	C(5)-H(23)	1.0847	1.0740
9	C(21)-H(41)	1.0932	1.0827	35	C(5)-C(6)	1.3892	1.3803
10	C(21)-H(42)	1.0895	1.0798	36	C(6)-H(24)	1.0872	1.0762
11	N(43)-C(2)	1.4046	1.3806	37	C(6)-C(7)	1.4043	1.3936
12	C(2)-O(47)	1.2131	1.1902	38	C(7)-C(8)	1.4025	1.3904
13	C(2)-N(45)	1.4156	1.3864	39	C(8)-H(25)	1.0863	1.0754
14	N(45)-N(46)	1.3755	1.3693	40	C(8)-C(9)	1.3914	1.3833
15	C(13)-H(34)	1.0962	1.0844	41	C(9)-H(26)	1.0870	1.0766
16	C(13)-H(35)	1.0962	1.0844	42	C(7)-C(10)	1.5220	1.5217
17	C(13)-C(14)	1.5132	1.5121	43	C(10)-H(27)	1.0978	1.0868
18	C(14)-C(19)	1.3990	1.3875	44	C(10)-C(11)	1.5404	1.5348
19	C(14)-C(15)	1.3990	1.3876	45	C(11)-H(28)	1.0942	1.0850
20	C(15)-H(36)	1.0866	1.0761	46	C(11)-H(29)	1.0952	1.0860
21	C(15)-C(16)	1.3940	1.3839	47	C(11)-H(30)	1.0953	1.0857
22	C(16)-H(37)	1.0842	1.0736	48	C(10)-C(12)	1.5403	1.5348
23	C(16)-C(17)	1.3937	1.3820	49	C(12)-H(31)	1.0952	1.0860
24	C(17)-CI(49)	1.7591	1.7436	50	C(12)-H(32)	1.0953	1.0857
25	C(17)-C(18)	1.3937	1.3820	51	C(12)-H(33)	1.0942	1.0850
26	C(18)-H(38)	1.0842	1.0737				

2	DFT	HF	0	DFT	HF
C1	0.557	0.638	H26	0.098	0.167
C2	0.849	1.114	H27	0.091	0.125
C3	0.117	0.187	H28	0.110	0.122
C4	0.082	-0.088	H29	0.104	0.115
C5	-0.095	-0.109	H30	0.105	0.111
C6	-0.141	-0.176	H31	0.104	0.115
C7	0.151	0.023	H32	0.105	0.111
C8	-0.128	-0.156	H33	0.110	0.122
С9	-0.126	-0.143	H34	0.147	0.176
C10	-0.131	-0.154	H35	0.146	0.176
C11	-0.305	-0.315	H36	0.094	0.161
C12	-0.305	-0.315	H37	0.113	0.180
C13	-0.302	-0.274	H38	0.113	0.180
C14	0.127	-0.005	H39	0.094	0.161
C15	-0.105	-0.135	H40	0.149	0.161
C16	-0.070	-0.112	H41	0.149	0.161
C17	-0.094	-0.164	H42	0.139	0.161
C18	-0.070	-0.112	N43	-0.434	-0.664
C19	-0.105	-0.135	N44	-0.353	-0.350
C20	0.560	0.732	N45	-0.437	-0.649
C21	0.377	-0.409	N46	-0.329	-0.339
H22	0.161	0.231	O47	-0.489	-0.595
H23	0.102	0.174	O48	-0.423	-0.513
H24	0.085	0.151	CI49	-0.022	-0.001
H25	0.088	0.155			

Tablo 3.108. 19 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

Şekil 3.56. 19 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.109. 19 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	2.8767	-2.5069
$\mu_{\rm v}$	-4.4478	-5.4983
μ _z	-0.0044	0.6835
μ _{Toplam}	5.2971	6.0813

Tablo 3.110. 19 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1642.560	-1634.497

3.4.15. 3-Metil-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (21)

Şekil 3.57. 21 tipi bileşiğin(6-31G(d,p)) gausview görünümü

	,11,111,	DJL I (D	(100) (0)		50 <i>))</i> kiiny	asal kay	illa uegei	i loi (0/pp	III <i>)</i>
No	Domory	DET	Fault	DFT/	Fark/	шБ	Fault	HF/	Fark/
	Deney.	DFI	гагк	DMSO	DMSO	пг	гагк	DMSO	DMSO
C1	145.72	149.24	-3.52	151.13	-5.41	142.44	3.28	145.28	0.44
C2	154.81	148.55	6.26	149.68	5.13	147.30	7.51	148.54	6.27
C3	151.30	159.98	-8.68	161.59	-10.29	167.96	-16.66	170.96	-19.66
C4	124.66	133.44	-8.78	131.66	-7.00	121.24	3.42	119.54	5.12
C5	121.76	128.84	-7.08	130.74	-8.98	118.40	3.36	121.45	0.31
C6	112.76	114.93	-2.17	117.16	-4.40	107.40	5.36	110.09	2.67
C7	144.09	147.64	-3.55	149.79	-5.70	138.64	5.45	140.16	3.93
C8	149.20	148.00	1.20	147.37	1.83	138.84	10.36	137.32	11.88
C9	115.54	119.51	-3.97	117.71	-2.17	116.89	-1.35	113.62	1.92
C10	11.11	21.46	-10.35	21.29	-10.18	10.22	0.89	10.11	1.00
H11	11.78	7.82	3.96	8.29	3.49	7.21	4.57	7.63	4.15
H12	9.45	8.47	0.98	8.65	0.80	8.85	0.60	9.11	0.34
H13	7.10	7.54	-0.44	7.84	-0.74	7.31	-0.21	7.77	-0.67
H14	6.84	7.26	-0.42	7.74	-0.90	7.06	-0.22	7.61	-0.77
H15	7.30	8.16	-0.86	8.10	-0.80	8.89	-1.59	8.46	-1.16
H16	9.45	4.37	5.08	5.49	3.96	3.57	5.88	4.55	4.90
H17	9.73	5.75	3.98	6.15	3.58	4.74	4.99	5.07	4.66
H18	2.25	2.88	-0.63	3.09	-0.84	1.73	0.52	2.04	0.21
H19	2.25	3.26	-1.01	3.30	-1.05	2.29	-0.04	2.42	-0.17
H20	2.25	2.83	-0.58	2.90	-0.65	2.18	0.07	2.25	0.00

Tablo 3.111. 21 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

Tablo 3.112. 21 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p)) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı B3LYP	Skalalı HF
1	τ NCCC(65), δ NCC(11)	33	24
2	τ CNNC(29)	38	35
3	τ NCNN(37), τ CCCC(18)	61	69
4	τ NCNN(15), τ CCCC(17), τ CNNC(14)	113	96
5	δ CCC(12), τ CNNC(22)	124	120
6	τ HNNC(27), τ CNNC(13)	146	151
7	τ CNNC(13), δ CCC(25)	179	164
8	τ CCCC(16), δ CNN(18)	185	194
9	τ NCNN(17), τ CCCC(21)	216	201
10	δ CCN(17), δ NNC(11)	230	242
11	τ HOCC(62)	253	245
12	τ CNNC(33),τ HNNC(22)	275	286
13	δ CCC(15), δ OCC(69)	301	307
14	δ CCN(31), δ OCN(10)	307	315
15	τ OCCC(29), τ CCCC(21)	332	341
16	τ HOCC(71)	400	345
17	δ CCC(31)	421	422
18	τ HNNC(25), τ OCCC(15)	436	441
19	τ HNNC(22),τ HCCC(10), τ CCCC(17), τ OCCC(24)	438	452
20	δ OCC(26)	465	466
21	δ OCN(10), τ CCCC(11),τ NNCC(11)	491	483
22	ν NN(12), δ OCN(18)	540	556
23	δ CCC(28), δ OCC(24)	557	572
24	ν CC(18), δ NCN(15)	585	586
25	τ HCCC(11), τ NNCN(13), τ OCCC(25), CCCC(16)	616	623

Tablo 3.112.'nin devamı

26	$\tau NNCC(32)$ $\tau HNNC(12)$ $\tau CNNC(10)$	629	645
20	τ HCCC(16) τ CCCC(21) τ OCCC(38)	671	671
27	$\gamma CC(10) \gamma NN(10)$	673	604
20	V CC(10), V INI(10)	601	700
29	$\tau ONNC(70)$	701	763
21	v CC(15) = v CC(15) + CCC(21)	701	703
22	$\tau = HCCC(72)$	769	775
32	$t \operatorname{HCCC}(12)$	708	/ 09
33	V CC(15), 0 CNN(22) S NCC(15), S CCC(16), S NN(C(10))	///	808 846
34 25	= HCCC((1), 0 CCC(10), 0 MNC(19)	000	040 020
35	-11000(10), 0000(10)	000	929
30	τ HCCC(70), CCCC(14)	003	902
3/	τ HCNN(57), CCCC(14)	927	962
38 20	τ HUNN(10), ν CU(11), σ CUU(15) S NNC(11) S HCU(11), $-HCCN(21)$	954	9/9
39	0 NNU(11), 0 HCH(11), THUCN(51)	900	985
40	0 HCH(15), th HCN(51)	1028	1050
41	V CC(10), V NN(11), 0 NNC(21), T HCNN(14)	1039	1076
42	$v NN(28), \delta HNN(12), \tau HCCN(16)$	1065	1091
43	V CC(16), V OC(13), 0 HOC(15), 0 CCC(12)	1095	1094
44	$V CC(18), \delta HCC(15)$	1125	110/
45	δ HCC(30), δ HOC(28)	1157	1136
46	V NC(19), V CC(10), V NN(15)	1158	11/8
47	0 HOU(30), 0 HCU(28)	1181	1193
48	0 NCN(20), V NN(17), 0 CNN(13)	1224	1216
49	VOC(25), 0 HCC(20), 0 CCC(11)	1241	1275
50	V CC(11), V OC(38) S HOC(40) S HCC(17)	1282	1295
51	0 HOC(40), 0 HCC(17)	1304	1310
52	0 HOC(10), V CC(18), 0 HCN(13)	1339	1322
53	$V \operatorname{NC}(13), 0 \operatorname{HNN}(08)$	1342	1370
54	$V NC(14), 0 \PiC\Pi(39)$ 8 $HCN(62)$	1334	1303
55	0 HCN(02) 8 HCH(22) yr NC(16) yr CC(17)	1305	1390
50 57	$\delta HCH(67) = \pi HCCN(20)$	1390	1422
57	$\delta HCH(52) = \tau HCCN(20)$	1427	1441
50	$v CC(12) = \delta HOC(16)$	1440	1455
5) 60	$v OC(17) \delta HCC(40) \delta CCC(14)$	1408	1403
61	$v CC(26) \delta CCC(19)$	1584	1614
62	v = C(20), 0 = C(10)	1504	1635
63	v NC(11) v CC(42)	1604	1688
64	v NC(43) v CC(11)	1623	1719
65	v OC(78)	1772	1779
66	v CH(89)	2940	2882
67	v CH(94)	2997	2002
68	v CH(28)	3012	2979
69	v CH(20)	3043	2980
70	v CH(41)	3053	3000
71	v CH(42)	3077	3020
72	v CH(26)	3126	3071
73	v NH(100)	3558	3557
74	v OH(51)	3642	3750
75	v OH(51)	3692	3777

Şekil 3.58. 21 tipi bileşiğin teorik (B3LYP 6-31G(d,p)(a) ve HF 6-31G(d,p)(b)) IR spektrumları

Şekil 3.59. 21 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(23)-N(24)	121.356	122.112	20	H(12)-C(3)-C(4)	113.557	114.571
2	C(1)-N(23)-C(2)	108.099	107.798	21	C(3)-C(4)-C(5)	116.483	115.998
3	N(22)-C(1)-N(23)	111.652	111.467	22	C(3)-C(4)-C(9)	124.487	124.427
4	C(1)-C(10)-H(18)	111.274	110.556	23	C(4)-C(5)-H(13)	119.658	120.280
5	C(1)-C(10)-H(19)	110.467	110.339	24	H(13)-C(5)-C(6)	119.435	119.302
6	C(1)-C(10)-H(20)	108.898	108.873	25	C(4)-C(5)-C(6)	120.904	120.415
7	H(18)-C(10)-H(19)	107.365	108.074	26	C(5)-C(6)-C(7)	119.598	119.708
8	H(19)-C(10)-H(20)	109.660	109.608	27	C(5)-C(6)-H(14)	120.485	120.328
9	H(20)-C(10)-H(18)	109.152	109.374	28	H(14)-C(6)-C(7)	119.915	119.962
10	C(1)-N(22)-N(21)	104.336	104.791	29	C(6)-C(7)-O(27)	124.738	124.028
11	N(22)-N(21)-H(11)	120.217	120.929	30	C(6)-C(7)-C(8)	120.323	120.297
12	H(11)-N(21)-C(2)	124.690	125.364	31	C(7)-O(27)-H(15)	110.090	111.789
13	N(21)-C(2)-N(23)	100.991	102.147	32	O(27)-C(7)-C(8)	114.937	115.670
14	N(21)-C(2)-O(25)	130.435	129.812	33	C(7)-C(8)-O(26)	120.287	120.591
15	O(25)-C(2)-N(23)	128.574	128.020	34	C(8)-O(26)-H(16)	107.777	110.050
16	C(2)-N(23)-N(24)	125.784	123.679	35	O(26)-C(8)-C(9)	119.921	119.437
17	N(23)-N(24)-C(3)	119.008	117.468	36	C(8)-C(9)-H(17)	117.868	118.457
18	N(24)-C(3)-H(12)	110.932	112.232	37	H(17)-C(9)-C(4)	121.612	121.482
19	N(24)-C(3)-C(4)	135.427	133.058				

Tablo 3.113. 21 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.114. 21 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	g Uzunlukları	B3LYP	HF	Bağ	Uzunlukları	B3LYP	HF
1	C(1)-N(23)	1,3882	1,3791	15	C(3)-C(4)	1,4670	1,4824
2	C(1)-N(22)	1,3012	1,2691	16	C(4)-C(5)	1,4043	1,3881
3	N(23)-N(24)	1,3926	1,3975	17	C(4)-C(9)	1,4085	1,3942
4	N(24)-C(3)	1,2900	1,2601	18	C(5)-H(13)	1,0856	1,0757
5	C(3)-H(12)	1,0916	1,0797	19	C(5)-C(6)	1,3930	1,3851
6	N(23)-C(2)	1,4213	1,3825	20	C(6)-H(14)	1,0873	1,0767
7	N(2)-O(25)	1,2176	1,2004	21	C(6)-C(7)	1,3906	1,3787
8	C(2)-N(21)	1,3740	1,3490	22	C(7)-O(27)	1,3713	1,3555
9	N(21)-H(11)	1,0065	0,9904	23	O(27)-H(15)	0,9655	0,9427
10	N(21)-N(22)	1,3827	1,3716	24	C(7)-C(8)	1,4088	1,3938
11	C(1)-C(10)	1,4867	1,4878	25	C(8)-O(26)	1,3613	1,3459
12	C(10)-H(18)	1,0950	1,0845	26	O(26)-H(16)	0,9689	0,9447
13	C(10)-H(19)	1,0942	1,0839	27	C(8)-C(9)	1,3862	1,3778
14	C(10)-H(20)	1,0908	1,0806	28	C(9)-H(17)	1,0815	1,0717

	DFT	HF	6	DFT	HF
C1	0,517	0,585	H15	0,330	0,360
C2	0,765	1,021	H16	0,336	0,371
C3	0,076	0,194	H17	0,113	0,241
C4	0,143	-0,997	H18	0,134	0,145
C5	-0,140	-0,156	H19	0,148	0,160
C6	-0,128	-0,192	H20	0,140	0,163
C7	0,298	0,341	N21	-0,413	-0,546
C8	0,313	0,354	N22	-0,340	-0,352
C9	-0,117	-0,151	N23	-0,431	-0,631
C10	-0,367	-0,373	N24	-0,277	-0,269
H11	0,112	0,338	O25	-0,526	-0,654
H12	0,286	0,168	O26	-0,564	-0,656
H13	0,092	0,161	O27	-0,585	-0,682
H14	0,085	0,155			

Tablo 3.115. 21 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

E_{LUMO} (B3LYP) : -0.05052 Hatree

E_{LUMO}(HF): 0.09653 Hatree

Şekil 3.60. 21 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.116. 21 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine gö	ire
hesaplanan dipol moment değerleri	

Dipol Moment	B3LYP	HF
μ _x	0.4162	-0.3646
μ _v	5.4955	6.9721
μ _z	-0.2716	-0.3076
μ _{Toplam}	5.5179	6.9884

Tablo 3.117. 21 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-831.732	-826.857

3.4.16. 3-Etil-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (22)

Şekil 3.61. 22 tipi bileşiğin(6-31G) gausview görünümü

Tablo 3.118. 22 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

No	Donov	DET	Fork	DFT/	Fark/	ПЕ	Fork	HF/	Fark/
INU	Deney.	DFI	гагк	DMSO	DMSO	пг	гагк	DMSO	DMSO
C1	146.26	152.70	-6.44	154.36	-8.10	145.62	0.64	148.17	-1.91
C2	155.40	148.51	6.89	149.67	5.73	147.31	8.09	148.56	6.84
C3	151.97	160.00	-8.03	161.59	-9.62	167.90	-15.93	170.91	-18.94
C4	125.26	133.45	-8.19	131.66	-6.40	121.31	3.95	119.56	5.70
C5	122.27	128.78	-6.51	130.66	-8.39	118.30	3.97	121.35	0.92
C6	113.32	114.94	-1.62	117.18	-3.86	107.40	5.92	110.11	3.21
C7	148.44	147.59	0.85	149.74	-1.30	138.57	9.87	140.11	8.33
C8	149.74	147.99	1.75	147.38	2.36	138.83	10.91	137.32	12.42
C9	116.10	119.39	-3.29	117.58	-1.48	116.85	-0.75	113.58	2.52

Tablo	3.118' i	n devamı							
C10	19.08	30.25	-11.17	30.11	-11.03	16.11	2.97	15.97	3.11
C11	10.57	17.99	-7.42	17.79	-7.22	6.29	4.28	6.12	4.45
H12	11.76	7.87	3.89	8.35	3.41	7.24	4.52	7.67	4.09
H13	9.42	8.46	0.96	8.64	0.78	8.84	0.58	9.10	0.32
H14	7.06	7.53	-0.47	7.83	-0.77	7.30	-0.24	7.76	-0.70
H15	6.83	7.26	-0.43	7.73	-0.90	7.05	-0.22	7.61	-0.78
H16	7.28	8.16	-0.88	8.10	-0.82	3.56	3.72	4.54	2.74
H17	9.14	4.36	4.78	5.49	3.65	4.74	4.40	5.07	4.07
H18	9.70	5.74	3.96	6.14	3.56	8.88	0.82	8.45	1.25
H19	2.64	3.29	-0.65	3.49	-0.85	1.90	0.74	2.19	0.45
H20	2.64	3.72	-1.08	3.73	-1.09	2.48	0.16	2.59	0.05
H21	1.20	1.82	-0.62	2.02	-0.82	1.12	0.08	1.37	-0.17
H22	1.20	2.22	-1.02	2.14	-0.94	1.62	-0.42	1.50	-0.30
H23	1.20	2.33	-1.13	2.24	-1.04	1.51	-0.31	1.41	-0.21

 Tablo 3.119. 22 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	δ NCC(13), τ CNNC(15), τ CCCN(10)	29	21
2	τ NCCC(58), τ CNNC(10)	32	29
3	τ NCNN(32), τ NNCC(10), τ CCCN(11), τ CCCC(17)	59	64
4	τ CCCN(40)	65	70
5	δ CNN(10), τ CCCC(14), τ CNNC(14)	105	93
6	δ CCC(10), τ CNNC(31), τ NNCC(11)	123	119
7	δ CCN(35), δ CCC(11), τ CCCC(12)	156	146
8	δ CCC(26), τ CNNC(14)	172	174
9	τ CCCC(17)	199	190
10	τ HCCN(18), δ CCC(12), τ CCCC(12)	208	200
11	τ HCCN(10), τ NCNN(12), τ CCCC(10), τ CNNC(12)	221	218
12	δ CCC(12), τ HOCC(14)	250	243
13	τ HOCC(53)	258	274
14	τ HNNC(16), τ HCCN(18), τ CNNC(30)	277	288
15	δ CCC(14), δ OCC(71)	301	308
16	τ CCCC(24), τ OCCC(33)	329	335
17	δ CCC(23), δ OCN(18)	357	343
18	τ HOCC(71)	399	364
19	δ CCC(31), τ HNNC(10)	420	422
20	τ HNNC(27), τ OCCC(13)	434	439
21	τ HOCC(70), τ HNNC(20), τ CCCC(18), τ OCCC(27)	436	452
22	δ CCC(10), δ OCC(34)	466	466
23	τ CCCC(12), τ NNCC(12)	493	484
24	ν CC(11), ν NN(17), δ CNN(12), δ NCN(13)	534	552
25	δ CCC(27), δ OCC(24)	560	575
26	τ OCCC(21), τ CCCC(15)	604	591
27	τ CCNN(17)	622	637
28	δ OCN(10), τ NNCC(26)	630	657
29	τ HCCC(12), τ CCCC(20), τ OCCC(39)	670	677
30	δ CCC(15), v CC(11)	684	695
31	v CC(10), v NN(21)	694	709
32	ONNC(70)	700	760
33	ν CC(15), ν OC(15), δ CCC(20)	763	771
34	τ HCCC(42)	767	787
35	τ HCCN(37)	773	788
36	v NC(14), δ CNN(23), τ HCCC(10)	776	809

Tablo 3.1	19' un devamı		
37	δ NCC(14), δ CCC(16), δ NNC(20)	808	847
38	τ HCCC(37), τ CCCC(16)	865	928
39	τ HCCC(75), τ CCCC(14)	881	938
40	τ HCNN(41)	924	962
41	v CC(44), τ HCNN(21)	941	964
42	v CC(16),δ CCC(21)	955	982
43	v CC(10), δ NNC(17), τ HCCN(15)	1005	1032
44	v NC(11), v NN(17), v CC(17)	1046	1071
45	v NN(12), τ HCCN(15), τ HCCC(23)	1072	1091
46	τ HCCN(32)	1075	1093
47	v CC(16), v OC(14), δ HOC(15),δ HCC(13), δ CCC(11)	1095	1099
48	ν CC(18), δ HCC(17)	1125	1107
49	δ HOC(28), δ HCC(31)	1137	1137
50	v NC(18), v NN(15)	1157	1178
51	δ HOC(30), δ HCC(28)	1179	1193
52	v NN(15), δ NCN(18), δ CNN(15)	1219	1216
53	δ HCC(51), τ HCCN(19)	1235	1258
54	ν OC(22), δ HCC(16)	1240	1274
55	v CC(10), v OC(36)	1282	1275
56	δ HCC(13), ν NC(20), τ HCCN(14)	1285	1309
57	δ HCC(20), δ HOC(38)	1304	1322
58	ν CC(17), δ HOC(10), δ HCN(15)	1339	1328
59	ν NC(11), δ HNN(70)	1342	1379
60	δ HCH(68)	1375	1395
61	δ HCN(63)	1383	1397
62	ν NC(18), ν CC(16), τ HCCN(15)	1398	1430
63	δ HCH(42)	1434	1449
64	δ HCH(42),τ HCCN(12)	1450	1458
65	ν CC(15), δ HOC(16)	1458	1463
66	δ HCH(26)	1462	1470
67	ν OC(17), δ HCC(41), δ CCC(13)	1498	1524
68	v NC(16), v CC(19), 8 CCC(16)	1584	1614
69	v NC(32)	1589	1635
70	v CC(45)	1604	1681
71	v CH(92), v NC(20)	1623	1719
72	VOC(77)	1//1	1//8
73	V CH(4/)	2923	2874
74	ν CH(35)	2945	2880
75	V CH(30)	2953	2905
/0	V CH(28)	3012 2015	2941
79	V CH(41)	3015	2954
/8	V CH(55)	3020	2980
19	$V \cup \Pi(41)$	3033 2079	3000
0U Q1	v CH(42)	30/8	3020
01 87	v Un(20) v NH(100)	3123	3070
02 92	$\frac{V \Pi \Pi (100)}{V \Theta H(51)}$	3530	2750
03 Q/	v OH(51) v OH(51)	3601	3730
1 11-0		11171	, , , , ,

Şekil 3.62. 22 tipi bileşiğin teorik (B3LYP 6-31G(d,p)(a) ve HF 6-31G(d,p)(b)) IR spektrumları

Şekil 3.63. 22 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(25)-N(24)	104.424	104.891	22	N(26)-N(27)-C(3)	119.004	117.453
2	C(1)-N(26)-C(2)	108.134	107.856	23	N(27)-C(3)-H(13)	110.953	112.265
3	N(26)-C(1)-N(25)	111.546	111.324	24	N(27)-C(3)-C(4)	135.405	133.008
4	C(1)-C(10)-H(19)	108.626	108.068	25	H(13)-C(3)-C(4)	113.560	114.590
5	C(1)-C(10)-H(20)	107.834	107.885	26	C(3)-C(4)-C(5)	116.484	116.014
6	H(19)-C(10)-H(20)	105.294	106.169	27	C(3)-C(4)-C(9)	124.497	124.398
7	H(19)-C(10)-C(11)	110.498	110.545	28	C(4)-C(5)-H(14)	119.657	120.279
8	H(20)-C(10)-C(11)	111.078	110.765	29	H(14)-C(5)-C(6)	119.435	119.306
9	C(10)-C(11)-H(21)	110.098	109.772	30	C(4)-C(5)-C(6)	120.905	120.412
10	C(10)-C(11)-H(22)	111.091	111.089	31	C(5)-C(6)-C(7)	119.608	119.710
11	C(10)-C(11)-H(23)	111.138	111.149	32	C(5)-C(6)-H(15)	120.477	120.327
12	H(21)-C(11)-H(22)	108.441	108.433	33	H(15)-C(6)-C(7)	119.912	119.961
13	H(21)-C(11)-C(23)	108.448	108.495	34	C(6)-C(7)-O(30)	124.735	124.026
14	H(22)-C(11)-C(23)	107.483	107.813	35	C(7)-O(30)-H(16)	110.077	111.780
15	C(1)-N(26)-N(27)	121.417	122.231	36	O(30)-C(7)-C(8)	114.957	115.673
16	N(25)-N(24)-H(12)	120.244	120.929	37	C(6)-C(7)-C(8)	120.305	120.296
17	H(12)-N(24)-C(2)	124.722	125.388	38	C(7)-C(8)-O(29)	120.297	120.589
18	N(24)-C(2)-N(26)	101.000	102.156	39	C(8)-O(29)-H(17)	107.781	110.042
19	N(24)-C(2)-O(28)	130.423	129.792	40	O(29)-C(8)-C(9)	119.902	119.439
20	O(28)-C(2)-N(26)	128.576	128.030	41	C(8)-C(9)-H(18)	117.853	118.470
21	C(2)-N(26)-N(27)	125.610	123.515	42	H(18)-C(9)-C(4)	121.620	121.471
22	N(26)-N(27)-C(3)	119.004	117.453				

Tablo 3.120. 22 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.121. 22 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağl	J zunlukları	B3LYP	HF	Ba	ığ Uzunlukları	B3LYP	HF
1	C(1)-N(25)	1.3010	1.2693	17	C(11)-H(22)	1.0930	1.0832
2	C(1)-N(26)	1.3893	1.3803	18	C(11)-H(23)	1.0929	1.0832
3	C(1)-C(10)	1.4939	1.4942	19	C(3)-C(4)	1.4671	1.4826
4	N(25)-N(24)	1.3827	1.3714	20	C(4)-C(5)	1.4043	1.3881
5	N(24)-H(12)	1.0064	0.9904	21	C(4)-C(9)	1.4083	1.3942
6	N(24)-C(2)	1.3737	1.3488	22	C(5)-H(14)	1.0856	1.0757
7	C(2)-O(28)	1.2178	1.2005	23	C(5)-C(6)	1.3931	1.3851
8	C(2)-N(26)	1.4212	1.3821	24	C(6)-H(15)	1.0874	1.0767
9	N(26)-N(27)	1.3927	1.3975	25	C(6)-C(7)	1.3906	1.3787
10	N(27)-C(3)	1.2899	1.2600	26	C(7)-O(30)	1.3713	1.3556
11	C(3)-H(13)	1.0916	1.0797	27	O(30)-H(16)	0.9655	0.9427
12	C(1)-C(10)	1.4939	1.4942	28	C(7)-C(8)	1.4087	1.3938
13	C(10)-H(19)	1.0980	1.0868	29	C(8)-O(29)	1.3614	1.3460
14	C(10)-H(20)	1.0970	1.0861	30	O(29)-H(17)	0.9689	0.9447
15	C(10)-C(11)	1.5299	1.5256	31	C(8)-C(9)	1.3863	1.3778
16	C(11)-H(21)	1.0934	1.0845	32	C(9)-H(18)	1.0815	1.0718

<u> </u>	DFT	HF		DFT	HF
C1	0.536	0.607	H16	0.330	0.360
C2	0.768	1.024	H17	0.336	0.371
C3	0.076	0.194	H18	0.113	0.240
C4	0.143	-0.097	H19	0.125	0.143
C5	-0.140	-0.156	H20	0.140	0.160
C6	-0.128	-0.192	H21	0.100	0.116
C7	0.297	0.341	H22	0.123	0.137
C8	0.313	0.354	H23	0.125	0.136
С9	-0.117	-0.151	N24	-0.413	-0.543
C10	-0.237	-0.264	N25	-0.355	-0.362
C11	-0.315	-0.336	N26	-0.444	-0.644
H12	0.285	0.337	N27	-0.275	-0.267
H13	0.112	0.167	O28	-0.527	-0.655
H14	0.092	0.161	O29	-0.564	-0.656
H15	0.085	0.155	O30	-0.585	-0.682

Tablo 3.122. 22 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

Şekil 3.64. 22 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.123. 22 tipi bileşiğin B3LYP	6-31G(d,p) ve HF	6-31G(d,p)	yöntemlerine gö	bre
hesaplanan dipol moment değerleri				

Dipol Moment	B3LYP	HF
μ _x	-2.8882	1.0095
μ _v	-5.6966	-6.8954
μ_z	0.3306	-0.2289
μ _{Toplam}	6.3955	6.9726

Tablo 3.124. 22 tipi bileşiğin B3LYP 6-31G ve HF 6-31G Yöntemlerine Göre Hesaplanan Enerji Değerler

ŀ	Enerji	B3LYP	HF
	(a.u.)	-871.048	-865.894

3.4.17. 3-Benzil-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (23)

Şekil 3.65. 23 tipi bileşiğin(6-31G) gausview görünümü

Tablo 3.	125. 2	23 tipi	bileşiğin	TMS'ye	göre ¹³	C ve	¹ H-NMR	deneysel	ve	teorik
(B3LYP.	HF. B	3LYP(I	DMSO) ve	HF (DM	SO)) kin	nvasal	kavma de	ğerleri (δ/r	opm))

No	Deney.	DFT	Fark	DFT/ DMSO	Fark/ DMSO	HF	Fark	HF/ DMSO	Fark/
				DNISO	DNISO			DWISO	DNISO
C1	145.72	152.79	-7.07	154.59	-8.87	145.55	0.17	148.41	-2.69
C2	154.51	148.52	5.99	149.61	4.90	147.41	7.10	148.60	5.91
C3	151.26	159.93	-8.67	161.61	-10.35	167.95	-16.69	171.06	-19.80
C4	124.64	133.40	-8.76	131.60	-6.96	121.26	3.38	119.53	5.11
C5	121.77	128.95	-7.18	130.90	-9.13	118.53	3.24	121.58	0.19
C6	112.83	114.93	-2.10	117.18	-4.35	107.44	5.39	110.15	2.68
C7	146.07	147.70	-1.63	149.88	-3.81	138.70	7.37	140.26	5.81
C8	149.24	148.04	1.20	147.43	1.81	138.88	10.36	137.38	11.86
C9	115.52	119.61	-4.09	117.82	-2.30	117.00	-1.48	113.72	1.80

Tablo 3.125'in devamı									
C10	30.00	43.19	-13.19	42.73	-12.73	27.82	2.18	27.36	2.64
C11	135.77	138.06	-2.29	138.33	-2.56	129.36	6.41	129.67	6.10
C12	128.75	133.12	-4.37	133.06	-4.31	126.26	2.49	126.19	2.56
C13	128.38	130.93	-2.55	131.34	-2.96	124.45	3.93	124.74	3.64
C14	126.64	129.56	-2.92	130.01	-3.37	123.20	3.44	123.53	3.11
C15	128.38	130.83	-2.45	131.22	-2.84	124.35	4.03	124.67	3.71
C16	128.75	133.83	-5.08	133.66	-4.91	126.51	2.24	126.35	2.40
H17	11.93	7.79	4.14	8.26	3.67	7.16	4.77	7.58	4.35
H18	9.43	8.52	0.91	8.70	0.73	8.90	0.53	9.17	0.26
H19	7.05	7.57	-0.52	7.87	-0.82	7.36	-0.31	7.82	-0.77
H20	6.83	7.28	-0.45	7.75	-0.92	7.10	-0.27	7.65	-0.82
H21	7.27	8.23	-0.96	8.17	-0.90	3.61	3.66	4.59	2.68
H22	9.43	4.38	5.05	5.51	3.92	4.77	4.66	5.10	4.33
H23	9.52	5.77	3.75	6.17	3.35	8.95	0.57	8.52	1.00
H24	4.02	4.35	-0.33	4.60	-0.58	3.09	0.93	3.43	0.59
H25	4.02	4.91	-0.89	4.96	-0.94	3.63	0.39	3.80	0.22
H26	7.29	8.19	-0.90	8.34	-1.05	7.80	-0.51	7.98	-0.69
H27	7.32	8.23	-0.91	8.40	-1.08	7.86	-0.54	8.06	-0.74
H28	7.24	8.18	-0.94	8.36	-1.12	7.79	-0.55	8.00	-0.76
H29	7.29	8.25	-0.96	8.43	-1.14	7.80	-0.51	8.01	-0.72
H30	7.32	8.25	-0.93	8.41	-1.09	7.61	-0.29	7.81	-0.49

Tablo 3.126. 23 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	τ CNNC(35)	14	12
2	τ CCCC(71)	17	16
3	τ CCCN(24)	25	23
4	τ CNNC(27)	37	39
5	τ CCCC(15)	55	55
6	δ CCC(33)	65	73
7	τ CNNC(11), τ NNCC(22), τ NCNC(10)	104	90
8	τ CNNC(47), τ CCNN(10)	121	118
9	δ NCC(20), τ CCCN(16)	152	146
10	τ NNCC(10)	177	184
11	τ CCCN(26)	205	194
12	τ CCCN(11), τ NNCC(17)	217	202
13	τ CCCC(17)	225	232
14	τ HOCC(24)	257	243
15	τ HNNC(23), τ CNNC(26), τ NNCC(21)	266	273
16	δ NNC(11)	295	306
17	δ CCC(12), δ OCC(73)	302	310
18	δ CCC(33), τ HCCC(13)	318	326
19	τ CCCN(10), τ OCCC(13), τ CCCC(16)	332	339
20	τ CCCC(80)	400	343
21	τ HOCC(70)	406	408
22	δ CCC(13)	421	422
23	τ OCCC(36)	435	440
24	τ HNNC(39), τ NCNC(10)	438	450
25	δ OCC(11), τ CCCC(13)	454	462
26	δ OCC(12), τ CCCC(15)	469	467
27	τ CCCN(18), τ CCNN(17)	490	484

Tablo	3.126'nın	devamı
-------	-----------	--------

28	δ OCN(12)	525	551
29	δ CCC(21), δ OCC(24)	558	560
30	δ CCC(27)	573	584
31	$\tau OCCC(24) \tau CCCC(16)$	610	599
32	$\frac{\delta \operatorname{CCC}(43)}{\delta \operatorname{CCC}(43)}$	612	612
33	τ NCNC(30) τ NNCC(10)	625	640
34	$\frac{1}{8} OCN(12)$	638	663
35	τ HCCC(12) τ OCCC(40) τ CCCC(15)	670	683
36	$\tau CCCC(43), \tau HCCC(10)$	682	604
30	$\sum_{i=1}^{n} CCC(12)$	697	706
37	= ONINC(70)	700	700
38 20	$\tau \text{ONNC}(70)$	700	719
39	$\tau HUUU(34)$	705	/02
40	V NN(10), 0 CNN(18)	/02	770
41	$VCC(13), VOC(14), \delta CCC(13)$	/64	//5
42	τ HCCC(37)	//0	/90
43	$v CC(11), \delta CNN(10)$	///	808
44	δ NCN(17), δ CCC(13), δ CCN(16)	807	824
45	δ CNN(19), δ CCN(14), τ HCCC(10)	814	848
46	τ ΗССС(99)	824	857
47	τ HCCC(45)	865	918
48	τ HCCC(81)	880	929
49	τ HCCC(30)	895	937
50	δ HCC(32), τ HCCC(31)	901	962
51	τ HCNN(58), τ CCNN (10)	927	963
52	τ HCCC(85), τ CCCC(12)	931	978
53	ν CC(14), δ CCC(13)	955	981
54	τ HCCC(35), τ CCCC(25)	958	987
55	ν CC(25), δ NNC(59)	979	1010
56	δ NNC(34)	1001	1015
57	ν CC(19), δ HCC(22)	1017	1042
58	v NC(12), v NN(36)	1056	1061
59	v CC(32), δ HCC(27)	1068	1089
60	v CC(16), v OC(14), δ HOC(15)	1096	1090
61	ν CC(18), δ HCC(20)	1124	1091
62	δ HOC(26), δ HCC(38)	1137	1107
63	δ HCC(38)	1142	1136
64	v NC(15), v NN(14)	1156	1166
65	δ HCC(34), τ HCCC(25)	1162	1171
66	ν CC(15), δ HCC(71)	1163	1178
67	v CC(18), δ HCC(14), τ HCCC(13)	1179	1183
68	δ HOC(30), δ HCC(15)	1181	1193
69	v NN(14), δ NCN(11), δ CNN(16)	1219	1216
70	ν OC(25), δ HCC(36)	1240	1228
71	v NC(21), v NN(17), τ HCCC(40)	1272	1271
72	v CC(10), v OC(35)	1282	1275
73	δ HOC(40), δ HCC(24)	1304	1309
74	ν CC(55), δ HCC(17)	1306	1321
75	v CC(13),δ HCC(57)	1311	1323
76	ν CC(18), δ HOC(10), δ HCN(13)	1339	1330
77	v NC(10), δ HNN(72)	1342	1380
78	δ HCN(54)	1383	1396
79	v NC(21), v CC(17), δ HCN(10), τ HCCC(16)	1388	1425
80	δ HCH(91)	1430	1448
81	v CC(27). δ HCC(25)	1439	1454
82	ν CC(15), δ HOC(16), δ HCC(13)	1458	1463
83	ν CC(12),δ HCC(60), δ CCC(13)	1484	1501

Tablo 3.12	6.' nın devamı		
84	ν OC(18), δ HCC(41)	1498	1524
85	v CC(28), δ CCC(12)	1581	1607
86	v CC(21), v NC(24)	1583	1614
87	v CC(11), v NC(24)	1588	1630
88	v CC(47), δ HCC(18)	1602	1635
89	v CC(42)	1603	1683
90	v NC(39), v CC(12)	1623	1719
91	v OC(78)	1772	1778
92	v CH(92)	2924	2881
93	v CH(92)	2961	2918
94	v CH(28)	3013	2980
95	v CH(85)	3052	2998
96	v CH(41)	3053	3001
97	v CH(91)	3055	3001
98	v CH(50)	3064	3011
99	v CH(91)	3073	3020
100	v CH(42)	3078	3020
101	v CH(49)	3083	3031
102	v CH(26)	3125	3071
103	v NH(100)	3558	3556
104	v OH(51)	3643	3750
105	v OH(51)	3691	3777

Şekil 3.66. 23 tipi bileşiğin teorik (B3LYP(d,p)(a) ve HF(d,p)(b)) IR spektrumları

Şekil 3.67. 23 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.127. 23 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(32)-N(31)	104.344	104.841	27	C(14)-C(15)-H(29)	120.122	120.096
2	C(1)-N(33)-C(2)	108.021	107.735	28	H(29)-C(15)-C(16)	119.783	119.794
3	N(32)-C(1)-N(33)	111.658	111.414	29	C(14)-C(15)-C(16)	120.095	120.110
4	N(32)-N(31)-H(17)	120.086	120.794	30	C(15)-C(16)-H(30)	119.808	119.665
5	H(17)-N(31)-C(2)	124.701	125.424	31	H(30)-C(16)-C(11)	119.485	119.668
6	N(32)-N(31)-C(2)	114.527	113.441	32	C(1)-N(33)-N(34)	121.416	122.112
7	N(31)-C(2)-O(35)	130.495	129.835	33	N(33)-N(34)-C(3)	119.076	117.513
8	O(35)-C(2)-N(33)	128.536	128.008	34	N(34)-C(3)-H(18)	110.913	112.234
9	C(2)-N(33)-N(34)	125.598	123.424	35	H(18)-C(3)-C(4)	113.572	114.546
10	C(1)-C(10)-C(11)	113.923	111.073	36	C(3)-C(4)-C(5)	116.470	115.939
11	C(1)-C(10)-H(24)	108.450	107.785	37	C(3)-C(4)-C(9)	124.497	124.484
12	C(1)-C(10)-H(25)	107.402	107.622	38	C(4)-C(5)-H(19)	119.648	120.279
13	H(24)-C(10)-H(25)	105.500	106.117	39	H(19)-C(5)-C(6)	119.442	119.296
14	H(24)-C(10)-C(11)	110.287	110.351	40	C(4)-C(5)-C(6)	120.906	120.421
15	H(25)-C(10)-C(11)	110.887	110.534	41	C(5)-C(6)-C(7)	119.588	119.705
16	C(10)-C(11)-C(12)	120.506	120.549	42	C(5)-C(6)-H(20)	120.492	120.327

Tablo 3.127.' nin devamı

17	C(10)-C(11)-C(16)	120.736	120.616	43	H(20)-C(6)-C(7)	119.918	119.966
18	C(11)-C(12)-H(26)	119.460	119.695	44	C(6)-C(7)-O(37)	124.737	124.026
19	H(26)-C(12)-C(13)	119.822	119.635	45	C(6)-C(7)-C(8)	120.329	120.296
20	C(12)-C(13)-H(27)	119.791	119.776	46	C(7)-O(37)-H(21)	110.103	111.788
21	H(27)-C(13)-C(14)	120.128	120.125	47	O(37)-C(7)-C(8)	114.931	115.673
22	C(11)-C(12)-C(13)	120.718	120.670	48	C(7)-C(8)-O(36)	120.295	120.590
23	C(12)-C(13)-C(14)	120.081	120.099	49	C(8)-O(36)-H(22)	107.803	110.053
24	C(13)-C(14)-H(28)	120.184	120.196	50	O(36)-C(8)-C(9)	119.908	119.433
25	H(28)-C(14)-C(15)	120.175	120.183	51	C(8)-C(9)-H(23)	117.867	118.460
26	C(13)-C(14)-C(15)	119.641	119.621	52	H(23)-C(9)-C(4)	121.624	121.479

Tablo 3.128. 23 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	g Uzunlukları	B3LYP	HF	Ba	ğ Uzunlukları	B3LYP	HF
1	C(1)-N(32)	1.3000	1.2679	21	C(15)-H(29)	1.0862	1.0758
2	C(1)-N(33)	1.3900	1.3817	22	C(15)-C(16)	1.3949	1.3841
3	C(1)-C(10)	1.4995	1.4983	23	C(16)-H(30)	1.0869	1.0765
4	N(32)-N(31)	1.3822	1.3709	24	C(16)-C(11)	1.3990	1.3885
5	N(31)-H(17)	1.0066	0.9904	25	N(34)-C(3)	1.2901	1.2602
6	N(31)-C(2)	1.3737	1.3487	26	C(3)-H(18)	1.0916	1.0797
7	C(2)-O(35)	1.2176	1.2004	27	C(3)-C(4)	1.4667	1.4824
8	C(2)-N(33)	1.4216	1.3825	28	C(4)-C(5)	1.4044	1.3882
9	N(33)-N(34)	1.3925	1.3976	29	C(4)-C(9)	1.4084	1.3942
10	C(1)-C(10)	1.4995	1.4983	30	C(5)-H(19)	1.0856	1.0757
11	C(10)-H(24)	1.0977	1.0863	31	C(5)-C(6)	1.3930	1.3851
12	C(10)-H(25)	1.0964	1.0851	32	C(6)-H(20)	1.0873	1.0767
13	C(10)-C(11)	1.5139	1.5125	33	C(6)-C(7)	1.3906	1.3787
14	C(11)-C(12)	1.3996	1.3876	34	C(7)-O(37)	1.3712	1.3555
15	C(12)-H(26)	1.0870	1.0765	35	O(37)-H(21)	0.9655	0.9427
16	C(12)-C(13)	1.3946	1.3852	36	C(7)-C(8)	1.4089	1.3938
17	C(13)-H(27)	1.0862	1.0757	37	C(8)-O(36)	1.3612	1.3460
18	C(13)-C(14)	1.3957	1.3844	38	O(36)-H(22)	0.9689	0.9447
19	C(14)-H(28)	1.0861	1.0757	39	C(8)-C(9)	1.3862	1.3778
20	C(14)-C(15)	1.3954	1.3854	40	C(9)-H(23)	1.0814	1.0717

Tablo 3.129. 23 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.535	0.605	H20	0.085	0.155
C2	0.768	1.024	H21	0.330	0.360
C3	0.076	0.194	H22	0.336	0.371
C4	0.143	-0.098	H23	0.131	0.241
C5	-0.140	-0.156	H24	0.131	0.157
C6	-0.128	-0.192	H25	0.147	0.174
C7	0.298	0.341	H26	0.083	0.150
C8	0.313	0.354	H27	0.085	0.150
С9	-0.117	-0.151	H28	0.083	0.149
C10	-0.320	-0.289	H29	0.084	0.149
C11	0.132	0.005	H30	0.081	0.148

Tablo 3.129.'u	Tablo 3.129.'un devami										
C12	-0.108	-0.144	N31	-0.413	-0.544						
C13	-0.085	-0.145	N32	-0.340	-0.343						
C14	-0.085	-0.150	N33	-0.438	-0.639						
C15	-0.084	-0.145	N34	-0.277	-0.271						
C16	-0.106	-0.136	035	-0.527	-0.654						
H17	0.287	0.338	O36	-0.564	-0.656						
H18	0.112	0.168	O37	-0.585	-0.682						
H19	0.093	0.162									

E_{LUMO} (B3LYP) : -0.05115 Hatree

E_{LUMO} (HF) : 0.09621 Hatree

Şekil 3.68. 23 Molekülünün B3LYP 6-31G ve HF 6-31G yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.130. 23 tipi bileşiğin B3LYP 6-31G ve HF 6-31G yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	0.5646	1.6722
$\mu_{\rm v}$	-5.2162	-6.5160
μ _z	0.8140	1.1232
μ _{Toplam}	5.3095	6.8202

Tablo 3.131. 23 tipi bileşiğin B3LYP 6-31G ve HF 6-31G yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1062.785	-1056.406

3.4.18. 3-(*p*-Metilbenzil)-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (24)

Şekil 3.69. 24 tipi bileşiğin(6-31G(d,p)) gausview görünümü

Tablo	3.132.	24	tipi	bileşiğin	TMS'ye	göre	¹³ C	ve	¹ H-NMR	deneysel	ve	teorik
(B3LY	P, HF,	B3L	YP(I	DMSO) v	e HF (DM	(SO))	kimy	asal	kayma de	ğerleri (δ/j	opm)

No Donov		DET	Fault	DFT/	Fark/	шБ	Fault	HF/	Fark/
INO	Deney.	DF I	гагк	DMSO	DMSO	HF	rark	DMSO	DMSO
C1	145.70	152.83	-7.13	154.62	-8.92	145.63	0.07	148.45	-2.75
C2	154.41	148.52	5.89	149.62	4.79	147.45	6.96	148.63	5.78
C3	151.25	159.94	-8.69	161.65	-10.40	167.89	-16.64	171.03	-19.78
C4	124.63	133.41	-8.78	131.60	-6.97	121.32	3.31	119.55	5.08
C5	121.74	129.00	-7.26	130.97	-9.23	118.47	3.27	121.53	0.21
C6	112.79	114.87	-2.08	117.14	-4.35	107.44	5.35	110.15	2.64
C7	146.19	147.69	-1.50	149.90	-3.71	138.65	7.54	140.23	5.96
C8	149.20	148.02	1.18	147.42	1.78	138.87	10.33	137.38	11.82
C9	115.49	119.67	-4.18	117.86	-2.37	117.00	-1.51	113.71	1.78
C10	30.59	42.85	-12.26	42.38	-11.79	27.45	3.14	26.97	3.62
C11	128.59	135.28	-6.69	135.20	-6.61	125.93	2.66	125.92	2.67
C12	132.64	133.26	-0.62	133.04	-0.40	126.79	5.85	126.66	5.98
C13	128.92	131.93	-3.01	132.20	-3.28	124.31	4.61	124.38	4.54
C14	135.66	140.05	-4.39	141.47	-5.81	133.07	2.59	134.23	1.43
C15	128.92	131.78	-2.86	132.04	-3.12	124.46	4.46	124.71	4.21
C16	132.64	133.93	-1.29	133.61	-0.97	127.51	5.13	127.19	5.45
C17	20.51	30.35	-9.84	29.92	-9.41	17.46	3.05	17.01	3.50

Tablo	Tablo 3.132.'nin devamı											
H18	11.90	7.78	4.12	8.24	3.66	7.16	4.74	7.57	4.33			
H19	9.41	8.51	0.90	8.69	0.72	8.90	0.51	9.16	0.25			
H20	7.06	7.56	-0.50	7.87	-0.81	7.36	-0.30	7.81	-0.75			
H21	6.82	7.28	-0.46	7.76	-0.94	7.09	-0.27	7.65	-0.83			
H22	7.30	8.23	-0.93	8.17	-0.87	3.60	3.70	4.58	2.72			
H23	9.41	4.38	5.03	5.51	3.90	4.77	4.64	5.10	4.31			
H24	9.72	5.76	3.96	6.17	3.55	8.95	0.77	8.52	1.20			
H25	3.95	4.33	-0.38	4.56	-0.61	3.07	0.88	3.40	0.55			
H26	3.95	4.84	-0.89	4.88	-0.93	3.55	0.40	3.72	0.23			
H27	7.26	8.10	-0.84	8.23	-0.97	7.68	-0.42	7.86	-0.60			
H28	7.18	8.05	-0.87	8.22	-1.04	7.60	-0.42	7.79	-0.61			
H29	7.18	8.09	-0.91	8.26	-1.08	7.70	-0.52	7.91	-0.73			
H30	7.24	8.16	-0.92	8.30	-1.06	7.60	-0.36	7.77	-0.53			
H31	2.24	3.33	-1.09	3.40	-1.16	2.63	-0.39	2.73	-0.49			
H32	2.24	2.93	-0.69	3.02	-0.78	2.16	0.08	2.28	-0.04			
H33	2.24	2.97	-0.73	3.06	-0.82	2.78	-0.54	2.81	-0.57			

 Tablo 3.133.
 24 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	δ CNC(10), τ CNNC(30), τ CCCC(26)	11	10
2	δ CNC(11), τ CCCC(67)	16	11
3	τ CCCN(22)	25	16
4	τ CNNC(26)	36	23
5	τ HCCC(82)	43	37
6	δ CCC(11), τ CCCN(10), τ CCCC(19)	47	47
7	δ CCN(12), τ CCNN(13), τ NNCC(20)	62	67
8	τ CCCN(19)	98	88
9	τ CNNC(12), τ NNCC(25), τ NCNC(11)	119	117
10	δ NCC(18), τ CCCC(22)	141	145
11	τ CCCC(14), τ CCCN(11)	156	146
12	δ CCC(11), τ NNCC(11)	177	190
13	τ CCCN(32)	208	195
14	δ NCN(10), τ CCCN(12), τ NNCC(17)	217	201
15	τ HOCC(64)	258	242
16	δ CCC(24), τ HNNC(16), τ CNNC(23)	260	264
17	δ CCC(49), τ NNCC(13)	277	285
18	δ NCC(10), δ NNC(10)	287	302
19	δ OCC(70)	302	309
20	τ CCCC(38)	313	316
21	τ CCCN(10), τ OCCC(30), τ CCCC(16)	332	339
22	δ CCC(40)	365	343
23	τ HCCC(17), τ CCCC(82)	402	368
24	τ HOCC(69)	407	411
25	δ CCC(11), τ HNNC(11)	421	422
26	τ HNNC(24), τ OCCC(14)	434	440
27	τ HNNC(23), τ OCCC(25)	437	449
28	δ CCC(11), δ OCC(12)	450	460
29	δ OCC(23), τ CCCC(14)	473	467
30	τ CCCN(17), τ CCNN(16)	490	492
31	δ CCC(12), τ CCCC(21)	511	513
32	ν NN(14), ν CC(10), δ OCN(10)	540	556
33	δ CCC(29), δ OCC(24)	561	575

Tablo 3.133.' ün devamı

		600	
34	τ OCCC(27), τ CCCC(18)	609	599
35	τ NNCC(11), τ NCNC(29)	623	631
36	δ CCC(13)	634	642
37	δ CCC(27)	636	660
38	τ HCCC(12), τ OCCC(40), τ CCCC(15)	670	681
39	δ CCC(10), τ CCCC(20)	684	697
40	$\delta CCC(10) \tau CCCC(21)$	689	706
40	$\tau ONNC(72)$	700	700
42	v NN(11) v CC(28) & CCC(13)	700	725
42	(11), (20), (20), (20)	722	750
43	V CC(13), V HCCC(38)	748	705
44	$V CC(13), V OC(13), \delta CCC(12)$	/64	//6
45	τ HCCC(39)	/6/	/86
46	v NC(12), 8 CNN(25)	776	808
47	ν CC(13), τ HCCC(19)	806	814
48	δ NCN(14), δ CCC(10), δ CCN(12)	808	845
49	τ HCCC(100)	820	852
50	ν CC(18), τ HCCC(19)	835	855
51	τ HCCC(40)	866	916
52	τ HCCC(65)	881	929
53	τ HCCN(64)	900	962
54	τ HCCC(50) τ CCCC(17)	925	962
55	τ HCCC(56), τ HCNN(21)	026	960
55	τ HCCC(27), τ HCNN(24)	920	909
50	(1000(27), (10000(24)))	927	9/9
57	V CC(15), 0 CCC(12)	955	981
58	$v CC(11), HCH(11), \tau HCCC(50)$	975	984
59	δ CCC(34), δ NNC(16)	999	1005
60	δ CCC(12), δ NNC(24)	1003	1042
61	τ HCCC(60)	1025	1048
62	v NC(13), v NN(36)	1055	1072
63	v CC(17), v OC(14), δ HOC(15)	1096	1088
64	ν CC(10), δ HCC(54)	1101	1091
65	v CC(17), δ HCC(20)	1124	1107
66	δ HOC(26), δ HCC(38)	1138	1136
67	v NC(15), v NN(13)	1157	1149
68	δ HCC(63)	1163	1174
69	$v CC(18) \delta HCC(76)$	1168	1178
70	v CC(26) & HCC(11)	1181	1180
70	$v \in C(20), 0 \text{ HeC}(11)$ $v \in C(24), S \text{ HOC}(20), S \text{ HCC}(15) = \text{HCCN}(12)$	1101	1100
71	V CC(34), 0 HOC(29), 0 HCC(13), 1 HCCN(12)	1102	1192
72	$V CC(20), 0 \Pi CC(20), 0 CCC(11)$	1191	1190
73	V NN(14), 0 NCN(11), 0 CNN(15)	1219	1216
74	ν OC(24), δ HCC(36)	1240	1221
75	ν NC(21), τ HCCN(35)	1272	1271
76	ν CC(10), ν OC(36), δ HCC(10)	1282	1275
77	ν CC(23), δ HCC(56)	1294	1309
78	ν CC(16), δ HOC(23), δ HCC(16)	1305	1316
79	ν CC(24), δ HOC(17)	1305	1321
80	v CC(13), δ HOC(10), δ HCN(14)	1339	1323
81	$v CC(17), v NC(10), \delta HNN(71)$	1342	1380
82	δ HCH(91)	1372	1394
83	δ HCN(55)	1382	1396
84	v NC(21) v CC(16) τ HCCN(19)	1387	1412
85	$v CC(20) \delta HCC(39)$	1399	1425
Q.	\$ HCH(00)	1/20	1425
00 97	$\begin{array}{c} 0 \text{ IICII}(70) \\ 8 \text{ IICI}(42) - \text{ IICCC}(20) \end{array}$	1427	144/
0/	0 HCH(43), 1 HCCC(20) 8 HCH(43) - HCCC(14)	1440	1432
88	$0 \Pi (H(42), T \Pi (U(10)))$	1450	1401
89	v CC(14),ð HOC(16), ð HCC(13)	1458	1463

Tablo	3.133.' ün devamı		
90	ν OC(18), δ HCC(41)	1498	1522
91	δ CCC(15), δ HCC(56)	1503	1524
92	ν CC(24), δ CCC(14)	1569	1595
93	v NC(23), v CC(19)	1583	1614
94	v NC(26)	1588	1635
95	v CC(45)	1604	1642
96	ν CC(58), δ HCC(20)	1611	1683
97	v NC(39), v CC(12)	1623	1719
98	v OC(78), v NC(10)	1771	1777
99	v CH(98)	2920	2862
100	v CH(92)	2923	2879
101	v CH(92)	2960	2912
102	v CH(97)	2978	2917
103	v CH(98)	3004	2935
104	v CH(27)	3013	2980
105	v CH(91)	3048	2993
106	v CH(99)	3048	2997
107	v CH(41)	3053	3000
108	v CH(99)	3063	3012
109	v CH(99)	3067	3016
110	v CH(42)	3078	3020
111	v CH(26)	3126	3071
112	v NH(100)	3558	3557
113	v OH (51)	3643	3750
114	v OH (51)	3692	3777

Şekil 3.70. 24 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p)) ve HF 6-31G(d,p)) IR spektrumları

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF
330.04/225.31	3.7567/5.5029
299.60/213.98	4.1383/5.7941
275.96/210.11	4.4929/5.9009

Şekil 3.71. 24 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.134. 24 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(35)-N(34)	104.342	104.845	29	H(31)-C(17)-H(33)	107.195	107.467
2	C(1)-N(36)-C(2)	108.050	107.756	30	C(13)-C(14)-C(15)	117.877	117.928
3	N(35)-C(1)-N(36)	111.637	111.388	31	C(14)-C(15)-H(29)	119.450	119.565
4	N(35)-N(34)-H(18)	120.099	120.789	32	H(29)-C(15)-C(16)	119.457	119.368
5	H(18)-N(34)-C(2)	124.717	125.414	33	C(14)-C(15)-C(16)	121.093	121.067
6	N(35)-N(34)-C(2)	114.537	113.445	34	C(15)-C(16)-H(30)	119.593	119.480
7	N(34)-C(2)-O(38)	130.502	129.836	35	H(30)-C(16)-C(11)	119.559	119.676
8	O(38)-C(2)-N(36)	128.536	128.010	36	C(1)-N(36)-N(37)	121.429	122.140
9	C(2)-N(36)-N(37)	125.548	123.411	37	N(36)-N(37)-C(3)	119.020	117.508
10	C(1)-C(10)-C(11)	114.064	114.190	38	N(37)-C(3)-H(19)	110.945	112.248
11	C(1)-C(10)-H(25)	108.362	107.715	39	H(19)-C(3)-C(4)	113.549	114.558
12	C(1)-C(10)-H(26)	107.403	107.582	40	C(3)-C(4)-C(5)	116.427	115.957
13	H(25)-C(10)-H(26)	105.436	106.071	41	C(3)-C(4)-C(9)	124.545	124.463
14	H(25)-C(10)-C(11)	110.273	110.394	42	C(4)-C(5)-H(20)	119.643	120.278
15	H(26)-C(10)-C(11)	110.894	110.515	43	H(20)-C(5)-C(6)	119.434	119.300
16	C(10)-C(11)-C(12)	120.816	120.900	44	C(4)-C(5)-C(6)	120.919	120.419
17	C(10)-C(11)-C(16)	120.939	120.843	45	C(5)-C(6)-C(7)	119.583	119.706
18	C(11)-C(12)-H(27)	119.541	119.797	46	C(5)-C(6)-H(21)	120.493	120.328
19	H(27)-C(12)-C(13)	119.607	119.324	47	H(21)-C(6)-C(7)	119.921	119.964
20	C(12)-C(13)-H(28)	119.457	119.250	48	C(6)-C(7)-O(40)	124.730	124.020
21	H(28)-C(13)-C(14)	119.459	119.722	49	C(6)-C(7)-C(8)	120.328	120.295

Tablo 3.134.' ün devamı

C(12)-C(13)-C(14)	121.084	121.028	50	C(7)-O(40)-H(22)	110.094	111.778
C(13)-C(14)-C(17)	121.073	121.499	51	O(40)-C(7)-C(8)	114.939	115.680
C(14)-C(17)-H(31)	111.285	111.199	52	C(7)-C(8)-O(39)	120.283	120.589
C(14)-C(17)-H(32)	111.452	111.304	53	C(8)-O(39)-H(23)	107.785	110.040
C(14)-C(17)-H(33)	111.461	111.010	54	O(39)-C(8)-C(9)	119.912	119.433
H(31)-C(17)-H(32)	107.227	107.903	55	C(8)-C(9)-H(24)	117.866	118.468
H(32)-C(17)-H(33)	108.004	107.786	56	H(24)-C(9)-C(4)	121.630	121.474
	C(12)-C(13)-C(14) C(13)-C(14)-C(17) C(14)-C(17)-H(31) C(14)-C(17)-H(32) C(14)-C(17)-H(33) H(31)-C(17)-H(32) H(32)-C(17)-H(33)	C(12)-C(13)-C(14) 121.084 C(13)-C(14)-C(17) 121.073 C(14)-C(17)-H(31) 111.285 C(14)-C(17)-H(32) 111.452 C(14)-C(17)-H(33) 111.461 H(31)-C(17)-H(32) 107.227 H(32)-C(17)-H(33) 108.004	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Tablo 3.135. 24 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Ba	ağ Uzunlukları	B3LYP	HF	Ba	ğ Uzunlukları	B3LYP	HF
1	C(1)-N(35)	1.3000	1.2680	22	C(14)-C(15)	1.4004	1.3925
2	C(1)-N(36)	1.3902	1.3819	23	C(15)-H(29)	1.0873	1.0770
3	C(1)-C(10)	1.4996	1.4985	24	C(15)-C(16)	1.3936	1.3805
4	N(35)-N(34)	1.3824	1.3711	25	C(16)-H(30)	1.0871	1.0767
5	N(34)-H(18)	1.0065	0.9904	26	C(16)-C(11)	1.3984	1.3903
6	N(34)-C(2)	1.3736	1.3485	27	N(37)-C(3)	1.2900	1.2601
7	C(2)-O(35)	1.2177	1.2006	28	C(3)-H(19)	1.0915	1.0797
8	C(2)-N(36)	1.4214	1.3824	29	C(3)-C(4)	1.4669	1.4825
9	N(36)-N(37)	1.3926	1.3975	30	C(4)-C(5)	1.4044	1.3882
10	C(10)-H(24)	1.0977	1.0866	31	C(4)-C(9)	1.4085	1.3942
11	C(10)-H(25)	1.0965	1.0851	32	C(5)-H(20)	1.0856	1.0757
12	C(10)-C(11)	1.5133	1.5120	33	C(5)-C(6)	1.3930	1.3851
13	C(11)-C(12)	1.3986	1.3839	34	C(6)-H(21)	1.0873	1.0767
14	C(12)-H(27)	1.0871	1.0767	35	C(6)-C(7)	1.3906	1.3787
15	C(12)-C(13)	1.3937	1.3873	36	C(7)-O(40)	1.3712	1.3555
16	C(13)-H(28)	1.0873	1.0764	37	O(40)-H(22)	0.9655	0.9427
17	C(13)-C(14)	1.4004	1.3858	38	C(7)-C(8)	1.4088	1.3937
18	C(14)-C(17)	1.5105	1.5106	39	C(8)-O(39)	1.3613	1.3460
19	C(17)-H(31)	1.0974	1.0857	40	O(39)-H(23)	0.9689	0.9447
20	С(17)-Н(32)	1.0940	1.0837	41	C(8)-C(9)	1.3862	1.3779
21	C(17)-H(33)	1.0942	1.0863	42	C(9)-H(24)	1.0814	1.0717

Tablo 3.136. 24 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.535	0.605	H21	0.085	0.155
C2	0.768	1.024	H22	0.330	0.360
C3	0.077	0.194	H23	0.336	0.371
C4	0.143	-0.098	H24	0.113	0.241
C5	-0.140	-0.156	H25	0.130	0.156
C6	-0.128	-0.192	H26	0.146	0.173
C7	0.298	0.341	H27	0.081	0.149
C8	0.313	0.354	H28	0.076	0.144
С9	-0.117	-0.151	H29	0.076	0.144
C10	-0.320	-0.287	H30	0.080	0.148
C11	0.129	-0.005	H31	0.125	0.127
C12	-0.108	-0.140	H32	0.113	0.122
C13	-0.120	-0.161	H33	0.114	0.134
C14	0.126	-0.005	N34	-0.413	-0.544

Tablo 3.136.'nın devamı C15 -0.119 -0.154 N35 -0.340 -0.344 C16 -0.106 -0.127 N36 -0.438 -0.639 C17 -0.381 -0.342 N37 -0.277 -0.270 0.286 -0.655 H18 0.338 038 -0.527 H19 0.112 0.168 039 -0.564 -0.656 -0.682 0.093 0.162 -0.585 H20 **O40**

E_{LUMO} (B3LYP) : -0.05050 Hatree

Şekil 3.72. 24 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.137. 24 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	1.0293	2.1001
$\mu_{\rm v}$	-5.2121	-6.4949
μ _z	0.8095	1.1613
μ _{Toplam}	5.3740	6.9241

Tablo 3.138. 24 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1102.106	-1095.446

3.4.19. 3-(*p*-Metoksibenzil)-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (25)

Şekil 3.73. 25 tipi bileşiğin (6-31G(d,p)) gausview görünümü

Tablo	3.139.	25	tipi	bileşiğin	TMS'ye	göre	¹³ C v	ve	¹ H-NMR	deneysel	ve	teorik
(B3LY	P, HF,	B3L	.YP(l	DMSO) v	e HF (DM	(SO))	kimyas	sal	kayma deg	ğerleri (δ/p	opm)

No	Domosi	DET	Ford	DFT/	Fark/	ПЕ	Ford	HF/	Fark/
INO	Deney.	DFI	гагк	DMSO	DMSO	HF	гагк	DMSO	DMSO
C1	149.36	152.85	-3.49	154.60	-5.24	145.54	3.82	148.43	0.93
C2	154.59	148.54	6.05	149.64	4.95	147.44	7.15	148.62	5.97
C3	151.41	159.88	-8.47	161.61	-10.20	167.86	-16.45	170.97	-19.56
C4	124.80	133.44	-8.64	131.61	-6.81	121.26	3.54	119.52	5.28
C5	121.90	128.94	-7.04	130.92	-9.02	118.53	3.37	121.62	0.28
C6	112.97	114.87	-1.90	117.15	-4.18	107.42	5.55	110.14	2.83
C7	145.86	147.67	-1.81	149.89	-4.03	138.69	7.17	140.25	5.61
C8	146.54	148.02	-1.48	147.42	-0.88	138.89	7.65	137.37	9.17
С9	115.67	119.67	-4.00	117.85	-2.18	117.05	-1.38	113.74	1.93
C10	30.31	42.54	-12.23	42.05	-11.74	27.31	3.00	26.82	3.49
C11	127.67	129.47	-1.80	129.53	-1.86	123.98	3.69	124.65	3.02
C12	129.96	134.24	-4.28	134.66	-4.70	128.76	1.20	128.88	1.08
C13	113.90	112.43	1.47	113.54	0.36	117.86	-3.96	117.98	-4.08
C14	154.59	160.56	-5.97	160.80	-6.21	153.41	1.18	153.07	1.52
C15	113.90	120.84	-6.94	120.23	-6.33	117.93	-4.03	118.06	-4.16
C16	129.96	135.21	-5.25	134.71	-4.75	129.04	0.92	129.07	0.89

Tablo	3.139.' ı	un devamı							
C17	55.05	60.41	-5.36	60.63	-5.58	53.69	1.36	53.72	1.33
H18	11.78	7.79	3.99	8.25	3.53	7.18	4.60	7.57	4.21
H19	9.32	8.51	0.81	8.69	0.63	8.89	0.43	9.16	0.16
H20	7.10	7.55	-0.45	7.86	-0.76	7.35	-0.25	7.82	-0.72
H21	6.85	7.28	-0.43	7.76	-0.91	7.09	-0.24	7.65	-0.80
H22	7.16	8.23	-1.07	8.17	-1.01	3.60	3.56	4.58	2.58
H23	9.30	4.37	4.93	5.51	3.79	4.77	4.53	5.10	4.20
H24	9.64	5.76	3.88	6.17	3.47	8.95	0.69	8.52	1.12
H25	3.95	4.38	-0.43	4.60	-0.65	3.04	0.91	3.40	0.55
H26	3.95	4.73	-0.78	4.79	-0.84	3.58	0.37	3.77	0.18
H27	7.12	8.06	-0.94	8.24	-1.12	7.78	-0.66	8.00	-0.88
H28	6.85	7.46	-0.61	7.75	-0.90	7.61	-0.76	7.77	-0.92
H29	6.85	7.80	-0.95	7.84	-0.99	7.55	-0.70	7.72	-0.87
H30	7.12	8.19	-1.07	8.33	-1.21	7.60	-0.48	7.82	-0.70
H31	3.60	4.42	-0.82	4.58	-0.98	3.42	0.18	3.61	-0.01
H32	3.60	4.77	-1.17	4.90	-1.30	3.44	0.16	3.63	-0.03
H33	3.60	4.44	-0.84	4.57	-0.97	4.13	-0.53	4.23	-0.63

Tablo 3.140. 25 tipi bilesiğin deneysel ve teorik (B3LYP 6-31G(d,p)) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	τ CCCC(90)	3	10
2	τ CNNC(35)	10	13
3	τ CCCN(22)	23	22
4	$\tau \text{CNNC}(33)$	34	32
5	δ CCC(10), τ CCCC(25)	43	39
6	δ CCN(12), τ CNNC(11), τ CCCN(10), τ CCNN(21)	61	43
7	δ NCC(10), τ COCC(44)	85	66
8	τ CCCN(12), τ COCC(18)	100	87
9	δ NCC(20), τ CCCN(16)	119	116
10	δ NCC(20), τ CCCN(10)	146	117
11	δ CCC(10), τ CCCC(25), τ COCC(16)	160	144
12	δ CCC(11), τ NNCC(11)	176	161
13	τ CCCN(32)	207	179
14	δ OCC(17), δ COC(11)	215	194
15	δ OCC(18), δ COC(15)	222	201
16	τ HCOC(65)	242	242
17	τ HOCC(64)	257	255
18	τ HNNC(23), τ CNNC(23), τ NNCC(26)	267	272
19	τ CCCN(10), τ OCCC(13), τ CCCC(16)	287	301
20	τ CCCC(80)	302	306
21	τ HOCC(70)	323	310
22	τ CCCN(10), τ OCCC(30),τ CCCC(16)	332	338
23	τ CCCC(19), τ OCCC(16)	341	343
24	τ HOCC(69)	408	369
25	τ HCCC(15), τ CCCC(79)	409	416
26	δ CCC(10)	421	419
27	δ CCC(15), δ OCC(14)	430	423
28	τ HNNC(30)	436	441
29	τ HNNC(15), τ OCCC(30)	438	452
30	δ OCC(29)	465	466
31	τ CCCN(17), τ CCNN(17)	490	473
32	τ HCCC(18), τ OCCC(25)	503	509

Tablo 3.140.	'ın devamı		
33	τ HCCC(13), τ OCCC(12)	525	549
34	v NN(11)	545	562
35	δ CCC(29), δ OCC(23)	561	577
36	τ OCCC(27). τ CCCC(18)	609	600
37	$\delta CCC(12)$, $\tau NCNC(24)$	621	602
38	δ CCC(24)	630	642
39	$\tau OCCC(15)$	636	660
40	τ HCCC(12) τ OCCC(40) τ CCCC(15)	670	682
41	τ CCC(28)	683	703
41	$\delta CCC(11)$ $\tau CCCC(16)$	688	713
42	$\tau ONNC(72)$	700	734
44	$v OC(13) v CC(17) \delta CCC(14)$	724	763
45	τ HCCC(12), τ OCCC(10)	755	769
46	$v CC(12) v OC(12) \delta CCC(11)$	765	779
47	τ HCCC(35)	767	787
48	$v NC(12) \delta CNN(25)$	776	809
49	τ HCCC(89)	792	827
50	δ NCN(16) δ CCC(11) δ CCN(15)	808	844
51	$\nu CC(14) \tau HCCC(21)$	814	847
52	$v CC(11), \tau HCCC(21)$	833	875
53	τ HCCC(41)	865	920
54	τ HCCC(75)	881	929
55	τ HCCN(56)	900	962
56	τ HCCC(32)	909	962
57	τ HCCC(47)	923	969
58	τ HCNN(57) τ CCNN(10)	926	979
59	$\frac{\delta CCC(46)}{\delta CCC(46)}$	955	983
60	δ HCC(16)	991	1000
61	δ NNC(36)	1001	1041
62	v OC(73)	1037	1047
63	v NC(12) v NN(36)	1055	1062
64	$v CC(12), \delta HCC(56)$	1094	1089
65	$v CC(17) v OC(14) \delta HOC(16)$	1095	1091
66	$v CC(17) = \delta HCC(20)$	1125	1107
67	δ HCH(25) τ HCOC(27)	1133	1130
68	δ HOC(26), δ HCC(38)	1138	1136
69	v NC(15), v NN(13)	1157	1153
70	δ HCC(60)	1158	1155
71	δ HCC(37)	1163	1178
72	δ HCC(22).δ HCH(13). τ HCOH(22)	1166	1183
73	v CC(13), δ HOC(23),δ HCC(12), τ HCCN(14)	1182	1184
74	$v CC(55), \delta HCC(17)$	1182	1193
75	$v NN(14).\delta NCN(11).\delta CNN(15)$	1219	1214
76	v OC(24), δ HCC(36)	1240	1216
77	v OC(42)	1246	1263
78	v NC(21), τ HCCN(33)	1273	1271
79	v OC(35), v CC(10), δ HCC(10)	1282	1275
80	δ HCC(77)	1290	1299
81	δ HOC(39), δ HCC(24)	1305	1309
82	v CC(21)	1316	1321
83	ν CC(17),δ HOC(10), δ HCN(14)	1339	1323
84	ν NC(10), δ HNN(71)	1342	1380
85	δ HCN(53)	1382	1396
86	v CC(17), v NC(20), δ HCN(10), τ HCCN(20)	1387	1413
87	ν CC(26), δ HCC(34)	1409	1425
88	δ HCH(90)	1427	1448

Tablo 3.140.	'ın devamı		
89	δ HCH(81)	1432	1450
90	δ HCH(74), τ HCOC(12)	1447	1462
91	v CC(14), δ COC(16), δ HCC(13)	1458	1463
92	δ HCH(73), τ HCOC(11)	1462	1475
93	ν OC(18), δ HCC(41)	1498	1524
94	δ HCC(44)	1504	1525
95	ν CC(33), δ CCC(14)	1572	1598
96	v NC(23), v CC(19)	1583	1614
97	v NC(27)	1588	1634
98	v CC(45)	1604	1639
99	ν CC(52), δ HCC(18)	1611	1684
100	v NC(39), v CC(12)	1623	1718
101	v OC(78)	1771	1778
102	v CH(91)	2898	2855
103	v CH(88)	2920	2880
104	v CH(51)	2957	2911
105	v CH(88)	2959	2917
106	v CH(28)	3012	2962
107	v CH(46)	3027	2980
108	v CH(41)	3053	3000
109	v CH(40)	3057	3005
110	v CH(47)	3060	3005
111	v CH(42)	3078	3020
112	v CH(39)	3089	3029
113	v CH(35)	3099	3031
114	v CH(26)	3126	3072
115	v NH(100)	3558	3556
116	v OH(51)	3643	3750
117	v OH(51)	3691	3777

Şekil 3.74. 25 tipi bileşiğin teorik (B3LYP 6-31G(d,p)(a) ve HF 6-31G(d,p)(b)) IR spektrumları

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF
330.18/225.46	3.7550/5.4992
305.98/214.05	4.0520/5.7923
298.40/210.06	4.1550/5.9024

Şekil 3.75. 25 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(35)-N(34)	104.349	104.846	29	C(1)-N(36)-N(37)	121.426	122.098
2	C(1)-N(36)-C(2)	108.065	107.725	30	N(35)-N(34)-H(18)	120.104	120.777
3	N(36)-C(1)-N(35)	111.618	111.412	31	H(18)-N(34)-C(2)	124.720	125.436
4	C(1)-C(10)-C(11)	114.208	114.124	32	N(34)-C(2)-N(36)	100.959	102.137
5	C(1)-C(10)-H(25)	108.233	107.768	33	N(34)-C(2)-O(38)	130.504	129.846
6	C(1)-C(10)-H(26)	107.426	107.597	34	O(38)-C(2)-N(36)	128.537	127.996
7	C(10)-C(11)-C(12)	114.208	120.729	35	C(2)-N(36)-N(37)	125.541	123.426
8	C(10)-C(11)-C(16)	121.000	120.809	36	N(36)-N(37)-C(3)	119.022	117.544
9	C(11)-C(12)-H(27)	119.496	119.710	37	N(37)-C(3)-H(19)	110.946	112.223
10	H(27)-C(12)-C(13)	118.837	119.258	38	N(37)-C(3)-C(4)	135.416	133.104
11	C(12)-C(13)-H(28)	119.393	120.899	39	H(19)-C(3)-C(4)	113.554	114.526
12	H(28)-C(13)-C(14)	121.146	119.353	40	C(3)-C(4)-C(5)	116.448	115.919
13	C(11)-C(12)-C(13)	121.668	121.032	41	C(3)-C(4)-C(9)	124.520	124.512
14	C(12)-C(13)-C(14)	119.461	119.745	42	C(4)-C(5)-H(20)	119.643	120.276
15	C(13)-C(14)-O(41)	124.750	120.051	43	H(20)-C(5)-C(6)	119.438	119.294
16	C(14)-O(41)-C(17)	118.157	115.549	44	C(4)-C(5)-C(6)	120.915	120.426
17	O(41)-C(17)-H(31)	111.746	111.195	45	C(5)-C(6)-C(7)	119.583	119.705
18	O(41)-C(17)-H(32)	106.057	106.946	46	C(5)-C(6)-H(21)	120.493	120.330
19	O(41)-C(17)-H(33)	111.715	111.212	47	H(21)-C(6)-C(7)	119.921	119.963
20	H(31)-C(17)-H(32)	109.121	109.309	48	C(6)-C(7)-O(39)	124.728	124.023
21	H(31)-C(17)-H(33)	108.968	108.831	49	C(7)-O(39)-H(22)	110.090	111.787
22	H(32)-C(17)-H(33)	109.149	109.306	50	O(39)-C(7)-C(8)	114.938	115.680
23	C(13)-C(14)-C(15)	119.552	119.978	51	C(6)-C(7)-C(8)	120.331	120.292
24	C(14)-C(15)-C(16)	120.083	119.760	52	C(7)-C(8)-O(40)	120.282	120.594
25	C(14)-C(15)-H(29)	118.536	119.303	53	C(8)-O(40)-H(23)	107.782	110.053
26	H(29)-C(15)-C(16)	121.381	120.933	54	O(40)-C(8)-C(9)	119.917	119.425
27	C(15)-C(16)-H(30)	119.234	119.289	55	C(8)-C(9)-H(24)	117.874	118.451
28	H(30)-C(16)-C(11)	119.546	119.687	56	H(24)-C(9)-C(4)	121.622	121.484

Tablo 3.141. 25 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.142. 25 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ l	U zunlukları	B3LYP	HF	Ba	ğ Uzunlukları	B3LYP	HF
1	C(1)-N(35)	1.3001	1.2678	20	C(14)-O(41)	1.3666	1.3627
2	C(1)-N(36)	1.3903	1.3818	21	O(41)-C(17)	1.4180	1.4051
3	N(35)-N(34)	1.3825	1.3709	22	C(17)-H(31)	1.0978	1.0862
4	N(34)-H(18)	1.0065	0.9905	23	C(17)-H(32)	1.0910	1.0811
5	N(34)-C(2)	1.3735	1.3486	24	C(17)-H(33)	1.0976	1.0862
6	C(2)-O(38)	1.2178	1.2005	25	C(3)-C(4)	1.4669	1.4824
7	C(2)-N(36)	1.4213	1.3827	26	C(4)-C(5)	1.4044	1.3882
8	N(36)-N(37)	1.3926	1.3975	27	C(4)-C(9)	1.4085	1.3942
9	N(37)-C(3)	1.2900	1.2602	28	C(5)-H(20)	1.0856	1.0757
10	C(3)-H(19)	1.0916	1.0797	29	C(5)-C(6)	1.3930	1.3850
11	C(1)-C(10)	1.5000	1.4985	30	C(6)-H(21)	1.0873	1.0767
12	C(10)-H(25)	1.0981	1.0864	31	C(6)-C(7)	1.3906	1.3788
13	C(10)-H(26)	1.0963	1.0852	32	C(7)-O(39)	1.3713	1.3554
14	C(10)-C(11)	1.5127	1.5121	33	O(39)-H(22)	0.9655	0.9427
15	C(11)-C(12)	1.3949	1.3875	34	C(7)-C(8)	1.4088	1.3937

Table	o 3.142.' nin devan	11					
16	C(12)-H(27)	1.0871	1.0764	35	C(8)-O(40)	1.3613	1.3459
17	C(12)-C(13)	1.3975	1.3843	36	O(40)-H(23)	0.9689	0.9447
18	C(13)-H(28)	1.0833	1.0751	37	C(8)-C(9)	1.3862	1.3779
19	C(13)-C(14)	1.3935	1.3839	38	C(9)-H(24)	1.0814	1.0716

Tablo 3.143. 25 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.535	0.605	H22	0.330	0.360
C2	0.768	1.023	Н23	0.336	0.371
C3	0.076	0.194	H24	0.113	0.241
C4	0.143	-0.098	H25	0.130	0.156
C5	-0.140	-0.156	H26	0.144	0.173
C6	-0.128	-0.192	H27	0.083	0.154
C7	0.298	0.341	H28	0.083	0.161
C8	0.313	0.354	H29	0.093	0.161
С9	-0.117	-0.151	H30	0.083	0.152
C10	-0.321	-0.287	H31	0.110	0.104
C11	0.130	-0.008	H32	0.123	0.130
C12	-0.127	-0.140	H33	0.112	0.105
C13	-0.132	-0.170	N34	-0.413	-0.544
C14	0.348	0.364	N35	-0.341	-0.343
C15	-0.114	-0.170	N36	-0.438	-0.639
C16	-0.107	-0.132	N37	-0.277	-0.271
C17	-0.078	-0.009	O38	-0.528	-0.654
H18	0.286	0.339	O39	-0.585	-0.682
H19	0.112	0.167	O40	-0.564	-0.655
H20	0.092	0.161	O41	-0.519	-0.672
H21	0.085	0.155			

 E_{HOMO} (B3LYP) : -0.20703 Hatree

 $E_{HOMO}(HF)$: -0.31467 Hatree

E_{LUMO} (B3LYP) : -0.05002 Hatree

E_{LUMO} (HF) : 0.09605 Hatree

Şekil 3.76. 25 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.144. 25 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	0.5090	1.5803
μ _v	-6.1503	-7.5914
μ_z	1.9813	2.5372
μ _{Toplam}	6.4816	8.1587

Tablo 3.145. 25 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1177.310	-1170.287

3.4.20. 3-(*p*-Klorobenzil)-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (26)

Şekil 3.77. 26 tipi bileşiğin (6-31G) gausview görünümü

Tablo 3.146. 26 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

	, ,	- (.= =) .		<u>)) j</u>	,	0		<u> </u>
No	Deney.	DFT	Fark	DF17	Fark/	HF	Fark	HF7	Fark/
110	Deney	DII	I ul K	DMSO	DMSO		I ul K	DMSO	DMSO
C1	145.71	152.07	-6.36	153.90	-8.19	145.10	0.61	147.93	-2.22
C2	154.57	148.46	6.11	149.59	4.98	147.33	7.24	148.56	6.01
C3	151.24	160.27	-9.03	161.83	-10.59	168.16	-16.92	171.09	-19.85
C4	124.57	133.21	-8.64	131.49	-6.92	120.99	3.58	119.38	5.19
C5	121.75	129.15	-7.40	131.01	-9.26	118.74	3.01	121.80	-0.05
C6	112.86	114.99	-2.13	117.17	-4.31	107.46	5.40	110.10	2.76
C7	145.71	147.88	-2.17	149.96	-4.25	138.88	6.83	140.35	5.36
C8	149.25	148.05	1.20	147.43	1.82	138.91	10.34	137.37	11.88
С9	115.53	119.55	-4.02	117.82	-2.29	116.97	-1.44	113.76	1.77
C10	30.35	42.55	-12.20	42.09	-11.74	27.32	3.03	26.87	3.48
C11	134.72	136.69	-1.97	137.87	-3.15	128.68	6.04	130.08	4.64
C12	130.69	134.13	-3.44	134.72	-4.03	127.12	3.57	127.52	3.17
C13	128.59	131.61	-3.02	131.83	-3.24	125.00	3.59	125.16	3.43
C14	133.31	145.93	-12.62	144.73	-11.42	133.21	0.10	131.64	1.67
C15	128.59	131.63	-3.04	131.74	-3.15	124.98	3.61	125.11	3.48
C16	130.69	135.10	-4.41	135.41	-4.72	127.55	3.14	127.82	2.87
H17	11.95	7.81	4.14	8.26	3.69	7.19	4.76	7.58	4.37
H18	9.42	8.51	0.91	8.69	0.73	8.89	0.53	9.15	0.27
H19	7.05	7.56	-0.51	7.86	-0.81	7.36	-0.31	7.82	-0.77
H20	6.82	7.29	-0.47	7.76	-0.94	7.10	-0.28	7.64	-0.82
H21	7.27	8.21	-0.94	8.16	-0.89	3.63	3.64	4.59	2.68
H22	9.42	4.41	5.01	5.53	3.89	4.78	4.64	5.10	4.32
H23	9.75	5.78	3.97	6.17	3.58	8.92	0.83	8.50	1.25
H24	4.02	4.37	-0.35	4.64	-0.62	3.06	0.96	3.43	0.59
H25	4.02	4.77	-0.75	4.85	-0.83	3.58	0.44	3.78	0.24
H26	7.32	8.08	-0.76	8.30	-0.98	7.74	-0.42	8.00	-0.68
H27	7.36	8.07	-0.71	8.22	-0.86	7.78	-0.42	7.95	-0.59
H28	7.36	8.12	-0.76	8.27	-0.91	7.72	-0.36	7.90	-0.54
H29	7.32	8.20	-0.88	8.42	-1.10	7.57	-0.25	7.84	-0.52

510(u ,p	Titresim türi eri	skalah R3I VP	skalah HF
1	$\tau CCCC(76)$	7	10
2	$\tau \text{CNNC}(34) \tau \text{CNNC}(29)$	11	10
3	τ CCCN(21)	23	22
3 4	$\tau \text{CNNC}(31) \tau \text{CNNC}(18)$	35	35
5	$\delta CCC(10) \tau CCCN(11) \tau CCCC(27)$	42	40
6	δ CCN(13) τ CNNC(10) τ CCNN(13) τ NNCC(21)	61	66
7	$\delta \operatorname{NCC}(11) \tau \operatorname{CCCN}(18)$	95	87
8	$\tau \text{CNNC}(13), \tau \text{NNCC}(25), \tau \text{NCNC}(12)$	119	117
9	δ NCC(10) δ CCC(11) τ CCCC(21) τ CICCC(16)	132	133
10	δ NCC(10), τ CCCN(13)	149	144
11	$\delta \operatorname{CCC}(11)$ $\tau \operatorname{NNCC}(10)$	176	184
12	τ CCCN(32)	206	193
13	$\tau CCCN(12) \tau NNCC(16)$	217	204
14	$\delta \text{CCC}(10) \delta \text{CICC}(43) \tau \text{CNNC}(10)$	240	239
15	τ HOCC(64)	259	244
16	τ HNNC(16) τ HCCC(11) τ CNNC(16) τ NNCC(21)	269	278
17	δ NNC(11)	285	301
18	δ OCC(42), τ CICCC(14)	302	307
19	δ OCC(34), τ CICCC(16)	303	309
20	τ CCCN(10), τ OCCC(31), τ CCCC(17)	332	339
21	δ CCC(22), δ CICC(30)	352	344
22	v CIC(31), δ CCC(22)	401	358
23	τ HCCC(15), τ CCCC(79)	404	407
24	τ HOCC(69)	409	411
25	δ CCC(13)	422	423
26	$\tau \text{ OCCC}(38)$	436	441
27	τ HNNC(41), τ NCNC(10)	439	452
28	δ OCC(23)	465	467
29	τ HCCC(19), τ CCCC(17), τ CICCC(21), τ CCCC(13)	487	480
30	τ CCCN(19), τ CCNN(19)	492	501
31	ν NN(12), δ OCN(14)	532	556
32	δ CCC(22), δ OCC(31)	560	572
33	τ OCCC(24), τ CCCC(16)	608	599
34	δ CCC(23), τ NCNC(16)	620	625
35	$\delta CCC(11)$	625	638
36	δ CCC(21), τ NCNC(15)	628	646
37	V CIC(15), 0 CCC(15), 7 CCCC(15)	651	667
30 20	$\tau CCCC(40), \tau CCCC(15)$	691	607
39 40	$\delta CCC(11) \neq CCCC(11)$	689	708
41	$\tau ONNC(72)$	700	756
42	τ HCCC(21)	743	763
43	v CC(11) OC(10)	763	776
44	τ HCCC(28)	767	782
45	δ CNN(18), τ HCCC(15)	773	808
46	$v CC(14), \tau HCCC(20)$	798	810
47	τ HCCC(99)	805	845
48	δ NCN(16), δ CCC(13), δ CCN(15)	808	846
49	τ HCCC(31), τ CCCC(14)	834	865
50	τ HCCC(42)	866	922
51	τ HCCC(77)	881	930
52	δ HCC(32), τ HCCC(32)	904	962
53	τ HCCC(67), τ CCCC(14)	924	962

Tablo 3.147. 26 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

Tablo 3.	147.' nin devamı		
54	τ HCCC(81), τ HCNN(53), τ CCCC(12)	926	974
55	τ HCCC(13), τ HCNN(33), τ CCNN(11)	927	979
56	ν CC(14), δ CCC(13)	955	987
57	δ CCC(60)	992	1000
58	δ NNC(36)	1002	1042
59	v NC(13), v NN(36)	1057	1067
60	v CC(52), v CIC(19), δ HCC(16)	1066	1082
61	ν CC(18), δ HCC(57)	1091	1090
62	v CC(16), v OC(14), δ HOC(16)	1096	1091
63	ν CC(17), δ HCC(19)	1125	1107
64	δ HOC(27), δ HCC(38)	1138	1130
65	v NC(15), v CC(10), v NN(13)	1156	1136
66	v CC(11), δ HCC(36), τ HCCC(24)	1161	1168
67	v CC(20), δ HCC(72)	1162	1178
68	ν CC(18), δ HCC(13)	1180	1184
69	δ HOC(29), δ HCC(15)	1182	1192
70	v NN(15), δ NCN(11), δ CNN(15)	1219	1212
71	ν OC(25), δ HCC(36)	1240	1216
72	v NC(19), τ HCCC(39)	1273	1272
73	v CC(22), δ HCC(70)	1279	1275
74	v CC(10), v OC(35), δ HCC(10)	1283	1306
75	ν CC(42), δ HCC(17), δ HCC(12)	1300	1310
76	δ HOC(40), δ HCC(24)	1305	1321
77	ν CC(18), δ HOC(10), δ HCN(14)	1339	1323
78	ν NC(10), δ HNN(72)	1343	1380
79	δ HCN(59)	1382	1396
80	ν NC(19), ν CC(14), τ HCCC(11)	1389	1406
81	ν CC(24), δ HCC(28)	1394	1427
82	δ HCH(90)	1430	1449
83	ν CC(15), δ HOC(16), δ HCC(13)	1458	1463
84	ν CC(12), δ HCC(57), δ CCC(12)	1478	1503
85	ν OC(18), δ HCC(42)	1498	1524
86	ν CC(28), δ CCC(15)	1569	1594
87	v NC(24), v CC(21)	1583	1614
88	v NC(20), v CC(11)	1587	1627
89	ν CC(40), δ HCC(26)	1593	1634
90	v CC(42)	1603	1684
91	v NC(39), v CC(13)	1623	1717
92	v OC(78)	1773	1780
93	v CH(89)	2924	2883
94	v CH(89)	2964	2920
95	v CH(28)	3013	2981
96	v CH(41)	3054	3001
97	v CH(48)	3064	3012
98	v CH(51)	3066	3013
99	v CH(64)	3078	3021
100	v CH(60)	3097	3043
101	v CH(22)	3098	3044
102	v CH(26)	3126	3073
103	v NH(100)	3557	3555
104	v OH(51)	3643	3750
105	v OH(51)	3691	3776

Şekil 3.78. 26 tipi bileşiğinin teorik (B3LYP 6-31G(d,p)(a) ve HF 6-31G(d,p)(b)) IR spektrumları

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF
329.11/225.85	3.7673/5.4898
299.75/214.20	4.1362/5.7883
274.69/209.87	4.5137/5.9076

Şekil 3.79. 26 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(31)-N(30)	104.314	104.822	27	H(28)-C(15)-C(16)	120.825	120.690
2	C(1)-N(32)-C(2)	107.989	107.670	28	C(14)-C(15)-C(16)	119.031	119.162
3	N(31)-C(1)-N(32)	111.741	111.506	29	C(15)-C(16)-H(29)	119.153	119.091
4	N(31)-N(30)-H(17)	120.090	120.790	30	H(29)-C(16)-C(11)	119.667	119.825
5	H(17)-N(30)-C(2)	124.717	125.429	31	C(1)-N(32)-N(33)	121.389	122.020
6	N(31)-N(30)-C(2)	114.513	113.416	32	N(32)-N(33)-C(3)	118.973	117.547
7	N(30)-C(2)-O(34)	130.513	129.838	33	N(33)-C(3)-H(18)	110.921	112.173
8	O(34)-C(2)-N(32)	128.522	127.998	34	H(18)-C(3)-C(4)	113.594	114.513
9	C(2)-N(32)-N(33)	125.612	123.480	35	C(3)-C(4)-C(5)	116.446	115.879
10	C(1)-C(10)-C(11)	113.794	113.863	36	C(3)-C(4)-C(9)	124.515	124.561
11	C(1)-C(10)-H(24)	108.475	107.910	37	C(4)-C(5)-H(19)	119.654	120.283
12	C(1)-C(10)-H(25)	107.581	107.738	38	H(19)-C(5)-C(6)	119.438	119.283
13	H(24)-C(10)-H(25)	105.470	106.127	39	C(4)-C(5)-C(6)	120.905	120.431
14	H(24)-C(10)-C(11)	110.273	110.340	40	C(5)-C(6)-C(7)	119.590	119.704
15	H(25)-C(10)-C(11)	110.868	110.524	41	C(5)-C(6)-H(20)	120.486	120.325
16	C(10)-C(11)-C(12)	120.708	120.683	42	H(20)-C(6)-C(7)	119.922	119.969
17	C(10)-C(11)-C(16)	120.780	120.724	43	C(6)-C(7)-O(36)	124.746	124.043
18	C(11)-C(12)-H(26)	119.647	119.863	44	C(6)-C(7)-C(8)	120.333	120.294
19	H(26)-C(12)-C(13)	119.148	119.046	45	C(7)-O(36)-H(21)	110.141	111.829
20	C(12)-C(13)-H(27)	120.818	120.664	46	O(36)-C(7)-C(8)	114.918	115.658
21	H(27)-C(13)-C(14)	120.185	120.190	47	C(7)-C(8)-O(35)	120.294	120.601
22	C(12)-C(13)-C(14)	118.996	119.146	48	C(8)-O(35)-H(22)	107.807	110.084
23	C(13)-C(14)-Cl(37)	119.473	119.563	49	O(35)-C(8)-C(9)	119.915	119.423
24	Cl(37)-C(14)-C(15)	119.450	119.512	50	C(8)-C(9)-H(23)	117.848	118.418
25	C(13)-C(14)-C(15)	121.077	120.925	51	H(23)-C(9)-C(4)	121.645	121.507
26	C(14)-C(15)-H(28)	120.145	120.148				

Tablo 3.148. 26 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.149. 26 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

B	ağ Uzunlukları	B3LYP	HF	Ba	ağ Uzunlukları	B3LYP	HF
1	C(1)-N(31)	1.3000	1.2678	21	C(15)-H(28)	1.0841	1.0736
2	C(1)-N(32)	1.3888	1.3808	22	C(15)-C(16)	1.3937	1.3831
3	C(1)-C(10)	1.4995	1.4982	23	C(16)-H(29)	1.0864	1.0759
4	N(31)-N(30)	1.3818	1.3705	24	C(16)-C(11)	1.3991	1.3881
5	N(30)-H(17)	1.0067	0.9906	25	N(33)-C(3)	1.2902	1.2605
6	N(30)-C(2)	1.3743	1.3492	26	C(3)-H(18)	1.0915	1.0796
7	C(2)-O(34)	1.2171	1.1997	27	C(3)-C(4)	1.4664	1.4819
8	C(2)-N(32)	1.4221	1.3832	28	C(4)-C(5)	1.4044	1.3883
9	N(32)-N(33)	1.3932	1.3977	29	C(4)-C(9)	1.4086	1.3944
10	C(1)-C(10)	1.4995	1.4982	30	C(5)-H(19)	1.0855	1.0757
11	C(10)-H(24)	1.0978	1.0862	31	C(5)-C(6)	1.3929	1.3851
12	C(10)-H(25)	1.0961	1.0849	32	C(6)-H(20)	1.0873	1.0767
13	C(10)-C(11)	1.5131	1.5120	33	C(6)-C(7)	1.3907	1.3787
14	C(11)-C(12)	1.3987	1.3868	34	C(7)-O(36)	1.3707	1.3550
15	C(12)-H(26)	1.0866	1.0760	35	O(36)-H(21)	0.9655	0.9427
16	C(12)-C(13)	1.3944	1.3846	36	C(7)-C(8)	1.4090	1.3940
17	C(13)-H(27)	1.0841	1.0736	37	C(8)-O(35)	1.3610	1.3458

18	C(13)-C(14)	1.3931	1.3811	38	O(35)-H(22)	0.9689	0.9447
19	C(14)-Cl(37)	1.7606	1.7445	39	C(8)-C(9)	1.3861	1.3777
20	C(14)-C(15)	1.3936	1.3825	40	C(9)-H(23)	1.0814	1.0715

Tablo 3.150. 26 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.536	0.605	H20	0.086	0.156
C2	0.768	1.024	H21	0.331	0.361
C3	0.077	0.195	H22	0.336	0.371
C4	0.142	-0.098	H23	0.112	0.240
C5	-0.140	-0.156	H24	0.134	0.161
C6	-0.128	-0.192	H25	0.149	0.176
C7	0.298	0.342	H26	0.094	0.161
C8	0.313	0.354	H27	0.110	0.178
С9	-0.117	-0.151	H28	0.109	0.177
C10	-0.321	-0.288	H29	0.093	0.160
C11	0.131	0.001	N30	-0.412	-0.543
C12	-0.109	-0.138	N31	-0.341	-0.344
C13	-0.069	-0.112	N32	-0.438	-0.638
C14	-0.094	-0.164	N33	-0.279	-0.274
C15	-0.070	-0.112	O34	-0.524	-0.651
C16	-0.099	-0.128	O35	-0.563	-0.655
H17	0.288	0.340	O36	-0.584	-0.681
H18	0.114	0.169	Cl37	-0.028	-0.006
H19	0.093	0.162			

Şekil 3.80. 26 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.151. 26 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	-1.4678	-0.6046
$\mu_{\rm v}$	-5.2882	-6.5842
μ_z	1.4558	1.9100
μ _{Toplam}	5.6779	6.8823

Tablo 3.152.26 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1522.380	-1515.305

3.4.21. 3-Fenil-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (27)

Şekil 3.81. 27 tipi bileşiğin(6-31G (d,p)) gausview görünümü

No				DFT/	Fark/	<u> </u>	<u>U</u>	HF/	 Fark/
	Deney.	DFT	Fark	DMSO	DMSO	HF	Fark	DMSO	DMSO
C1	145.76	150.97	-5.21	151.38	-5.62	143.15	2.61	144.63	1.13
C2	151.39	148.53	2.86	149.68	1.71	146.81	4.58	147.94	3.45
C3	158.00	161.89	-3.89	163.57	-5.57	169.56	-11.56	172.50	-14.50
C4	124.40	133.59	-9.19	131.82	-7.42	121.54	2.86	119.82	4.58
C5	122.20	129.03	-6.83	130.96	-8.76	117.33	4.87	119.86	2.34
C6	112.84	115.15	-2.31	117.39	-4.55	107.55	5.29	110.17	2.67
C7	144.35	147.75	-3.40	149.97	-5.62	138.08	6.27	139.58	4.77
C8	149.50	148.20	1.30	147.63	1.87	138.71	10.79	137.37	12.13
С9	115.57	119.21	-3.64	117.44	-1.87	115.88	-0.31	112.81	2.76
C10	129.92	132.74	-2.82	131.87	-1.95	123.89	6.03	122.47	7.45
C11	128.44	131.19	-2.75	131.11	-2.67	126.43	2.01	126.57	1.87
C12	127.68	130.57	-2.89	131.47	-3.79	122.44	5.24	123.32	4.36
C13	126.73	131.86	-5.13	133.16	-6.43	126.93	-0.20	128.52	-1.79
C14	127.68	131.01	-3.33	131.71	-4.03	123.29	4.39	123.90	3.78
C15	128.44	130.69	-2.25	130.05	-1.61	127.29	1.15	126.61	1.83
H16	12.32	8.12	4.20	8.66	3.66	7.52	4.80	7.99	4.33
H17	9.33	8.63	0.70	8.79	0.54	8.89	0.44	9.17	0.16
H18	7.09	7.61	-0.52	7.91	-0.82	6.94	0.15	7.36	-0.27
H19	6.85	7.31	-0.46	7.78	-0.93	6.89	-0.04	7.41	-0.56
H20	7.22	8.40	-1.18	8.33	-1.11	3.45	3.77	4.42	2.80
H21	9.33	4.40	4.93	5.53	3.80	4.71	4.62	5.05	4.28
H22	9.52	5.77	3.75	6.17	3.35	8.72	0.80	8.31	1.21
H23	7.89	8.82	-0.93	8.95	-1.06	8.58	-0.69	8.65	-0.76
H24	7.25	8.21	-0.96	8.44	-1.19	7.89	-0.64	8.16	-0.91
H25	7.25	8.24	-0.99	8.50	-1.25	7.96	-0.71	8.27	-1.02
H26	7.25	8.31	-1.06	8.52	-1.27	7.81	-0.56	8.05	-0.80
H27	7.89	9.16	-1.27	9.15	-1.26	8.29	-0.40	8.30	-0.41

Tablo 3.153. 27 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

 Tablo 3.154.
 27 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	Skalalı B3LYP	skalalı HF
1	τ CNNC(47), τ CCNN(10)	22	17
2	τ CCCN(21)	26	23
3	τ CCCN(10), τ CNNC(25)	31	40
4	δ CNC(22), τ NCNC(39), τ CNNC(11)	60	53
5	τ CCCN(10), τ CNNC(12),τ NNCN(19),τ NNCN(12)	86	85
6	δ NCC(18), τ CCCN(11)	94	98
7	τ CNNC(14)	136	123
8	δ NCC(11), δ CCC(12)	153	126
9	δ CCC(10), τ CCCN(29)	192	172
10	δ CCC(12), τ CNNC(16)	200	195
11	τ CCCN(12)	220	204
12	δ NNC(10), τ CCCN(10), τ OCCC(11)	241	250
13	τ HOCC(61)	255	259
14	τ HNNC(14), τ CCCC(15), τ NNCN(21),τ NNCC(13)	284	306
15	δ CCC(11), δ OCC(73)	301	309
16	ν CC(19), δ CCC(11)	316	313
17	τ CCCN(12), τ OCCC(31)	332	343

Tablo 3.154.' ün devamı δ OCN(16), δ CCC(20) τ CCCC(77) τ HOCC(69) τ HNNC(11) τ HNNC(33) τ OCCC(44). τ CCCC(10).τ CCCN(11) δ CCC(16), δ OCC(25) τ CCCN(21), τ CCNN(21) τ HNNC(15), τ CCCC(22) δ CCC(17), δ OCC(33) δ NCC(19), δ OCN(19) δ CCC(25) τ OCCC(23), τ CCCC(15) δ OCN(10), δ CCC(13) τ NNCN(16) τ HCCC(12), τ OCCC(40), τ CCCC(16) τ CCCC(23) τ HCCC(23), τ CCCC(19) τ CCCN(13), τ CCCC(11), τ OCCC(16) τ ONNC(64) τ CCCC(17), τ HCCC(33) v OC(15), δ CCC(11) HCCC(34) v NC(14), v NN(10), δ CCC(10) δ HCN(19), δ HCN(14) τ HCCC(48) τ HCCC(53) τ HCCC(63) τ HCCC(42) δ NNC(15), τ HCNN(30) τ HCCC(57) δ NNC(15), τ HCNN(27), τ HCCC(10) v CC(19), δ CCC(13) τ HCCC(62), τ CCCC(25) v CC(35), δ CCC(13) v CC(25), δ HCC(16), δ CCC(14) v CC(13), v NN(22), δ HNN(10) v CC(12), v NN(13), δ HCC(10) v OC(13), δ HOC(14) δ HCC(14), δ NNC(12) v NC(11), v CC(14), δ HCC(12) v CC(10), δ HOC(28), δ HCC(24) v CC(12), δ HCC(72) v NC(26), v NN(14) δ HCC(43) δ HOC(29), δ HCC(18) v NC(12), v NN(17) v OC(20), δ HCC(25) v CC(10), v OC(36) ν CC(23), δ HCC(19) v OC(10),δ HOC(41),δ HCC(15) v CC(13), δ HCC(28) ν CC(22), δ HCN(15) v NC(20),δ HNN(57) $v NC(13), \delta HNN(12), \delta HCN(11)$ δ HCN(50)

Tablo 3.1	54.' ün devamı		
74	v CC(10), δ HCC(21)	1432	1447
75	v CC(13), δ HOC(16)	1458	1462
76	δ HCC(25), δ CCC(11)	1483	1503
77	v OC(18), δ HCC(32)	1498	1524
78	v NC(28)	1536	1596
79	ν CC(27), δ CCC(11)	1579	1615
80	v CC(24)	1584	1626
81	ν CC(20), δ HCC(11)	1599	1636
82	v CC(19)	1602	1662
83	v NC(29)	1619	1719
84	v OC(78)	1773	1775
85	v CH(28)	3013	2981
86	v CH(41)	3053	3001
87	v CH(46)	3060	3006
88	v CH(69)	3071	3018
89	v CH(42)	3078	3021
90	v CH(52)	3082	3029
91	v CH(40)	3098	3046
92	v CH(35)	3117	3053
93	v CH(26)	3124	3063
94	v NH(100)	3556	3555
95	v OH(51)	3643	3750
96	v OH(51)	3691	3777

Şekil 3.82. 27 tipi bileşiğin teorik (B3LYP 6-31G(d,p)(a) ve HF 6-31G(d,p)(b)) IR spektrumları

Şekil 3.83. 27 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.155. 27 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(29)-N(28)	104.935	105.221	24	H(27)-C(15)-C(10)	118.880	119.312
2	C(1)-N(30)-C(2)	107.995	108.195	25	C(14)-C(15)-C(10)	120.430	120.210
3	N(29)-C(1)-N(30)	110.914	110.776	26	C(1)-N(30)-N(31)	123.334	125.393
4	N(29)-N(28)-H(16)	120.431	120.857	27	N(30)-N(31)-C(3)	118.194	116.951
5	H(16)-N(28)-C(2)	124.951	125.381	28	N(31)-C(3)-H(17)	110.900	112.444
6	N(29)-N(28)-C(2)	114.494	113.404	29	H(17)-C(3)-C(4)	113.601	114.980
7	N(28)-C(2)-O(32)	130.319	129.782	30	C(3)-C(4)-C(5)	116.434	116.470
8	O(32)-C(2)-N(30)	128.372	128.060	31	C(3)-C(4)-C(9)	124.538	123.785
9	C(2)-N(30)-N(31)	122.525	123.088	32	C(4)-C(5)-H(18)	119.657	120.329
10	C(1)-C(10)-C(11)	122.809	121.937	33	H(18)-C(5)-C(6)	119.433	119.379
11	C(1)-C(10)-C(15)	118.122	118.422	34	C(4)-C(5)-C(6)	120.907	120.285
12	C(10)-C(11)-H(23)	120.046	120.045	35	C(5)-C(6)-C(7)	119.602	119.765
13	H(23)-C(11)-C(12)	119.786	120.013	36	C(5)-C(6)-H(19)	120.478	120.291
14	C(10)-C(11)-C(12)	120.168	119.940	37	H(19)-C(6)-C(7)	119.918	119.962
15	C(11)-C(12)-H(24)	119.407	119.590	38	C(6)-C(7)-O(33)	124.756	124.027
16	H(24)-C(12)-C(13)	120.112	120.115	39	C(6)-C(7)-C(8)	120.316	120.310
17	C(12)-C(13)-H(25)	120.205	120.050	40	C(7)-O(33)-H(20)	110.114	111.753
18	H(25)-C(13)-C(14)	120.189	120.061	41	O(33)-C(7)-C(8)	114.926	115.659

Tablo 3.155.' in devamı

19	C(12)-C(13)-C(14)	119.607	119.889	42	C(7)-C(8)-O(34)	120.279	120.615
20	C(13)-C(14)-H(26)	120.122	120.178	43	C(8)-O(34)-H(21)	107.801	110.004
21	H(26)-C(14)-C(15)	119.616	119.749	44	O(34)-C(8)-C(9)	119.919	119.461
22	C(13)-C(14)-C(15)	120.260	120.073	45	C(8)-C(9)-H(22)	117.886	118.555
23	C(14)-C(15)-H(27)	120.690	120.479	46	H(22)-C(9)-C(4)	121.613	121.433

Tablo 3.156. 27 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	Uzunlukları	B3LYP	HF	B	ağ Uzunlukları	B3LYP	HF
1	C(1)-N(29)	1.3085	1.2729	19	C(14)-C(15)	1.3903	1.3828
2	C(1)-N(30)	1.3950	1.3815	20	C(15)-H(27)	1.0842	1.0738
3	C(1)-C(10)	1.4683	1.4784	21	N(31)-C(3)	1.2906	1.2598
4	N(29)-N(28)	1.3729	1.3656	22	C(3)-H(17)	1.0916	1.0797
5	N(28)-H(16)	1.0067	0.9905	23	C(3)-C(4)	1.4672	1.4836
6	N(28)-C(2)	1.3727	1.3491	24	C(4)-C(5)	1.4041	1.3871
7	C(2)-O(32)	1.2170	1.2008	25	C(4)-C(9)	1.4087	1.3937
8	C(2)-N(30)	1.4224	1.3790	26	C(5)-H(18)	1.0855	1.0756
9	N(30)-N(31)	1.3972	1.3969	27	C(5)-C(6)	1.3931	1.3853
10	C(10)-C(11)	1.4032	1.3905	28	C(6)-H(19)	1.0873	1.0767
11	C(10)-C(15)	1.4065	1.3913	29	C(6)-C(7)	1.3905	1.3786
12	C(11)-H(23)	1.0821	1.0729	30	C(7)-O(33)	1.3710	1.3560
13	C(11)-C(12)	1.3945	1.3848	31	O(33)-H(20)	0.9655	0.9427
14	C(12)-H(24)	1.0859	1.0754	32	C(7)-C(8)	1.4091	1.3936
15	C(12)-C(13)	1.3944	1.3846	33	C(8)-O(34)	1.3610	1.3460
16	C(13)-H(25)	1.0860	1.0757	34	O(34)-H(21)	0.9689	0.9447
17	C(13)-C(14)	1.3976	1.3858	35	C(8)-C(9)	1.3862	1.3780
18	C(14)-H(26)	1.0860	1.0754	36	C(9)-H(22)	1.0816	1.0724

Tablo 3.157. 27 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0,502	0,606	H18	0,093	0,163
C2	0,781	1,027	H19	0,086	0,155
C3	0,075	0,200	H20	0,330	0,360
C4	0,145	-0,099	H21	0,336	0,371
C5	-0,140	-0,150	H22	0,115	0,239
C6	-0,128	-0,191	H23	0,099	0,195
C7	0,298	0,340	H24	0,088	0,155
C8	0,314	0,356	H25	0,087	0,155
С9	-0,122	-0,158	H26	0,090	0,156
C10	0,100	-0,058	H27	0,113	0,183
C11	-0,098	-0,131	N28	-0,406	-0,540
C12	-0,098	-0,160	N29	-0,356	-0,352
C13	-0,077	-0,137	N30	-0,483	-0,661
C14	-0,095	-0,159	N31	-0,272	-0,260
C15	-0,103	-0,116	O32	-0,528	-0,657
H16	0,287	0,339	033	-0,563	-0,683
H17	0,114	0,169	034	-0,585	-0,656

Şekil 3.84. 27 molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.158. 27 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF	
μ _x	0.6898	2.0563	
μ_{v}	-5.3523	-6.7074	
μ_z	-1.1514	-1.4190	
μ_{Toplam}	5.5180	7.1576	

Tablo 3.159. 27 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1023.472	-1017.369

3.4.22. 3-Siklopropan-4-(3,4-dihidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (28)

Şekil 3.85. 28 tipi bileşiğin(6-31G(d,p)) gausview görünümü

'	Tablo	3.160.	28	tipi	bileşiğ	in TM	S'ye	göre	^{13}C	ve	¹ H-NM	R deneys	sel ve	e teorik
((B3LY	P, HF,	B3L	YP(I	DMSO)	ve HF	(DM)	SO))	kimy	vasal	kayma d	leğerleri	(δ/ppr	n)

No	Donov	DET	Fork	DFT/	Fark/	НЕ	Fork	HF/	Fark/
INU	Deney.	DFT	гагк	DMSO	DMSO	III	Гагк	DMSO	DMSO
C1	147.96	153.77	-5.81	155.09	-7.13	146.84	1.12	149.02	-1.06
C2	151.35	148.69	2.66	149.85	1.50	147.11	4.24	148.33	3.02
C3	155.35	160.42	-5.07	162.07	-6.72	167.94	-12.59	171.17	-15.82
C4	124.63	133.42	-8.79	131.59	-6.96	121.50	3.13	119.69	4.94
C5	121.75	128.78	-7.03	130.71	-8.96	118.13	3.62	121.24	0.51
C6	112.85	114.97	-2.12	117.26	-4.41	107.42	5.43	110.13	2.72
C7	145.70	147.63	-1.93	149.84	-4.14	138.50	7.20	140.08	5.62
C8	149.20	147.98	1.22	147.40	1.80	138.85	10.35	137.33	11.87
C9	115.53	119.41	-3.88	117.52	-1.99	116.89	-1.36	113.62	1.91
C10	6.37	18.13	-11.76	18.13	-11.76	1.94	4.43	1.44	4.93
C11	5.62	22.81	-17.19	23.06	-17.44	-2.37	7.99	-2.61	8.23
C12	5.62	15.06	-9.44	15.06	-9.44	4.21	1.41	3.84	1.78
H13	11.65	7.72	3.93	8.21	3.44	7.11	4.54	7.56	4.09
H14	9.34	8.50	0.84	8.68	0.66	8.91	0.43	9.17	0.17
H15	7.01	7.55	-0.54	7.85	-0.84	7.32	-0.31	7.78	-0.77
H16	6.76	7.26	-0.50	7.74	-0.98	7.06	-0.30	7.62	-0.86
H17	7.22	8.19	-0.97	8.12	-0.90	3.56	3.66	4.55	2.67

Tablo 3.160.' in devami

H18	9.31	4.36	4.95	5.50	3.81	4.74	4.57	5.07	4.24
H19	9.65	5.74	3.91	6.15	3.50	8.88	0.77	8.45	1.20
H20	2.42	2.89	-0.47	2.92	-0.50	0.94	1.48	1.26	1.16
H21	0.88	1.78	-0.90	2.02	-1.14	0.65	0.23	0.91	-0.03
H22	0.84	1.53	-0.69	1.60	-0.76	1.53	-0.69	1.37	-0.53
H23	0.86	1.60	-0.74	1.82	-0.96	0.90	-0.04	1.12	-0.26
H24	0.90	2.30	-1.40	2.18	-1.28	0.70	0.20	0.71	0.19

Tablo 3.161. 28 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	τ CNNC(18), τ CCCC(22)	22	21
2	τ NCCC(65)	29	26
3	τ NCNN(13), τ CCCC(39)	45	36
4	δ NCC(12), τ NCNN(31), τ CCCC(14)	60	60
5	τ CCCC(11), τ CNNC(16)	101	92
6	τ CNNC(24)	112	112
7	δ CCN(32), τ CCCC(10)	150	134
8	δ CCC(28), τ NCNN(12), τ CNNC(14)	163	168
9	τ CCCC(14), τ CNNC(11)	196	183
10	δ CCC(11), τ CCCC(18), τ CNNC(10)	207	198
11	τ CNNC(18)	223	210
12	τ HOCC(15)	248	242
13	τ HOCC(49)	255	273
14	δ CCC(14), δ OCC(71)	301	308
15	τ CCCC(13), τ OCCC(16)	320	333
16	τ CCCC(12), τ OCCC(17)	338	343
17	τ HNNC(13), τ NNCC(10), τ CCCC(11)	372	354
18	τ HOCC(70)	401	363
19	δ CCC(36)	424	426
20	τ HCCC(10), τ CCCC(28), τ OCCC(43)	436	451
21	τ HNNC(41), τ ONNC(10)	456	458
22	δ OCC(27),τ HNNC(10)	467	467
23	τ CCCC(11), τ NNCC(11)	493	487
24	ν CC(10), ν NN(15), δ CNN(12), δ NCN(10)	526	550
25	δ CCC(26), δ OCC(25)	560	575
26	τ OCCC(20), τ CCCC(14)	603	589
27	δ OCN(12), τ OCCC(12)	627	651
28	τ ONNC(13), τ CNNC(13)	663	669
29	τ HCCC(10), τ CCCC(17), τ OCCC(33)	670	679
30	v CC(11), v NN(14)	679	703
31	δ CCC(14)	692	712
32	τ NNCC(14), τ ONNC(53), τ CNNC(10)	707	763
33	ν CC(11), ν CC(10), δ HCC(15)	763	770
34	τ HCCC(27)	766	780
35	ν NC(10), δ HCC(11), δ CCN(15), τ HCCC(13)	772	783
36	δ HCC(35)	775	809
37	δ CCC(17), τ HCCN(41)	802	813
38	δ NCC(14), δ CCC(16), δ NNC(20)	808	847
39	τ HCCC(24), τ CCCC(13)	865	881
40	ν CC(20), δ CCC(13), τ HCCC(11)	869	924
41	τ HCCC(67), τ CCCC(13)	881	929
42	v CC(39), δ CCC(14), τ HCCN(21)	890	962

Tablo 3.161.' in devamı

43	τ HCCN(59)	926	962
44	v CC(15), δ CCC(20)	955	979
45	δ NNC(22)	1003	1037
46	τ HCCN(52)	1023	1056
47	v NN(12), τ HCCN(14), τ HCCC(10)	1036	1074
48	τ HCCN(30), τ HCCC(46)	1051	1090
49	$v NN(10), \tau HCCN(33)$	1086	1094
50	v CC(15), v OC(12), δ HOC(14), δ HCC(11), δ CCC(10)	1095	1106
51	$v NN(12), \tau HCNN(20), \tau HCCC(14)$	1099	1114
52	ν CC(18), δ HCC(17)	1125	1123
53	δ HOC(28), δ HCC(29)	1137	1137
54	v NC(19)	1157	1178
55	δ HCC(69)	1164	1179
56	v CC(53)	1179	1184
57	δ HOC(29), δ HCC(26)	1180	1193
58	v NN(13), δ NCN(17), δ CNN(15)	1217	1215
59	ν OC(25), δ HCC(18)	1240	1270
60	v OC(34)	1282	1275
61	v NC(24)	1285	1309
62	δ HOC(38), δ HCC(19)	1304	1322
63	ν CC(17), δ HOC(11), δ HCN(14)	1339	1335
64	δ HNN(68)	1342	1379
65	δ HCN(64)	1383	1398
66	δ HCH(89)	1421	1438
67	ν NC(11), ν CC(14), δ HCC(10), δ HCH(27)	1424	1443
68	δ HOC(16), v CC(15)	1458	1463
69	ν CC(17), δ HCH(60)	1465	1497
70	ν OC(17), δ HCC(40), δ CCC(13)	1498	1524
71	v NC(44), v CC(12)	1578	1614
72	ν CC(22), δ CCC(18)	1585	1635
73	v CC(46)	1604	1676
74	v NC(39), v CC(11)	1623	1720
75	v NC(10), v OC(77)	1771	1777
76	v CH(28)	3013	2967
77	v CH(61)	3025	2975
78	v CH(40)	3032	2980
79	v CH(41)	3053	3000
80	v CH(32)	3073	3004
81	v CH(42)	3078	3020
82	v CH(61)	3109	3045
83	ν CH(41)	3123	3059
84	v CH(26)	3125	3070
85	v NH(100)	3557	3558
86	v OH(51)	3643	3750
87	v OH(51)	3692	3777

Şekil 3.86. 28 tipi bileşiğin teorik (B3LYP 6-31G(d,p)(a) ve HF 6-31G(d,p)(b)) IR spektrumları

Şekil 3.87. 28 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.162. 28 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(26)-N(25)	104.413	104.815	24	O(29)-C(2)-N(27)	128.517	127.968
2	C(1)-N(27)-C(2)	108.117	107.854	25	C(2)-N(27)-N(28)	125.467	123.230
3	N(27)-C(1)-N(26)	111.499	111.364	26	N(27)-N(28)-C(3)	118.857	117.328
4	C(1)-C(10)-H(20)	113.332	113.906	27	N(28)-C(3)-H(14)	110.990	112.279
5	C(1)-C(10)-C(11)	119.585	119.413	28	N(28)-C(3)-C(4)	135.327	132.944
6	C(1)-C(10)-C(12)	119.283	119.141	29	H(14)-C(3)-C(4)	113.602	114.640
7	H(20)-C(10)-C(12)	118.348	116.670	30	C(3)-C(4)-C(5)	116.510	116.096
8	H(20)-C(10)-C(11)	116.880	117.755	31	C(3)-C(4)-C(9)	124.446	124.309
9	C(10)-C(11)-H(21)	117.349	116.987	32	C(4)-C(5)-H(15)	119.653	120.280
10	C(10)-C(11)-H(22)	116.809	117.158	33	H(15)-C(5)-C(6)	119.450	119.311
11	H(21)-C(11)-H(22)	115.011	114.888	34	C(4)-C(5)-C(6)	120.893	120.329
12	H(21)-C(11)-C(12)	119.005	118.447	35	C(5)-C(6)-C(7)	119.602	119.713
13	H(22)-C(11)-C(12)	117.744	118.094	36	C(5)-C(6)-H(16)	120.486	120.329
14	C(10)-C(12)-H(23)	117.190	117.234	37	H(16)-C(6)-C(7)	119.910	119.955
15	C(10)-C(12)-H(24)	117.190	117.263	38	C(6)-C(7)-O(31)	124.730	124.024
16	H(23)-C(12)-H(24)	115.089	114.741	39	C(6)-C(7)-C(8)	120.321	120.295
17	C(11)-C(12)-H(23)	118.699	118.948	40	C(7)-O(31)-H(17)	110.072	111.769
18	C(11)-C(12)-H(24)	117.756	117.919	41	O(31)-C(7)-C(8)	114.946	115.676
19	C(1)-N(27)-N(28)	121.814	122.550	42	C(7)-C(8)-O(30)	120.290	120.588
20	N(26)-N(25)-H(13)	120.037	121.015	43	C(8)-O(30)-H(18)	107.778	110.029
21	H(13)-N(25)-C(2)	124.421	125.497	44	O(30)-C(8)-C(9)	119.914	119.442
22	N(25)-C(2)-N(27)	101.048	102.207	45	C(8)-C(9)-H(19)	117.898	118.486
23	N(25)-C(2)-O(29)	130.434	129.807	46	H(19)-C(9)-C(4)	121.593	121.455
nese	ipiunun oug uzunn						
------	-------------------	--------------	--------	----	---------------	--------------	--------
Bağ	Uzunlukları	B3LYP	HF	Ba	ğ Uzunlukları	B3LYP	HF
1	C(1)-N(26)	1.3028	1.2705	18	C(12)-H(23)	1.0852	1.0753
2	C(1)-N(27)	1.3899	1.3795	19	C(12)-H(24)	1.0846	1.0750
3	C(1)-C(10)	1.4724	1.4760	20	C(3)-C(4)	1.4672	1.4829
4	N(27)-N(28)	1.3927	1.3980	21	C(4)-C(5)	1.4042	1.3879
5	N(28)-C(3)	1.2897	1.2599	22	C(4)-C(9)	1.4084	1.3941
6	C(3)-H(14)	1.0916	1.0797	23	C(5)-H(15)	1.0856	1.0758
7	N(25)-C(2)	1.3738	1.3480	24	C(5)-C(6)	1.3931	1.3852
8	N(2)-O(29)	1.2178	1.2007	25	C(6)-H(16)	1.0873	1.0767
9	C(2)-N(27)	1.4209	1.3827	26	C(6)-C(7)	1.3906	1.3786
10	N(25)-H(13)	1.0066	0.9903	27	C(7)-O(31)	1.3714	1.3557
11	N(25)-N(26)	1.3833	1.3715	28	O(31)-H(17)	0.9655	0.9427
12	C(10)-H(20)	1.0848	1.0750	29	C(7)-C(8)	1.4088	1.3937
13	C(10)-C(12)	1.5094	1.5068	30	C(8)-O(30)	1.3613	1.3460
14	C(10)-C(11)	1.5242	1.4961	31	O(30)-H(18)	0.9689	0.9447
15	C(11)-H(21)	1.0856	1.0753	32	C(8)-C(9)	1.3862	1.3778
16	C(11)-H(22)	1.0851	1.0739	33	C(9)-H(19)	1.0815	1.0718
17	C(11)-C(12)	1.5005	1.4911				
•							

Tablo 3.163. 28 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Tablo 3.164. 28 tipi bileşiğin atomlarının B3LYP/HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.562	0.640	H17	0.330	0.360
C2	0.766	1.026	H18	0.336	0.371
C3	0.078	0.191	H19	0.114	0.240
C4	0.142	-0.097	H20	0.131	0.159
C5	-0.140	-0.156	H21	0.116	0.140
C6	-0.128	-0.191	H22	0.127	0.172
C7	0.298	0.341	H23	0.114	0.141
C8	0.313	0.355	H24	0.142	0.153
С9	-0.117	-0.151	N25	-0.410	-0.546
C10	-0.144	-0.196	N26	-0.374	-0.367
C11	-0.210	-0.253	N27	-0.454	-0.657
C12	-0.213	-0.240	N28	-0.273	-0.258
H13	0.285	0.337	O29	-0.529	-0.655
H14	0.112	0.167	O30	-0.564	-0.656
H15	0.092	0.161	031	-0.585	-0.682
H16	0.085	0.154			

E_{HOMO} (B3LYP) : -0.20601 Hatree

E_{HOMO} (HF) : -0.31342 Hatree

E_{LUMO} (B3LYP) : -0.04975 Hatree

E_{LUMO} (HF) : 0.09825 Hatree

Şekil 3.88. 28 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.165. 28 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ_{x}	0.5283	1.5274
$\mu_{\rm y}$	-5.5410	-6.9366
μ _z	-0.2833	-0.3335
μ _{Toplam}	5.5734	7.1106

Tablo 3.166. 28 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-909.118	-903.727

3.4.23. 1-Asetil-3-metil-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (30)

Şekil 3.89. 30 tipi bileşiğin(6-31G(d,p)) gausview görünümü

Tablo 3.167. 30 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

No	Donay	ПЕТ	Fork	DFT/	Fark/	ПЕ	Fork	HF/	Fark/
INU	Deney.	DFI	гагк	DMSO	DMSO	пг	гагк	DMSO	DMSO
C1	144.59	151.23	-6.64	154.21	-9.62	143.45	1.14	147.49	-2.90
C2	153.74	153.34	0.40	153.74	0.00	147.86	5.88	148.45	5.29
C3	147.73	168.20	-20.47	170.35	-22.62	168.22	-20.49	171.33	-23.60
C4	126.90	131.91	-5.01	132.51	-5.61	123.85	3.05	124.76	2.14
C5	131.69	134.72	-3.03	137.32	-5.63	123.39	8.30	126.29	5.40
C6	122.25	126.54	-4.29	127.96	-5.71	118.79	3.46	120.13	2.12
C7	146.63	153.70	-7.07	152.94	-6.31	143.07	3.56	141.70	4.93
C8	142.46	149.22	-6.76	147.98	-5.52	137.44	5.02	135.68	6.78
C9	124.25	131.41	-7.16	130.20	-5.95	123.13	1.12	121.78	2.47
C10	11.13	20.90	-9.77	20.92	-9.79	10.04	1.09	10.10	1.03
C11	165.96	164.74	1.22	167.95	-1.99	21.21	144.75	21.43	144.53
C12	23.39	33.04	-9.65	33.24	-9.85	156.84	-133.45	160.66	-137.27
C13	168.14	170.36	-2.22	172.40	-4.26	160.96	7.18	162.99	5.15
C14	20.28	28.15	-7.87	28.36	-8.08	17.65	2.63	17.82	2.46
C15	167.96	167.35	0.61	171.24	-3.28	156.98	10.98	161.22	6.74
C16	20.28	28.27	-7.99	28.65	-8.37	17.03	3.25	17.34	2.94
H17	9.61	9.13	0.48	9.36	0.25	9.04	0.57	9.34	0.27
H18	7.80	8.11	-0.31	8.53	-0.73	7.75	0.05	8.25	-0.45
H19	7.45	7.98	-0.53	8.32	-0.87	7.65	-0.20	8.03	-0.58
H20	7.83	9.20	-1.37	9.11	-1.28	8.89	-1.06	8.73	-0.90
H21	2.32	2.54	-0.22	2.83	-0.51	1.77	0.55	2.14	0.18
H22	2.32	3.08	-0.76	3.19	-0.87	2.34	-0.02	2.52	-0.20
H23	2.32	2.93	-0.61	2.92	-0.60	2.44	-0.12	2.39	-0.07
H24	2.49	2.89	-0.40	2.93	-0.44	2.42	0.07	2.45	0.04
H25	2.49	3.50	-1.01	3.70	-1.21	2.82	-0.33	3.05	-0.56
H26	2.49	3.59	-1.10	3.65	-1.16	2.96	-0.47	3.05	-0.56
H27	2.32	3.05	-0.73	3.25	-0.93	2.47	-0.15	2.72	-0.40
H28	2.32	3.28	-0.96	3.36	-1.04	2.70	-0.38	2.75	-0.43
H29	2.32	2.63	-0.31	2.67	-0.35	2.19	0.13	2.20	0.12
H30	2.32	2.61	-0.29	2.64	-0.32	2.19	0.13	2.17	0.15
H31	2.32	2.99	-0.67	3.39	-1.07	2.05	0.27	2.57	-0.25
H32	2.32	3.28	-0.96	3.22	-0.90	2.27	0.05	2.27	0.05

510(u,p	TİTREŞİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	τ CCCC(32), τ CCNN(13)	7	14
2	δ CNN(18), δ CCN(18), τ CCCC(10), τ NCCN(12)	27	24
3	τ COCC(12), τ CCNN(12), τ NCCN(26)	32	31
4	$\tau \operatorname{COCC}(29)$ $\tau \operatorname{CCOC}(43)$	44	42
5	$\tau CNNC(14)$ $\tau COCC(29)$	52	52
6	$\tau CCCC(11), \tau CCNC(39)$	58	56
7	$\tau OCC(15), \tau CCOC(30)$	50	50 60
0	$\tau CCNC(34)$	59	64
0	$\tau UCCO(54)$	00 86	04
9	- HCCO(58)	80	90
10	$\frac{1}{1000(05)} = 00000(15)$	90	100
11	t CNNC(17), t CCNN(15)	109	104
12	$\mathcal{T} \cup \mathcal{U} \cup \mathcal{U} (23)$	118	114
13	$\tau \operatorname{COCC}(11), \tau \operatorname{CCOC}(11)$	121	118
14	τ HCCO(17)	134	134
15	τ HCCO(15)	144	152
16	τ HCCN(69)	160	169
17	τ HCCN(52), τ CNNC(14)	166	173
18	δ OCC(10)	177	179
19	δ CNN(11), δ CCN(16), τ NCCN(14)	196	196
20	τ CCCC(12)	208	214
21	δ CCN(12)	241	249
22	δ NNC(10)	243	261
23	δ OCC(31), δ OCC(14), τ CCOC(13)	281	287
24	v OC(11), δ CCO(20), δ CCN(13)	297	300
25	δ OCN(16), δ CCN(11)	323	328
26	δ CCO(11)	339	346
27	τ CCNN(28), τ CNNC(26)	349	356
28	δ CCN(22), δ CCN(11)	361	367
29	$\delta OCC(10)$, $\delta CCO(12)$	372	373
30	v NC(17), δ CCN(23)	412	417
31	$\delta CCO(15)$, $\tau CCCC(12)$	423	434
32	δ OCC(14). τ CCCC(15)	477	483
33	δ OCC(10), τ OCCC(13)	481	490
34	$\delta OCC(17) \tau CCNN(10)$	498	513
35	$\delta OCC(10)$	533	541
36	$\delta OCC(11)$	536	546
37	$\delta OCC(15) \tau HCCO(11) \tau OCOC(22)$	548	567
38	τ HCCN(14), τ ONNC(25)	558	576
39	$v NN(11) \delta CNN(13) \tau ONNC(36)$	559	577
40	$\tau OCOC(33)$	564	585
40	v CC(27) & OCC(27)	589	596
42	V CC(27), 0 OCC(27)	607	615
42	τ NCNN(56), τ CNNC(10)	624	645
43	$\frac{1}{2} CC(11)$	644	650
44	V CC(11)	640	664
43	$\sum_{i=1}^{n} C(C(1i), CCCC(12))$	674	679
40	- ONINC(40)	702	720
4/	t OININC(40)	705	139
40	$\frac{V \operatorname{INN}(1/)}{-\operatorname{IICCC}(10)} = \operatorname{OCCC}(15)$	122	131
49	$v CC(14), \tau HCCC(10), \tau OCCC(15)$	/ 33	/00
50	v OU(12), v UU(10), v NN(11)	/40	//1
51	$\tau HUU(23) = HOCO(44) = OCOC(10)$	/80	818
52	τ HUCU(44), τ UUUU(10)	819	85/
53	v OC(12), v CC(11)	841	865
54	ν CC(11), τ HCCC(10)	862	895

Tablo 3.168. 30 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm^{-1})

Tablo 3.168.' in devam

	00(11)	000	000
22	VOC(13)	880	909
56	τ HCCC(40)	902	955
57	τ HCCC(59)	922	963
58	τ HCNN(26), τ HCCN(12)	936	965
59	τ HCNN(31), τ HCCN(18)	943	986
60	τ HCCC(44) τ HCNN(10)	961	995
61	$\nu CC(12) \ \delta HCH(12) \ \tau HCCO(21)$	974	1010
	- HCCO(24)	974	1010
62	τ HCCO(34)	990	1016
63	δ HCH(16), τ HCCN(41)	994	1018
64	τ HCCN(54)	1019	1049
65	ν NN(11), δ HCH(10), τ HCCO(52), τ OCOC(10)	1025	1050
66	δ HCH(20), τ HCCN(53), τ HCCO(23), τ OCOC(13)	1028	1054
67	δ HCH(19)	1029	1057
68	$v NC(11) v NN(11) \delta NNC(20)$	1056	1090
60	$v NN(24) \& CNN(10) \\ \tau HCCN(16)$	1000	1102
70	(10)(24), 0 C(10), 1 HCC(10)	1090	1102
70	V OC(21), 0 HCC(21), 0 CCC(11)	1108	1129
71	v CC(13), 8 HCC(22)	1130	1140
72	ν OC(14), ν CC(14), δ OCC(14), τ HCCO(13)	1144	1147
73	v NC(10), v NN(14)	1159	1200
74	v OC(12), δ HCC(17)	1185	1219
75	v NC(14), v NN(18)	1200	1223
76	δ CNN(18)	1219	1244
77	$\gamma OC(10) \delta HCC(45)$	1249	1271
79	v CC(17) = v CC(10) + BCC(21)	1219	1271
70	$V CC(17), V CC(19), 0 \Pi CC(21)$	1232	1277
/9	V INC(22)	12//	1294
80	VCC(61)	1301	1340
81	v NC(16), 8 HCH(35)	1341	1363
82	δ HCH(75)	1354	1383
83	δ HCH(63)	1357	1391
84	δ HCH(72)	1361	1394
85	δ HCN(59)	1366	1397
86	δ HCH(45)	1386	1415
87	δ HCH(32) τ HCCN(24)	1406	1422
88	$v CC(38) \delta HCN(16) \delta HCC(10)$	1415	1426
80	$\tau HCCO(21)$	1415	1/132
07	\$ UCU(50)	1424	1432
90	0 HCH(30)	1423	1455
91	0 HCH(01)	1428	1440
92	δ HCH(33), τ HCCN(24)	1429	1441
93	δ HCH(49), τ HCCO(20)	1430	1444
94	δ HCH(54), τ HCCN(21)	1437	1450
95	δ HCH(50), τ HCCO(20)	1440	1453
96	δ HCC(49)	1480	1517
97	ν CC(31), δ CCC(14)	1556	1597
98	v CC(52), δ HCC(12)	1591	1634
99	v NC(60)	1610	1707
100	v NC(62)	1627	1723
100	$v \cap C(39)$	1736	1720
101	v OC(47)	1760	1825
102	VOC(47)	1709	1023
103	V OC(40)	1//9	1020
104	V UC(46)	1812	1854
105	v CH(88)	2942	2883
106	v CH(83)	2953	2891
107	v CH(95)	2957	2898
108	v CH(95)	2959	2901
109	v CH(96)	3001	2943
110	v CH(28)	3012	2955
111	v CH(87)	3019	2969

Tablo 3.1	68' in devamı		
112	v CH(98)	3023	2971
113	v CH(76)	3032	2985
114	v CH(89)	3049	2986
115	v CH(95)	3059	2993
116	v CH(73)	3064	2995
117	v CH(84)	3065	3003
118	v CH(43)	3070	3015
119	v CH(40)	3093	3042
120	v CH(26)	3137	3067

Şekil 3.90. 30 tipi bileşiğin teorik (B3LYP6-31G(d,p)(a) ve HF6-31G(d,p)(b)) IR spektrumları

Şekil 3.91. 30 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.169. 30 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	······································						
	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(34)-N(33)	105.035	105.553	30	C(4)-C(5)-C(6)	121.116	120.580
2	C(1)-N(35)-C(2)	107.885	107.849	31	C(5)-C(6)-C(7)	120.029	119.974
3	N(34)-C(1)-N(35)	112.108	111.771	32	C(5)-C(6)-H(19)	120.732	120.674
4	C(1)-C(10)-H(21)	111.096	110.460	33	H(19)-C(6)-C(7)	119.233	119.350
5	C(1)-C(10)-H(22)	110.321	110.281	34	C(6)-C(7)-O(38)	122.068	121.742
6	C(1)-C(10)-H(23)	108.851	108.733	35	C(6)-C(7)-C(8)	119.069	119.419
7	H(21)-C(10)-H(22)	107.612	108.219	36	C(7)-O(38)-C(15)	123.839	124.986
8	H(22)-C(10)-H(23)	109.678	109.687	37	O(38)-C(15)-O(41)	116.781	117.226
9	H(21)-C(10)-H(23)	109.264	109.449	38	O(41)-C(15)-C(16)	125.613	124.317
10	C(1)-N(35)-N(36)	120.531	122.106	39	C(15)-C(16)-H(32)	110.144	111.209
11	N(34)-N(33)-C(12)	119.213	119.369	40	C(15)-C(16)-H(31)	111.328	110.371
12	C(12)-N(33)-C(2)	128.536	129.052	41	C(15)-C(16)-H(30)	107.524	107.216
13	O(40)-C(12)-N(33)	119.751	119.780	42	H(30)-C(16)-H(32)	110.341	110.118
14	O(40)-C(12)-C(11)	124.328	123.496	43	H(30)-C(16)-H(31)	109.011	108.958
15	C(12)-C(11)-H(24)	107.256	106.971	44	H(32)-C(16)-H(31)	108.439	108.936

Tał	olo 3.169.' un devamı						
16	C(12)-C(11)-H(25)	111.246	111.015	45	O(38)-C(7)-C(8)	118.651	118.670
17	C(12)-C(11)-H(26)	111.143	110.983	46	C(7)-C(8)-O(39)	120.764	120.786
18	N(33)-C(2)-N(35)	102.405	102.928	47	C(8)-O(39)-C(13)	119.013	119.996
19	N(33)-C(2)-O(37)	129.989	129.799	48	O(39)-C(13)-O(42)	123.403	122.994
20	O(37)-C(2)-N(35)	127.593	127.257	49	O(42)-C(13)-C(14)	126.556	126.195
21	C(2)-N(35)-N(36)	124.780	123.199	50	C(13)-C(14)-H(27)	110.563	109.888
22	N(35)-N(36)-C(3)	119.299	117.301	51	C(13)-C(14)-H(28)	109.374	109.008
23	N(36)-C(3)-H(17)	110.571	112.595	52	C(13)-C(14)-H(29)	109.093	109.392
24	N(36)-C(3)-C(4)	135.780	132.230	53	H(27)-C(14)-H(28)	107.559	107.937
25	H(17)-C(3)-C(4)	113.354	115.079	54	H(27)-C(14)-H(29)	110.593	110.498
26	C(3)-C(4)-C(5)	115.179	116.889	55	H(28)-C(14)-H(29)	109.624	110.090
27	C(3)-C(4)-C(9)	126.244	123.772	56	O(39)-C(8)-C(9)	118.508	118.201
28	C(4)-C(5)-H(18)	119.603	120.128	57	C(8)-C(9)-H(20)	118.382	118.872
29	H(18)-C(5)-C(6)	119.250	119.279	58	H(20)-C(9)-C(4)	121.388	121.306

Tablo 3.170. 30 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Ba	ğUzunlukları	B3LYP	HF	B	ağ Uzunlukları	B3LYP	HF
1	C(1)-N(34)	1.2951	1.2640	23	C(5)-H(18)	1.0860	1.0759
2	C(1)-N(35)	1.3926	1.3827	24	C(5)-C(6)	1.3991	1.3818
3	C(1)-C(10)	1.4861	1.4875	25	C(6)-H(19)	1.0845	1.0739
4	N(34)-N(33)	1.3923	1.3825	26	C(6)-C(7)	1.3964	1.3828
5	N(33)-C(12)	1.4278	1.4092	27	C(7)-O(38)	1.3731	1.3591
6	C(12)-O(40)	1.2076	1.1837	28	O(38)-C(15)	1.3981	1.3625
7	C(12)-C(11)	1.5092	1.5060	29	C(15)-O(41)	1.1991	1.1778
8	C(11)-H(24)	1.0897	1.0798	30	C(15)-C(16)	1.5080	1.5054
9	C(11)-H(25)	1.0928	1.0821	31	C(16)-H(30)	1.0892	1.0793
10	C(11)-H(26)	1.0928	1.0819	32	C(16)-H(31)	1.0931	1.0838
11	N(33)-C(2)	1.3998	1.3749	33	C(16)-H(32)	1.0920	1.0801
12	C(2)-O(37)	1.2209	1.1980	34	C(7)-C(8)	1.4028	1.3872
13	C(2)-N(35)	1.4007	1.3726	35	C(8)-O(39)	1.3881	1.3712
14	N(35)-N(36)	1.4082	1.3993	36	O(39)-C(13)	1.3750	1.3433
15	N(36)-C(3)	1.2867	1.2590	37	C(13)-O(42)	1.2061	1.1843
16	C(3)-H(17)	1.0920	1.0794	38	C(13)-C(14)	1.5034	1.4983
17	C(10)-H(21)	1.0903	1.0802	39	C(14)-H(27)	1.0926	1.0832
18	C(10)-H(22)	1.0943	1.0838	40	C(14)-H(28)	1.0945	1.0839
19	C(10)-H(23)	1.0948	1.0844	41	C(14)-H(29)	1.0890	1.0793
20	C(3)-C(4)	1.4725	1.4849	42	C(8)-C(9)	1.3877	1.3781
21	C(4)-C(5)	1.4082	1.3901	43	C(9)-H(20)	1.0806	1.0719
22	C(4)-C(9)	1.4040	1.3893				

Tablo 3.171. 30 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.533	0.602	H22	0.153	0.164
C2	0.820	1.092	H23	0.155	0.177
C3	0.078	0.194	H24	0.137	0.160
C4	0.095	-0.106	H25	0.145	0.157

Tablo 3.17	1.'in devamı				
C5	-0.126	-0.143	H26	0.155	0.169
C6	-0.113	-0.167	H27	0.148	0.160
C7	0.328	0.370	H28	0.150	0.174
C8	0.314	0.362	H29	0.163	0.167
С9	-0.114	-0.139	H30	0.152	0.174
C10	-0.374	-0.376	H31	0.134	0.142
C11	0.564	-0.409	H32	0.180	0.189
C12	-0.377	0.744	N33	-0.421	-0.669
C13	0.595	0.764	N34	-0.304	-0.292
C14	-0.390	-0.414	N35	-0.452	-0.654
C15	0.573	0.759	N36	-0.254	-0.254
C16	-0.416	-0.454	037	-0.540	-0.647
H17	0.129	0.180	O38	-0.512	-0.671
H18	0.105	0.174	O39	-0.515	-0.666
H19	0.115	0.184	O40	-0.423	-0.514
H20	0.138	0.242	O41	-0.414	-0.511
H21	0.139	0.148	O42	-0.453	-0.561

Şekil 3.92. 30 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.172. 30 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	3.5351	4.0930
μ _v	-4.5255	-6.0706
μ _z	4.5163	5.3503
μ _{Toplam}	7.3058	9.0681

Tablo 3.173. 30 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1289.692	-1282.201

3.4.24. 1-Asetil-3-benzil-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (31)

Şekil 3.93. 31 tipi bileşiğin(6-31G(d,p)) gausview görünümü

		- (DFT	Fark/			HF/	 Fark/
No	Deney.	DFT	Fark	DMSO	DMSO	HF	Fark	DMSO	DMSO
C1	144.53	154.22	-9.69	156.26	-11.73	148.61	-4.08	151.13	-6.60
C2	153.26	146.76	6.50	147.71	5.55	140.60	12.66	142.10	11.16
C3	148.21	158.08	-9.87	159.62	-11.41	155.79	-7.58	157.41	-9.20
C4	131.68	135.28	-3.60	135.65	-3.97	127.12	4.56	127.12	4.56
C5	126.88	135.17	-8.29	137.98	-11.10	127.60	-0.72	130.27	-3.39
C6	122.34	124.83	-2.49	126.26	-3.92	120.13	2.21	120.32	2.02
C7	147.89	154.10	-6.21	153.20	-5.31	142.21	5.68	141.61	6.28
C8	142.39	149.27	-6.88	147.32	-4.93	138.87	3.52	136.71	5.68
C9	124.35	131.12	-6.77	130.89	-6.54	122.10	2.25	122.72	1.63
C10	30.92	43.11	-12.19	42.71	-11.79	28.10	2.82	27.70	3.22
C11	134.56	136.20	-1.64	136.99	-2.43	128.31	6.25	128.97	5.59
C12	128.93	133.13	-4.20	133.34	-4.41	126.40	2.53	126.58	2.35
C13	128.42	131.36	-2.94	131.51	-3.09	124.81	3.61	124.89	3.53
C14	126.81	130.49	-3.68	130.51	-3.70	124.03	2.78	124.04	2.77
C15	128.42	131.43	-3.01	131.50	-3.08	124.95	3.47	124.95	3.47
C16	128.93	133.59	-4.66	133.67	-4.74	126.53	2.40	126.61	2.32
C17	168.10	169.84	-1.74	172.32	-4.22	160.78	7.32	164.06	4.04
C18	23.48	31.39	-7.91	31.68	-8.20	19.91	3.57	20.22	3.26
C19	167.96	167.44	0.52	171.56	-3.60	159.05	8.91	162.21	5.75
C20	20.26	28.93	-8.67	28.93	-8.67	16.17	4.09	16.32	3.94
C21	165.90	166.35	-0.45	170.67	-4.77	158.65	7.25	161.71	4.19
C22	20.26	26.25	-5.99	26.94	-6.68	17.57	2.69	17.93	2.33
H23	9.55	8.62	0.93	8.88	0.67	8.41	1.14	8.71	0.84
H24	7.76	8.04	-0.28	8.47	-0.71	7.92	-0.16	8.37	-0.61
H25	7.40	7.77	-0.37	8.11	-0.71	7.81	-0.41	8.10	-0.70
H26	7.78	8.06	-0.28	8.23	-0.45	8.09	-0.31	8.36	-0.58
H27	4.06	4.41	-0.35	4.66	-0.60	3.73	0.33	4.04	0.02
H28	4.06	4.94	-0.88	5.02	-0.96	4.15	-0.09	4.28	-0.22
H29	7.40	8.21	-0.81	8.39	-0.99	7.92	-0.52	8.12	-0.72
H30	7.34	8.32	-0.98	8.46	-1.12	7.98	-0.64	8.14	-0.80
H31	7.28	8.28	-1.00	8.41	-1.13	7.94	-0.66	8.10	-0.82
H32	7.34	8.33	-0.99	8.46	-1.12	8.00	-0.66	8.15	-0.81
H33	/.40	8.23	-0.83	8.40	-1.00	7.93	-0.53	8.14	-0./4
H34	2.40	3.04	-0.64	3.16	-0./6	2.30	0.10	2.46	-0.06
H35	2.40	3.16	-0./6	3.26	-0.86	2.38	0.02	2.52	-0.12
H36	2.40	2.4/	-0.0/	2.49	-0.09	1.99	0.41	2.02	0.38
H37	2.23	2.24	-0.01	2.63	-0.40	2.34	-0.11	2.08	0.15
H38	2.23	5.95	-1./0	5.85	-1.60	1.82	0.41	2.23	-0.02
H39	2.23	2.60	-0.5/	2.5/	-0.34	2.08	0.15	2.09	0.14
	2.23	3.28 2.75	-1.05	3.31 2.05	-1.28	2.39	-U.10	2.15	-0.50
	2.23	2.75	-0.52	2.93	-0.72	2.1/	0.06	2.23	0.00
H42	2.23	2.62	-0.39	2.74	-0.51	2.70	-0.47	2.73	-0.50

Tablo 3.174. 31 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

510(TITRESIM TÜRLERİ	skalalı B3LVP	skalalı HF
1	τ CNNC(26)	12	11
2	τ CCCN(23) τ CCCC(11)	16	15
3	τ CCCN(11) τ CCCC(28)	19	19
4	$\tau COCC(28)$ $\tau CCOC(20)$	27	25
5	$\tau \text{CNNC}(10) \ \tau \text{COCC}(15) \ \tau \text{CCNN}(10) \ \tau \text{CCCC}(10)$	30	25
6	$\tau \text{CNNC(15)}$ $\tau \text{NNCC(15)}$ $\tau \text{CCOC(19)}$	31	35
7	$\tau COCC(24)$ $\tau CCOC(11)$	40	41
8	δ NCC(21), δ CCC(14), τ CCCC(18)	45	48
9	τ COCC(38) τ CCOC(16)	53	57
10	$\tau CCCC(20), \tau CCNN(11)$	63	58
11	δ OCC(13) τ CCOC(15)	65	67
12	τ CCCC(25)	67	71
13	τ CCNN(18)	88	88
14	τ HCCO(10) τ COCC(18) τ CCOC(21)	103	110
15	τ CCNN(27)	114	114
16	τ HCCO(16) τ HCCN(53)	128	119
17	τ CNNC(12)	130	133
18	τ HCCO(47)	133	147
19	$\delta \operatorname{NCC}(17) \tau \operatorname{CCCC}(11)$	140	153
20	$\tau \text{CNNC}(11), \tau \text{NNCC}(23)$	147	158
21	$\delta \text{OCC}(11)$	170	180
22	$\delta OCC(12)$	180	186
${23}$	$\delta \text{CCC}(11) \tau \text{CCCC}(16)$	224	225
24	δ NCN(11), τ NNCC(15)	233	234
25	δ OCC(12), τ CCCN(15)	245	240
26	δ CCC(15), δ OCC(28)	259	280
27	δ OCN(17)	296	313
28	δ CCC(32), τ HCCN(16)	319	321
29	τ CNNC(28), τ CCNN(12)	334	323
30	$v NC(10), \delta CCN(13)$	336	336
31	δ CCO(14), τ CCCC(11)	346	345
32	δ CCC(12)	369	36
33	$\tau CCCC(79)$	400	389
34	δ CCO(23)	405	409
35	δ OCC(10), δ CCN(18), δ CCO(10)	427	436
36	δ CCO(12)	434	440
37	δ OCC(20), δ CCO(13)	438	458
38	τ CCCC(18)	461	473
39	δ OCC(22), τ CCCN(10)	488	490
40	δ OCC(12), τ CCCN(13)	511	515
41	δ OCC(17)	522	524
42		529	555
43	τ ONNC(26)	544	569
44	τ ONNC(30)	548	573
45	τ HCCN(13), τ ONNC(35)	554	574
46	$\tau \text{ ONNC}(15)$	561	590
47	ν NN(11), δ NCN(10), δ CCC(16)	570	593
48	δ OCC(10), δ OCN(12)	590	602
49	δ OCC(14), τ OCCC(10), τ CCCC(10)	600	612
50	δ CCC(43)	610	624
51	τ NNCC(11), τ NCNC(28)	619	637
52	δ CCC(14), τ CCCN(11), τ CCCC(13)	639	656
53	δ CCC(20)	668	689
54	τ HCCC(12), τ CCCC(44)	684	697

Tablo 3.175. 31 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

Tablo 3.175.' in devamı

55	ν CC(12), ν OC(12), τ CCCN(10)	697	713
56	τ ONNC(16)	705	727
57	τ HCCC(14)	722	744
58	$v OC(13), v CC(20), \tau OCCC(10)$	725	765
59	γ CC(10), τ OCCC(11)	734	771
60	v NN(17)	758	782
61	$v CC(11) \delta NCN(10)$	772	806
62	τ HCCC(38)	803	829
63	v CC(12)	818	842
64	τ HCCC(26)	826	850
65	τ HCCC(55)	827	858
66	v CC(18)	857	876
67	$v OC(10) \tau HCCC(15)$	879	914
68	τ HCCC(19)	888	915
69	τ HCCN(66)	897	932
70	τ HCCC(31)	899	939
71	τ HCCC(63) τ HCNN(12)	914	968
72	τ HCCC(10)	934	974
73	τ HCCC(48) τ HCNN(38)	934	979
74	ν CC(10) τ HCCN(30)	950	981
75	τ HCCC(32) τ CCCC(26)	962	989
76	$v OC(10) \delta CCC(14)$	969	991
70	$v CC(13), \tau HCCO(13)$	970	1007
78	$v CC(14) \delta HCH(12) \tau HCCO(30)$	974	1010
70	v CC(25) & CCC(50)	070	1010
80	v CC(18)	1015	1015
81	δ HCH(10) δ HCC(24) τ HCCO(12) τ HCCN(11) τ ONNC(12)	1013	1015
87	τ HCCN(46)	1017	1050
83	δ HCH(15), τ HCCO(46)	1010	1056
81 81	$v NC(11) \delta NNC(21)$	1020	1057
85	v CC(33) & HCC(13)	1025	1061
86	τ HCCN(17)	1107	1001
87	$v CC(11) v OC(25) \delta HCC(17)$	1113	1091
88	$v CC(12) \delta HCC(16)$	1130	1128
89	$v OC(23), v CC(17), \delta OCC(11), \tau HCCO(12)$	1130	1120
90	δ HCC(68)	1143	1149
91	$v NN(24) \delta CNN(13)$	1144	1166
92	δ HCC(49)	1161	1173
93	$v OC(12) v CC(14) \delta HCC(19) \tau HCCO(11)$	1162	1183
94	$v CC(19) \delta HCC(40)$	1164	1200
95	$v CC(18) \tau HCCN(15)$	1178	1200
96	$v CC(11), v OC(12), \delta HCC(24)$	1196	1213
97	δ NCN(13) δ NNC(11)	1210	1223
98	$v CC(10) \delta HCC(32)$	1241	1228
99	$v CC(22) = v OC(26) \delta HCC(17)$	1255	1262
100	ν NC(16) τ HCCN(34)	1271	1267
101	$v NC(28) \delta CNN(11)$	1289	1281
102	v CC(24)	1297	1306
103	v CC(60), δ HCC(10)	1306	1330
104	v CC(11), δ HCC(48)	1312	1346
105	δ HCH(56)	1353	1387
106	δ HCH(78)	1355	1392
107	δ HCH(77)	1367	1393
108	$v CC(11), \delta HCN(52)$	1370	1396
109	v NC(20), v CC(14), τ HCCN(20)	1385	1423
110	v CC(10), δ HCC(10), δ HCN(19), δ HCH(14)	1413	1429
111	δ HCH(36), τ HCCN(24)	1416	1433

Tablo	o 3.175.' in devami		
112	δ HCH(50), τ HCCO(11)	1419	1434
113	δ HCH(87)	1424	1438
114	δ HCH(35)	1426	1441
115	δ HCH(39), τ HCCN(25)	1426	1442
116	δ HCH(43), τ HCCO(15)	1434	1442
117	δ HCH(67), τ HCCO(21)	1439	1448
118	ν CC(29), δ HCC(24)	1440	1454
119	δ HCC(51), δ CCC(10)	1479	1501
120	ν CC(12), δ HCN(34), δ HCC(14), δ CCC(13)	1484	1517
121	v CC(33)	1554	1604
122	ν CC(28), δ CCC(13)	1581	1607
123	ν CC(50), δ HCC(12)	1586	1630
124	v NC(34), v CC(17)	1597	1635
125	v NC(16), v CC(34)	1603	1696
126	v NC(56)	1622	1721
127	v OC(44)	1723	1768
128	v OC(46)	1789	1848
129	v OC(45)	1805	1849
130	v OC(49)	1812	1852
131	v CH(96)	2930	2888
132	v CH(30)	2951	2889
133	v CH(79)	2953	2895
134	v CH(93)	2955	2896
135	v CH(96)	2965	2927
136	v CH(37)	3018	2953
137	v CH(62)	3019	2961
138	v CH(99)	3021	2962
139	v CH(67)	3027	2990
140	v CH(75)	3054	2992
141	v CH(53)	3056	2993
142	v CH(55)	3061	2996
143	v CH(93)	3062	2999
144	v CH(97)	3066	3002
145	v CH(97)	3066	3012
146	v CH(47)	3071	3022
147	v CH(60)	3075	3022
148	v CH(84)	3086	3033
149	v CH(44)	3088	3047
150	v CH(26)	3124	3070

Şekil 3.94. 31 tipi bileşiğin teorik (B3LYP6-31G(d,p)(a) ve HF6-31G(d,p)(b)) IR spektrumları

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF
324.41/227.54	3.8219/5.4489
287.52/212.44	4.3123/5.8363
281.79/207.33	4.3998/5.9801

Şekil 3.95. 31 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(44)-N(43)	105.227	105.683	37	N(43)-C(2)-O(47)	130.922	130.731
2	C(1)-N(45)-C(2)	108.341	108.271	38	C(2)-N(45)-N(46)	126.927	125.941
3	N(44)-C(1)-N(45)	111.876	111.682	39	N(45)-N(46)-C(3)	120.400	120.074
4	N(44)-N(43)-C(17)	120.919	120.753	40	N(46)-C(3)-H(23)	110.631	111.738
5	N(44)-C(1)-C(10)	126.332	126.712	41	H(23)-C(3)-C(4)	113.388	113.846
6	N(45)-C(1)-C(10)	121.768	121.585	42	C(3)-C(4)-C(5)	116.520	116.750
7	C(1)-C(10)-H(27)	108.053	107.691	43	C(3)-C(4)-C(9)	125.086	124.176
8	C(1)-C(10)-H(28)	107.315	107.398	44	C(4)-C(5)-H(24)	119.496	119.865
9	H(27)-C(10)-C(11)	110.586	110.652	45	H(24)-C(5)-C(6)	119.323	119.206
10	H(28)-C(10)-C(11)	111.095	110.914	46	C(4)-C(5)-C(6)	121.180	120.928
11	H(27)-C(10)-H(28)	105.360	105.888	47	C(5)-C(6)-H(25)	120.670	121.208
12	C(1)-C(10)-C(11)	114.000	113.909	48	H(25)-C(6)-C(7)	119.315	119.479
13	C(10)-C(11)-C(16)	120.622	120.586	49	C(5)-C(6)-C(7)	120.001	119.313
14	C(10)-C(11)-C(12)	120.493	120.505	50	C(6)-C(7)-O(51)	122.019	121.133
15	C(11)-C(12)-H(29)	119.561	119.743	51	C(7)-O(51)-C(21)	124.139	118.572
16	H(29)-C(12)-C(13)	119.812	119.635	52	O(51)-C(21)-O(52)	117.716	122.736
17	C(11)-C(12)-C(13)	120.627	120.622	53	O(52)-C(21)-C(22)	124.660	126.782
18	C(12)-C(13)-H(30)	119.785	119.787	54	C(21)-C(22)-H(40)	108.353	108.782
19	H(30)-C(13)-C(14)	120.131	120.121	55	C(21)-C(22)-H(41)	113.629	110.228
20	C(13)-C(14)-H(31)	120.150	120.174	56	C(21)-C(22)-H(42)	108.242	109.344
21	H(31)-C(14)-C(15)	120.155	120.162	57	H(40)-C(22)-H(41)	107.742	108.028
22	C(12)-C(13)-C(14)	120.083	120.091	58	H(41)-C(22)-H(42)	110.272	110.584
23	C(14)-C(15)-H(32)	120.147	120.122	59	H(40)-C(22)-H(42)	108.475	109.845
24	H(32)-C(15)-C(16)	119.781	119.791	60	O(51)-C(7)-C(8)	118.230	118.428
25	C(14)-C(15)-C(16)	120.072	120.086	61	C(7)-C(8)-O(49)	119.548	119.475
26	C(15)-C(16)-H(33)	119.774	119.602	62	C(8)-O(49)-C(19)	122.594	122.743
27	H(33)-C(16)-C(11)	119.586	119.770	63	O(49)-C(19)-O(50)	117.075	117.511
28	C(15)-C(16)-C(11)	120.639	120.629	64	O(50)-C(19)-C(20)	125.295	124.563
29	N(43)-C(17)-O(48)	120.483	120.909	65	C(19)-C(20)-H(37)	111.825	112.143
30	O(48)-C(17)-C(18)	124.897	124.092	66	C(19)-C(20)-H(38)	111.636	110.203
31	C(17)-C(18)-H(34)	110.890	110.715	67	C(19)-C(20)-H(39)	107.656	107.567
32	C(17)-C(18)-H(35)	110.638	110.549	68	H(37)-C(20)-H(38)	106.932	107.842
33	C(17)-C(18)-H(36)	107.776	107.530	69	H(38)-C(20)-H(39)	108.652	109.324
34	H(34)-C(18)-H(35)	106.729	107.304	70	H(37)-C(20)-H(39)	110.111	109.742
35	H(34)-C(18)-H(36)	110.555	110.498	71	C(8)-C(9)-H(26)	117.590	118.090
36	H(35)-C(17)-H(36)	110.278	110.270	72	H(26)-C(9)-C(4)	121.508	121.872

Tablo 3.176. 31 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.177. 31 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	ağ Uzunlukları B3LYP HF Bağ Uzunlukları		ğ Uzunlukları	B3LYP	HF		
1	C(1)-N(44)	1.2959	1.2652	28	C(16)-C(11)	1.3991	1.3883
2	C(1)-N(45)	1.3907	1.3799	29	N(46)-C(3)	1.2901	1.2615
3	C(1)-C(10)	1.4988	1.4986	30	C(3)-H(23)	1.0912	1.0785
4	N(44)-N(43)	1.3944	1.3841	31	C(3)-C(4)	1.4674	1.4790
5	N(43)-C(17)	1.4186	1.4017	32	C(4)-C(5)	1.4061	1.3886
6	C(17)-O(48)	1.2108	1.1860	33	C(4)-C(9)	1.4055	1.3926
7	C(17)-C(18)	1.5092	1.5060	34	C(5)-H(24)	1.0859	1.0752
8	C(18)-H(34)	1.0931	1.0827	35	C(5)-C(6)	1.3897	1.3845

Tab	lo 3.177.' nin deva	mı					
9	C(18)-H(35)	1.0932	1.0828	36	C(6)-H(25)	1.0851	1.0736
10	C(18)-H(36)	1.0893	1.0798	37	C(6)-C(7)	1.3970	1.3753
11	N(43)-C(2)	1.4028	1.3810	38	C(7)-O(51)	1.3724	1.3693
12	C(2)-O(47)	1.2123	1.1875	39	O(51)-C(21)	1.3923	1.3561
13	C(2)-N(45)	1.4138	1.3874	40	C(20)-O(52)	1.1989	1.1793
14	N(45)-N(46)	1.3893	1.3832	41	C(21)-C(22)	1.5118	1.4986
15	C(10)-H(27)	1.0972	1.0857	42	C(22)-H(40)	1.0956	1.0845
16	C(10)-H(28)	1.0964	1.0846	43	C(22)-H(41)	1.0900	1.0830
17	C(10)-C(11)	1.5139	1.5125	44	C(22)-H(42)	1.0893	1.0794
18	C(11)-C(12)	1.3995	1.3879	45	C(7)-C(8)	1.4067	1.3875
19	C(12)-H(29)	1.0870	1.0766	46	C(8)-O(49)	1.3777	1.3641
20	C(12)-C(13)	1.3946	1.3849	47	O(49)-C(19)	1.3952	1.3606
21	C(13)-H(30)	1.0860	1.0756	48	C(19)-O(50)	1.1998	1.1793
22	C(13)-C(14)	1.3957	1.3847	49	C(19)-C(20)	1.5088	1.5057
23	C(14)-H(31)	1.0859	1.0755	50	C(20)-H(37)	1.0924	1.0828
24	C(14)-C(15)	1.3955	1.3851	51	C(20)-H(38)	1.0948	1.0838
25	C(15)-H(32)	1.0860	1.0756	52	C(20)-H(39)	1.0892	1.0791
26	C(15)-C(16)	1.3949	1.3844	53	C(8)-C(9)	1.3884	1.3739
27	C(16)-H(33)	1.0870	1.0766	54	C(9)-H(26)	1.0813	1.0712

Tablo 3.178. 31 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.556	0.631	H27	0.140	0.166
C2	0.806	1.069	H28	0.155	0.184
C3	0.777	0.197	H29	0.085	0.151
C4	0.145	-0.046	H30	0.090	0.154
C5	-0.133	-0.150	H31	0.090	0.153
C6	-0.115	-0.150	H32	0.091	0.155
C7	0.313	0.393	H33	0.084	0.150
C8	0.285	0.341	H34	0.151	0.162
С9	-0.103	-0.121	H35	0.156	0.166
C10	-0.321	-0.283	H36	0.142	0.162
C11	0.128	-0.001	H37	0.194	0.193
C12	-0.109	-0.143	H38	0.152	0.173
C13	-0.085	-0.145	H39	0.119	0.160
C14	-0.084	-0.149	H40	0.140	0.155
C15	-0.085	-0.145	H41	0.162	0.178
C16	-0.109	-0.141	H42	0.156	0.165
C17	0.563	0.734	N43	-0.411	-0.644
C18	-0.378	-0.408	N44	-0.346	-0.343
C19	0.558	0.746	N45	-0.451	-0.657
C20	-0.417	-0.465	N46	-0.272	-0.289
C21	0.561	0.751	O47	-0.432	-0.587
C22	-0.408	-0.417	O48	-0.492	-0.523
H23	0.124	0.173	O49	-0.415	-0.668
H24	0.106	0.175	O50	-0.501	-0.519
H25	0.118	0.186	051	-0.402	-0.525
H26	0.115	0.193	O52	-0.492	-0.695

E_{LUMO} (B3LYP) : -0.08129 Hatree

E_{LUMO}(HF): 0.06825 Hatree

Şekil 3.96. 31 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.179. 31 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	-4.2981	-4.9248
μ_{v}	-10.8538	-12.9222
μ_z	-3.8844	-4.5083
μ _{Toplam}	12.3032	14.5451

Tablo 3.180. 31 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1520.737	-1511.754

3.4.25. 1-Asetil-3-(*p*-metilbenzil)-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (32)

Şekil 3.97. 32 tipi bileşiğin(6-31G(d,p)) gausview görünümü

Tablo 3.181. 32 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

	, ,		/	DET/	F l-/	2	U		El-/
No	Deney	DFT	Fark	DF I/	Fark/	HF	Fark	HF/	Fark/
110	Dency.	DFT	1 al K	DMSO	DMSO	111	1 ai K	DMSO	DMSO
C1	145.10	153.81	-8.71	156.27	-11.17	147.27	-2.17	150.33	-5.23
C2	153.76	149.63	4.13	150.97	2.79	144.34	9.42	146.06	7.70
C3	149.02	167.47	-18.45	169.42	-20.40	167.61	-18.59	170.51	-21.49
C4	127.38	131.99	-4.61	132.56	-5.18	123.77	3.61	124.68	2.70
C5	131.83	134.81	-2.98	137.56	-5.73	123.72	8.11	126.81	5.02
C6	122.77	126.36	-3.59	127.97	-5.20	118.43	4.34	120.11	2.66
C7	148.40	153.91	-5.51	153.13	-4.73	143.28	5.12	141.95	6.45
C8	142.95	149.38	-6.43	147.98	-5.03	137.53	5.42	135.64	7.31
C9	124.90	132.21	-7.31	130.61	-5.71	124.15	0.75	122.27	2.63
C10	31.15	42.77	-11.62	42.33	-11.18	27.45	3.70	27.00	4.15
C11	132.18	133.62	-1.44	133.83	-1.65	124.53	7.65	124.92	7.26
C12	129.60	133.29	-3.69	133.25	-3.65	127.04	2.56	127.08	2.52
C13	129.36	132.17	-2.81	132.25	-2.89	124.72	4.64	124.62	4.74
C14	136.77	141.09	-4.32	142.03	-5.26	134.15	2.62	134.80	1.97
C15	129.36	132.14	-2.78	132.25	-2.89	124.78	4.58	124.75	4.61

Table	o 3 181.' i	n devamı							
C16	129.60	133.45	-3.85	133.45	-3.85	127.17	2.43	127.17	2.43
C17	21.07	30.24	-9.17	29.85	-8.78	17.44	3.63	17.03	4.04
C18	168.80	168.31	0.49	171.49	-2.69	159.86	8.94	163.67	5.13
C19	23.92	31.56	-7.64	31.92	-8.00	20.02	3.90	20.36	3.56
C20	168.90	170.42	-1.52	172.44	-3.54	161.10	7.80	163.00	5.90
C21	20.75	28.39	-7.64	28.62	-7.87	17.63	3.12	17.83	2.92
C22	166.80	167.58	-0.78	171.40	-4.60	157.16	9.64	161.32	5.48
C23	20.75	28.46	-7.71	28.84	-8.09	17.07	3.68	17.38	3.37
H24	9.36	9.11	0.25	9.36	0.00	9.04	0.32	9.34	0.02
H25	7.56	8.11	-0.55	8.55	-0.99	7.77	-0.21	8.30	-0.74
H26	7.26	7.96	-0.70	8.33	-1.07	7.66	-0.40	8.07	-0.81
H27	7.54	9.32	-1.78	9.14	-1.60	9.12	-1.58	8.85	-1.31
H28	3.90	3.97	-0.07	4.26	-0.36	3.08	0.82	3.46	0.44
H29	3.90	4.65	-0.75	4.75	-0.85	3.65	0.25	3.84	0.06
H30	6.97	8.11	-1.14	8.26	-1.29	7.75	-0.78	7.94	-0.97
H31	7.09	8.13	-1.04	8.27	-1.18	7.72	-0.63	7.88	-0.79
H34	2.09	3.33	-1.24	3.38	-1.29	2.75	-0.66	2.80	-0.71
H35	2.09	2.98	-0.89	3.05	-0.96	2.37	-0.28	2.45	-0.36
H36	2.09	2.90	-0.81	2.98	-0.89	2.54	-0.45	2.60	-0.51
H32	7.09	8.05	-0.96	8.20	-1.11	7.72	-0.63	7.88	-0.79
H33	6.97	7.94	-0.97	8.11	-1.14	7.57	-0.60	7.77	-0.80
H37	2.36	3.07	-0.71	3.21	-0.85	2.31	0.05	2.48	-0.12
H38	2.36	3.08	-0.72	3.22	-0.86	2.29	0.07	2.47	-0.11
H39	2.36	2.42	-0.06	2.49	-0.13	1.98	0.38	2.04	0.32
H40	2.18	3.18	-1.00	3.30	-1.12	2.61	-0.43	2.73	-0.55
H41	2.18	3.20	-1.02	3.34	-1.16	2.63	-0.45	2.74	-0.56
H42	2.18	2.61	-0.43	2.66	-0.48	2.17	0.01	2.20	-0.02
H43	2.18	3.41	-1.23	3.32	-1.14	2.35	-0.17	2.32	-0.14
H44	2.18	2.57	-0.39	2.62	-0.44	2.19	-0.01	2.18	0.00
H45	2.18	3.00	-0.82	3.40	-1.22	2.06	0.12	2.58	-0.40

Tablo 3.182. 32 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	τ CNNC(26), τ CCCC(30)	7	9
2	τ CCCC(15), τ CNNC(24), τ CCNN(11)	11	12
3	τ CCCC(40)	17	14
4	τ NNCC(12), τ CCNN(13)	26	24
5	τ HCCC(16), τ CNNC(15)	31	25
6	τ HCCC(20), τ CCCC(16)	33	35
7	δ NCC(14), δ CCC(14), τ HCCC(13)	38	37
8	τ COCC(22), τ CCOC(49)	42	42
9	τ COCC(21)	48	48
10	τ CCOC(52)	55	55
11	τ CCCC(12), τ COCC(16)	58	60
12	τ CCCC(31)	64	62
13	τ HCCO(49)	89	88
14	τ COCC(11), τ CCNN(12)	95	102
15	δ NCN(10), τ CCNN(17)	106	104
16	$\tau \operatorname{COCC}(15)$	113	113
17	δ NCC(17), τ CCCC(24)	117	115
18	τ COCC(28), τ CCOC(14), τ OCCC(13)	126	119

Tablo 3 182.' nin devamı

19	τ HCCN(68)	134	132
20	τ HCCO(17), τ NNCC(13)	137	151
21	τ HCCO(13), τ NNCC(20), τ NCNC(10)	146	157
22	δ OCC(24) τ NCCN(15)	172	174
23	$\tau CCC(12)$	175	178
23	$\tau \text{NNCC}(12)$	195	203
27	$\delta CCN(10)$	222	205
25	= CCCC(14) = NNCC(16)	223	224
20	$\mathcal{E} CCC(14), \mathcal{E} INNCC(10)$ $\mathcal{E} CCC(62) = UCCN(11)$	230	230
27	0 CCC(05), 1 HCCN(11)	273	270
28	$\delta OCC(24), \ell CCOC(10)$	277	284
29	0 CCO(14)	284	289
30	$\tau CCCC(27)$	305	309
31	$\tau CCCC(11)$	316	322
32	τ CNNC(26), τ CCNN(11), τ NCNC(15)	335	338
33	δ CCO(20)	338	343
34	δ CCN(15)	356	363
35	δ CCC(39)	366	368
36	δ NNC(10), δ CCO(11)	382	381
37	τ HCCC(19), τ CCCC(80)	402	411
38	δ CCO(11)	421	427
39	δ OCN(13), δ CCN(16)	426	443
40	δ CCC(12), τ CCCC(21)	459	465
41	δ OCC(17), τ CCCC(14), τ OCCC(13)	477	481
42	δ OCC(13), δ CCO(11)	485	497
43	τ CCNN(12)	503	515
44	δ CCC(17), τ CCCC(19)	517	523
45	δ OCC(18)	529	537
46	τ HCCO(10), τ OCOC(21)	537	546
47	δ OCC(16), τ HCCO(11), τ OCOC(19)	548	567
48	τ HCCN(16), τ ONNC(47)	553	571
49	τ HCCO(12), τ OCOC(35)	562	580
50	v NN(16)	565	580
51	δ OCC(25)	581	594
52	τ NCNC(10)	613	622
53	τ NCNC(22)	615	629
54	$\delta CCC(45)$	634	639
55	v CC(13) δ OCC(10) τ CCCC(12)	648	661
56	δ CCC(15)	670	678
57	τ CCCC(31)	690	702
58	$\tau ONNC(27)$	704	710
59	$\tau ONNC(20)$	707	738
60	v CC(10)	726	754
61	$\gamma CC(14) \tau HCCC(11) \tau OCCC(14)$	720	760
62	v OC(12) v CC(10) v NN(11)	735	768
63	τ HCCC(28)	740	708
64	τ HCCC(22)	785	807
65	V = CC(15) = UCCC(22)	201	810
03	τ $HCCC(40)$	001	819
00	- UCCC(40)	818	049
0/ 60		022	0J4 056
00	$\gamma CC(20)$	833 015	030 967
09		843 057	00/
/0	$\tau HCC(10)$	80 / 870	89 <i>3</i>
71	$\frac{1}{1000} \frac{1}{1000$	8/9	909
12	$\tau HUUN(53)$	899	915
73	τ HUUU(34), τ UUUU(10)	903	954
74	τ HCCC(63)	921	963

Tablo 3 182.' nin devamı

		220	070
75	τ HCCC(56), τ CCCC(18)	928	970
76	τ HCCC(76)	929	972
77	τ HCCC(10), τ HCNN(32)	934	983
78	τ HCNN(23), τ HCCN(24)	951	986
79	τ HCCN(18) τ HCCC(32)	961	989
80	ν CC(12) δ HCH(12) τ HCCO(13) τ HCCO(20)	073	000
00	V CC(12), 0 HCH(12), 1 HCCO(15), 1 HCCO(20)	975	1004
81	V CC(11), 8 HCH(11)	970	1004
82	τ HCCO(34)	991	1010
83	δ CCC(14), δ HCC(15), δ CCC(53)	1000	1017
84	τ HCCN(57)	1017	1047
85	δ NNC(14), τ HCCC(42)	1025	1049
86	v NC(10)	1025	1055
87	τ HCCC(13) τ HCCO(51) τ OCOC(10)	1027	1057
88	δ HCH(20), τ HCCO(24), τ OCOC(13)	1027	1065
00	- HCCN(14)	1020	1005
89	$\tau \Pi CCN(14)$	1100	1072
90	v CC(19), 8 HCC(44)	1102	1102
91	v OC(16), 8 HCC(23)	1108	1130
92	δ HCC(11)	1127	1141
93	v NN(29)	1141	1148
94	ν OC(11), ν CC(14), δ OCC(12), τ HCCO(10)	1145	1150
95	δ HCC(69)	1163	1174
96	ν CC(18), δ HCC(76)	1169	1178
97	$v CC(33) \tau HCCN(14)$	1180	1195
08	$\gamma OC(12) \delta HCC(12)$	1185	1100
	V OC(12), 0 HCC(12)	1105	1201
99 100	V CC(12), 0 HCC(17)	1191	1201
100	$V CC(11), 0 \Pi CC(43)$	1199	1220
101	$v OC(20), \delta HCC(23), \delta CCC(10)$	1207	1221
102	ν OC(11), δ HCC(43)	1249	1244
103	ν CC(17), ν OC(19), δ HCC(19)	1251	1263
104	ν NC(15), τ HCCN(33)	1266	1275
105	v NC(36)	1289	1294
106	ν CC(18), δ HCC(54)	1294	1304
107	v CC(60)	1302	1317
108	$v CC(40) \delta HCC(30)$	1305	1347
109	δ HCH(63)	1353	1372
110	8 HCH(65)	1355	1301
110	6 нсн(60) 8 нсц(57)	1256	1202
111	$0 \operatorname{HCH}(37)$	1330	1393
112	$V CC(10), \delta HCN(55)$	1308	1395
113	0 HCH(91)	13/3	1395
114	v NC(20), v CC(10), τ HCCN(21)	1383	1412
115	ν CC(24), δ HCC(40)	1400	1421
116	ν CC(29), δ HCC(14), δ HCN(20)	1415	1428
117	δ HCH(36), τ HCCN(25)	1417	1430
118	δ HCC(13), τ HCCO(21)	1424	1432
119	δ HCC(71), τ HCCO(18)	1425	1435
120	δ HCH(40)	1425	1441
121	δ HCH(38) τ HCCN(25)	1427	1442
121	δ HCH(45), τ HCCO(22)	1/27	1442
122	S = U(10), U(10)(22)	1450	1452
123	$0 \Pi \cup \Pi (40), 1 \Pi \cup \cup (22)$ S $\Pi \cup \cup (46) = \Pi \cup \cup (22)$	1441	1433
124	$\begin{array}{c} 0 \text{ HCH}(40), \text{ t} \text{ HCCC}(18) \\ 8 \text{ HCH}(42), \text{ HCCCC}(17) \end{array}$	1445	1455
125	δ HCH(43), τ HCCC(17)	1450	1459
126	δ HCC(48)	1480	1517
127	δ CCC(14), δ HCC(56)	1503	1522
128	ν CC(31), δ CCC(15)	1556	1595
129	v CC(25), δ CCC(12)	1569	1597
130	ν CC(49), δ HCC(14)	1590	1633

131	v NC(49)	1599	1642
132	ν CC(57), δ HCC(20)	1611	1696
133	v NC(54)	1623	1722
134	v OC(86)	1729	1766
135	v OC(47)	1779	1824
136	v OC(84)	1795	1853
137	v OC(47)	1811	1853
138	v CH(97)	2922	2862
139	v CH(98)	2926	2882
140	v CH(89)	2953	2890
141	v CH(94)	2955	2896
142	v CH(98)	2959	2898
143	v CH(94)	2959	2916
144	v CH(96)	2980	2919
145	v CH(97)	3006	2937
146	v CH(28)	3012	2955
147	v CH(97)	3018	2961
148	v CH(99)	3020	2971
149	v CH(75)	3031	2985
150	v CH(24)	3049	2991
151	v CH(75)	3049	2995
152	v CH(93)	3061	2995
153	v CH(72)	3064	2997
154	v CH(99)	3064	3003
155	v CH(89)	3066	3013
156	v CH(99)	3067	3014
157	v CH(43)	3069	3016
158	v CH(40)	3092	3041
159	v CH(26)	3140	3071

Tablo 3 182.' nin devamı

Şekil 3.98. 32 tipi bileşiğin deneysel ve teorik (B3LYP6-31G(d,p) ve HF6-31G(d,p)) IR spektrumları

Şekil 3.99. 32 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(47)-N(46)	105.174	105.704	40	H(38)-C(19)-H(39)	110.376	110.344
2	C(1)-N(48)-C(2)	108.246	108.219	41	N(46)-C(2)-O(48)	130.954	130.931
3	N(47)-C(1)-N(48)	111.998	116.676	42	C(2)-N(48)-N(49)	124.656	122.829
4	N(47)-N(46)-C(18)	120.660	120.623	43	N(48)-N(49)-C(3)	119.529	117.506
5	N(47)-C(1)-C(10)	126.256	126.735	44	N(49)-C(3)-H(24)	110.471	112.480
6	N(48)-C(1)-C(10)	121.720	121.561	45	H(24)-C(3)-C(4)	113.214	114.837
7	C(1)-C(10)-H(28)	108.063	107.539	46	C(3)-C(4)-C(5)	115.063	116.503
8	C(1)-C(10)-H(29)	107.175	107.391	47	C(3)-C(4)-C(9)	126.436	124.255
9	H(28)-C(10)-C(11)	110.450	110.532	48	C(4)-C(5)-H(25)	119.608	120.101
10	H(29)-C(10)-C(11)	111.039	110.725	49	H(25)-C(5)-C(6)	119.220	119.242
11	C(1)-C(10)-C(11)	114.179	114.167	50	C(4)-C(5)-C(6)	121.142	120.643
12	C(10)-C(11)-C(16)	120.873	120.843	51	C(5)-C(6)-H(26)	120.736	120.689
13	C(10)-C(11)-C(12)	120.795	120.813	52	H(26)-C(6)-C(7)	119.207	119.346
14	C(11)-C(12)-H(30)	119.623	119.819	53	C(5)-C(6)-C(7)	120.051	119.963
15	H(30)-C(12)-C(13)	119.592	119.370	54	C(6)-C(7)-O(54)	121.979	121.646
16	C(11)-C(12)-C(13)	120.785	120.811	55	C(7)-O(54)-C(22)	123.837	124.932
17	C(12)-C(13)-H(31)	119.426	119.283	56	O(54)-C(22)-O(55)	116.799	117.254
18	H(31)-C(13)-C(14)	119.469	119.676	57	O(55)-C(22)-C(23)	125.582	124.301
19	C(13)-C(14)-C(17)	121.007	121.187	58	C(22)-C(23)-H(43)	110.015	111.172
20	C(14)-C(17)-H(32)	111.214	110.949	59	C(22)-C(23)-H(44)	111.398	110.369
21	C(14)-C(17)-H(33)	111.459	111.281	60	C(22)-C(23)-H(45)	107.548	107.225
22	C(14)-C(17)-H(34)	111.463	111.235	61	H(43)-C(23)-H(44)	108.442	108.936
23	H(32)-C(17)-H(33)	107.189	107.655	62	H(43)-C(23)-H(45)	110.350	110.133
24	H(32)-C(17)-H(34)	107.263	107.552	63	H(44)-C(23)-H(45)	109.087	108.974
25	H(33)-C(17)-H(34)	108.040	108.001	64	O(54)-C(7)-C(8)	118.776	118.787
26	C(12)-C(13)-C(14)	121.105	121.041	65	C(7)-C(8)-O(52)	120.946	120.896
27	C(14)-C(15)-H(35)	119.468	119.622	66	C(8)-O(52)-C(20)	119.026	120.073
28	H(35)-C(15)-C(16)	119.437	119.331	67	O(52)-C(20)-O(53)	123.411	122.978
29	C(14)-C(15)-C(16)	121.095	121.047	68	O(53)-C(20)-C(21)	126.609	126.260
30	C(15)-C(16)-H(36)	119.550	119.403	69	O(52)-C(20)-C(21)	109.978	110.762
31	H(36)-C(16)-C(11)	119.649	119.791	70	C(20)-C(21)-H(40)	110.003	109.639
32	C(15)-C(16)-C(11)	120.800	120.806	71	C(20)-C(21)-H(41)	109.589	109.197
33	N(46)-C(18)-O(51)	120.817	121.092	72	C(20)-C(21)-H(42)	109.328	109.385
34	O(51)-C(18)-C(19)	124.790	124.017	73	H(40)-C(21)-H(41)	107.602	107.958
35	С(18)-С(19)-Н(37)	110.855	110.699	74	H(40)-C(21)-H(42)	110.264	110.440
36	С(18)-С(19)-Н(38)	110.819	110.641	75	H(41)-C(21)-H(42)	110.035	110.197
37	С(18)-С(19)-Н(39)	107.686	107.477	76	C(8)-C(9)-H(27)	118.180	118.689
38	H(37)-C(19)-H(38)	106.673	107.287	77	H(27)-C(9)-C(4)	121.525	121.463
39	H(37)-C(19)-H(39)	110.460	110.418				

Tablo 3.183. 32 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

B	ağ Uzunlukları	B3LYP	HF	Ba	ğ Uzunlukları	B3LYP	HF
1	C(1)-N(47)	1.2957	1.2650	30	C(16)-H(36)	1.0872	1.0768
2	C(1)-N(48)	1.3899	1.3795	31	C(16)-C(11)	1.3980	1.3882
3	N(47)-N(46)	1.3940	1.3838	32	N(49)-C(3)	1.2873	1.2594
4	N(46)-C(18)	1.4193	1.4026	33	C(3)-H(24)	1.0920	1.0794
5	C(18)-O(51)	1.2093	1.1850	34	C(3)-C(4)	1.4728	1.4850
6	C(18)-C(19)	1.5111	1.5067	35	C(4)-C(5)	1.4086	1.3909
7	C(19)-H(37)	1.0931	1.0827	36	C(4)-C(9)	1.4041	1.3892
8	C(19)-H(38)	1.0932	1.0827	37	C(5)-H(25)	1.0860	1.0759
9	C(19)-H(39)	1.0895	1.0798	38	C(5)-C(6)	1.3889	1.3814
10	N(46)-C(2)	1.4041	1.3804	39	C(6)-H(26)	1.0846	1.0740
11	C(2)-O(50)	1.2125	1.1894	40	C(6)-C(7)	1.3968	1.3832
12	C(2)-N(48)	1.4117	1.3832	41	C(7)-O(54)	1.3734	1.3594
13	N(48)-N(49)	1.4052	1.3982	42	O(54)-C(22)	1.3974	1.3618
14	C(1)-C(10)	1.4991	1.4985	43	C(22)-O(55)	1.1994	1.1780
15	C(10)-H(28)	1.0974	1.0863	44	C(22)-C(23)	1.5079	1.5055
16	C(10)-H(29)	1.0971	1.0852	45	C(23)-H(43)	1.0921	1.0801
17	C(10)-C(11)	1.5132	1.5118	46	C(23)-H(44)	1.0929	1.0838
18	C(11)-C(12)	1.3989	1.3859	47	C(23)-H(45)	1.0892	1.0793
19	C(12)-H(30)	1.0871	1.0767	48	C(7)-C(8)	1.4023	1.3866
20	C(12)-C(13)	1.3933	1.3851	49	C(8)-O(52)	1.3880	1.3707
21	C(13)-H(31)	1.0871	1.0765	50	O(52)-C(20)	1.3750	1.3431
22	C(13)-C(14)	1.4010	1.3881	51	C(20)-O(53)	1.2061	1.1845
23	C(14)-C(17)	1.5103	1.5105	52	C(20)-C(21)	1.5034	1.4981
24	C(17)-H(32)	1.0972	1.0868	53	C(21)-H(40)	1.0934	1.0834
25	C(17)-H(33)	1.0941	1.0840	54	C(21)-H(41)	1.0939	1.0837
26	C(17)-H(34)	1.0939	1.0846	55	C(21)-H(42)	1.0889	1.0793
27	C(14)-C(15)	1.4002	1.3905	56	C(8)-C(9)	1.3878	1.3785
28	C(15)-H(35)	1.0871	1.0767	57	C(9)-H(27)	1.0805	1.0716
29	C(15)-C(16)	1.3940	1.3826				

Tablo 3.184. 32 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Tablo 3.185. 32 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.557	0.635	H29	0.152	0.180
C2	0.811	1.084	H30	0.084	0.151
C3	0.078	0.196	H31	0.080	0.148
C4	0.096	-0.107	H32	0.128	0.136
C5	-0.127	-0.145	H33	0.116	0.126
C6	-0.114	-0.168	H34	0.115	0.128
C7	0.326	0.369	H35	0.080	0.148
C8	0.313	0.360	H36	0.081	0.150
С9	-0.117	-0.139	H37	0.151	0.162
C10	-0.326	-0.290	H38	0.150	0.162
C11	0.127	-0.008	H39	0.138	0.160
C12	-0.108	-0.138	H40	0.157	0.169
C13	-0.120	-0.159	H41	0.157	0.170
C14	0.125	-0.005	H42	0.149	0.165

Tablo 3 185	.' in devamı				
C15	-0.120	-0.156	H43	0.182	0.191
C16	-0.109	-0.133	H44	0.133	0.141
C17	-0.381	-0.342	H45	0.150	0.173
C18	0.559	0.733	N46	-0.406	-0.643
C19	-0.378	-0.408	N47	-0.350	-0.344
C20	0.598	0.764	N48	-0.456	-0.660
C21	-0.391	-0.416	N49	-0.256	-0.260
C22	0.573	0.759	O50	-0.497	-0.600
C23	-0.416	-0.455	O51	-0.426	-0.517
H24	0.127	0.178	O52	-0.514	-0.664
H25	0.104	0.173	O53	-0.454	-0.562
H26	0.113	0.182	O54	-0.512	-0.670
H27	0.148	0.252	O55	-0.416	-0.513
H28	0.136	0.161			

E_{HOMO} (B3LYP) : -0.23611 Hatree

E_{LUMO} (B3LYP) : -0.07603 Hatree

E_{HOMO} (HF) : -0.32757 Hatree

E_{LUMO}(HF) : 0.07399 Hatree

Şekil 3.100. 32 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.186. 32 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	7.2852	4.3883
$\mu_{\rm v}$	-7.8448	-4.2459
μ _z	5.8125	1.8501
μ _{Toplam}	12.1819	6.3803

Tablo 3.187.32 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1560.066	-1550.791

3.4.26. 1-Asetil-3-(*p*-klorobenzil)-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (33)

Şekil 3.101. 33 tipi bileşiğin (6-31G(d,p)) gausview görünümü

Tablo 3.188. 33 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

			/	· · · · · · · · · · · · · · · · · · ·	// 2				
No	Deney.	DFT	Fark	DFT/ DMSO	Fark/ DMSO	HF	Fark	HF/ DMSO	Fark/ DMSO
C1	144.55	152.43	-7.88	155.13	-10.58	146.04	-1.49	149.88	-5.33
C2	153.24	149.18	4.06	149.76	3.48	147.89	5.35	148.44	4.80
C3	148.20	159.51	-11.31	161.85	-13.65	168.43	-20.23	171.56	-23.36
C4	131.85	136.67	-4.82	137.09	-5.24	123.69	8.16	124.66	7.19
C5	126.82	133.08	-6.26	134.87	-8.05	123.50	3.32	126.42	0.40
C6	122.36	127.27	-4.91	128.16	-5.80	118.83	3.53	120.15	2.21
C7	148.20	153.01	-4.81	152.13	-3.93	143.25	4.95	141.84	6.36
C8	142.35	148.57	-6.22	147.67	-5.32	137.51	4.84	135.74	6.61
C9	124.38	126.79	-2.41	127.23	-2.85	123.20	1.18	121.86	2.52
C10	30.92	41.91	-10.99	41.53	-10.61	27.22	3.70	26.82	4.10
C11	130.90	134.11	-3.21	136.17	-5.27	126.57	4.33	128.89	2.01
C12	130.90	133.52	-2.62	134.64	-3.74	126.85	4.05	127.56	3.34

Table	o 3 188.'ii	ı devamı							
C13	128.34	131.56	-3.22	131.86	-3.52	125.14	3.20	125.23	3.11
C14	133.95	146.73	-12.78	144.98	-11.03	134.20	-0.25	132.04	1.91
C15	128.34	132.10	-3.76	131.65	-3.31	125.44	2.90	125.16	3.18
C16	130.90	135.83	-4.93	135.81	-4.91	127.87	3.03	128.04	2.86
C17	165.90	164.99	0.91	167.77	-1.87	156.51	9.39	160.43	5.47
C18	23.48	32.39	-8.91	32.67	-9.19	21.15	2.33	21.38	2.10
C19	168.10	171.91	-3.81	173.78	-5.68	160.96	7.14	162.99	5.11
C20	20.29	28.21	-7.92	28.44	-8.15	17.65	2.64	17.82	2.47
C21	167.98	167.84	0.14	171.54	-3.56	156.93	11.05	161.19	6.79
C22	20.29	28.40	-8.11	28.71	-8.42	17.02	3.27	17.34	2.95
H23	9.58	8.76	0.82	9.03	0.55	9.08	0.50	9.39	0.19
H24	7.76	8.08	-0.32	8.44	-0.68	7.78	-0.02	8.28	-0.52
H25	7.45	7.98	-0.53	8.28	-0.83	7.68	-0.23	8.06	-0.61
H26	7.78	8.16	-0.38	8.38	-0.60	8.93	-1.15	8.78	-1.00
H27	4.17	4.63	-0.46	4.94	-0.77	3.10	1.07	3.53	0.64
H28	4.17	4.71	-0.54	4.87	-0.70	3.57	0.60	3.84	0.33
H29	7.43	7.99	-0.56	8.28	-0.85	7.71	-0.28	8.02	-0.59
H30	7.41	8.08	-0.67	8.22	-0.81	7.81	-0.40	7.96	-0.55
H31	7.41	8.23	-0.82	8.31	-0.90	7.80	-0.39	7.92	-0.51
H32	7.43	8.46	-1.03	8.63	-1.20	7.62	-0.19	7.88	-0.45
H33	2.50	3.34	-0.84	3.42	-0.92	2.91	-0.41	3.00	-0.50
H34	2.50	3.17	-0.67	3.17	-0.67	2.79	-0.29	3.03	-0.53
H35	2.50	2.63	-0.13	2.67	-0.17	2.37	0.13	2.39	0.11
H36	2.32	3.02	-0.70	3.23	-0.91	2.48	-0.16	2.73	-0.41
H37	2.32	2.63	-0.31	2.66	-0.34	2.71	-0.39	2.77	-0.45
H38	2.32	3.31	-0.99	3.37	-1.05	2.20	0.12	2.21	0.11
H39	2.32	3.24	-0.92	3.29	-0.97	2.28	0.04	2.29	0.03
H40	2.32	2.52	-0.20	3.15	-0.83	2.07	0.25	2.18	0.14
H41	2.32	2.95	-0.63	2.56	-0.24	2.21	0.11	2.59	-0.27

Tablo 3.189. 33 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)_____

	TITREŞİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	τ CNNC(38)	7	7
2	δ CCN(12), τ CCCN(33)	15	11
3	τ CCCC(30)	18	13
4	τ NNCC(10)	26	25
5	τ CNNC(12), τ CCNN(10), τ CCCC(10)	31	31
6	NCC(12), δ CCC(12), τ CCCC(13)	36	34
7	τ COCC(20), τ CCOC(21)	40	42
8	τ COCC(36), τ CCOC(23)	48	47
9	τ CCOC(20)	58	53
10	τ CNNC(13), τ CCOC(32)	61	60
11	τ CCCC(34)	69	61
12	τ HCCO(19), τ COCC(13), τ CCNN(10)	86	90
13	τ HCCO(32), τ CCOC(11)	91	100
14	$\tau \operatorname{COCC}(14), \tau \operatorname{CCNN}(13)$	106	101
15	δ NCC(13), τ COCC(18)	108	109
16	τ CCOC(13), τ CCNN(10)	118	113
17	δ OCC(11), τ OCCC(20)	127	116
18	τ NNCC(24), τ NCNC(10)	131	130
19	τ HCCO(35)	152	151

Tablo 3 18	³⁹ . ² un devami		
20	τ HCCO(12)	164	171
21	τ HCCN(35)	172	172
22	δ CCC(14), τ HCCN(17)	180	179
23	δ NCN(12), δ NNC(12)	188	206
24	τ CCCN(18) τ NNCC(24)	230	229
25	$\delta CCC(13)$ $\delta CICC(41)$	238	244
26	$\delta NCN(12)$	246	261
20	$\delta OCC(16)$	240	201
27	$\delta OCC(18) = \delta CCO(12)$	202	207
20	= CCCC(12) = CCCCC(12)	209	291
29	τ CCC(12), τ CCC(28), τ CCC(18)	295	299
30	V OU(11), 0 CUU(10), 0 CUU(15)	315	323
31	τ CNNC(25), τ ONNC(10), τ CCNN(11), τ NCNC(17)	337	346
32	δ CCO(28), τ CCCC(11)	345	349
33	δ CCC(20), δ CICC(29)	347	357
34	δ OCC(13), δ CCN(28)	366	371
35	δ OCN(12), δ CCO(14)	372	373
36	v CIC(17)	394	397
37	τ HCCC(15), τ CCCC(81)	404	411
38	v CIC(12), δ CCN(15)	425	429
39	δ CCO(10). τ CCCC(20)	436	434
40	$\delta CCC(10), \delta OCC(30)$	472	483
41	δ CCO(12), τ OCCC(12)	479	485
42	τ HCCC(18), τ CCCC(15), τ CICCC(19)	487	502
43	$\delta OCC(28) \tau CCCN(13) \tau CCNN(13)$	510	515
44	$\delta CCC(10) \delta OCC(11)$	531	541
45	τ HCCO(10), τ OCOC(34)	541	545
46	$\tau OCOC(20)$	548	567
40	δ OCC(17)	552	574
48	τ HCCN(14) τ ONNC(27)	561	576
40	τ HCCO(12), τ OCOC(20)	570	585
4 <i>3</i>	$v CC(10) = \delta OCC(26)$	508	585 607
50	$\delta OCC(12)$	598	610
51	$\int OCC(12) = NCNC(17)$	(19	619
52	$\frac{0 \operatorname{CCC}(12)}{\operatorname{S}\operatorname{CCC}(20)}$	010	642
55	0 CCC(50)	023	642
54	V CC(11), V CC(24), 0 CCC(15)	042	048
55	0 CCC(10)	659	661
56	τ CCCC(13)	668	6/8
57	τ HCCC(10), τ CCCC(38)	682	698
58	$\tau \text{ ONNC}(36)$	696	739
59		711	754
60	v OC(17), v CC(11)	736	759
61	NN(11)	739	761
62	NN(14), δ CNN(11), τ HCCC(12)	750	771
63	τ HCCC(13)	778	802
64	ν CC(10), τ HCCC(19)	793	820
65	τ HCCC(99)	805	845
66	τ HCCC(63)	810	857
67	δ CCC(10), τ HCCC(26), τ CCCC(10)	833	863
68	v OC(10)	847	868
69		873	894
70	v OC(16)	882	909
71	τ HCCC(35)	894	922
72	τ HCCC(11), τ HCCN(53)	903	958
73	τ HCCC(47), τ HCNN(22)	919	964
74	δ HCH(11), τ HCCC(35), τ CCCC(11)	925	969
75	τ HCCC(51)	928	976

Tablo 3.18	39.' un devamı		
76	τ HCCC(25), τ HCNN(37)	932	986
77	$v CC(15), \tau HCCN(16)$	948	986
78	δ CCC(21)	959	996
79	v CC(11), δ HCH(13), τ HCCO(19)	974	1000
80	δ CCC(10), τ HCCO(36)	990	1010
81	δ CCC(60)	992	1016
82	δ HCH(20) τ HCCN(19) τ ONNC(11)	1023	1049
83	δ HCH(10), τ HCCO(11), τ OCOC(12)	1026	1054
84	δ HCH(21), τ HCCO(47), τ OCOC(15)	1028	1057
85	$v NC(10) \delta NNC(30)$	1030	1067
86	$v CC(26) CIC(18) \delta HCC(16)$	1067	1072
87	$v CC(12) \delta HCC(48)$	1093	1084
88	$v NN(21) \delta HCC(10)$	1097	1103
89	$v OC(17) \delta HCC(24) \delta CCC(11)$	1103	1126
90	$v CC(13) \delta HCC(23)$	1127	1132
91	$v OC(12) v CC(14) \delta OCC(12) \tau HCCO(12)$	1127	1132
92	v OC(12), v OC(11), v OCC(12), v OCC(12) $v OC(10) v ON(12) \delta HCC(14)$	1159	1147
93	$v CC(15) \delta HCC(66)$	1164	1147
94	$v CC(11) \delta HCC(41) \tau HCCN(11)$	1169	1183
95	$v CC(18) \delta HCC(15)$	1181	1109
96	$v OC(13), \delta HCC(19)$	1184	1213
97	$v OC(14) \delta HCC(24)$	1201	1219
98	$\delta NCN(14), \delta NNC(11)$	1201	1217
99	δ HCC(61)	1200	1223
100	$v CC(22) v OC(23) \delta HCC(11)$	1240	1245
100	$v NC(29) \tau HCCN(19)$	1245	1201
101	$v \operatorname{NC}(23), \delta \operatorname{CNN}(10)$	1203	1293
102	$v CC(14) \delta HCC(58)$	1280	1299
103	v CC(26)	1200	1307
104	$v CC(21) \delta HCC(19)$	1301	1349
105	δ HCN(11) δ HCH(45)	1355	1372
107	δ HCH(66)	1357	1391
108	δ HCN(57) δ HCH(11)	1359	1394
109	δ HCH(87)	1366	1397
110	v NC(13) v CC(11) δ HCC(10) τ HCCN(17)	1381	1407
111	$v CC(14) \delta HCC(26)$	1397	1418
112	δ HCH(68) δ CCC(10) τ HCCN(14)	1409	1423
113	$v CC(23) \delta HCC(10)$	1413	1427
114	δ HCH(52) τ HCCO(21)	1424	1432
115	δ HCH(45) τ HCCO(21)	1425	1435
116	δ HCH(85)	1426	1441
117	δ HCH(12)	1430	1444
118	δ HCH(60) τ HCCN(13) τ HCCO(18)	1430	1446
119	δ HCH(51) τ HCCO(20)	1442	1453
120	δ HCC(56) δ CCC(11)	1478	1504
121	$v CC(17)$, $\delta HCC(40)$	1480	1517
122	$v CC(35) \delta HCC(11)$	1559	1595
123	$v CC(32), \delta CCC(16)$	1568	1597
124	v CC(48), δ HCC(16)	1592	1627
125	v CC(51)	1595	1633
126	v NC(46)	1601	1701
127	v NC(56)	1622	1722
128	v OC(41)	1753	1770
129	v OC(45)	1770	1825
130	v OC(39)	1773	1831
131	v OC(46)	1812	1855

Tablo 3.18	39.' un devami		
132	v CH(76)	2913	2880
133	v CH(83)	2952	2891
134	v CH(94)	2953	2898
135	v CH(93)	2957	2901
136	v CH(76)	2972	2921
137	v CH(88)	3019	2955
138	v CH(64)	3020	2969
139	v CH(28)	3022	2971
140	v CH(64)	3027	2986
141	v CH(63)	3059	2993
142	v CH(60)	3063	2996
143	v CH(35)	3064	3003
144	v CH(84)	3066	3012
145	v CH(45)	3072	3013
146	v CH(42)	3076	3015
147	v CH(43)	3092	3042
148	v CH(46)	3097	3045
149	v CH(52)	3101	3046
150	v CH(27)	3112	3068

Şekil 3.102. 33 tipi bileşiğin teorik (B3LYP6-31G(d,p)(a) ve HF6-31G(d,p)(b)) IR spektrumları

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF
323.65/216.16	3.8308/5.7357
286.10/210.31	4.3336/5.8952
278.04/208.65	4.4592/5.9422

Şekil 3.103. 33 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.190. 33 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(43)-N(42)	105.214	105.578	38	N(42)-C(2)-O(46)	130.406	129.835
2	C(1)-N(44)-C(2)	108.033	107.757	39	C(2)-N(44)-N(45)	126.350	122.967
3	N(43)-C(1)-N(44)	111.945	111.768	40	N(44)-N(45)-C(3)	118.801	117.333
4	N(43)-N(42)-C(17)	119.321	119.327	41	N(45)-C(3)-H(23)	111.634	112.577
5	N(43)-C(1)-C(10)	126.535	126.852	42	H(23)-C(3)-C(4)	114.648	115.066
6	N(44)-C(1)-C(10)	121.460	121.342	43	C(3)-C(4)-C(5)	117.883	116.809
7	C(1)-C(10)-H(27)	107.932	107.654	44	C(3)-C(4)-C(9)	123.408	123.860
8	C(1)-C(10)-H(28)	107.437	107.596	45	C(4)-C(5)-H(24)	119.602	120.135
9	H(27)-C(10)-C(11)	110.428	110.437	46	H(24)-C(5)-C(6)	119.499	119.269
10	H(28)-C(10)-C(11)	110.713	110.525	47	C(4)-C(5)-C(6)	120.893	120.583
11	H(27)-C(10)-H(28)	105.314	106.180	48	C(5)-C(6)-H(25)	120.867	120.668
12	C(1)-C(10)-C(11)	114.550	114.088	49	H(25)-C(6)-C(7)	119.046	119.357
13	C(10)-C(11)-C(16)	121.075	120.719	50	C(5)-C(6)-C(7)	120.079	119.973
14	C(10)-C(11)-C(12)	120.339	120.573	51	C(6)-C(7)-O(48)	121.873	121.752
15	C(11)-C(12)-H(29)	119.755	119.959	52	C(7)-O(48)-C(21)	122.962	125.018
16	H(29)-C(12)-C(13)	119.047	119.011	53	O(48)-C(21)-O(49)	116.867	117.203
17	C(11)-C(12)-C(13)	121.198	121.030	54	O(49)-C(21)-C(22)	125.764	124.346

Tabl	o 3.190.'nın devamı						
18	C(12)-C(13)-H(30)	120.783	120.656	55	C(21)-C(22)-H(39)	111.321	111.211
19	H(30)-C(13)-C(14)	120.231	120.203	56	C(21)-C(22)-H(40)	110.187	110.371
20	C(13)-C(14)-Cl(52)	119.502	119.557	57	C(21)-C(22)-H(41)	107.680	107.215
21	Cl(52)-C(14)-C(15)	119.459	119.502	58	H(39)-C(22)-H(40)	108.034	108.943
22	C(12)-C(13)-C(14)	118.987	119.141	59	H(40)-C(22)-H(41)	110.344	110.115
23	C(14)-C(15)-H(31)	120.130	120.149	60	H(39)-C(22)-H(41)	109.280	108.952
24	H(31)-C(15)-C(16)	120.728	120.671	61	O(48)-C(7)-C(8)	118.706	118.659
25	C(14)-C(15)-C(16)	119.142	119.180	62	C(7)-C(8)-O(50)	120.293	120.789
26	C(15)-C(16)-H(32)	119.132	119.071	63	C(8)-O(50)-C(19)	118.423	119.972
27	H(32)-C(16)-C(11)	119.806	119.925	64	O(50)-C(19)-O(51)	123.306	122.963
28	C(15)-C(16)-C(11)	121.057	121.003	65	O(51)-C(19)-C(20)	126.534	126.217
29	N(42)-C(17)-O(47)	119.616	119.760	66	C(19)-C(20)-H(36)	110.560	109.892
30	O(47)-C(17)-C(18)	124.610	123.550	67	C(19)-C(20)-H(37)	109.418	109.387
31	N(42)-C(17)-C(18)	115.766	116.690	68	C(19)-C(20)-H(38)	109.059	109.012
32	C(17)-C(18)-H(33)	111.249	110.996	69	H(36)-C(20)-H(37)	107.537	107.940
33	C(17)-C(18)-H(34)	111.158	111.020	70	H(37)-C(20)-H(38)	109.657	110.088
34	C(17)-C(18)-H(35)	107.208	106.956	71	H(36)-C(20)-H(38)	110.573	110.494
35	H(33)-C(18)-H(34)	106.425	107.064	72	C(8)-C(9)-H(26)	118.178	118.863
36	H(34)-C(18)-H(35)	110.221	110.382	73	H(26)-C(9)-C(4)	121.436	121.313
37	H(33)-C(18)-H(35)	110.622	110.461				

Tablo 3.191. 33 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Ba	ğ zunlukları	B3LYP	HF	Ba	ığ Uzunlukları	B3LYP	HF
1	C(1)-N(43)	1.2944	1.2630	28	C(16)-C(11)	1.4002	1.3882
2	C(1)-N(44)	1.3918	1.3845	29	N(45)-C(3)	1.2890	1.2593
3	C(1)-C(10)	1.5001	1.4983	30	C(3)-H(23)	1.0910	1.0794
4	N(42)-N(43)	1.3934	1.3818	31	C(3)-C(4)	1.4708	1.4847
5	N(42)-C(17)	1.4298	1.4104	32	C(4)-C(5)	1.4033	1.3902
6	C(17)-O(47)	1.2075	1.1831	33	C(4)-C(9)	1.4045	1.3893
7	C(17)-C(18)	1.5089	1.5060	34	C(5)-H(24)	1.0858	1.0759
8	C(18)-H(33)	1.0923	1.0819	35	C(5)-C(6)	1.3912	1.3818
9	C(18)-H(34)	1.0943	1.0821	36	C(6)-H(25)	1.0848	1.0739
10	C(18)-H(35)	1.0897	1.0798	37	C(6)-C(7)	1.3951	1.3828
11	N(42)-C(2)	1.3992	1.3745	38	C(7)-O(48)	1.3751	1.3588
12	C(2)-O(46)	1.2157	1.1977	39	O(48)-C(21)	1.3986	1.3629
13	C(2)-N(44)	1.4101	1.3731	40	C(21)-O(49)	1.1993	1.1777
14	N(44)-N(45)	1.3912	1.3995	41	C(21)-C(22)	1.5077	1.5053
15	C(10)-H(27)	1.0991	1.0866	42	C(22)-H(39)	1.0930	1.0801
16	C(10)-H(28)	1.0952	1.0848	43	C(22)-H(40)	1.0929	1.0838
17	C(10)-C(11)	1.5138	1.5121	44	C(22)-H(41)	1.0891	1.0793
18	C(11)-C(12)	1.3979	1.3862	45	C(7)-C(8)	1.4028	1.3873
19	C(12)-H(29)	1.0866	1.0760	46	C(8)-O(50)	1.3900	1.3711
20	C(12)-C(13)	1.3951	1.3848	47	O(50)-C(19)	1.3741	1.3437
21	C(13)-H(30)	1.0841	1.0735	48	C(19)-O(51)	1.2072	1.1842
22	C(13)-C(14)	1.3923	1.3808	49	C(19)-C(20)	1.5034	1.4982
23	C(14)-Cl(52)	1.7591	1.7433	50	C(20)-H(36)	1.0927	1.0832
24	C(14)-C(15)	1.3945	1.3829	51	C(20)-H(37)	1.0890	1.0839
25	C(15)-H(31)	1.0840	1.0735	52	C(20)-H(38)	1.0945	1.0792
26	C(15)-C(16)	1.3926	1.3825	53	C(8)-C(9)	1.3842	1.3781
27	C(16)-H(32)	1.0855	1.0759	54	C(9)-H(26)	1.0827	1.0719

	DFT	HF	U	DFT	HF
C1	0.547	0.622	H27	0.142	0.163
C2	0.817	1.094	H28	0.152	0.179
C3	0.072	0.195	H29	0.092	0.160
C4	0.131	-0.107	H30	0.111	0.180
C5	-0.122	-0.144	H31	0.113	0.181
C6	-0.113	-0.167	H32	0.097	0.161
C7	0.317	0.371	H33	0.154	0.168
C8	0.329	0.362	H34	0.160	0.157
C9	-0.123	-0.139	H35	0.136	0.161
C10	-0.322	-0.291	H36	0.148	0.160
C11	0.128	-0.001	H37	0.151	0.174
C12	-0.119	-0.139	H38	0.165	0.167
C13	-0.068	-0.110	H39	0.138	0.189
C14	-0.093	-0.162	H40	0.184	0.142
C15	-0.071	-0.110	H41	0.150	0.175
C16	-0.083	-0.121	N42	-0.423	-0.667
C17	0.560	0.743	N43	-0.315	-0.286
C18	-0.387	-0.409	N44	-0.462	-0.661
C19	0.586	0.763	N45	-0.252	-0.258
C20	-0.389	-0.414	O46	-0.520	-0.646
C21	0.567	0.759	O47	-0.424	-0.511
C22	0.418	-0.454	O48	-0.511	-0.671
H23	0.128	0.181	O49	-0.414	-0.510
H24	0.107	0.175	O50	-0.517	-0.667
H25	0.116	0.184	051	-0.450	-0.560
H26	0.115	0.242	Cl 52	-0.023	-0.001

Tablo 3.192. 33 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

Tablo 3.193. 33 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

	ě		
Dipol Moment	B3LYP	HF	
μ _x	2.4975	2.7535	
$\mu_{\rm v}$	-4.5046	-6.5222	
μ _z	2.3302	2.3489	
μ_{Toplam}	5.6532	7.4591	

Tablo 3.194. 33 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1980.342	-1970.647

3.4.27. 1-Asetil-3-fenil-4-(3,4-diasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (34)

Şekil 3.105. 34 tipi bileşiğin(6-31G(d,p)) gausview görünümü
(202	,	20211(2	1120) 10	DFT/	Fark/			HF/	Fark/
No	Deney.	DFT	Fark	DMSO	DMSO	HF	Fark	DMSO	DMSO
C1	145.34	150.30	-4.96	151.59	-6.25	143.96	1.38	146.41	-1.07
C2	157.60	153.39	4.21	153.77	3.83	147.16	10.44	147.69	9.91
C3	148.55	170.71	-22.16	173.02	-24.47	170.01	-21.46	173.21	-24.66
C4	125.49	132.18	-6.69	132.72	-7.23	124.60	0.89	125.48	0.01
C5	131.93	133.39	-1.46	135.91	-3.98	122.05	9.88	124.39	7.54
C6	123.29	126.58	-3.29	127.97	-4.68	119.02	4.27	120.30	2.99
C7	146.58	153.50	-6.92	152.76	-6.18	142.27	4.31	140.96	5.62
C8	143.00	149.03	-6.03	147.84	-4.84	137.34	5.66	135.81	7.19
C9	125.10	130.78	-5.68	129.62	-4.52	121.81	3.29	120.68	4.42
C10	127.28	131.50	-4.22	130.74	-3.46	122.02	5.26	120.80	6.48
C11	131.93	130.92	1.01	131.62	0.31	126.25	5.68	127.10	4.83
C12	129.19	130.51	-1.32	131.56	-2.37	122.32	6.87	123.35	5.84
C13	132.29	133.27	-0.98	134.59	-2.30	128.33	3.96	129.83	2.46
C14	129.19	131.60	-2.41	131.90	-2.71	123.91	5.28	123.98	5.21
C15	131.93	132.75	-0.82	131.83	0.10	128.36	3.57	127.32	4.61
C16	167.13	165.08	2.05	168.29	-1.16	157.03	10.10	160.79	6.34
C17	23.99	33.16	-9.17	33.38	-9.39	21.31	2.68	21.55	2.44
C18	168.95	170.34	-1.39	172.35	-3.40	160.97	7.98	162.98	5.97
C19	20.78	28.13	-7.35	28.34	-7.56	17.65	3.13	17.83	2.95
C20	168.82	167.37	1.45	171.26	-2.44	157.03	11.79	161.24	7.58
C21	20.78	28.44	-7.66	28.84	-8.06	16.96	3.82	17.27	3.51
H22	9.31	9.31	0.00	9.57	-0.26	9.08	0.23	9.40	-0.09
H23	7.80	8.01	-0.21	8.43	-0.63	7.26	0.54	7.70	0.10
H24	7.43	7.89	-0.46	8.24	-0.81	7.42	0.01	7.80	-0.37
H25	7.82	9.12	-1.30	9.02	-1.20	8.67	-0.85	8.54	-0.72
H26	7.78	9.21	-1.43	9.35	-1.57	8.51	-0.73	8.68	-0.90
H27	7.54	8.25	-0.71	8.49	-0.95	7.95	-0.41	8.22	-0.68
H28	7.30	8.30	-1.00	8.53	-1.23	8.09	-0.79	8.37	-1.07
H29	7.54	8.31	-0.77	8.47	-0.93	7.93	-0.39	8.11	-0.57
H30	7.78	9.16	-1.38	9.06	-1.28	8.50	-0.72	8.42	-0.64
H31	2.42	3.66	-1.24	3.73	-1.31	3.01	-0.59	3.11	-0.69
H32	2.42	3.63	-1.21	3.83	-1.41	2.93	-0.51	3.15	-0.73
H33	2.42	2.96	-0.54	3.02	-0.60	2.47	-0.05	2.52	-0.10
H34	2.17	3.06	-0.89	3.27	-1.10	2.47	-0.30	2.75	-0.58
H35	2.17	3.28	-1.11	3.35	-1.18	2.69	-0.52	2.72	-0.55
H36	2.17	2.62	-0.45	2.66	-0.49	2.17	0.00	2.19	-0.02
H37	2.17	3.26	-1.09	3.21	-1.04	2.18	-0.01	2.19	-0.02
H38	2.17	2.96	-0.79	3.35	-1.18	1.95	0.22	2.47	-0.30
H39	2.17	2.55	-0.38	2.59	-0.42	2.12	0.05	2.11	0.06

Tablo 3.195. 34 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

510(u ,p)	TİTRESİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	$\tau \text{CNNC}(11), \tau \text{CCCC}(22)$	11	11
2	$\tau \text{CNNC}(19) \tau \text{CCCC}(15) \tau \text{CCNN}(11)$	16	14
3	τ NCCN(23)	26	24
4	τ CCCC(28)	36	38
5	$\tau COCC(32)$ $\tau CCOC(35)$	44	43
6	$\tau CCCC(11)$ $\tau COCC(16)$ $\tau CCOC(13)$	45	46
7	$\tau CCNC(58)$	43 54	51
8	$\delta OCC(18) \neq CCCC(12) \neq COCC(21)$	58	58
0	$\tau CCOC(39)$	61	50
10	$\tau CCNC(14) \tau CCNN(14) \tau CNNC(10)$	78	78
10	$\tau = \Pi(CO)(52)$	78	78
11	$\frac{1}{8} CCN(19)$	09	90
12	- COCC(10)	90 100	90
13	= CNNC(16)	100	100
14	$\tau CINIC(10)$	112	102
15	$\tau COCC(23)$	123	115
16	τ HCCO(19), τ OCCC(10)	120	119
17	t HCCN(23), t HCCO(15)	139	150
18	τ HCCN(35), τ HCCO(10)	146	163
19	τ CCNN(19), τ NCCN(14)	166	1/5
20	τ CCCC(12), τ CNCN(13)	186	188
21	$\tau CCCC(10)$	210	215
22	δ NCN(18)	224	221
23	δ NNC(12)	253	263
24	τ CNCN(13), τ NCCN(11)	265	272
25	v CC(10), 8 OCC(10), CCN(10)	279	279
26	δ OCC(24)	284	287
27	v OC(11), 8 CCO(17)	303	305
28	δ OCN(16)	328	330
29	δ CCO(10), τ CCCC(11)	343	354
30	δ OCN(11), τ NCNN(16)	364	371
31	δ CCO(15)	372	382
32	δ CNC(13), δ CCN(29)	388	388
33	τ HCCC(10), τ CCCC(54)	398	409
34	$v NC(19), \delta CCN(10)$	423	427
35	8 CCO(11)	426	438
36	$\tau CCCC(17)$	4/8	481
37	δ OCC(12)	480	488
38	δ OCC(18)	491	504
39	τ CCNN(13)	507	524
40		535	543
41	τ HCCO(12), τ OCOC(27)	538	547
42	δ OCC(23), τ HCCO(10), τ OCOC(19)	548	567
43	$\tau OCOC(37)$	563	584
44	τ HCCN(14), τ ONNC(26)	564	584
45	δ OCC(31), δ CNC(13)	5/3	590
46	$\frac{\tau}{\tau} CCCC(10)$	605	607
47	$0 \cup U \cup (48), \tau \cup U \cup U \cup (11)$	0U /	014
48		038	043
49	$V CC(12), \delta OCC(10)$	649	660
50	τ CCCC(12), τ NCNN(31), τ CNNC(19)	659	6/5
51		66 / (70	680
52	τ HCCC(21), τ CCCC(19)	6/9	698
55 54	$\frac{\tau HUUU(14)}{- ONEU(20)}$	08/	/03
54	τ UNUN(13), τ UNNC(36)	/06	/39

Tablo 3.196. 34 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm^{-1})

Tablo 3.196.' nın devamı

55	ν NN(14), δ NNC(11)	723	757
56	v CC(16), τ HCCC(12), τ OCCC(17)	734	759
57	v OC(11), v CC(11)	741	767
58	τ HCCC(17), τ CCCC(26)	757	785
59	τ HCCC(24)	787	819
60	τ HCCC(39)	819	839
61	v OC(12)	826	858
62	τ HCCC(51)	835	867
63	v OC(10) v CC(10)	859	892
64	v OC(16)	881	909
65	τ HCNN(15) τ HCCC(52)	909	956
66	τ HCCC(32)	914	958
67	τ HCCC(67)	927	960
68	$\gamma CC(11) \tau HCNN(30)$	939	965
60	ν CC(18) τ HCNN(22) τ HCCN(10)	944	980
70	τ HCCC(44)	950	980
70	τ HCNN(10) τ HCCC(32)	961	003
71	τ HCCC(30), τ CCCC(22)	960	1001
72	$v CC(11) \neq HCCO(35)$	909	1001
73	v CC(11), v RCC0(55)	078	1005
74	V CC(11), 0 CCC(05)	978	027
75	τ HCCO(26)	980	927
70	\mathcal{L} Incco(50) \mathcal{L}	1010	1025
79	$\delta = \Theta(21), \delta = \Theta(11), \tau = \Theta(10), \tau = \Theta(12)$	1019	1023
/0 70	δ HCU(10), σ HCCO(52), σ OCOC(10)	1019	1049
79 90	δ HCH(10), t HCCO(52), t OCOC(10) δ HCH(11), σ HCCO(51)	1020	1054
0U 91	0 HCH(11), 1 HCC(51) 0 HCC(12) S HCC(24) S NCN(17)	1028	1057
01	V CC(42), 0 HCC(13), 0 HCC(24), 0 HCH(17)	1070	1004
02 93	V ININ(10) $V OC(14) = V ININ(12)$	1104	1093
0J 04	V OC(14), V INN(15) V NC(21), V CC(12)	1109	1100
04	V NC(21), V CC(12)	1120	1129
05 97	V NC(14), V CC(11), 0 NCC(17)	1132	1137
00 97	V CC(12)	1144	1140
0/	$V CC(13), V CC(11), 0 \Pi CC(43), 0 UCC(12), 1 \Pi CCU(18)$	1143	1130
00	$\delta HCC(27), \delta NCN(10)$	1100	11/0
09	0 Ince(37), 0 Inch(10)	1100	1201
90	OC(20) S $UCC(27)$	1105	1202
91	OC(20), 0 HCC(27)	1201	1219
92	V INC(24), V INN(11)	1227	1227
93	V OC(11), 0 BCC(23)	1240	1244
94	V CC(17), V CC(19), 0 HCC(20)	1232	1272
95	V INC(13), 0 INIC(10) V CC(20), 8 HCC(20)	1279	1202
90	V CC(29), 0 HCC(20)	1291	1294
97	V CC(00)	1300	1324
90	δ HCH(40)	1314	1340
100	8 HCN(10) + 8 HCH(25)	1355	1304
100	δ HCH(10), 0 HCH(55) δ HCH(57)	1355	1391
101	δ HCH(57)	1361	1393
102	δ HCN(51)	1363	1402
103	$\delta \text{HCH}(69) \neq \text{HCCN}(13)$	1405	1422
104	$v CC(39) \delta HCN(11) \delta HCC(16)$	1403	1422
105	δ HCH(62) τ HCCO(22)	1473	1432
100	δ HCH(41) τ HCCO(22)	1423	1432
107	δ HCH(71) τ HCCN(14)	1424	1433
100	δ HCH(44) τ HCCO(22)	1420	1443
110	$v CC(11) \tau HCC(22)$	1432	1447
111	δ HCH(67) τ HCCO(22)	1442	1453
111	0 11011(07), 0 11000(22)	1114	1100

1 abio 5.17	o, mil devami		
112	δ HCC(40)	1480	1502
113	δ HCC(24), δ CCC(10)	1481	1517
114	v NC(27), v CC(15)	1548	1597
115	v CC(31), δ CCC(14)	1556	1598
116	v NC(11), v CC(17)	1581	1626
117	ν CC(52), δ HCC(14)	1592	1635
118	ν CC(48), δ HCC(10)	1598	1678
119	v NC(41)	1623	1724
120	v OC(42)	1735	1766
121	v OC(44)	1769	1824
122	v OC(46)	1779	1828
123	v OC(46)	1812	1854
124	v CH(84)	2953	2891
125	v CH(95)	2957	2898
126	v CH(92)	2960	2901
127	v CH(30)	3013	2955
128	v CH(88)	3019	2969
129	v CH(50)	3022	2971
130	v CH(91)	3032	2986
131	v CH(48)	3059	2993
132	v CH(47)	3063	2995
133	v CH(88)	3064	3003
134	v CH(84)	3065	3009
135	v CH(43)	3071	3017
136	v CH(70)	3074	3021
137	v CH(50)	3084	3032
138	ν CH(41)	3093	3042
139	v CH(40)	3101	3048
140	v CH(38)	3110	3052
141	v CH(26)	3129	3059

Tablo 3.196.' nın devamı

Şekil 3.106. 34 tipi bileşiğin teorik (B3LYP6-31G(d,p)(a) ve HF6-31G(d,p)(b)) IR spektrumları

 $\begin{array}{c} 275.98/209.58 \\ \textbf{\$ekil 3.107. 34 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)} \end{array}$

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(41)-N(40)	105.801	105.995	33	H(22)-C(3)-C(4)	113.759	115.638
2	C(1)-N(42)-C(2)	108.291	108.351	34	C(3)-C(4)-C(5)	115.458	117.616
3	N(41)-C(1)-N(42)	110.977	111.018	35	C(3)-C(4)-C(9)	125.814	122.840
4	N(41)-N(40)-C(16)	119.273	119.354	36	C(4)-C(5)-H(23)	119.672	120.194
5	C(1)-C(10)-C(11)	122.895	122.020	37	H(23)-C(5)-C(6)	119.316	119.384
6	C(1)-C(10)-C(15)	117.690	118.157	38	C(4)-C(5)-C(6)	120.976	120.404
7	C(10)-C(11)-H(26)	119.816	120.217	39	C(5)-C(6)-H(24)	120.705	120.631
8	H(26)-C(11)-C(12)	129.230	119.924	40	H(24)-C(6)-C(7)	119.230	119.315
9	C(11)-C(12)-H(27)	119.446	119.623	41	C(5)-C(6)-C(7)	120.059	120.051
10	H(27)-C(12)-C(13)	120.088	120.137	42	C(6)-C(7)-O(48)	122.049	121.722
11	C(12)-C(13)-H(28)	120.131	119.998	43	C(7)-O(48)-C(20)	123.840	124.910
12	H(28)-C(13)-C(14)	120.117	120.013	44	O(48)-C(20)-O(49)	116.802	117.264
13	C(12)-C(13)-C(14)	119.751	119.989	45	O(49)-C(20)-C(21)	125.592	124.278
14	C(13)-C(14)-H(29)	120.165	120.205	46	C(20)-C(21)-H(37)	111.374	111.174
15	H(29)-C(14)-C(15)	119.613	119.727	47	C(20)-C(21)-H(38)	107.555	107.225
16	C(13)-C(14)-C(15)	120.221	120.068	48	C(20)-C(21)-H(39)	110.046	110.394
17	C(14)-C(15)-H(30)	120.786	120.543	49	H(37)-C(21)-H(38)	109.105	110.119
18	H(30)-C(15)-C(10)	118.973	119.385	50	H(37)-C(21)-H(39)	108.422	108.913
19	C(14)-C(15)-C(10)	120.241	120.072	51	H(38)-C(21)-H(39)	110.338	108.984
20	N(40)-C(16)-O(45)	119.663	119.742	52	O(48)-C(7)-C(8)	118.639	118.659
21	O(45)-C(16)-C(17)	124.432	123.558	53	C(7)-C(8)-O(46)	120.803	120.799
22	C(16)-C(17)-H(31)	111.133	111.038	54	C(8)-O(46)-C(18)	119.060	119.998
23	C(16)-C(17)-H(32)	111.256	110.934	55	O(46)-C(18)-O(47)	123.410	123.009
24	C(16)-C(17)-H(33)	107.267	106.975	56	O(47)-C(18)-C(19)	126.565	126.178
25	H(31)-C(17)-H(32)	106.190	107.033	57	C(18)-C(19)-H(34)	110.518	109.893
26	H(31)-C(17)-H(33)	110.516	110.508	58	C(18)-C(19)-H(35)	109.127	109.002
27	H(32)-C(17)-H(33)	110.525	110.393	59	C(18)-C(19)-H(36)	109.384	109.396
28	N(40)-C(2)-O(44)	129.983	129.822	60	H(34)-C(19)-H(35)	107.538	107.936
29	O(44)-C(2)-N(42)	127.485	127.291	61	H(34)-C(19)-H(36)	110.572	110.496
30	C(2)-N(42)-N(43)	122.743	122.722	62	H(35)-C(19)-H(36)	109.669	110.090
31	N(42)-N(43)-C(3)	118.348	116.584	63	C(8)-C(9)-H(25)	118.555	119.020
32	N(43)-C(3)-H(22)	110.887	112.941	64	H(25)-C(9)-C(4)	121.271	121.213

Tablo 3.197. 34 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Tablo 3.198. 34 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Bağ	Uzunlukları	B3LYP	HF	B	ağ Uzunlukları	B3LYP	HF
1	C(1)-N(41)	1.3025	1.2679	27	C(3)-H(22)	1.0920	1.0794
2	C(1)-N(42)	1.3979	1.3845	28	C(3)-C(4)	1.4741	1.4868
3	C(1)-C(10)	1.4714	1.4779	29	C(4)-C(5)	1.4074	1.3890
4	N(41)-N(40)	1.3827	1.3770	30	C(4)-C(9)	1.4032	1.3886
5	N(40)-C(16)	1.4293	1.4099	31	C(5)-H(23)	1.0860	1.0756
6	C(16)-O(45)	1.2075	1.1836	32	C(5)-C(6)	1.3893	1.3821
7	C(16)-C(17)	1.5088	1.5057	33	C(6)-H(24)	1.0846	1.0740
8	C(17)-H(31)	1.0929	1.0819	34	C(6)-C(7)	1.3966	1.3827
9	C(17)-H(32)	1.0927	1.0821	35	C(7)-O(48)	1.3735	1.3599
10	C(17)-H(33)	1.0897	1.0798	36	O(48)-C(20)	1.3978	1.3618
11	N(40)-C(2)	1.3988	1.3744	37	C(20)-O(49)	1.1992	1.1780
12	C(2)-O(44)	1.2213	1.1986	38	C(20)-C(21)	1.5079	1.5055
13	C(2)-N(42)	1.3973	1.3688	39	C(21)-H(37)	1.0921	1.0802

Tab	lo 3.198.' in deva	mı					
14	N(42)-N(43)	1.4099	1.3983	40	C(21)-H(38)	1.0929	1.0838
15	C(10)-C(11)	1.4035	1.3906	41	C(21)-H(39)	1.0892	1.0793
16	C(10)-C(15)	1.4062	1.3914	42	C(7)-C(8)	1.4025	1.3868
17	C(11)-H(26)	1.0828	1.0730	43	C(8)-O(46)	1.3881	1.3713
18	C(11)-C(12)	1.3946	1.3845	44	O(46)-C(18)	1.3749	1.3431
19	C(12)-H(27)	1.0859	1.0753	45	C(18)-O(47)	1.2061	1.1843
20	C(12)-C(13)	1.3948	1.3848	46	C(18)-C(19)	1.5035	1.4983
21	C(13)-H(28)	1.0859	1.0756	47	C(19)-H(34)	1.0927	1.0832
22	C(13)-C(14)	1.3972	1.3859	48	C(19)-H(35)	1.0944	1.0839
23	C(14)-H(29)	1.0857	1.0751	49	C(19)-H(36)	1.0890	1.0793
24	C(14)-C(15)	1.3908	1.3826	50	C(8)-C(9)	1.3880	1.3784
25	C(15)-H(30)	1.0842	1.0737	51	C(9)-H(25)	1.0813	1.0728
26	N(43)-C(3)	1.2864	1.2584				

Tablo 3.199. 34 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.510	0.628	H26	0.120	0.194
C2	0.830	1.100	H27	0.092	0.158
C3	0.080	0.199	H28	0.093	0.160
C4	0.090	-0.109	H29	0.097	0.163
C5	-0.122	-0.137	H30	0.126	0.195
C6	-0.113	-0.165	H31	0.155	0.168
C7	0.328	0.367	H32	0.146	0.159
C8	0.316	0.366	H33	0.137	0.159
С9	-0.119	-0.147	H34	0.148	0.174
C10	0.071	-0.065	H35	0.164	0.160
C11	-0.110	-0.133	H36	0.150	0.167
C12	-0.098	-0.161	H37	0.180	0.188
C13	-0.074	-0.134	H38	0.134	0.142
C14	-0.096	-0.159	H39	0.151	0.174
C15	-0.093	-0.113	N40	-0.411	-0.664
C16	0.562	0.743	N41	-0.330	-0.299
C17	-0.378	-0.409	N42	-0.490	-0.687
C18	0.594	0.763	N43	-0.242	-0.242
C19	-0.390	-0.414	O44	-0.546	0.651
C20	0.573	0.759	O45	-0.422	-0.514
C21	-0.416	-0.454	O46	-0.515	-0.667
H22	0.131	0.181	O47	-0.453	-0.561
H23	0.106	0.177	O48	-0.512	-0.671
H24	0.115	0.184	O49	-0.414	-0.512
H25	0.141	0.240			

E_{HOMO} (B3LYP) : -0.23315 Hatree

E_{HOMO} (HF) : -0.33415 Hatree

E_{LUMO}(B3LYP) : -0.08013 Hatree

E_{LUMO}(HF) : 0.07570 Hatree

Şekil 3.108. 34 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.200. 34 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	3.3161	3.8210
$\mu_{\rm y}$	-6.5460	-8.7290
μ _z	-6.9548	-8.3815
μ_{Toplam}	10.1102	12.6904

Tablo 3.201. 34 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1481.430	-1472.712

3.4.28. 1,3-Dimetil-4-(3,4-dimetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (36)

Şekil 3.109. 36 tipi bileşiğin(6-31G(d,p)) gausview görünümü

Tablo 3.202. 36 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

Ň	D	DE	т I	DFT/	Fark/	ЦБ		HF/	Fark/
INO	Deney.	DF	гагк	DMSO	DMSO	пг	Fark	DMSO	DMSO
C1	142.66	147.72	-5.06	149.44	-6.78	141.82	0.84	144.56	-1.90
C2	154.31	149.15	5.16	149.86	4.45	147.43	6.88	148.31	6.00
C3	151.72	159.33	-7.61	160.71	-8.99	166.76	-15.04	169.53	-17.81
C4	122.76	131.89	-9.13	130.56	-7.80	118.09	4.67	116.80	5.96
C5	125.75	134.36	-8.61	136.21	-10.46	126.38	-0.63	129.34	-3.59
C6	108.71	113.13	-4.42	115.15	-6.44	103.80	4.91	106.01	2.70
C7	149.31	159.28	-9.97	160.44	-11.13	150.83	-1.52	151.51	-2.20
C8	148.95	152.31	-3.36	151.46	-2.51	141.11	7.84	139.47	9.48
C9	111.37	129.70	-18.33	128.49	-17.12	126.04	-14.67	123.86	-12.49
C10	10.83	21.27	-10.44	21.08	-10.25	10.20	0.63	10.06	0.77
C11	31.70	39.35	-7.65	39.43	-7.73	26.10	5.60	26.14	5.56
C12	55.52	65.69	-10.17	65.96	-10.44	51.10	4.42	51.26	4.26
C13	55.35	60.79	-5.44	61.25	-5.90	45.60	9.75	45.96	9.39
H14	9.45	8.46	0.99	8.64	0.81	8.72	0.73	8.98	0.47
H15	7.28	7.86	-0.58	8.18	-0.90	7.67	-0.39	8.14	-0.86
H16	6.96	7.46	-0.50	7.85	-0.89	7.09	-0.13	7.54	-0.58
H17	7.34	8.29	-0.95	8.27	-0.93	8.99	-1.65	8.67	-1.33

Tablo	Tablo 3.202.' nin devamı										
H18	2.19	2.84	-0.65	2.93	-0.74	2.20	-0.01	2.27	-0.08		
H19	2.19	3.27	-1.08	3.30	-1.11	2.31	-0.12	2.43	-0.24		
H20	2.19	2.87	-0.68	3.06	-0.87	1.76	0.43	2.04	0.15		
H21	3.22	4.55	-1.33	3.96	-0.74	4.12	-0.90	4.05	-0.83		
H22	3.22	3.87	-0.65	4.02	-0.80	3.27	-0.05	3.39	-0.17		
H23	3.22	3.85	-0.63	4.51	-1.29	3.25	-0.03	3.38	-0.16		
H24	3.80	4.20	-0.40	4.20	-0.40	3.37	0.43	3.44	0.36		
H25	3.80	4.54	-0.74	4.66	-0.86	4.01	-0.21	4.07	-0.27		
H26	3.80	5.04	-1.24	5.12	-1.32	3.79	0.01	3.92	-0.12		
H27	3.80	4.90	-1.10	5.05	-1.25	4.34	-0.54	4.43	-0.63		
H28	3.80	4.51	-0.71	4.70	-0.90	3.71	0.09	3.96	-0.16		
H29	3.80	4.45	-0.65	4.62	-0.82	3.63	0.17	3.83	-0.03		

 Tablo 3.203. 36 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	τ NCCC(62)	25	16
2	τ NCNN(14), τ CNNC(14), τ NNCC(14), τ CCCC(15)	33	33
3	δ NCC(14), τ NCNN(19)	40	47
4	τ NCNN(20), τ COCC(24)	68	61
5	τ COCC(35)	79	69
6	τ HCNC(58)	95	90
7	δ CCC(11), τ CNNC(18)	118	108
8	τ CCCC(12), τ COCC(23)	122	116
9	τ CCNN(57), τ CNNC(19)	135	133
10	τ HCCN(18), τ NCCC(14)	150	137
11	τ HCCN(28), τ HCOC(18)	155	149
12	τ HCCN(15), τ HCOC(32)	158	163
13	δ OCC(14), δ CCC(14), δ COC(10)	168	167
14	δ CNN(12)	185	203
15	τ CNNC(10), τ HCOC(11)	223	228
16	τ HCOC(17), τ NCNN(11)	232	245
17	δ OCC(13),δ CCN(22), δ CNN(10)	239	248
18	δ CNN(46)	271	273
19	δ COC(21), τ CCCC(17)	282	293
20	δ OCN(20), δ CCN(21), δ CNN(11)	306	314
21	τ CNNC(28)	324	335
22	δ COC(18)	351	354
23	δ COC(12), τ CCCC(39)	360	372
24	τ HCCC(11), τ CCCC(14), τ OCCC(21)	438	437
25	τ NCNN(56), τ CNNC(10)	462	463
26	τ CCCC(11)	486	493
27	δ OCC(11), δ COC(15)	510	518
28	ν NN(10), δ NCN(18)	543	547
29	v NN(10)	576	580
30	δ OCC(15)	587	593
31	ν CC(28), δ NNC(11)	595	608
32	τ NNCC(28), τ CNNC(11)	617	638
33	τ CCCC(16)	637	645
34	ν CC(12), δ CCC(20)	678	672
35	τ ONNC(73)	692	737
36	τ HCCC(11), τ CCCC(11), τ OCCC(36)	713	751
37	ν OC(10), δ CCC(15)	735	756
38	ν CC(12), ν OC(10), δ CCC(12)	745	769

Tablo 3.203.' ün devamı

30	τ HCCC(63) τ OCCC(10)	786	816
40	$\delta NCC(12) = \delta CCC(12)$	780	820
40	0 NCC(13), 0 CCC(12)	/ 09	015
41	t CCCC(16), t HCCC(56)	882	915
42	τ ΗCCC(69), τ CCCC(15)	899	942
43	ν CC(12), τ HCNN(16)	913	949
44	τ HCCO(34)	935	973
45	δ HCH(16), τ HCCN(41)	942	992
46	δ HCH(12), τ HCCN(22), τ HCNC(10)	974	997
47	v OC(30), δ CCC(15)	1010	1039
48	v NC(15), v NN(11), v OC(12), τ HCNC(13)	1013	1050
49	ν OC(46), τ HCCN(10)	1028	1051
50	γ OC(11) δ HCH(13) τ HCCN(40)	1029	1062
51	$v NC(12) \delta NNC(18) \delta CNN(13)$	1058	1094
52	τ HCCN(17) τ HCNC(15)	1114	1120
53	$\gamma OC(15) \delta HCC(25)$	1123	1120
55	- HCOC(22)	1123	1132
54	f HCOC(33)	1132	114/
55 50	0 HCH(10), 1 HCOC(51)	1133	1154
50	VCC(13), 0 HCC(16)	1139	1157
57	0 HCH(14), th COC(57)	116/	1161
58	δ HCH(13), τ HCOC(28)	1169	1190
59	ν OC(10), δ HCC(45)	1201	1195
60	v CC(11), v OC(24), δ HCC(20)	1216	1248
61	ν NN(18), δ HCH(10), τ HCNC(30)	1230	1259
62	δ HCC(64)	1246	1282
63	v OC(39)	1267	1282
64	v CC(19)	1311	1303
65	ν NC(12), δ HCH(46)	1353	1366
66	ν NC(18), δ HCN(21)	1364	1383
67	ν NC(12), δ HCN(36)	1374	1417
68	ν NC(10), ν CC(12), δ HCH(27)	1393	1418
69	δ HCH(36)	1398	1425
70	v CC(10), δ HCN(16), δ HCC(22)	1409	1429
71	δ HCH(46), τ HCCN(13)	1427	1441
72	δ HCH(38)	1429	1452
73	δ HCH(19)	1440	1454
74	δ HCH(20)	1441	1454
75	δ HCH(44), τ HCCN(16)	1441	1460
76	δ HCH(50), τ HCOC(14)	1443	1463
77	δ HCH(24)	1447	1469
78	δ HCH(57), τ HCOC(21)	1459	1474
79	δ HCH(45), τ HCOC(14)	1465	1476
80	δ HCH(49), τ HCNC(22)	1470	1485
81	ν OC(17), δ HCC(37), δ CCC(15)	1493	1522
82	v CC(26), δ CCC(14), δ HCC(11)	1555	1592
83	v NC(44), v CC(12)	1589	1624
84	v NC(14), v CC(40)	1592	1681
85	v NC(47)	1621	1715
86	v OC(78)	1746	1755
87	ν CH(90)	2907	2864
88	v CH(70)	2913	2867
89	v CH(83)	2935	2881
90	v CH(74)	2939	2884
91	v CH(100)	2970	2924
92	v CH(61)	2985	2934
93	v CH(53)	2997	2940
94	v CH(92)	2997	2944
95	v CH(29)	3010	2968

Tablo 3.2	203.' ün devamı		
96	v CH(53)	3025	2977
97	v CH(23)	3036	2978
98	v CH(57)	3042	2978
99	v CH(21)	3044	2991
100	v CH(37)	3066	3008
101	v CH(36)	3103	3053
102	v CH(27)	3128	3083

Şekil 3.110. 36 tipi bileşiğin teorik (B3LYP6-31G(d,p)(a) ve HF6-31G(d,p)(b)) IR spektrumları

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF	
335.41/225.50	3.6964/5.4981	
291.46/212.61	4.2539/5.8316	
272.40/209.70	4.5516/5.9125	

Şekil 3.111. 36 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

Tablo 3.204. 36 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(31)-N(30)	104.918	105.347	27	N(33)-C(3)-C(4)	135.823	133.872
2	C(1)-N(32)-C(2)	107.846	107.518	28	H(14)-C(3)-C(4)	113.402	114.113
3	N(31)-C(1)-N(32)	111.550	111.342	29	C(3)-C(4)-C(5)	116.751	116.092
4	N(31)-C(1)-C(10)	125.320	125.570	30	C(3)-C(4)-C(9)	125.228	125.445
5	N(32)-C(1)-C(10)	123.110	123.068	31	C(4)-C(5)-H(15)	119.392	119.949
6	C(1)-C(10)-H(18)	108.919	108.891	32	H(15)-C(5)-C(6)	118.979	118.690
7	C(1)-C(10)-H(19)	110.993	110.336	33	C(4)-C(5)-C(6)	121.627	121.356
8	C(1)-C(10)-H(20)	111.265	110.573	34	C(5)-C(6)-C(7)	119.938	119.886
9	H(18)-C(10)-H(19)	109.661	109.615	35	C(5)-C(6)-H(16)	119.466	119.264
10	H(19)-C(10)-H(20)	109.146	108.034	36	H(16)-C(6)-C(7)	120.592	120.848
11	H(20)-C(10)-H(18)	109.146	109.377	37	C(6)-C(7)-O(36)	120.652	124.695
12	C(1)-N(32)-N(33)	121.081	121.838	38	C(6)-C(7)-C(8)	119.153	119.139
13	N(31)-N(30)-C(11)	121.161	120.949	39	C(7)-O(36)-C(13)	118.329	119.932
14	C(2)-N(30)-C(11)	125.136	126.449	40	O(36)-C(13)-H(27)	105.872	106.127
15	N(30)-C(11)-H(21)	110.635	110.338	41	O(36)-C(13)-H(28)	111.586	111.466
16	N(30)-C(11)-H(22)	110.656	110.322	42	O(36)-C(13)-H(29)	111.414	111.328
17	N(30)-C(11)-H(23)	107.121	107.700	43	O(36)-C(7)-C(8)	115.923	116.160
18	H(21)-C(11)-H(22)	109.049	109.136	44	C(7)-C(8)-O(35)	120.652	119.960
19	H(21)-C(11)-H(23)	109.608	109.625	45	C(8)-O(35)-C(12)	114.870	115.916
20	H(22)-C(11)-H(23)	109.750	109.651	46	O(35)-C(12)-H(24)	110.755	110.755
21	N(30)-C(2)-N(32)	101.832	102.907	47	O(35)-C(12)-H(25)	106.165	106.624
22	N(30)-C(2)-O(34)	129.640	123.437	48	O(35)-C(12)-H(26)	111.376	111.132
23	O(34)-C(2)-N(32)	128.528	127.630	49	O(35)-C(8)-C(9)	119.140	119.560
24	C(2)-N(32)-N(33)	126.327	123.927	50	C(8)-C(9)-H(17)	117.171	117.963
25	N(32)-N(33)-C(3)	119.459	117.855	51	H(17)-C(9)-C(4)	121.590	121.318
26	N(33)-C(3)-H(14)	110.697	111.878				

Daž Uzunluklam D2I VD HE Daž Uzunluklam D2I VD HI						ПЕ	
Bag	UZUNIUKIARI	BOLYP	HF	B	ag Uzuniukiari	BSLYP	HF
1	C(1)-N(31)	1.3015	1.2692	20	C(4)-C(5)	1.4025	1.3856
2	C(1)-N(32)	1.3867	1.3771	21	C(4)-C(9)	1.4097	1.3977
3	C(1)-C(10)	1.4866	1.4878	22	C(5)-H(15)	1.0863	1.0764
4	N(31)-N(30)	1.3834	1.3731	23	C(5)-C(6)	1.3929	1.3864
5	N(30)-C(11)	1.4437	1.4380	24	C(6)-H(16)	1.0831	1.0723
6	C(11)-H(21)	1.0942	1.0833	25	C(6)-C(7)	1.3983	1.3851
7	C(11)-H(22)	1.0940	1.0830	26	C(7)-O(36)	1.3587	1.3407
8	C(11)-H(23)	1.0908	1.0795	27	O(36)-(13)	1.4217	1.4014
9	N(30)-C(2)	1.3750	1.3475	28	C(13)-H(27)	1.0904	1.0796
10	C(2)-O(34)	1.2218	1.2041	29	C(13)-H(28)	1.0968	1.0854
11	C(2)-N(32)	1.4184	1.3825	30	C(13)-H(29)	1.0967	1.0851
12	N(32)-N(33)	1.3935	1.3972	31	C(7)-C(8)	1.4165	1.4028
13	N(33)-C(3)	1.2906	1.2611	32	C(8)-O(35)	1.3732	1.3562
14	C(3)-H(14)	1.0918	1.0798	33	O(35)-C(12)	1.4317	1.4089
15	C(1)-C(10)	1.4866	1.4878	34	C(12)-H(24)	1.0969	1.0856
16	C(10)-H(18)	1.0908	1.0807	35	C(12)-H(25)	1.0917	1.0808
17	C(10)-H(19)	1.0942	1.0839	36	C(12)-H(26)	1.0946	1.0836
18	C(10)-H(20)	1.0950	1.0845	37	C(8)-C(9)	1.3840	1.3740
19	C(3)-C(4)	1.4641	1.4787	38	C(9)-H(17)	1.0811	1.0707

Tablo 3.205. 36 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Tablo 3.206. 36 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.517	0.587	H19	0.148	0.59
C2	0.778	1.049	H20	0.139	0.145
C3	0.078	0.200	H21	0.148	0.137
C4	0.141	-0.107	H22	0.130	0.139
C5	-0.139	-0.142	H23	0.132	0.164
C6	-0.141	-0.214	H24	0.113	0.112
C7	0.345	0.403	H25	0.117	0.130
C8	0.285	0.322	H26	0.116	1.117
С9	-0.108	-0.132	H27	0.131	0.147
C10	-0.367	-0.372	H28	0.118	0.116
C11	-0.165	-0.111	H29	0.119	0.119
C12	-0.081	-0.015	N30	-0.351	-0.547
C13	-0.084	-0.035	N31	-0.347	-0.343
H14	0.111	0.163	N32	-0.438	-0.635
H15	0.092	0.161	N33	-0.284	-0.282
H16	0.093	0.164	O34	-0.545	-0.674
H17	0.107	0.229	O35	-0.530	-0.664
H18	0.134	0.161	O36	-0.511	-0.652

 $E_{HOMO}(B3LYP)$: -0.20524 Hatree

E_{LUMO} (B3LYP) : -0.04901 Hatree

E_{LUMO} (HF) : 0.09701 Hatree

Şekil 3.112. 36 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.207. 36 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	-0.1292	-4.4794
$\mu_{\rm v}$	5.5776	3.0516
μ_z	0.6687	1.1078
μ _{Toplam}	5.6191	5.5321

Tablo 3.208. 36 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-949.65	-943.93

3.4.29. 1-Metil-3-benzil-4-(3,4-dimetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (37)

Şekil 3.113. 37 tipi bileşiğin (6-31G) gausview görünümü

Tablo 3.209. 37 tipi bileşiğin TMS'ye göre ¹³C ve ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP(DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ /ppm)

NI-	, ,			DET		J	0		Early/
INO	Denev	DFT	Fark	DFI	гагк/	HF	Fark	HF/	гагк/
	Deney.		1 41 K	/DMSO	DMSO		1 41 K	DMSO	DMSO
C1	144.56	151.07	-6.51	152.66	-8.10	144.91	-0.35	147.67	-3.11
C2	153.46	149.21	4.25	149.89	3.57	147.51	5.95	148.37	5.09
C3	151.70	159.20	-7.50	160.65	-8.95	166.73	-15.03	169.58	-17.88
C4	123.03	131.92	-8.89	130.60	-7.57	118.09	4.94	116.77	6.26
C5	125.78	134.42	-8.64	136.28	-10.50	126.58	-0.80	129.55	-3.77
C6	108.18	113.10	-4.92	115.11	-6.93	103.83	4.35	106.05	2.13
C7	149.45	159.33	-9.88	160.49	-11.04	150.91	-1.46	151.63	-2.18
C8	148.93	152.33	-3.40	151.48	-2.55	141.14	7.79	139.51	9.42
С9	111.29	129.77	-18.48	128.61	-17.32	126.18	-14.89	123.99	-12.70
C10	31.83	43.14	-11.31	42.69	-10.86	27.82	4.01	27.34	4.49
C11	135.64	138.17	-2.53	138.33	-2.69	129.71	5.93	129.86	5.78
C12	128.72	133.02	-4.30	133.03	-4.31	126.23	2.49	126.17	2.55
C13	128.37	130.90	-2.53	131.37	-3.00	124.38	3.99	124.75	3.62
C14	126.66	129.57	-2.91	130.06	-3.40	123.08	3.58	123.50	3.16
C15	128.37	130.77	-2.40	131.13	-2.76	124.36	4.01	124.69	3.68
C16	128.72	134.12	-5.40	133.85	-5.13	126.60	2.12	126.37	2.35

Tablo	3.209. '	un devamı							
C17	30.97	39.34	-8.37	39.42	-8.45	26.07	4.90	26.11	4.86
C18	55.51	65.84	-10.33	66.12	-10.61	51.03	4.48	51.30	4.21
C19	55.31	60.79	-5.48	61.25	-5.94	45.63	9.68	45.99	9.32
H20	9.54	8.50	1.04	8.69	0.85	8.77	0.77	9.04	0.50
H21	7.28	7.89	-0.61	8.21	-0.93	7.72	-0.44	8.18	-0.90
H22	7.05	7.50	-0.45	7.88	-0.83	7.13	-0.08	7.57	-0.52
H23	7.45	8.34	-0.89	8.33	-0.88	9.04	-1.59	8.72	-1.27
H24	4.07	4.45	-0.38	4.67	-0.60	3.13	0.94	3.44	0.63
H25	4.07	4.85	-0.78	4.90	-0.83	3.65	0.42	3.81	0.26
H26	7.43	8.19	-0.76	8.34	-0.91	7.80	-0.37	7.99	-0.56
H27	7.34	8.25	-0.91	8.43	-1.09	7.86	-0.52	8.07	-0.73
H28	7.25	8.18	-0.93	8.37	-1.12	7.79	-0.54	8.00	-0.75
H29	7.34	8.26	-0.92	8.44	-1.10	7.81	-0.47	8.02	-0.68
H30	7.43	8.29	-0.86	8.44	-1.01	7.64	-0.21	7.82	-0.39
H31	3.22	3.72	-0.50	3.81	-0.59	3.11	0.11	3.22	0.00
H32	3.22	3.78	-0.56	3.92	-0.70	3.15	0.07	3.26	-0.04
H33	3.22	4.49	-1.27	4.47	-1.25	4.05	-0.83	4.00	-0.78
H34	3.82	4.21	-0.39	4.21	-0.39	3.39	0.43	3.46	0.36
H35	3.82	4.55	-0.73	4.67	-0.85	4.03	-0.21	4.09	-0.27
H36	3.82	5.03	-1.21	5.10	-1.28	3.81	0.01	3.94	-0.12
H37	3.82	4.91	-1.09	5.05	-1.23	4.36	-0.54	4.46	-0.64
H38	3.82	4.51	-0.69	4.70	-0.88	3.73	0.09	3.98	-0.16
H39	3.82	4.46	-0.64	4.63	-0.81	3.67	0.15	3.87	-0.05

 Tablo 3.210. 37 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	τ CNNC(27)	14	10
2	τ CCCN(15), τ CCCC(39)	22	16
3	τ CCCN(15), τ CCCC(48)	24	17
4	τ CNNC(14), τ CCNN(14), τ NNCC(12), τ CCCC(14)	32	38
5	δ CCN(14), τ CNNC(12)	40	44
6	δ NCC(18), δ CCC(15), τ CCCC(20)	53	53
7	$\tau \operatorname{COCC}(20)$	66	64
8	τ CNNC(12), τ COCC(39)	78	69
9	τ HCCN(30)	96	90
10	$\tau \operatorname{COCC}(22)$	112	104
11	τ CNNC(10), τ NNCC(14)	118	116
12	τ HCNC(10), τ NNCC(15), τ CCNN(56)	129	129
13	δ NCC(10), τ CCCN(23)	139	134
14	τ HCOC(20)	160	149
15	δ OCC(17), τ HCOC(28)	164	160
16	τ NNCC(10)	173	172
17	δ NCC(12), τ CCCC(10)	196	206
18	τ NNCC(18)	219	224
19	δ OCC(15), τ HCOC(11)	232	238
20	τ HCOC(23)	242	246
21	δ CNN(23)	280	282
22	δ CNN(14), δ COC(15), τ CCCN(11)	283	293
23	δ OCN(19), δ CNN(19)	294	303
24	δ CCC(10), τ CNNC(32)	314	322
25	δ CCC(27)	322	329
26	δ CCC(13), δ COC(21)	350	353

Tablo 3.2	10.' un devamı		
27	δ COC(16), τ CCCN(17), τ CCCC(10)	361	371
28	τ HCCC(17), τ CCCC(80)	400	408
29	v CC(20)	436	437
30	τ CCCC(22)	459	459
31	$\tau \text{ OCCC}(17)$	464	466
32	τ CCCN(18), τ CCNN(13)	486	493
33	δ OCC(11), δ COC(14)	509	518
34	v NN(10), δ NNC(12)	538	547
35	δ CCC(14)	551	556
36	$\delta OCC(18)$	582	586
37	v NC(11), δ CCC(10), δ NNC(11)	590	602
38	δ CCC(38), τ NCNC(13)	610	612
39	δ CCC(16), τ NCNC(26)	615	623
40	$\tau CCCN(14), \tau CCCC(18)$	630	637
41	δ CCC(16), τ CCCC(13)	663	668
42	τ HCCC(10), τ CCCC(37)	683	692
43	τ ONNC(56)	689	713
44	τ HCCC(21), τ ONNC(17)	699	737
45	τ HCCC(11), τ OCCC(38)	715	750
46	τ ONNC(13)	734	756
47	$v CC(13), v OC(13), \delta CCC(15)$	744	768
48	v NN(15), δ CNN(17)	764	772
49	τ HCCC(66), τ OCCC(12)	787	815
50	δ NCN(19), δ CCN(16)	791	827
51	v CC(10)	817	840
52	τ HCCC(99)	825	857
53	τ HCCC(60), τ HCNN(12)	885	913
54	τ HCCC(25)	894	919
55	τ HCCC(47)	901	935
56	τ HCCN(20)	902	945
57	v CC(11), τ HCCC(25), τ HCNN(13)	915	950
58	τ HCCC(85). τ CCCC(12)	931	972
59	τ HCNN(44)	934	981
60	v CC(12), τ HCNN(15)	942	987
61	τ HCCC(36), τ CCCC(26)	958	992
62	v CC(33), δ CCC(61)	979	1010
63	ν NC(10), ν NN(16), τ HCCN(20)	1004	1015
64	v OC(41), δ CCC(13)	1010	1037
65	ν CC(41), δ HCC(21)	1016	1039
66	v OC(40)	1027	1061
67	v NC(17), v OC(17), δ NNC(24)	1034	1062
68	v CC(41), δ HCC(26)	1068	1077
69	δ HCH(13), τ HCNC(57	1114	1090
70	ν OC(15), δ HCC(15)	1123	1121
71	τ HCOC(41)	1132	1132
72	δ HCH(16), τ HCOC(21)	1133	1146
73	ν CC(14), δ HCC(23)	1138	1154
74	ν CC(15), δ HCC(37)	1142	1157
75	ν CC(10), δ HCC(63)	1162	1161
76	ν CC(22), δ HCC(68)	1163	1166
77	δ HCH(15), τ HCOC(57)	1167	1171
78	δ HCH(12), τ HCOC(28)	1169	1183
79	ν CC(18), δ HCC(13)	1179	1190
80	ν NN(16), δ NCN(18), δ NNC(10)	1195	1195
81	ν CC(11), ν OC(25), δ HCC(23)	1216	1227
82	ν NN(18), τ HCCC(18), τ HCCN(16)	1231	1244
83	v CC(10), δ HCC(31)	1245	1251

Tablo 3.210.' un devamı

84	v OC(39)	1267	1282
85	v NC(16), τ HCCN(14)	1272	1282
86	$v CC(44), \delta HCC(15)$	1306	1303
87	$v CC(10), \delta HCC(38)$	1311	1304
88	$v CC(10), \delta HCC(38)$	1311	1330
89	v NC(16), δ HCN(22)	1364	1381
90	v NC(14), δ HCN(35)	1374	1415
91	v NC(15), v NN(17), τ HCCN(10)	1389	1419
92	δ HCH(62)	1397	1424
93	ν CC(10), δ HCC(11), δ HCN(16), δ HCH(22)	1408	1433
94	δ HCH(42)	1428	1448
95	δ HCH(28)	1430	1452
96	ν CC(11), δ HCC(23)	1440	1454
97	δ HCH(36), HCC(22)	1440	1454
98	τ HCNC(16)	1441	1460
99	δ HCH(49), τ HCOC(14)	1443	1463
100	δ HCH(19)	1448	1469
101	δ HCH(53), τ HCOC(21)	1460	1474
102	δ HCH(46), τ HCOC(14)	1465	1476
103	δ HCH(36), τ HCCN(14)	1470	1484
104	δ HCC(59), δ CCC(13)	1484	1501
105	ν OC(17), δ HCC(38)	1493	1522
106	v CC(30)	1555	1592
107	ν NC(38), ν CC(18), δ CCC(11)	1580	1607
108	v CC(26)	1581	1624
109	ν NC(52), δ HCC(13)	1591	1630
110	ν CC(49), δ HCC(19)	1602	1676
111	v NC(45)	1621	1714
112	v OC(78)	1745	1754
113	v CH(90)	2908	2864
114	v CH(70)	2913	2867
115	v CH(45)	2922	2881
116	v CH(43)	2936	2885
117	v CH(44)	2963	2918
118	v CH(100)	2971	2924
119	v CH(61)	2985	2934
120	v CH(50)	2998	2945
121	v CH(28)	3010	2968
122	v CH(53)	3025	2977
123	v CH(23)	3036	2978
124	v CH(84)	3045	2991
125	v CH(79)	3052	2998
126	v CH(84)	3055	3001
127	v CH(49)	3064	3008
128	v CH(38)	3065	3011
129	v CH(91)	3073	3020
130	v CH(49)	3083	3031
131	V UH(36)	3102	3033
132	v CH(27)	3129	3085

Şekil 3.114. 37 tipi bileşiğin teorik (B3LYP6-31G(d,p)(a) ve HF6-31G(d,p)(b)) IR spektrumları

Şekil 3.115. 37 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(41)-N(40)	104.925	105.396	36	O(44)-C(2)-N(42)	128.499	127.608
2	C(1)-N(42)-C(2)	107.782	107.453	37	C(2)-N(42)-N(43)	126.267	123.668
3	N(41)-C(1)-N(42)	111.556	119.295	38	N(42)-N(43)-C(3)	119.580	117.901
4	N(41)-N(40)-C(17)	121.021	120.836	39	N(43)-C(3)-H(20)	110.714	111.874
5	N(40)-C(17)-H(31)	110.607	110.311	40	H(20)-C(3)-C(4)	113.417	114.078
6	N(40)-C(17)-H(32)	110.607	110.302	41	N(43)-C(3)-C(4)	135.799	133.905
7	N(40)-C(17)-H(33)	107.144	107.698	42	C(3)-C(4)-C(5)	116.744	116.037
8	H(31)-C(17)-H(32)	109.045	109.174	43	C(3)-C(4)-C(9)	125.251	125.515
9	H(31)-C(17)-H(33)	109.639	109.660	44	C(4)-C(5)-H(21)	119.399	119.946
10	H(32)-C(17)-H(33)	109.778	109.679	45	H(21)-C(5)-C(6)	118.967	118.681
11	N(41)-C(1)-C(10)	126.600	127.092	46	C(4)-C(5)-C(6)	121.632	121.368
12	N(42)-C(1)-C(10)	121.806	121.585	47	C(5)-C(6)-H(22)	119.458	119.262
13	C(1)-C(10)-H(24)	108.348	107.805	48	H(22)-C(6)-C(7)	120.600	120.853
14	C(1)-C(10)-H(25)	107.480	107.631	49	C(5)-C(6)-C(7)	119.940	119.883
15	H(24)-C(10)-C(11)	110.282	110.339	50	C(6)-C(7)-O(46)	124.926	124.697
16	H(25)-C(10)-C(11)	110.856	110.540	51	C(7)-O(46)-C(19)	118.303	119.934
17	H(24)-C(10)-H(25)	105.422	106.082	52	C(46)-C(19)-H(37)	105.874	106.126
18	C(1)-C(10)-C(11)	114.046	114.082	53	C(46)-C(19)-H(38)	111.544	111.463
19	C(10)-C(11)-C(16)	120.692	120.616	54	C(46)-C(19)-H(39)	111.425	111.329
20	C(10)-C(11)-C(12)	120.575	120.567	55	H(37)-C(19)-H(38)	109.368	109.197
21	C(11)-C(12)-H(26)	119.472	119.682	56	H(38)-C(19)-H(39)	109.262	109.430
22	H(26)-C(12)-C(13)	119.794	119.635	57	H(37)-C(19)-H(39)	109.288	109.210
23	C(11)-C(12)-C(13)	120.734	120.683	58	O(46)-C(7)-C(8)	115.933	116.160
24	C(12)-C(13)-H(27)	119.774	119.777	59	C(7)-C(8)-O(45)	120.630	119.955
25	H(27)-C(13)-C(14)	120.142	120.124	60	C(8)-O(45)-C(18)	114.797	115.914
26	C(13)-C(14)-H(28)	120.193	120.201	61	O(45)-C(8)-C(9)	119.161	119.561
27	H(28)-C(14)-C(15)	120.185	120.185	62	O(45)-C(18)-H(34)	110.730	110.753
28	C(12)-C(13)-C(14)	120.084	120.099	63	O(45)-C(18)-H(35)	106.180	106.624
29	C(14)-C(15)-H(29)	120.111	120.097	64	O(45)-C(18)-H(36)	111.369	111.129
30	H(29)-C(15)-C(16)	119.779	119.788	65	H(34)-C(18)-H(35)	109.525	109.311
31	C(14)-C(15)-C(16)	120.110	120.115	66	H(34)-C(18)-H(36)	109.564	109.595
32	C(15)-C(16)-H(30)	119.816	119.667	67	H(35)-C(18)-H(36)	109.405	109.365
33	H(30)-C(16)-C(11)	119.465	119.659	68	C(8)-C(9)-H(23)	117.181	117.955
34	C(15)-C(16)-C(11)	120.719	120.674	69	H(23)-C(9)-C(4)	121.574	121.321
35	N(40)-C(2)-O(44)	129.699	129.469				

Tablo 3.211. 37 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Ba	ağ Uzunlukları	B3LYP	HF	B	ağ Uzunlukları	B3LYP	HF
1	C(1)-N(41)	1.3003	1.2681	26	C(14)-C(15)	1.3958	1.3854
2	C(1)-N(42)	1.3883	1.3796	27	C(15)-H(29)	1.0862	1.0758
3	C(1)-C(10)	1.4994	1.4984	28	C(15)-C(16)	1.3944	1.3841
4	N(41)-N(40)	1.3828	1.3725	29	C(16)-H(30)	1.0868	1.0765
5	N(40)-C(17)	1.4440	1.4382	30	C(3)-C(4)	1.4639	1.4786
6	C(17)-H(31)	1.0941	1.0832	31	C(4)-C(5)	1.4025	1.3857
7	C(17)-H(32)	1.0939	1.0829	32	C(4)-C(9)	1.4096	1.3978
8	C(17)-H(33)	1.0908	1.0795	33	C(5)-H(21)	1.0864	1.0764
9	N(40)-C(2)	1.3746	1.3472	34	C(5)-C(6)	1.3929	1.3864
10	C(2)-O(44)	1.2218	1.2041	35	C(6)-H(22)	1.0831	1.0723
11	C(2)-N(42)	1.4187	1.3826	36	C(6)-C(7)	1.3984	1.3851
12	N(42)-N(43)	1.3930	1.3972	37	C(7)-O(46)	1.3585	1.3406
13	N(43)-C(3)	1.2906	1.2612	38	O(46)-C(19)	1.4218	1.4014
14	C(3)-H(20)	1.0917	1.0798	39	C(19)-H(37)	1.0904	1.0796
15	C(1)-C(10)	1.4994	1.4984	40	C(19)-H(38)	1.0968	1.0854
16	C(10)-H(24)	1.0981	1.0863	41	C(19)-H(39)	1.0966	1.0851
17	C(10)-H(25)	1.0961	1.0851	42	C(7)-C(8)	1.4165	1.4028
18	C(10)-C(11)	1.5138	1.5125	43	C(8)-O(45)	1.3733	1.3562
19	C(11)-C(12)	1.3991	1.3876	44	O(45)-C(18)	1.4318	1.4089
20	C(11)-C(16)	1.3995	1.3886	45	C(18)-H(34)	1.0969	1.0856
21	C(12)-H(26)	1.0870	1.0765	46	C(18)-H(35)	1.0917	1.0808
22	C(12)-C(13)	1.3951	1.3852	47	C(18)-H(36)	1.0947	1.0836
23	C(13)-H(27)	1.0862	1.0758	48	C(8)-C(9)	1.3839	1.3740
24	C(13)-C(14)	1.3953	1.3844	49	C(9)-H(23)	1.0812	1.0706
25	C(14)-H(28)	1.0861	1.0757				

Tablo 3.212. 37 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Tablo 3.213. 37 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF	0	DFT	HF
C1	0.535	0.606	H24	0.132	0.158
C2	0.781	1.051	H25	0.146	0.173
C3	0.777	0.201	H26	0.082	0.149
C4	0.141	-0.107	H27	0.084	0.149
C5	-0.138	-0.142	H28	0.083	0.148
C6	-0.142	-0.215	H29	0.084	0.149
C7	0.345	0.403	H30	0.082	0.149
C8	0.284	0.321	H31	0.134	0.138
С9	-0.107	-0.131	H32	0.131	0.139
C10	-0.320	-0.287	Н33	0.148	0.163
C11	0.131	0.005	H34	0.113	0.130
C12	-0.112	-0.144	H35	0.117	0.117
C13	-0.085	-0.145	H36	0.116	0.112
C14	-0.085	-0.151	H37	0.131	0.147
C15	-0.085	-0.145	H38	0.118	0.116
C16	-0.101	-0.137	H39	0.119	0.119
C17	-0.165	-0.111	N40	-0.350	-0.546
C18	-0.081	-0.015	N41	-0.348	-0.334
C19	-0.084	-0.035	N42	-0.445	-0.643
H20	0.111	0.163	N43	-0.284	-0.285

Tablo 3.213.' ün devamı									
H21	0.092	0.161	O44	-0.545	-0.675				
H22	0.094	0.164	O45	-0.531	-0.664				
H23	0.107	0.229	O46	-0.511	-0.652				

E_{LUMO} (B3LYP) : -0.04951 Hatree

E_{LUMO} (HF) : 0.09654 Hatree

Şekil 3.116. 37 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.214. 37 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine g	öre
hesaplanan dipol moment değerleri	

Dipol Moment	B3LYP	HF
μ _x	-1.0201	-1.8760
$\mu_{ m y}$	-5.3784	-6.7214
μ _z	-0.0249	-0.1473
μ _{Toplam}	5.4743	6.9799

Tablo 3.215. 37 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1180.704	-1173.485

3.4.30. 1-Metil-3-(*p*-metilbenzil)-4-(3,4-dimetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (38)

Şekil 3.117. 38 tipi bileşiğin (6-31G(d,p)) gausview görünümü

Tablo	3.216.	38	tipi	bileşiğin	TMS'ye	göre	¹³ C v	/e	¹ H-NMR	deneysel	ve	teorik
(B3LY	P, HF,	B3L	YP(I	DMSO) v	e HF (DN	(ISO))	kimyas	sal	kayma deg	ğerleri (δ/j	opm)

No	Deney.	DFT	Fark	DFT/ DMSO	Fark/ DMSO	HF	Fark	HF/ DMSO	Fark/ DMSO
C1	145.32	151.25	-5.93	152.87	-7.55	144.97	0.35	147.72	-2.40
C2	153.52	149.10	4.42	149.78	3.74	147.54	5.98	148.40	5.12
C3	152.10	159.28	-7.18	160.77	-8.67	166.68	-14.58	169.56	-17.46
C4	123.12	132.03	-8.91	130.69	-7.57	118.14	4.98	116.80	6.32
C5	125.92	134.27	-8.35	136.14	-10.22	126.50	-0.58	129.48	-3.56
C6	108.22	113.19	-4.97	115.20	-6.98	103.82	4.40	106.05	2.17
C7	148.33	159.37	-11.04	160.55	-12.22	150.87	-2.54	151.60	-3.27
C8	148.33	152.21	-3.88	151.37	-3.04	141.14	7.19	139.52	8.81
C9	111.30	129.62	-18.32	128.47	-17.17	126.16	-14.86	123.96	-12.66
C10	31.20	42.95	-11.75	42.47	-11.27	27.44	3.76	26.96	4.24
C11	127.22	135.50	-8.28	135.30	-8.08	126.29	0.93	126.12	1.10
C12	128.92	133.36	-4.44	133.13	-4.21	126.74	2.18	126.64	2.28
C13	128.42	131.82	-3.40	132.13	-3.71	124.24	4.18	124.38	4.04
C14	135.57	139.98	-4.41	141.46	-5.89	132.88	2.69	134.15	1.42
C15	128.42	131.83	-3.41	132.09	-3.67	124.50	3.92	124.74	3.68
C16	128.92	133.92	-5.00	133.59	-4.67	127.62	1.30	127.21	1.71
C17	20.82	30.29	-9.47	29.86	-9.04	17.47	3.35	17.01	3.81
C18	30.84	39.32	-8.48	39.40	-8.56	26.06	4.78	26.11	4.73

Tablo	3.216.' n	un devan	າເ						
C19	55.62	65.68	-10.06	65.95	-10.33	51.13	4.49	51.30	4.32
C20	55.30	60.79	-5.49	61.25	-5.95	45.62	9.68	45.99	9.31
H21	9.40	8.50	0.90	8.69	0.71	8.76	0.64	9.03	0.37
H22	7.30	7.88	-0.58	8.20	-0.90	7.71	-0.41	8.18	-0.88
H23	6.84	7.49	-0.65	7.87	-1.03	7.12	-0.28	7.57	-0.73
H24	7.34	8.33	-0.99	8.32	-0.98	9.04	-1.70	8.72	-1.38
H25	3.96	4.37	-0.41	4.58	-0.62	3.11	0.85	3.41	0.55
H26	3.96	4.83	-0.87	4.86	-0.90	3.57	0.39	3.73	0.23
H27	7.25	8.13	-0.88	8.26	-1.01	7.68	-0.43	7.86	-0.61
H28	7.10	8.10	-1.00	8.27	-1.17	7.60	-0.50	7.79	-0.69
H29	7.10	8.07	-0.97	8.24	-1.14	7.72	-0.62	7.92	-0.82
H30	7.25	8.15	-0.90	8.29	-1.04	7.64	-0.39	7.79	-0.54
H31	2.20	3.33	-1.13	3.40	-1.20	2.68	-0.48	2.76	-0.56
H32	2.20	2.98	-0.78	3.07	-0.87	2.15	0.05	2.28	-0.08
H33	2.20	2.92	-0.72	3.01	-0.81	2.75	-0.55	2.81	-0.61
H34	3.20	3.71	-0.51	3.81	-0.61	3.11	0.09	3.22	-0.02
H35	3.20	3.76	-0.56	3.90	-0.70	3.16	0.04	3.28	-0.08
H36	3.20	4.48	-1.28	4.46	-1.26	4.05	-0.85	4.00	-0.80
H37	3.80	4.19	-0.39	4.19	-0.39	3.39	0.41	3.46	0.34
H38	3.80	4.54	-0.74	4.66	-0.86	4.03	-0.23	4.09	-0.29
H39	3.80	5.04	-1.24	5.12	-1.32	3.81	-0.01	3.94	-0.14
H40	3.80	4.91	-1.11	5.06	-1.26	4.36	-0.56	4.46	-0.66
H41	3.80	4.52	-0.72	4.71	-0.91	3.73	0.07	3.98	-0.18
H42	3.80	4.47	-0.67	4.65	-0.85	3.66	0.14	3.87	-0.07

 Tablo 3.217. 38 tipi bileşiğin deneysel ve teorik (B3LYP 6-31G(d,p) ve HF 6-31G(d,p)) IR değerleri (cm⁻¹)

	TİTREŞİM TÜRLERİ	skalalı B3LYP	skalalı HF
1	τ CNNC(27)	11	9
2	τ CCCN(21)	21	10
3	$\tau CCCC(80)$	24	16
4	τ CNNC(12), τ CCNN(15), τ NNCC(12), τ CCCC(14)	32	17
5	τ CCCN(22), τ CCCC(11)	39	35
6	δ NCC(11), τ CCCC(14)	44	41
7	τ HCCC(81)	51	49
8	$\tau \operatorname{COCC}(24)$	65	58
9	τ CNNC(12), τ COCC(40)	77	68
10	τ HCCN(30)	96	90
11	δ NCC(13), τ COCC(22)	109	103
12	τ CNNC(10), τ NNCC(14)	116	115
13	τ HCNC(10), τ NNCC(12), τ CCNN(45)	127	127
14	δ NCC(13), τ CCCC(11)	130	133
15	τ CCCC(11), τ CCCN(17)	145	135
16	τ HCOC(44)	153	149
17	δ OCC(15), δ COC(12), τ COCC(11)	165	163
18	τ NNCC(10)	172	180
19		211	215
20	δ OCC(23), τ NNCC(15)	224	231
21	τ HCOC(35)	239	245
22	δ CNN(24)	268	272
23	δ CCC(59)	274	275
24	δ COC(19), τ CCCN(14)	283	293
25	δ OCN(20), δ CNN(22)	292	303
26	τ CCCC(35)	314	317

Tablo 3.217.' nin devamı

1 4010 0121			
27	τ CNNC(33), τ NCNC(15)	317	327
28	δ CCC(14), δ COC(22)	350	353
29	δ COC(15). τ CCCN(20). τ CCCC(11)	360	367
30	δ CCC(39)	367	371
31	τ HCCC(17) τ CCCC(81)	402	<i>4</i> 11
31	$CC(10) \ge CCC(14)$	402	411
32	V CC(10), 0 CCC(14)	430	457
33	δ CCC(11), τ CCCC(13)	459	460
34	τ OCCC(16)	464	466
35	τ CCCN(16), τ CCNN(12)	487	497
36	τ CCCC(13)	507	514
37	$\delta CCC(11) \tau CCCC(12)$	515	519
38	v NN(10)	542	547
20	$\delta OCN(11)$	571	577
33	OCC(22)	596	577
40	0 OCC(22)	580	601
41	τ NNCC(14), τ NCNC(37)	613	623
42	τ HCCC(12), τ CCCN(12), τ CCCC(15)	629	630
43	δ CCC(45)	634	640
44	δ CCC(16)	661	668
45	τ CCCC(11), τ ONNC(18)	686	695
46	τ CCCC(10) τ ONNC(53)	692	710
10	$v CC(14) \tau CCCC(10)$	703	737
40	- UCCC(20)	705	710
48	$\frac{1}{1} \operatorname{HCCC}(39)$	/15	/48
49	$\delta CCC(10), \tau OCCC(14)$	/30	/55
50	v CC(11), v OC(10), δ CCC(14)	743	765
51	δ CNN(11), τ HCCC(32)	761	772
52	τ HCCC(23)	786	809
53	τ HCCC(16)	788	817
54	v CC(20), τ HCCC(19)	806	839
55	τ HCCC(100)	821	852
56	$\nu CC(18) \tau HCCC(17)$	838	854
57	$\tau = \text{HCCC}(24)$ $\tau = \text{HCNN}(14)$	892	012
57	$\frac{1}{1} \operatorname{HCCC}(34), \frac{1}{1} \operatorname{HCNN}(14)$	000	915
58	τ HCCC(81)	900	919
59	ν CC(10), τ HCCN(32)	901	943
60	ν CC(10), τ HCCC(16), τ HCNN(13)	913	950
61	τ HCCC(82)	926	969
62	τ HCCC(55), τ CCCC(19)	927	972
63	τ HCNN(42)	934	981
64	$v CC(11) \tau HCNN(14)$	942	984
65	γ CC(10) δ HCH(11) τ HCCC(51)	976	992
66	$\delta CCC(13) \ \delta HCC(13) \ \delta CCC(51)$	1000	1005
67	V CC(10) = V NC(10) = V NN(15) = HCCN(10)	1000	1005
07	V CC(10), V NC(10), V NN(13), C NCCN(13)	1005	1030
08	V OC(40), 0 HCC(10), 0 CCC(15)	1010	1039
69	τ HCCC(57)	1025	1049
70	v OC(41)	1027	1062
71	ν NC(17), ν OC(17), δ NNC(22)	1034	1071
72	ν CC(24), δ HCC(52)	1101	1077
73	δ HCH(13), τ HCNC(57)	1115	1121
74	ν OC(14), δ HCC(29)	1122	1132
75	τ HCOC(32)	1132	1146
76	δ HCH(16) τ HCOC(30)	1133	1148
, 0 77	y CC(1A) = UCC(2A)	1120	115/
77	$v \cup U(14), 0 \cup U(24)$	1130	1154
/8	0 HCU(1), 0 HCH(23)	1101	115/
79	δ HCH(14), τ HCOC(57)	116/	1161
80	ν CC(18), δ HCH(11), τ HCOC(26)	1169	1173
81	δ HCC(73), τ HCOC(26)	1169	1179
82	v CC(32)	1180	1190
83	ν CC(18), δ HCC(13)	1191	1195

Tablo 3.217.' nin devamı

84	ν NN(14) δ NCN(16)	1197	1195
85	$v CC(11) v OC(26) \delta HCC(19)$	1215	1221
86	$v NN(19) \tau HCCN(18)$	1230	1245
87	δ HCC(49) τ HCCN(15)	1245	1251
88	v OC(30)	1245	1231
00	$\frac{VOC(39)}{VOC(17)} = UCCN(15)$	1207	1201
89	V NC(17), T HCCN(15)	1272	1262
90	VCC(18), 0 HCC(53)	1294	1303
91	v CC(12), 8 HCC(31)	1305	1304
92	v CC(18)	1311	1317
93	v NC(16), 8 HCN(23), 8 HCH(55)	1364	1381
94	δ HCH(91)	1372	1394
95	ν NC(14), δ HCN(33)	1374	1411
96	ν NC(17), ν CC(17), τ HCCN(10)	1388	1416
97	δ HCH(62)	1397	1419
98	ν CC(24), δ HCC(40)	1400	1424
99	ν CC(11), δ HCN(17), δ HCH(20)	1408	1433
100	δ HCH(39)	1428	1447
101	δ HCH(28)	1430	1452
102	δ HCH(21)	1439	1452
103	δ HCH(34) τ HCNC(17)	1441	1454
104	δ HCH(51), τ HCOC(14)	1443	1460
105	δ HCH(47), τ HCCC(19)	1445	1462
105	δ HCH(17)	1448	1463
107	δ HCH(45), τ HCCC(18)	1450	1469
107	τ HCOC(21)	1450	1402
100	δ HCH(45), τ HCOC(14)	1465	1476
110	δ HCH(36) τ HCCN(13) τ HCCN(14)	1405	1/8/
110	v OC(18) & HCC(20) & CCC(10)	1403	1521
111	$\delta CCC(14) \delta HCC(57)$	1475	1521
112	v CC(36)	1503	1525
113	$v CC(25) = \delta CCC(12)$	1560	1592
114	$v \operatorname{CC}(25), 0 \operatorname{CCC}(12)$	1580	1624
115	$\gamma \Gamma C(43)$	1501	1642
117	$v CC(50) \delta HCC(20)$	1612	1675
117	$v \operatorname{CC}(39), 0 \operatorname{HCC}(20)$	1620	1715
110	$V \cap C(78)$	1020	1713
119	V OC(78)	2007	2862
120	v CH(70)	2907	2864
121	V CH(70)	2914	2867
122	V CH(78)	2920	2807
123	V CH(43)	2024	2075
124	V CH(43)	2950	2005
125	V CH(47)	2939	2911
120	v CH(96)	2970	2924
127	v CH(50)	2911	2924
120	v CH(01)	2985	2935
129	V CH(50)	2998	2935
130	V CH(97)	3004	2943
131	V CH(28)	3010	2907
132	v CH(33)	3023	2977
135	V CH(23)	3033	2978
134	V CH(84)	5044 2049	2990
135	$V \cup \Pi(12)$	JU48 2049	2993
130	$V \cup H(\delta /)$	3048 2072	2990
13/	V CH(98)	3063 2065	3008
138	$V \cup H(13)$	3003	3012 2015
1.39		3000	3013
140	V CH(36)	3103	3033

Şekil 3.118. 38 tipi bileşiğin teorik (B3LYP6-31G(d,p)(a) ve HF6-31G(d,p)(b)) IR spektrumları

Şekil 3.119. 38 tipi bileşiğin teorik (B3LYP ve HF) UV-vis spektrumları ve değerleri (cm⁻¹)

4.4739/5.9129

277.13/209.68

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(44)-N(43)	104.925	105.403	39	C(14)-C(15)-C(16)	121.099	121.072
2	C(1)-N(45)-C(2)	107.827	107.474	40	C(15)-C(16)-C(11)	120.868	120.848
3	N(44)-C(1)-N(45)	111.524	111.269	41	N(43)-C(2)-O(47)	129.712	129.466
4	N(44)-N(43)-C(18)	121.033	120.837	42	O(47)-C(2)-N(45)	128.498	127.612
5	N(43)-C(18)-H(34)	110.674	110.340	43	C(2)-N(45)-N(46)	126.194	123.651
6	N(43)-C(18)-H(35)	110.554	120.287	44	N(45)-N(46)-C(3)	119.424	117.888
7	N(43)-C(18)-H(36)	107.135	107.698	45	N(46)-C(3)-H(21)	110.762	111.887
8	H(34)-C(18)-H(35)	109.037	109.171	46	H(21)-C(3)-C(4)	113.445	114.090
9	H(34)-C(18)-H(36)	109.614	109.648	47	N(46)-C(3)-C(4)	135.718	133.881
10	H(35)-C(18)-H(36)	109.805	109.678	48	C(3)-C(4)-C(5)	116.773	116.056
11	N(44)-C(1)-C(10)	126.608	127.135	49	C(3)-C(4)-C(9)	125.185	125.490
12	N(45)-C(1)-C(10)	121.838	121.567	50	C(4)-C(5)-H(22)	119.387	119.947
13	C(1)-C(10)-H(25)	108.318	107.732	51	H(22)-C(5)-C(6)	118.994	118.685
14	C(1)-C(10)-H(26)	107.501	107.592	52	C(4)-C(5)-C(6)	121.617	121.364
15	H(25)-C(10)-C(11)	110.311	110.379	53	C(5)-C(6)-H(23)	119.470	119.261
16	H(26)-C(10)-C(11)	110.870	110.513	54	H(23)-C(6)-C(7)	120.594	120.853
17	H(25)-C(10)-H(26)	105.360	106.035	55	C(5)-C(6)-C(7)	119.933	119.884
18	C(1)-C(10)-C(11)	114.065	114.212	56	C(6)-C(7)-O(49)	124.925	124.698
19	C(10)-C(11)-C(16)	120.914	120.835	57	C(7)-O(49)-C(20)	118.334	119.933
20	C(10)-C(11)-C(12)	120.869	120.924	58	O(49)-C(20)-H(40)	105.872	106.127
21	C(11)-C(12)-H(27)	119.537	119.788	59	O(49)-C(20)-H(41)	111.561	111.467
22	H(27)-C(12)-C(13)	119.597	119.320	60	O(49)-C(20)-H(42)	111.441	111.331
23	C(11)-C(12)-C(13)	120.865	120.892	61	H(40)-C(20)-H(41)	109.357	109.193
24	C(12)-C(13)-H(28)	119.440	119.249	62	H(40)-C(20)-H(42)	109.272	109.210
25	H(28)-C(13)-C(14)	119.466	119.726	63	H(41)-C(20)-H(42)	109.257	109.427
26	C(13)-C(14)-C(17)	121.045	121.536	64	O(49)-C(7)-C(8)	115.911	116.160
27	C(13)-C(14)-C(15)	117.857	117.924	65	C(7)-C(8)-O(48)	120.655	119.951
28	C(14)-C(17)-H(31)	111.297	111.150	66	C(8)-O(48)-C(19)	114.943	115.910
29	C(14)-C(17)-H(32)	111.468	111.299	67	O(48)-C(8)-C(9)	119.142	119.564
30	C(14)-C(17)-H(33)	111.452	111.079	68	O(48)-C(19)-H(37)	110.772	110.758
31	H(31)-C(17)-H(32)	107.136	107.841	69	O(48)-C(19)-H(38)	106.155	106.626
32	H(31)-C(17)-H(33)	107.229	107.454	70	O(48)-C(19)-H(39)	111.385	111.129
33	H(32)-C(19)-H(33)	107.990	107.846	71	H(37)-C(19)-H(38)	109.489	109.309
34	C(14)-C(15)-H(29)	119.452	1119.562	72	H(37)-C(19)-H(39)	109.558	109.592
35	H(29)-C(15)-C(16)	119.449	119.367	73	H(38)-C(19)-H(39)	109.411	109.363
36	C(12)-C(13)-C(14)	121.094	120.892	74	C(8)-C(9)-H(24)	117.224	117.969
37	C(15)-C(16)-H(30)	119.573	119.488	75	H(24)-C(9)-C(4)	121.546	121.312
38	H(30)-C(16)-C(11)	119.558	119.663				

Tablo 3.218. 38 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (A^0)

Bağ	Uzunlukları	B3LYP	HF	Bag	ğ Uzunlukları	B3LYP	HF
1	C(1)-N(44)	1.3004	1.2682	27	C(17)-H(32)	1.0942	1.0837
2	C(1)-N(45)	1.3883	1.3798	28	C(17)-H(33)	1.0941	1.0861
3	C(1)-C(10)	1.4994	1.4985	29	C(14)-C(15)	1.4003	1.3927
4	N(44)-N(43)	1.3830	1.3726	30	C(15)-H(29)	1.0873	1.0771
5	N(43)-C(18)	1.4439	1.4381	31	C(15)-C(16)	1.3937	1.3803
6	C(18)-H(34)	1.0947	1.0832	32	C(16)-H(30)	1.0871	1.0766
7	C(18)-H(35)	1.0938	1.0829	33	C(3)-C(4)	1.4643	1.4787
8	C(18)-H(36)	1.0909	1.0795	34	C(4)-C(5)	1.4024	1.3857
9	N(43)-C(2)	1.3746	1.3471	35	C(4)-C(9)	1.4097	1.3977
10	C(2)-O(47)	1.2218	1.2042	36	C(5)-H(22)	1.0864	1.0764
11	C(2)-N(45)	1.4183	1.3824	37	C(5)-C(6)	1.3929	1.3864
12	N(45)-N(46)	1.3931	1.3972	38	C(6)-H(23)	1.0830	1.0723
13	N(46)-C(3)	1.2906	1.2611	39	C(6)-C(7)	1.3983	1.3851
14	C(3)-H(21)	1.0917	1.0798	40	C(7)-O(49)	1.3587	1.3407
15	C(1)-C(10)	1.4994	1.4985	41	O(49)-C(20)	1.4217	1.4014
16	C(10)-H(25)	1.0977	1.0866	42	C(20)-H(40)	1.0904	1.0796
17	C(10)-H(26)	1.0966	1.0851	43	C(13)-H(41)	1.0968	1.0854
18	C(10)-C(11)	1.5133	1.5120	44	C(13)-H(42)	1.0967	1.0851
19	C(11)-C(12)	1.3986	1.3837	45	C(7)-C(8)	1.4166	1.4028
20	C(11)-C(16)	1.3984	1.3905	46	C(8)-O(48)	1.3732	1.3562
21	C(12)-H(27)	1.0871	1.0767	47	O(48)-C(19)	1.4317	1.4089
22	C(12)-C(13)	1.3936	1.3875	48	C(19)-H(37)	1.0969	1.0856
23	C(13)-H(28)	1.0873	1.0764	49	C(19)-H(38)	1.0917	1.0836
24	C(13)-C(14)	1.4005	1.3855	50	C(19)-H(39)	1.0946	1.0808
25	C(14)-C(17)	1.5105	1.5106	51	C(8)-C(9)	1.3839	1.3740
26	C(17)-H(31)	1.0973	1.0860	52	C(9)-H(24)	1.0812	1.0706

Tablo 3.219. 38 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ uzunlukları (A^0)

Tablo 3.220. 38 tipi bileşiğin atomlarının B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.535	0.606	H26	0.145	0.172
C2	0.781	1.051	H27	0.081	0.148
C3	0.078	0.201	H28	0.075	0.144
C4	0.141	-0.107	H29	0.075	0.143
C5	-0.138	-0.142	H30	0.080	0.149
C6	-0.141	-0.214	H31	0.125	0.129
C7	0.345	0.403	H32	0.114	0.122
C8	0.285	0.321	H33	0.113	0.131
С9	-0.108	-0.132	H34	0.133	0.138
C10	-0.319	-0.286	H35	0.131	0.139
C11	0.129	-0.005	H36	0.147	0.163
C12	-0.109	-0.141	H37	0.113	0.130
C13	-0.120	-0.162	H38	0.117	0.117
C14	0.126	-0.005	H39	0.116	0.112
C15	-0.120	-0.154	H40	0.131	0.147
C16	-0.105	-0.127	H41	0.118	0.116
C17	-0.381	-0.342	H42	0.118	0.119

Tablo 3.220.'ni	Tablo 3.220. 'nin devami								
C18	-0.165	-0.110	N43	-0.350	-0.546				
C19	-0.080	-0.015	N44	-0.347	-0.335				
C20	-0.084	-0.035	N45	-0.445	-0.643				
H21	0.111	0.163	N46	-0.283	-0.284				
H22	0.092	0.161	O 47	-0.546	-0.675				
H23	0.093	0.164	O48	-0.531	-0.664				
H24	0.107	0.229	O49	-0.511	-0.652				
H25	0.130	0.157							

E_{HOMO} (HF) : -0.31294 Hatree

E_{LUMO} (B3LYP) : -0.04886 Hatree

E_{LUMO} (HF) : 0.09723 Hatree

Şekil 3.120. 38 Molekülünün B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan HOMO-LUMO enerjileri

Tablo 3.221. 38 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan dipol moment değerleri

Dipol Moment	B3LYP	HF
μ _x	-2.7208	-2.3597
$\mu_{\rm v}$	-0.2070	-6.7130
μ _z	-0.9868	-0.2042
μ _{Toplam}	2.9017	7.1186

Tablo 3.222. 38 tipi bileşiğin B3LYP 6-31G(d,p) ve HF 6-31G(d,p) yöntemlerine göre hesaplanan enerji değerleri

Enerji	B3LYP	HF
(a.u.)	-1220.025	-1212.525

4. SONUÇLAR VE TARTIŞMA

4.1. Antioksidan İncelemesi Sonuçlarının Değerlendirilmesi

4.1.1. İndirgeme Gücü

Sentezlenen bileşiklerin yapılan indirgeme gücü testleri sonucunda ele geçen bulgular Tablo 3.1'de verilmiştir. 700 nm'de yapılan ölçümlerde sentezlenen bileşiklerin absorbanslarının, standartlara göre oldukça düşük çıkması bileşiklerin indirgeyici özelliklerinin olmadığını göstermektedir.

4.1.2. Serbest Radikal Giderme Aktivitesi

Sentezlenen bileşiklerin serbest radikal giderme aktivite testleri sonucunda ele geçen veriler grafiğe geçirilmiş ve aşağıda verilmiştir. Şekil 4.1'deki grafikte sentezlenen bileşiklerden bazılarının 517 nm'de değişen derişimlerde yapılan ölçümlerde serbest radikal giderme aktiviteleri % inhibisyon olarak görülmektedir. Bu bileşikler Tablo 3.2'de görüleceği üzere; kontrolden daha düşük absorbans değerlerine sahiptir. Ancak standart antioksidanlar ile karşılaştırıldıklarında bileşiklerin radikal giderme aktivitesine sahip olmadıkları görülmektedir. Bununla beraber 7 bileşiği, diğer bileşiklere kıyasla anlamlı olarak düşük düzeyde radikal giderme aktivitesine sahiptir.

Şekil 4.1. 7, 11 ve 16 Bileşiklerinin Konsantrasyona Karşı % Serbest Radikal Giderme Aktiviteleri

4.1.3. Metal Şelat Aktivitesi

Şekil 4.2 ve 4.3'deki grafiklerde sentezlenen bileşiklerin ve standartların metal şelatlama aktiviteleri % inhibisyon olarak gösterilmektedir. Tablo 3.3'te ve grafiklerde sentezlenen bileşiklerin metal şelatlama aktivitesine sahip oldukları görülmektedir. Ancak bu bileşiklerden bazıları anlamlı olarak diğerlerine göre daha iyi şelatörlerdir. Bir sıralama yapmak gerekirse; EDTA > $13 > 15 > 9 > 8 > 12 > \alpha$ -tokoferol > 7 > 10 > 6 şeklinde yazılabilir.

Şekil 4.2. 4 Tipi Bileşiklerin Konsantrasyona Karşı % Metal Şelat Aktiviteleri

Şekil 4.3. 14 Tipi Bileşiklerin Konsantrasyona Karşı % Metal Şelat Aktiviteleri

4.2. Sentezlenen Bileşiklere Ait Spektrum Verilerinin Yorumlanması

Bu tez çalışmasında bilinen 9 adet 3-alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5on bileşiği elde edilmiştir. Sonra bu bileşiklerin 4-izopropilbenzaldehid ile muamelesinden heterosiklik schiff bazları olan 9 adet yeni 4 tipi 3-alkil(aril)-4-(4izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri elde edilmiştir. 4 tipi bileşiklerin asetik anhidrid ile reaksiyonundan 5 adet yeni 14 tipi 1-asetil-3alkil(aril)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşikleri de sentezlenmiş ve sentezlenen toplam 14 yeni bileşiğin yapıları IR, ¹H-NMR, ¹³C-NMR ve UV spektrum verileri kullanılarak aydınlatılmıştır.

4 Tipi bileşiklerin IR spekrumlarında 3160 ve 3210 cm⁻¹ aralığında N-H gerilme titreşimlerine ait ve 1687-1709 cm⁻¹ aralığında C=O gerilme titreşimlerine ait karakteristik pikler görülmüştür, ki bu değerler yapı ile ve de literatürdeki verilerle uyumludur. 4 Tipi bileşiklerin *N*-asetil türevleri olan 14 tipi bileşiklerin IR spektrumları incelendiğinde beklendiği üzere N-H gerilme titreşimlerine ait piklerin kaybolduğu ve N-COCH₃ grubuna ait ilave bir C=O gerilme titreşimlerine ait piklerin ortaya çıktığı görülmektedir. 14 Tipi bileşiklerin IR spektrumlarında 1764-1775 cm⁻¹ aralığında COOCH₃ ve 1696-1728 cm⁻¹ aralığında olmak üzere ikişer adet C=O gerilme titreşimlerine ait pikler görülmüştür, ki bu değerler yapı ile uyumlu bulunmuştur.

4 Tipi bileşiklerin ¹H-NMR spektrumları incelendiğinde: δ 12,37-11,84 ppm aralığında N-H protonlarına ait, δ 9.71-9.61 ppm aralığında N=CH protonlarına ait pikler ortaya çıkmış olup, bu değerler literatürdeki verilerle uyumludur. δ 7.93-7.91 ve δ 6.94-6.92 ppm'de trans alkenik (CH=CH) protonlarına, δ 7.75-7.36 ppm aralığında aromatik protonlara ait pikler görülürken , 8-13 bileşiklerinde C-1'e bağlı aromatik halka protonları (bu değerler altı çizili olarak gösterilmiştir) ise δ 7.92-6.87 ppm aralığında gözlenmiştir. İzopropil grubuna ait CH protonları δ 2.95-2.93 ppm aralığında , (CH₃)₂ protonlarına ait pikler ise δ 1.22-1.21 ppm' de görülmüştür. Ayrıca , 5 bileşiğinin ¹H-NMR spektrumunda C-1'e bağlı CH₃ grubuna ait protonlar δ 2.28 ppm'de, 6 bileşiğinin ¹H-NMR spektrumunda C-1'e bağlı CH₂CH₃ grubuna ait CH₂ protonları δ 2.69 ppm'de, CH₃ protonları δ 1.23 ppm'de, 7 bileşiğinin ¹H-NMR spektrumunda CH₂CH₂CH₃ grubuna ait <u>CH₂CH₂CH₂CH₃ protonları δ 2.64 ppm'de, CH₂CH₂CH₃ protonları δ 1.69 ppm</u> ve CH₂CH₂CH₃ protonları ise δ 0.96 ppm'de, 8 bileşiğinin ¹H-NMR spektrumunda CH₂Ph protonları δ 4.05 ppm'de, 9 bileşiğinin ¹H-NMR spektrumunda CH₂Ph protonları δ 4.00 ppm ve PhCH₃ protonları δ 2.24 ppm'de, 10 bileşiğinin ¹H-NMR spektrumunda CH₂Ph protonları δ 3.97 ppm ve OCH₃ protonları δ 3.97 ppm'de, 11 ve 12 bileşiklerinin ¹H-NMR spektrumunda CH₂Ph protonları δ 4.06 ve δ 4.08 ppm'de görülmüştür.

14 Tipi bileşiklerin ¹H-NMR spektrumları incelendiğinde 4 tipi bileşiklerin spektrumlarında görülen N-H protonlarına ait piklerin kaybolduğu, buna karşın beklendiği üzere N-COCH₃ protonlarına ait piklerin ortaya çıktığı (δ 2.51-1.49 ppm aralığında) görülmüştür, ki bu durum yapı ve literatür ile uyumludur.

N=CH protonlarına ait pikler δ 9.54-9.50 ppm aralığında, izopropil grubuna ait CH protonlarına ait pikler δ 2.96-2.94 ppm ve (CH₃)₂ protonlarına ait pikler δ 1.24-1.22 ppm aralığında ortaya çıkmıştır. 4-benzilidenamino grubunun protonlarına ait pikler δ 7.79-7.31 ppm aralığında görülürken C-1'e bağlı aromatik halka protonları δ 7.40-7.12 ppm aralığında ortaya çıkmıştır ve bu değerler altı çizili olarak gösterilmiştir. Ayrıca 14 tipi bileşiklerde C-1'e bağlı substituent protonları δ 4.14-1.24 ppm aralığında (15 bileşiğinde δ 2.34 ppm'de CH₃ protonları; 16 bileşiğinde δ 2.72 ppm'de CH₂ protonları, δ 1.24 ppm'de CH₃ protonları; 17 bileşiğinde δ 4.13 ppm'de CH₂Ph protonları ve δ 2.25 ppm'de PhCH₃ protonları ve 19 bileşiğinde δ 4.14 ppm'de CH₂Ph protonları) görülmüştür.

4 Tipi bileşiklerin ¹³C-NMR spektrumları incelendiğinde 1,2,4-triazol-5-on halkasına ait C-5 karbonları δ 156.71-153.37 ppm aralığında ve C-1 karbonları δ 151.92-151.15 ppm aralığında görülürken N=CH grubuna ait karbonlar δ 152.58-152.09 ppm aralığında ortaya çıkmıştır. N-4'e bağlı benzilidenamino grubuna ait fenil karbonları δ 148.45-126.87 ppm aralığında görülürken, C-1'e bağlı substituent fenil karbonları δ 158.04-113.83 ppm aralığında (bu değerler altı çizili olarak verilmiştir) ortaya çıkmıştır. İzopropil grubuna ait CH karbonları δ 33.93-33.35 ppm aralığında ve (CH₃)₂ karbonları ise δ 23.99-23.48 ppm aralığında gözlemlenmiştir. Ayrıca 5 bileşiğine ait ¹³C-NMR spektrumunda δ 11.07 ppm'de CH₃; 6 bileşiğine ait ¹³C-NMR spektrumunda δ 19.03
ppm'de CH₂ ve δ 10.50 ppm'de CH₃; 7 bileşiğine ait ¹³C-NMR spektrumunda δ 26.75 ppm'de CH₂CH₂CH₃, δ 18.94 ppm'de CH₂CH₂CH₃ ve δ 13.47 ppm'de CH₂CH₂CH₃; 8 bileşiğine ait ¹³C-NMR spektrumunda δ 31.08 ppm'de CH₂Ph; 9 bileşiğine ait ¹³C-NMR spektrumunda δ 30.69 ppm'de CH₂Ph ve δ 20.56 ppm'de PhCH₃; 10 bileşiğine ait ¹³C-NMR spektrumunda δ 54.96 ppm'de OCH₃ ve δ 30.22 ppm'de CH₂Ph; 11 bileşiğine ait ¹³C-NMR spektrumunda δ 30.69 ppm'de CH₂Ph ve 12 bileşiğine ait ¹³C-NMR spektrumunda δ 30.69 ppm'de CH₂Ph karbonlarına ait pikler görülmüştür, ki tüm bu değerler yapı ve literatürle uyumlu bulunmuştur.

14 Tipi bileşiklerin ¹³C-NMR spektrumları incelendiğinde 4 tipi bileşiklerin spektrumlarından farklı olarak ve beklendiği üzere δ 165.97-165.91 ppm dar aralığında COCH₃ grubuna ait karbonil karbonları ile δ 23.69-23.50 ppm aralığında ise aynı gruba ait metil karbonları ortaya çıkmıştır, ki bu da asetillendirmenin gerçekleştiğini kanıtlamaktadır. Ayrıca, C-2 karbonları δ 156.15-155.58 ppm aralığında C-1 karbonları δ 150.17-147.90 ppm aralığında ve N=CH karbonları δ 153.45-152.76 ppm aralığında gözlemlenmiştir, N-42'e bağlı benzilidenamino grubuna ait 1,4-disubstitue fenil karbonları δ 148.15-127.02 ppm aralığında görülürken, C-1'e bağlı substituent fenil karbonları ise δ 136.06-126.95 ppm aralığında ortaya çıkmış ve altı çizili olarak gösterilmiştir. İzopropil grubuna ait CH karbonları δ 33.49-33.48 ppm'de ve (CH₃)₂ karbonları ise δ 23.53-23.50 ppm aralığında ortaya çıkmıştır. Bunlardan başka 15 bileşiğinin ¹³C-NMR spektrumda CH₃ karbonu δ 11.22 ppm'de, 16 bileşiğinin ¹³C-NMR spektrumda CH₂ karbonu δ 18.64 ppm ve CH₃ karbonu δ 9.49 ppm'de, 17 bileşiğinin ¹³C-NMR spektrumda CH₂Ph karbonu δ 31.03 ppm'de, 18 bileşiğinin ¹³C-NMR spektrumunda CH₂Ph karbonu δ 30.64 ppm ve PhCH₃ karbonu δ 20.60 ppm'de ve 19 bileşiğinin ¹³C-NMR spektrumunda CH₂Ph karbonu δ 30.36 ppm'de ortaya çıkmıştır.

4 ve 14 Tipi bileşiklerine ait UV spektrum değerleri de verilmiş olup, tüm bileşiklerin UV absorbsiyon spektrumlarında 3 bant görülmüş ve ε değerleri 27894-12168 L.mol⁻¹.cm⁻¹ aralığında bulunmuştur.

4.3. Potansiyometrik Titrasyon Sonuçlarının Değerlendirilmesi

Tez kapsamında sentezlenen 4 tipi 9 adet yeni bileşiğin asitlik sabitleri ve yarı nötralizasyon değerleri tayin edilmiştir. Çalışma potansiyometrik titrasyon kullanılarak 25°C'de susuz ortamda gerçekleştirilmiştir. 4,5-Dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sulu ortamdaki çözünürlüğü çok az olduğundan susuz ortam çözücüleri tercih edilmiştir. Çözücü olarak amfiprotik ve dipolar aprotik çözücüler olan 2-propanol, *tert*-butil alkol, aseton, *N*,*N*-dimetilformamid; titrant olarak ise yaygın kullanıma sahip tetrabutilamonyum hidroksidin (TBAH) izopropil alkoldeki çözeltisi kullanılmıştır.

4,5-Dihidro-1*H*-1,2,4-triazol-5-on halka sisteminde N-H protonunun zayıf asidik özellik gösterdiği bilinmektedir [24, 32, 65, 66, 83, 85, 90, 127]. N-H protonunun asidik özellik göstermesi aşağıdaki şekilde açıklanabilir:

4,5-Dihidro-1*H*-1,2,4-triazol-5-on halkasındaki N-H hidrojeni Denklem 163 uyarınca proton halinde ayrıldığında oluşan anyon rezonans ile kararlılık kazandığından, başka bir deyişle hidrojen proton halinde ayrıldığında geride kalan elektron çifti ikinci elektronegatif atom olan oksijeni de içine alacak şekilde delokalize olduğundan barındırılması kolay olur ve denge sağa kayar; dolayısıyla da asitlik artar.

I ve II Rezonans strüktürlerinin rezonans hibridi III olup, negatif yükün elektronegatif azot ve oksijen atomlarını içine alacak şekilde delokalize olduğunu göstermektedir.

Çalışmada potansiyometrik yöntemle asitlik sabitleri tayin edilen 4 tipi bileşiklerin izopropil alkol, *tert*-butil alkol, *N*,*N*-dimetilformamid ve aseton susuz çözücülerindeki çözeltilerinin TBAH ile potansiyometrik titrasyonları yapılmış, elde edilen titrasyon

verileri Tablo 3.4-12'de verilmiştir. Bu verilerden yararlanarak herbir bileşiğin bu dört çözücüdeki titrasyon grafikleri çizilmiş ve Şekil 4.4-12'de verilmiştir.

Şekil 4.4. 5 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyon Grafikleri

Şekil 4.5. 6 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyon Grafikleri

Şekil 4.6. 7 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyon Grafikleri

Şekil 4.7. 8 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyon Grafikleri

Şekil 4.8. 9 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyon Grafikleri

Şekil 4.9. 10 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyon Grafikleri

Şekil 4.10. 11 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10^{-3} M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyon Grafikleri

Şekil 4.11. 12 Tipi Bileşiğin N,N-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10⁻³ M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyon Grafikleri

Şekil 4.12. 13 Tipi Bileşiğin *N*,*N*-Dimetilformamid, Aseton, *tert*-Butil Alkol ve İzopropil Alkol 10^{-3} M'lık Çözeltilerinin 0.05 N TBAH ile Titrasyon Grafikleri

Bileşik No	DMF		ASE	ASETON		Tert-BUTİL ALKOL		İZOPROPİL ALKOL	
	pK _a	Hnp	pK _a	Hnp	pK _a	Hnp	pK _a	Hnp	
5	11,62	-273	11,54	-284	-	-	-	-	
6	11,66	-275	14,07	-423	14,41	-423	10,55	-213	
7	11,68	-275	-	-	17,22	-628	-	-	
8	11,73	-273	13,16	-348	-	-	-	-	
9	12,25	-308	-	-	-	-	-	-	
10	12,55	-326	12,31	-365	14,93	-495	-	-	
11	13,06	-352	13,62	-401	16,95	-572	13,06	-352	
12	14,37	-396	15,45	-462	-	-	-	-	
13	12,22	-305	11,52	-311	16.71	-653	-	-	

Tablo 4.1. 4 Tipi Bileşiklerin Yarı Nötralizasyon Potansiyelleri ve Karşın Olan pK_a Değerleri

4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin asitlik özellikleri her bir R grubu için değişik susuz ortam çözücülerinde potansiyometrik metotla incelendi. Yapılan çalışmalarda 9 farklı 4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiğinin pK_a ve HNP değerleri tayin edildi. 4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sulu ortamdaki çözünürlüğü çok az olduğundan susuz ortam çözücüleri tercih edildi. Çözücü olarak amfiprotik ve dipolar aprotik çözücülerden izopropil alkol, *tert*-butil alkol, aseton ve *N*,*N*-dimetilformamid kullanıldı. Titrasyonda titrant olarak yaygın kullanılan tetrabutilamonyum hidroksidin (TBAH) 2-propanoldeki çözeltisi kullanıldı.

Sonuçlar çözücülerin dielektrik sabitine göre incelendiğinde teorik olarak asitlik sıralaması dielektrik sabitinin artmasıyla asitlik artar. Bu sonuca göre asitlik artışı *tert*butil alkol<izopropil alkol<aseton<*N*,*N*-dimetilformamid şeklindedir. Elde edilen sonuçlara göre incelendiğinde bileşiklerin çözücülerdeki sıralamaları aşağıdaki gibidir:

5	: <i>N</i> , <i>N</i> -dimetilformamid > Aseton
6	: izo-Propil Alkol > <i>N</i> , <i>N</i> -dimetilformamid >Aseton = <i>tert</i> -butil Alkol
7	: <i>N,N</i> -dimetilformamid > <i>tert</i> -butil Alkol
8	: <i>N</i> , <i>N</i> -dimetilformamid > Aseton
9	: N,N-dimetilformamid
10	: <i>N</i> , <i>N</i> -dimetilformamid > Aseton > <i>tert</i> -butil Alkol
11	: <i>N</i> , <i>N</i> -dimetilformamid > Aseton > <i>tert</i> -butil Alkol
12	: <i>N</i> , <i>N</i> -dimetilformamid > Aseton

13 : *N*,*N*-dimetilformamid > Aseton > *tert*-butil Alkol

Dielektrik sabitine göre asitlik kuvvetleri irdelendiğinde izopropil alkol ve *tert*-butil alkol'ün dielektrik sabitleri sırasıyla 19.4 ve 12.0 olan çözücülerdeki 4,5-dihidro-1*H* - 1,2,4-triazol-5-on bileşiklerini asitliklerinin dielektrik sabiti büyük olan çözücüde (izopropil alkolde) daha asidik olması beklenir. Bileşiklerden sadece 6 tipi bileşiğin sıralamaya uygun olduğu tespit edilmiştir. 4 tipi bileşikler olan 5, 8, 9 ve 12 bileşiklerinin *tert*-butil alkolde, 5, 7, 8, 9, 10, 11, 12 ve 13 bileşiklerinin izopropil alkolde ki asitlik değerleri titrasyon eğrilerinde tipik S şekli elde edilemediğinden tayin edilememiştir.

Dipolar aprotik çözücüler incelendiğinde asitlik kuvvetindeki artış aseton<*N*,*N*-dimetilformamid sıralamasında olması beklenir. 7 ve 9 bileşiklerinin asetondaki asitlik değerleri grafikten hesaplanamadığından sıralamaya alınamamıştır. 7 ve 9 dışındaki bileşikler sıralamaya uyarken 7 ve 9 bileşiklerinin asetondaki değerleri grafikten hesaplanamadığından sıralamaya verilememiştir.

Bilindiği gibi dipolar aprotik çözücüler liyonyum iyonu verdikleri halde liyat iyonu vermezler. Moleküler asit HA ve çözücü S olduğunda protofilik (*N*,*N*-dimetilformamid gibi) çözücülerde denge,

$$HA + S = S \cdots HA = SH^{+}A^{-} = SH^{+} + A^{-}$$
(164)

şeklindedir. (164) numaralı dengelerde protofilik çözücülerde birinci ve ikinci dengeler büyük oranda gerçekleşirken üçüncü denge çok düşük oranda sağa kayar. Üçüncü dengedeki serbest SH⁺ ortamda bulunabilecek en kuvvetli asittir ve titrantla doğrudan reaksiyona girebilir. Ancak çözücü protofobik (aseton gibi) ise (164) dengesi çok daha düşük oranda sağa kayar. Üçüncü denge ise eser oranda meydana gelir. Böyle protofobik çözücüde meydana gelen SH⁺ iyonu, protofilik çözücüde meydana gelenden çok daha kuvvetli asittir. Bu teorik açıklamaya dayanarak çalışılan asitlerin çoğunluğunda aseton ortamında *N,N*-dimetilformamiddekinden daha asidik olması açıklanabilir.

Fonksiyonel gruplara göre incelendiğinde:

R fonksiyonel gruplarının asidik protona olan uzaklığı nedeniyle etkisi çok azdır. Her bir çözücüye göre bileşiklerin asitlikleri incelendiğinde

2-propanol ortamında	:6,
N,N-dimetilformamid ortamında	: 5=8>6=7>13>9>10>11>12,
tert-butil Alkolde	: 6>10>11>7>13,
aseton ortamında	: 5>13>8>10>11>6>12 şeklinde belirlendi.

Asitlik kuvvetindeki bu sıralamaya C-1'e bağlı farklı grupların etkisinin yanında literatürde de yer aldığı gibi asitlik kuvvetine London çekim kuvvetleri, çözünürlük gibi faktörlerin de etkili olduğu düşünülmektedir.

Çözücülerin farklandırma ve seviyeleme etkileri incelendiğinde 5-8 bileşiklerinin DMF de seviyelendiği tespit edilmiştir. Diğer çözücülerde bileşiklerin farklandırıldığı görülmüştür.

Sentezlenen Bileşiklerin Teorik Verilerinin Yorumlanması

Tez kapsamında incelenen on altısı literatürde kayıtlı diğerleri yeni olmak üzere toplam otuz bileşiğin titreşim frekansları, bağ açıları, bağ uzunlukları, mulliken yükleri, deneysel ve teorik ¹³C-NMR ve ¹H-NMR değerleri, dipol momentleri, UV-vis değerleri ve molekülün toplam enerjileri B3LYP ve HF metodu ile 6-31G(d,p) temel seti kullanılarak optimize edilerek hesaplanmış ve materyal, yöntem ve hesaplama metodları bölümünde tablolar halinde verilmiştir. Teorik çalışmalar Gaussian 09W programı kullanılarak yapılmıştır. Deneysel ve teorik ¹³C-NMR ve ¹H-NMR değerleri en küçük kareler yöntemine göre (teorik hesaplanan değerler/deneysel hesaplanan değerler) bulunan R değerleri arasında yakın bir ilişki bulunmuştur.

4 tipi bileşiklerin R değerleri arasında bireysel ilişki değerlendirildiğinde; B3LYP/631G(d,p) için; ¹³C: 0.996, ¹H: 0.940, HF/631G(d,p) için; ¹³C: 0.997, ¹H: 0.934, B3LYP/631G(d,p) (DMSO) için; ¹³C: 0.996, ¹H: 0.951 ve HF/631G(d,p) için; ¹³C: 0.997, ¹H: 0.943 şeklinde bir ilişki olduğu görülmüştür. Bulunan standart hata oranı δ calc=a δ exp+b formülüne göre hesaplanmış ve her bir bileşik için bu oranlar Tablo 4.2 ve Tablo 4.3'de gösterilmiştir. Teorik ve deneysel karbon ve proton kimyasal kayma oranları arasında a, b ve R değerine göre doğrusal bir korelasyon gözlenmiştir. N-H protonları hariç B3LYP/631G(d,p) ve HF/631G(d,p), B3LYP/631G(d,p)(DMSO) ve HF/631G(d,p)(DMSO) metodlarına göre incelenen tüm bileşikler için hesaplanan ve deneysel olarak elde edilen değerler arasında bir uyum görülmüştür. Buna karşın, N-H yüksek bir fark ortaya çıkmıştır. Bunun nedeni olarak da 4,5-dihidro-1*H*-1,2,4-triazol-5on halkasındaki N-H protonunun asidik özellik taşıması gösterilebilir. Şöyle ki Denklem 163'de de görüleceği üzere proton ayrıldıktan sonra N atomu üzerinde kalan elektron çifti karbonil gurubu ile rezonans sonucu delokalize olmuştur. Bu da oluşan anyonun kararlılığını artırır, dolayısıyla N-H protonunu asidik yapar.

4,5-Dihidro-1*H*-1,2,4-triazol-5-on halkasındaki protonun asidik karakteri, NaOH gibi bir baz eşliğinde koparılabilmesi ve dimetilsülfatın metil grubu ile yer değiştirmesinden kolaylıkla anlaşılabilmektedir. Bu durum yapılan potansiyometrik titrasyon ile de desteklenmektedir. Nitekim, tuz oluşumu üzerinden *N*-alkil-1,2,4-triazol türevlerinin elde edildiği bilinmektedir [24, 32].

			¹³ C			¹ H					
		R	S.hata	a	b	R	S. hata	a	b		
	DFT	0.997	4.143	1.065	-12.783	0.945	1.233	1.067	-0.906		
3	HF	0.998	3.638	1.006	2.664	0.937	1.313	1.041	-0.212		
(DFT	0.998	3.063	1.074	-13.522	0.947	1.178	1.070	-0.959		
0	HF	0.999	2.706	1.010	2.568	0.941	1.249	1.044	-0.238		
-	DFT	0.998	3.223	1.074	-14.116	0.951	1.110	1.076	-1.001		
/	HF	0.999	2.631	1.007	2.491	0.945	1.174	1.046	-0.250		
0	DFT	0.998	2.896	1.076	-14.059	0.941	1.160	1.027	-0.811		
ð	HF	0.998	2.480	0.999	3.483	0.932	1.240	0.983	-0.047		
0	DFT	0.998	2.769	1.070	-13.472	0.945	1.105	1.038	-0.871		
9	HF	0.998	2.436	0.999	3.389	0.937	1.182	0.999	-0.143		
10	DFT	0.997	3.349	1.067	-12.798	0.942	1.086	1.044	-0.889		
10	HF	0.997	3.370	0.997	2.611	0.931	1.177	0.982	-0.031		
11	DFT	0.997	3.522	1.066	-13.682	0.942	1.170	1.043	-0.836		
11	HF	0.998	2.560	0.996	3.456	0.993	1.256	0.996	-0.056		
10	DFT	0.997	3.357	1.067	-13.638	0.942	1.173	1.044	-0.838		
12	HF	0.998	2.608	0.996	3.537	0.933	1.259	0.997	-0.062		
12	DFT	0,996	3,544	1,073	-13.606	0,940	1,259	1,022	-0,792		
13	HF	0.997	3,246	0.997	3,637	0.934	1,323	0,992	-0,080		

Tablo 4.2. 4 Tipi bileşiklerin B3LYP ve HF metodlarına göre hesaplanmış ¹³C- ve ¹H-NMR için bulunan R, standart hata, a ve b değerleri

Şekil 4.13. 4 tipi bileşiklerin B3LYP ve HF yöntemleriyle deneysel ve teorik ¹³C ve ¹H NMR kimyasal kayma Değerlerinin karşılaştırılması

Tablo 4.3. 4 Tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) metodlarına göre hesaplanmış ¹³C- ve ¹H-NMR için bulunan R, standart hata, a ve b değerleri

nes	apiainin	iş C ve		işin bun	anan K, Stai	Iuuri mata	i, a ve o u	egenen	
		13	C (DMSC	¹ H (DMSO)					
		R	S. hata	a	b	R	S. hata	a	b
5	DFT	0.9973	4.2777	1.0556	-11.9958	0.9543	1.1282	1.0648	-0.9947
Э	HF	0.9979	3.8009	0.9966	3.3173	0.9454	1.2303	1.0360	-0.2974
6	DFT	0.9985	3.2478	1.0651	-12.8638	0.9569	1.0747	1.066	-1.0259
0	HF	0.9988	2.9661	1.0021	3.1285	0.9490	1.1667	1.0371	-0.3031
7	DFT	0.9984	3.4016	1.0654	-13.4547	0.9594	1.0125	1.0697	-1.0553
/	HF	0.9989	2.8073	0.9986	3.0487	0.9522	1.0965	1.0379	-0.3022
0	DFT	0.9978	3.0692	1.0655	-13.044	0.9496	1.0762	1.0218	-0.8974
ð	HF	0.9984	2.6548	0.9899	4.3279	0.9393	1.1777	0.9745	-0.1281
0	DFT	0.9982	2.9717	1.0597	-12.5088	0.9533	1.0231	1.0337	-0.9594
9	HF	0.9986	2.6295	0.9902	4.1893	0.9437	1.1204	0.9907	-0.2209
10	DFT	0.9976	3.3390	1.0581	-12.0061	0.9512	1.0004	1.0406	-0.9894
10	HF	0.9974	3.4530	0.9887	3.3233	0.9387	1.1179	0.9756	-0.1284
11	DFT	0.9973	3.4502	1.0572	-12.8162	0.9508	1.0858	1.0360	-0.9171
11	HF	0.9983	2.6992	0.9878	4.2315	0.9404	1.1926	0.9864	-0.1371
10	DFT	0.9974	3.3423	1.0580	-12.7942	0.9507	1.0870	1.0369	-0.9214
12	HF	0.9981	2.8390	0.9880	4.3058	0.9399	1.1968	0.9871	-0.1435
12	DFT	0,9963	3,7178	1,0641	-12.6851	0,9511	1,1485	1,0195	-0,8897
13	HF	0,9969	3,3999	0,9885	4.4488	0,9433	1,2341	0,9848	-0.1626

Şekil 4.14. 4 tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) yöntemleriyle deneysel ve teorik ¹³C- ve ¹H-NMR kimyasal kayma Değerlerinin karşılaştırılması

14 tipi bileşiklerin R değerleri arasında bireysel ilişki değerlendirildiğinde; B3LYP/631G(d,p) için; ¹³C: 0.998, ¹H: 0.995, HF/631G(d,p) için; ¹³C: 0.998, ¹H: 0.996, B3LYP/631G(d,p)(DMSO) için; ¹³C: 0.998, ¹H: 0.9896 ve HF/631G(d,p) için; ¹³C: 0.998, ¹H: 0.997 şeklinde bir ilişki olduğu görülmüştür. Bulunan standart hata oranı δ calc=a δ exp + b formülüne göre hesaplanmış ve her bir bileşik için bu oranlar Tablo 4.4 ve Tablo 4.5'de gösterilmiştir. Teorik ve deneysel karbon ve proton kimyasal kayma oranları arasında a, b ve R değerine göre doğrusal bir korelasyon gözlenmiştir. N-H protonları hariç B3LYP/631G(d,p) ve HF/631G(d,p), B3LYP/631G(d,p)(DMSO) ve HF/631G(d,p)(DMSO) metodlarına göre incelenen tüm bileşikler için hesaplanan ve deneysel olarak elde edilen değerler arasında bir uyum görülmüştür.

Tablo 4.4. 14 Tipi bileşiklerin B3LYP ve HF metodlarına göre hesaplanmış ¹³C- ve ¹H-NMR için bulunan R, standart hata, a ve b değerleri

1 11/1	it işin t	/aranan r	, standar	· marca, a ·		-			
			¹³ C	^{1}H					
		R	S.hata	a	b	R	S. hata	a	b
15	DFT	0.9979	3.9058	1.0615	-12.0523	0.9952	0.2905	0.9550	-0.6237
15	HF	0.9981	3.7382	1.0103	2.6494	0.9968	0.2354	0.9357	-0.0364
16	DFT	0.9983	3.6390	1.0697	-13.2711	0.9943	0.3105	0.9569	-0.6890
10	HF	0.9984	3.5279	1.0142	2.1415	0.9957	0.2697	0.9379	-0.0771
17	DFT	0.9980	3.1585	1.0672	-12.8762	0.9950	0.2987	0.9456	-0.5234
1/	HF	0.9982	2.9670	1.0032	3.2801	0.9955	0.2825	0.9118	0.1235
10	DFT	0.9983	3.0232	1.0652	-12.7093	0.9946	0.2987	0.9489	-0.5625
10	HF	0.9984	2.9441	1.0036	3.2322	0.9950	0.2865	0.9181	0.0671
10	DFT	0.9971	3.8059	1.0605	-12.667	0.9946	0.3134	0.9579	-0.5467
19	HF	0.9980	3.1409	1.0008	3.3418	0.9955	0.2877	0.9217	0.1163

Şekil 4.15. 14 tipi bileşiklerin B3LYP ve HF yöntemleriyle deneysel ve teorik ¹³C ve ¹H NMR kimyasal kayma Değerlerinin karşılaştırılması

		13	C (DMSC	¹ H (DMSO)					
		R	S. hata	a	b	R	S. hata	a	b
15	DFT	0.9978	3.9695	1.0474	-11.1972	0.9960	0.2645	0.9554	-0.7079
15	HF	0.9980	3.7937	0.9969	3.3340	0.9971	0.2227	0.9311	-0.1112
10	DFT	0.9982	3.7619	1.0563	-12.4848	0.9955	0.2754	0.9559	-0.7535
10	HF	0.9983	3.6040	1.0015	2.7661	0.9965	0.2437	0.9324	-0.1364
17	DFT	0.9978	3.3403	1.0537	-11.8151	0.9962	0.2586	0.9392	-0.5842
1/	HF	0.9981	3.0755	0.9908	4.1389	0.9966	0.2465	0.9027	0.0631
10	DFT	0.9981	3.2228	1.0520	-11.6889	0.9959	0.2598	0.9439	-0.6263
10	HF	0.9983	3.0757	0.9915	4.0576	0.9961	0.2522	0.9093	0.0054
10	DFT	0.9973	3.6736	1.0484	-11.7429	0.9961	0.2670	0.9513	-0.6119
19	HF	0.9980	3.1296	0.9892	4.1344	0.9966	0.2467	0.9114	0.0530

Tablo 4.5. 14 Tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) metodlarına göre hesaplanmış ¹³C- ve ¹H-NMR için bulunan R, standart hata, a ve b değerleri

Şekil 4.16. 14 tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) yöntemleriyle deneysel ve teorik ¹³C ve ¹H NMR kimyasal kayma Değerlerinin karşılaştırılması

20 tipi bileşiklerin R değerleri arasında bireysel ilişki değerlendirildiğinde; B3LYP/631G(d,p) için; ¹³C: 0.992, ¹H: 0.574, HF/631G(d,p) için; ¹³C: 0.982, ¹H: 0.646, B3LYP/631G(d,p) (DMSO) için; ¹³C: 0.991, ¹H: 0.635 ve HF/631G(d,p) için; ¹³C: 0.978, ¹H: 0.665 şeklinde bir ilişki olduğu görülmüştür. Bulunan standart hata oranı δ calc=a δ exp + b formülüne göre hesaplanmış ve her bir bileşik için bu oranlar Tablo 4.6 ve Tablo 4.7'de gösterilmiştir. Teorik ve deneysel karbon ve proton kimyasal kayma oranları arasında a, b ve R değerine göre doğrusal bir korelasyon gözlenmiştir. N-H protonları hariç B3LYP/631G(d,p) ve HF/631G(d,p), B3LYP/631G(d,p), (DMSO) ve HF/631G(d,p) (DMSO) metodlarına göre incelenen tüm bileşikler için hesaplanan ve deneysel olarak elde edilen değerler arasında bir uyum görülmüştür. Buna karşın, N-H protonları için hesaplanan değerler ile deneysel değerler arasında beklenenden daha yüksek bir fark ortaya çıkmıştır. Bunun nedeni olarak da 4,5-dihidro-1*H*-1,2,4-triazol-5on halkasındaki N-H protonunun asidik özellik taşıması gösterilebilir.

			¹³ C	,			1	Н	
		R	S. hata	a	b	R	S. hata	a	b
21	DFT	0.9942	4.8090	1.0564	-11.2445	0.7357	2.5097	1.1157	0.3307
21	HF	0.9850	7.7405	0.9753	5.1434	0.6707	2.7484	0.8340	2.3501
	DFT	0.9957	4.9756	1.0533	-10.2409	0.8290	2.2593	1.2522	-0.7102
22	HF	0.9904	7.5066	0.9740	5.9676	0.8750	1.9557	1.1186	0.5961
22	DFT	0.9911	3.9607	1.0849	-15.1842	0.3136	2.0555	0.4170	4.5927
23	HF	0.9796	5.9799	0.9560	8.1709	0.5426	1.8183	0.5631	3.8103
24	DFT	0.9948	3.9809	1.0673	-12.777	0.6996	2.1515	0.9590	0.5568
24	HF	0.9889	5.8241	0.9716	6.2980	0.7758	1.8997	0.9217	1.2339
25	DFT	0.9931	4.0777	1.0469	-10.1165	0.5734	2.1092	0.8465	1.2479
23	HF	0.9858	5.8411	0.9692	5.1197	0.7040	1.8282	0.8061	1.9007
26	DFT	0.9878	4.6218	1.0640	-13.0263	0.3445	2.1386	0.4761	4.2815
20	HF	0.9797	5.9515	0.9483	9.0500	0.5763	1.8616	0.6130	3.5978
27	DFT	0.9781	2.9263	1.0480	-9.8465	0.2480	1.6248	10.5125	-0.2899
21	HF	0.9490	4.4338	0.8426	23.3797	0.1374	1.6613	0.1328	7.2951
28	DFT	0.9981	3.8451	1.0747	-13.9244	0.8490	2.2801	1.2349	-0.5450
20	HF	0.9957	5.8445	0.9721	5.7151	0.8858	2.0029	1.0841	0.8447

Tablo 4.6. 20 Tipi bileşiklerin B3LYP ve HF metodlarına göre hesaplanmış ¹³C- ve ¹H-NMR için bulunan R, standart hata, a ve b değerleri

Şekil 4.17. 20 tipi bileşiklerin B3LYP ve HF yöntemleriyle deneysel ve teorik ¹³C ve ¹H NMR kimyasal kayma Değerlerinin karşılaştırılması

Tablo 4.7. 20 Tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) metodlarına göre hesaplanmış ¹³C- ve ¹H-NMR için bulunan R, standart hata, a ve b değerleri

		13	C (DMSC	D)		¹ H (DMSO)				
		R	S.hata	a	b	R	S. hata	a	b	
21	DFT	0.9936	5.0415	1.0444	-10.3923	0.8049	2.1990	1.2114	-0.6163	
21	HF	0.9821	8.4591	0.9586	6.4230	0.7265	2.5463	0.9189	1.6104	
22	DFT	0.9955	5.1049	1.0430	-9.603	0.8781	1.9327	1.2807	-1.1945	
22	HF	0.9885	8.1937	0.9606	6.8245	0.8950	1.8018	1.1298	0.2596	
22	DFT	0.9901	4.1768	1.0671	-13.3602	0.4289	1.9555	0.6175	2.9838	
23	HF	0.9754	6.5545	0.9333	10.4902	0.5626	1.7896	0.6247	3.2164	
24	DFT	0.9941	4.2488	1.0530	-11.4291	0.7685	1.9265	1.0548	-0.3100	
24	HF	0.9863	6.4616	0.9545	7.8744	0.8015	1.8004	0.9643	0.7430	
25	DFT	0.9935	3.9601	1.0362	-9.2110	0.6719	1.9067	1.0182	-0.1371	
25	HF	0.9839	6.2142	0.9533	6.5718	0.7296	1.7604	0.8647	1.3134	
26	DFT	0.9883	4.5317	1.0504	-11.7023	0.4533	2.0305	0.6764	2.6717	
20	HF	0.9762	6.4362	0.9281	11.1033	0.5872	1.8440	0.6687	3.0286	
27	DFT	0.9744	3.1628	1.0165	-6.0155	0.1846	1.6484	10.4087	-0.2658	
21	HF	0.9395	4.8204	0.8006	28.4495	0.1172	1.6657	0.1313	7.2679	
10	DFT	0.9979	4.0540	1.0675	-13.717	0.8906	1.9622	1.2609	-1.0277	
20	HF	0.9947	6.5280	0.9600	6.4292	0.9022	1.8608	1.0956	0.4963	

Şekil 4.18. 20 tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) yöntemleriyle deneysel ve teorik ¹³C- ve ¹H-NMR kimyasal kayma Değerlerinin karşılaştırılması

29 tipi bileşiklerin R değerleri arasında bireysel ilişki değerlendirildiğinde; B3LYP/631G(d,p) için; ¹³C: 0.996, ¹H: 0.986, HF/631G(d,p) için; ¹³C: 0.913 ¹H: 0.987, B3LYP/631G(d,p) (DMSO) için; ¹³C: 0.996, ¹H: 0.988 ve HF/631G(d,p) için; ¹³C: 0.915, ¹H: 0.991 şeklinde bir ilişki olduğu görülmüştür. 35 tipi bileşiklerin R değerleri arasında bireysel ilişki değerlendirildiğinde; B3LYP/631G(d,p) için; ¹³C: 0.994, ¹H: 0.976, HF/631G(d,p) için; ¹³C: 0.910 ¹H: 0.970, B3LYP/631G(d,p) (DMSO) için; ¹³C: 0.995, ¹H: 0.978 ve HF/631G(d,p) için; ¹³C: 0.989, ¹H: 0.980 şeklinde bir ilişki olduğu görülmüştür. Bulunan standart hata oranı δ calc=a δ exp + b formülüne göre hesaplanmış ve her bir bileşik için bu oranlar Tablo 4.8-11'de gösterilmiştir. Teorik ve deneysel karbon ve proton kimyasal kayma oranları arasında a, b ve R değerine göre doğrusal bir korelasyon gözlenmiştir. N-H protonları hariç B3LYP/631G(d,p) ve HF/631G(d,p), B3LYP/631G(d,p)(DMSO) ve HF/631G(d,p)(DMSO) metodlarına göre incelenen tüm bileşikler için hesaplanan ve deneysel olarak elde edilen değerler arasında bir uyum görülmüştür.

Tablo 4.8. 29 Tipi bileşiklerin B3LYP ve HF metodlarına göre hesaplanmış ¹³C- ve ¹H-NMR için bulunan R, standart hata, a ve b değerleri

			¹³ C			¹ H				
		R	S. hata	a	b	R	S. hata	a	b	
30	DFT	0.9963	5.1609	1.0284	-9.3804	0.9861	0.4517	1.0286	-0.7362	
50	HF	0.6119	47.7712	0.6157	45.4681	0.9891	0.4009	0.9672	0.0699	
21	DFT	0.9970	3.7953	1.0407	-9.7574	0.9799	0.5498	1.0040	-0.5895	
51	HF	0.9962	4.2420	1.0039	3.0052	0.9877	0.4310	0.9370	0.2097	
27	DFT	0.9965	4.3395	1.0346	-9.2998	0.9850	0.4531	0.971	-0.6276	
32	HF	0.9939	5.7585	0.9935	4.4159	0.9852	0.4507	0.9111	0.1620	
22	DFT	0.9971	3.7293	1.0388	-10.0022	0.9883	0.4190	1.0287	-0.6739	
33	HF	0.9916	6.3450	0.9778	4.7248	0.9862	0.4539	0.9389	0.2417	
24	DFT	0.9928	5.5015	1.0287	-7.6640	0.9892	0.4352	0.9946	-0.7996	
34	HF	0.9891	6.7783	0.9952	4.7970	0.9909	0.4006	0.9612	-0.0626	

Şekil 4.19. 29 tipi bileşiklerin B3LYP ve HF yöntemleriyle deneysel ve teorik ¹³C-ve ¹H-NMR kimyasal kayma Değerlerinin karşılaştırılması

Tablo 4.9. 29 Tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) metodlarına göre hesaplanmış ¹³C- ve ¹H-NMR için bulunan R, standart hata, a ve b değerleri

nesupiuning	e ve ii ivinit için burunun it, btur	
	¹³ C (DMSO)	¹ H (DMSO)

		R	S. hata	a	b	R	S. hata	a	b
20	DFT	0.9964	5.0789	1.0164	-9.0246	0.9882	0.4169	1.0137	-0.8146
30	HF	0.6068	48.0069	0.6021	46.2511	0.9925	0.3322	0.9553	-0.0441
21	DFT	0.9970	3.7937	1.0279	-9.0619	0.9834	0.5000	0.9916	-0.687
31	HF	0.9960	4.3924	0.9919	3.6069	0.9890	0.4070	0.9169	0.1467
22	DFT	0.9965	4.3732	1.0224	-8.6054	0.9885	0.3978	0.9621	-0.7184
52	HF	0.9935	5.9654	0.9799	5.1229	0.9902	0.3669	0.9045	0.0442
22	DFT	0.9972	3.6278	1.0281	-9.4841	0.9888	0.4085	1.0017	-0.6882
33	HF	0.9916	6.3450	4.7248	0.9778	0.9905	0.3763	0.9311	0.0960
24	DFT	0.9927	5.5658	1.0176	-7.0644	0.9918	0.3785	0.9885	-0.9085
54	HF	0.9883	7.0395	0.9814	5.5774	0.9935	0.3376	0.9549	-0.1906

Şekil 4.20. 29 tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) yöntemleriyle deneysel ve teorik ¹³C- ve ¹H-NMR kimyasal kayma Değerlerinin karşılaştırılması

Tablo 4.10. 35 Tipi bileşiklerin B3LYP ve HF metodlarına göre hesaplanmış ¹³C- ve ¹H-NMR için bulunan R, standart hata, a ve b değerleri

			¹³ C				1	H	
		R	S. hata	a	b	R	S. hata	a	b
26	DFT	0.9945	5.4330	1.0230	-9.9069	0.9759	0.4875	1.1174	-1.2756
30	HF	0.9896	7.4737	0.9405	7.2538	0.9702	0.5416	0.9133	0.2556
27	DFT	0.9935	4.6510	1.0364	-10.675	0.9731	0.4842	1.0343	-0.8865
37	HF	0.9888	6.1161	0.9358	9.0706	0.9691	0.5182	0.8806	0.5259
20	DFT	0.9952	4.3910	1.0320	-10.6489	0.9788	0.4480	1.0354	-0.9341
38	HF	0.9913	5.9665	0.9350	8.2088	0.9719	0.5147	0.9020	0.2964

Şekil 4.21. 35 tipi bileşiklerin B3LYP ve HF yöntemleriyle deneysel ve teorik ¹³C- ve ¹H-NMR kimyasal kayma Değerlerinin karşılaştırılması

Tablo 4.11. 35 Tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) metodlarına göre hesaplanmış ¹³C- ve ¹H-NMR için bulunan R, standart hata, a ve b değerleri

¹³ C (DMSO)				¹ H (DMSO)					
		R	S. hata	a	b	R	S. hata	a	b
36	DFT	0.9950	5.1740	1.0182	-9.8379	0.9774	0.4722	1.0944	-1.3033
30	HF	0.9891	7.6464	0.9321	7.5864	0.9802	0.4418	0.9171	0.1058
27	DFT	0.9938	4.5426	1.0314	-10.4592	0.9748	0.4680	1.0154	-0.9184
3/	HF	0.9879	6.3573	0.9272	9.6295	0.9781	0.4365	0.8806	0.3806
20	DFT	0.9955	4.2526	1.0258	-10.2634	0.9803	0.4318	1.0177	-0.9705
38	HF	0.9913	5.9665	8.2088	0.9350	0.9802	0.4335	0.9004	0.1689

Şekil 4.22. 35 tipi bileşiklerin B3LYP(DMSO) ve HF(DMSO) yöntemleriyle deneysel ve teorik ¹³C- ve ¹H-NMR kimyasal kayma Değerlerinin karşılaştırılması

Tez kapsamında sentezlenen ve teorik olarak incelenen bileşiklerin 6-31G(d,p) temel setlerinde B3LYP ve HF metotları kullanılarak IR teorik verileri ile deneysel ve teorik spektrumları materyal, yöntem ve hesaplama metodları bölümünde verilmiştir. 30 bileşiğin B3LYP ve HF yöntemlerine göre teorik titreşim frekansları hesaplanmıştır. Yapılan analiz sonucunda hesaplanan frekanslar içerisinde negatif frekansa rastlanmamıştır. Bu sonuç elde ettiğimiz yapının kararlı bir yapı olduğunu

göstermektedir. Negatif frekans bulunması yapının bir geçiş yapısı olduğunu gösterir B3LYP ve HF'ye göre elde edilen değerler kullanılarak teorik IR spektrumları çizilmiş ve uygun uyum faktörleri ile çarpılmıştır. Teorik IR spektrumları ile deneysel olarak elde edilen IR spektrumları ile mukayese edilmiştir. Bu karşılaştırma sonucu teorik bulguların deneysel verilerle ve literatürdeki benzer bileşiklerle ilgili yapılan benzer calışmalarda elde edilen değerlerle uyumlu olduğu ortaya konmuştur [160, 187, 220-224]. Teorik olarak hesaplanan IR verilerinin tanımlanmasında veda4f programından yararlanılmıştır. Sentezlenen moleküllerin düzlemsel ve lineer olmayan bir yapıda olup 3N-6= adet serbest titreşimi vardır. 4 ve 20 tipi heterosiklik bileşiklerde ve 20 tipi bileşiklerden elde edilen N-metil türevlerinde deneysel olarak 1709-1687 cm⁻¹ aralıklarında bir adet karbonil piki görülürken teorik olarak karbonil(C=O) grubuna ait frekanslar 4 tipi bileşiklerde B3LYP metodunda 1753-1751 ve HF metodunda 1773-1771 cm⁻¹ aralıklarında, 20 tipi bileşiklerde B3LYP metodunda 1773-1771 ve HF metodunda 1780-1775 cm⁻¹ aralıklarında ve 35 tipi bileşiklerde B3LYP metodunda 1746-1745 ve HF metodunda ise 1755-1754 cm⁻¹ aralıklarında görülmüstür. 14 ve 29 tipi N-asetil türevlerinde ise deneysel olarak 1775-1696 cm⁻¹ aralıklarında iki adet karbonil piki görülürken teorik olarak karbonil(C=O) grubuna ait frekanslar 14 tipi bileşiklerde B3LYP metodunda 1793-1727 ve HF metodunda 1754-1764 cm⁻¹ aralıklarında ve 39 tipi bileşiklerde B3LYP metodunda 1812-1735 ve HF metodunda ise 1855-1766 cm⁻¹ aralıklarında gözlemlenmiştir. Deneysel verilere en yakın değerler B3LYP metodunda görülmüştür. Teorik olarak elde edilen diğer titreşim frekansları deneysel yöntemlerle elde edilen frekanslarla uyumlu olduğu gözlemlenmiştir.

Tez kapsamında bağ uzunlukları teorik olarak incelenen toplam 30 heterosiklik bileşikle ilgili bulunan bağ uzunluklarının deneysel verilerle uyumunu incelemek için bileşiklerdeki C-1 ve/veya C-3'e bağlı fenil halkasını taşıyan sübstituentli bileşiklerin fenil halkalarındaki C-C bağ uzunlukları ile C-H bağ uzunluklarının literatürde kayıtlı verilerle karşılaştırılması yapılmıştır. Benzen halkasındaki tüm C-C bağ uzunlukları birbirine eşit ve 1.397 A⁰, C-H bağ uzunlukları ise 1.084 A⁰ olarak ölçülmüştür [224].

4 ve 14 tipi toplam 14 bileşiğin tüm fenil grubu C-C bağ uzunlukları ortalamaları B3LYP 6-31(d,p) temel setine göre 1,3983 A^0 ve HF 6-31(d,p) temel setine göre 1,3871

 A^0 olarak bulunmuştur. B3LYP temel setine göre bulunan ortalama C-C bağ uzunluğunun deneysel değere yakın, fakat biraz düşük olduğu görülmüştür, ki bu sonuç literatürle uyumludur [187]. Aynı bileşiklerde aril C-H bağ uzunlukları ortalamaları B3LYP 6-31(d,p) ve HF 6-31(d,p) temel setlerine göre sırasıyla 1.1055 A^0 ve 1.0950 A^0 olarak bulunmuştur. Her iki yöntemle bulunan C-H bağ uzunluğu deneysel değere yakın, ancak biraz yüksek olduğu sonucuna varılmıştır.

Benzer bir kıyaslama 20, 29 ve 35 tipi bileşikler için de yapılmış olup C-C ile C-H bağ uzunlukları ortalamaları sırasıyla şu şekilde hesaplanmıştır. 1.400, 1.388; 1.085, 1.075. Bu sonuçlara göre, B3LYP temel seti ile elde edilen ortalama C-C bağ uzunluğunun deneysel uzunlukla hemen hemen aynı olduğu, HF temel seti ile elde edilen ortalama C-C bağ uzunluğunun deneysel veriye yakın fakat biraz düşük olduğu görülmüştür. Bu bileşiklerde benzer şekilde B3LYP temel seti ile elde edilen ortalama C-H bağ uzunluğunun deneysel uzunlukla hemen hemen aynı olduğu, HF temel seti ile elde edilen ortalama C-H bağ uzunluğunun deneysel uzunlukla hemen hemen aynı olduğu, HF temel seti ile elde edilen ortalama C-H bağ uzunluğunun deneysel uzunlukla hemen hemen aynı olduğu, HF temel seti ile elde edilen ortalama C-H bağ uzunluğunun deneysel uzunlukla hemen hemen aynı olduğu, HF temel seti ile elde edilen ortalama C-H bağ uzunluğunun deneysel uzunlukla hemen hemen aynı olduğu sonucuna varılmıştır.

Teorik bağ uzunluklarının incelenmesi sırasında ilginç bir diğer sonuca da varılmıştır. 14 ve 29 tipi bileşikler hariç, 4 tipi bileşikler için C(2)-NH bağ uzunlukları ortalaması B3LYP 6-31(d,p) ve HF 6-31(d,p) temel setleri ile sırasıyla 1.3702 A⁰ ve 1.3461 A⁰, 20 tipi bileşikler için sırasıyla 1.3738 A⁰ ve 1.3487 A⁰ ve 35 tipi bileşikler için sırasıyla 1.3747 A⁰ ve 1.3473 A⁰ olarak bulunmuştur. B3LYP yöntemi ile 4, 20 ve 35 tipi bileşikler için hesaplanan ortalama bağ uzunluklarının sırasıyla 1.3702, 1.3738 ve 1.3747 A⁰ olarak çok yakın değerler olduğu; benzer şekilde aynı tip bileşikler için HF temel seti ile elde edilen değerlerin sırasıyla 1.3461, 1.3487 ve 1.3473 A⁰ olarak çok yakın değerler olduğu görülmüştür.

Literatürde [225] deneysel C-N tek ve C=N çift bağ uzunlukları sırasıyla 1.49 A^0 ve 1.27 A^0 olarak verilmiştir.

4, 20, 35 Tipi bileşikler için B3LYP ve HF metodlarına göre elde edilen ortalama bağ uzunluklarının deneysel C-N tek ve C=N çift bağ uzunluklarının arasında bir değere sahip olduğu görülmektedir. Dolayısıyla 4,5-dihidro-1*H*-1,2,4-triazol-5-on halkasında

C(2)-NH bağının kısmi çifte bağ karakteri taşıdığı söylenebilir. Bunun nedeni örnek olarak 4 tipi bileşiklerin aşağıdaki rezonans strüktürleri ile açıklanabilir.

Ancak, 4 ve 20 tipi bileşiklerin *N*-asetil türevleri olan 14 ve 29 tipi bileşiklerin C(2)-NH ortalama bağ uzunlukları B3LYP ve HF yöntemine göre sırasıyla 14 tipi bileşikler için 1.4045 A^0 ve 1.3804 A^0 ve 29 tipi bileşikler için 1.4009 A^0 ve 1.3770 A^0 olarak hesaplanmıştır ki bu değerler irdelendiğinde özellikle B3LYP'ye göre bulunan ortalama bağ uzunluklarının deneysel C-N tek bağ uzunluğuna daha yakın olduğu görülmüştür. Bunun sebebinin *N*-asetil grubu ile rezonans olarak açıklanması muhtemeldir.

Sentezlenen bileşiklerin *N*-asetil türevleri olan 14 ve 29 tipi bileşiklerin B3LYP ve HF yöntemleri ile hesaplanan bağ uzunlukları incelendiğinde triazol-5-on grubundaki karbonil karbonuna komşu azotlardaki bağ uzunluğu ortalamalarında önemli bir farklılık görülmemiştir. Yani C(2)-NH bağ uzunluklarında dikkate değer ölçüde bir kısalık görülmemiştir. Bunun muhtemel nedeni ise, asetil gurubu ile rezonans olarak açıklanabilir.

B3LYP metoduyla elde edilen bağ açılarının beklenen değerlere daha yakın olduğu görülmüştür. Düzlem açısı moleküllerin geometrisinde önemli bir faktördür, çünkü düzlem açısı moleküldeki etkileşen iki kuvvetin denge durumunda oluşmaktadır. Düzlem açıları, B3LYP modelinde HF modeline göre daha büyüktür.

Tez kapsamında teorik olarak toplam enerjileri hesaplanan 30 bileşiğe ait toplam enerji değerleri aşağıda tablolar halinde verilmiştir:

Bileşik No:	Subtituent(R)	B3LYP	HF
5	-CH ₃	-799.25	-794.27
6	-CH ₂ CH ₃	-838.57	-833.30
7	-CH ₂ CH ₂ CH ₃	-877.89	-872.34
8	$-CH_2C_6H_5$	-1030.31	-1030.31
9	$-CH_2C_6H_4CH_3(-p)$	-1069.63	-1062.85
10	-CH ₂ C ₆ H ₄ OCH ₃ (- <i>p</i>)	-1144.83	-1137.70
11	$-CH_2C_6H_4Cl(-p)$	-1489.90	-1482.71
12	$-CH_2C_6H_4Cl(-m)$	-1489.90	-1482.71
13	-C ₆ H ₅	-990.99	-984.78

Tablo 4.12. 4 Tipi Bileşiklerinin Toplam Molekül Enerjileri (a.u.)

Tablo 4.13. 14 Tipi Bileşiklerinin Toplam Molekül Enerjileri (a.u.)

Bileşik No:	Subtituent(R)	B3LYP	HF
15	-CH ₃	-951.91	-946.04
16	-CH ₂ CH ₃	-991.22	-985.08
17	$-CH_2C_6H_5$	-1182.96	-1175.59
18	-CH ₂ C ₆ H ₄ CH ₃ (- <i>p</i>)	-1222.28	-1214.63
19	$-CH_2C_6H_4Cl(-p)$	-1642.56	-1634.49

Tablo 4.14. 20 Tipi Bileşiklerinin Toplam Molekül Enerjileri (a.u.)

Bileşik No:	Subtituent(R)	B3LYP	HF
21	-CH ₃	-831.73	-826.85
22	-CH ₂ CH ₃	-871.04	-865.89
23	$-CH_2C_6H_5$	-1062.78	-1056.40
24	$-CH_2C_6H_4CH_3(-p)$	-1102.10	-1095.44
25	$-CH_2C_6H_4OCH_3(-p)$	-1177.31	-1170.28
26	$-CH_2C_6H_4Cl(-p)$	-1522.38	-1515.30
27	-C ₆ H ₅	-1023.47	-1017.36
28	$ \rightarrow $	-909.11	-903.72

Tablo 4.15. 29 Tipi Bileşiklerinin Toplam Molekül Enerjileri (a.u.)

Bileşik No:	Subtituent(R)	B3LYP	HF
30	-CH ₃	-1289.69	-1282.20
31	$-CH_2C_6H_5$	-1520.73	-1511.75

32	$-CH_2C_6H_4CH_3(-p)$	-1560.06	-1550.79
33	$-CH_2C_6H_4Cl(-p)$	-1980.34	-1970.64
34	-C ₆ H ₅	-1481.43	-1472.71

Tablo 4.16. 35 Tipi Bileşiklerinin Toplam Molekül Enerjileri (a.u.)

Bileşik No:	Subtituent(R)	B3LYP	HF
36	-CH ₃	-949.65	-943.93
37	$-CH_2C_6H_5$	-1180.70	-1173.48
38	$-\mathrm{CH}_{2}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{CH}_{3}(-p)$	-1220.02	-1212.52

Tablo 4.12-4.16'da görüldüğü üzere 4, 14, 20, 29, 35 tipi bileşiklerin toplam enerjileri hesaplanmıştır. Tüm bileşiklerin toplam enerjileri göz önüne alındığında DFT ve HF'ye göre bulunan değerlerin birbirine çok yakın olduğu, ancak DFT'ye göre hesaplanan değerlerin daha uyumlu olduğu görülmüştür.

Tez kapsamında 30 bileşiğe ait deneysel verilerle karşılaştırılamayan ve teorik olarak iki yöntemle hesaplanan bağ açıları, mulliken yükleri, HOMO-LUMO enerjileri, dipol momentleri ve enerjilerinin literatürdeki verilerle uyumlu olduğu görülmüştür [220-224].

4.5. İncelenen Reaksiyonların Mekanizmaları

Tez kapsamında 4-izopropilbenzaldehid ile 3 tipi bileşiklerin ayrı ayrı muamelesinden 9 adet yeni 4 tipi 3-alkil(aril)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4triazol-5-on bileşikleri asetik asitteki reaksiyonundan birer Schiff bazı olan 4 tipi bileşikler elde edilmiştir. Asidik ortamda daha kolay olduğu bilinen [225-227] bu reaksiyonun muhtemel mekanizması iki basamağı kapsar. Birinci basamakta 4,5dihidro-1*H*-1,2,4-triazol-5-on halkasına bağlı amino grubunun azotunun aromatik aldehid karbonil karbonuna nükleofilik saldırısı, ikinci basamakta ise oluşan katılma ürününden H₂O eliminasyonu ile Schiff bazının oluşumu gerçekleşir (Denklem 165).

5. KAYNAKLAR

- [1] Eydemir, H. "Biyolojik aktif bazı maddelerin teorik olarak İncelenmesi", Yüksek Lisans Tezi, Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir (2010).
- [2] Hussain, H. H., Babic, G., Durst, T., Wright, J. S., Flueraru, M., Chichirau, A., Chepelev, L.L., "Development of novel antioxidants: Design, synthesis and reactivity", J. Org. Chem., 68 (18): 7023-7032 (2003).
- [3] McClements, D. J., Decker, E. A., "Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems", J.Food Sci., 65 (8): 1270-1282 (2000).
- [4] Joseph, A., Knight, M. D., "Free radicals, antioxidants, aging and disease", Washington, 21-304 (1999).
- [5] Winston, G. W., "Oxidants and antioxidants, in aquatic animals", Comp. Biochem. Physiol Part C: Comp. Pharma., 100 (1-2): 173-176 (1991).
- [6] Halliwell, B., Gutteridge, J. M. C., "Role of free-radicals and catalytic metalions in human disease-an overview, Methods in Enzymology, 186: 1-85 (1990).
- [7] McCord, J.M., "The superoxid free radical-Its biochemistry and pathophysiology", Surgery, 94 (3): 412-414 (1983).
- [8] Akkuş, İ., "Serbest radikaller ve fizyopatolojik etkileri", Birinci baskı, Mimoza Yayınları, Konya, 1-73 (1996).
- [9] Kolaylı, S., "Tatlı su ve deniz suyunda yetişen gökkuşağı (Salmo gairdneri) türü alabalıklarda bazı antioksidan enzim aktiviteleriyle lipid peroksidasyon seviyeleri", Doktora Tezi, KTÜ Sağlık Bilimleri Enstitüsü, Trabzon (1996).
- [10] Halliwell, B., Gutteridge, J. M. C., "Free radicals in biology and medicine", Oxford Medicine Press, London, 246-351 (1999).
- [11] Dinis, T. C. P., Madeira, V. M. C., Almeida, L. M., "Action of phenolic derivates (acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers", Arch. Biochem. Biophy., 315: 161-169 (1994).
- [12] Kırkali, G., Yalçın, S., "Oksidatif stresin ölçülmesi ve standardizasyonu", Türk Biyokimya Derneği Klinik Lab. Stnd ve Kalite Güvencesi Toplantı Kitabı, 5: 305-312 (1998).
- [13] Miller, H. M., "A simplified method for the evaluation of antioxidants", Journal American Oil Chemists Society, 45: 91 (1971).

- [14] Blois, M. S., "Antioxidant determinations by the use of a stable free radical", Nature, 181: 1199-1200 (1958).
- [15] Gülçin, İ., Büyükokuroğlu, M. E., Oktay, M., Küfrevioğlu, Ö. İ., "Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe", J. Ethnopharmacol., 86 (1): 51-58 (2003).
- [16] Nishimiki, M., Appaji, N., Yagi, K., "The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen", Biochem. and Biophys. Res. Commun., 46 (2): 849-854 (1972).
- [17] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., "Antioxidant activity applying an improved ABTS radical cation decolorization assay", Free Radical, Biology & Medicine, 26 (9-10): 1231-1237 (1999).
- [18] Decker, E. A., Welch, B., "Role of ferritin as a lipid oxidation catalyst in muscle food", J. Agricultural and Food Chem., 38 (3): 674-677 (1990).
- [19] Soares, J. R., Dinis, T. C. P., Cunha, A. P., Almedia, L. M., "Antioxidant activities of some extracts of Thymus zygis", Free Radical Res., 26 (5): 469-478 (1997).
- [20] Oyaizu, M., "Antioxidative activities of browning reaction prepared from glucosamine", Japanise J. Nutr., 44: 307-315 (1986).
- [21] Pinner, A., "Die imidoäther und ihre derivate", 1.Auflage, Oppenheim, Berlin (1892).
- [22] Pesson, M., Dupin, S., Antoine, M., "Emploi de l'hydrazinocarbonate d'ethyle pour la synthése des hydroxy-3 triazoles-1,2,4,", Bull. Soc. Chim. France, 1364-1371 (1962).
- [23] Ün, R., İkizler, A., "Preparations of aliphatic amide carbethoxyhydrazones, aliphatic amide carbamylhdrazones, aliphatic ester carbethoxyhydrazones and the corresponding 3-alkyl- and 3,4-dialkyl- Δ^2 -1,2,4-triazolin-5-ones", Chim. Acta Turc., 3: 113-132 (1975).
- [24] Yüksek, H., "3-Alkil(aril)-4-amino-4,5-dihidro-1,2,4-triazol-5-on'ların bazı reaksiyonlarının incelenmesi", Doktora Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1992).
- [25] İkizler, A. A., Yüksek, H., "Acetylation of 4-amino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones", Org. Prep. Proced. Int., 25: 99-105 (1993).
- [26] Karabacak, E., "3-*m*-Klorobenzil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on ve bazı türevlerinin sentezi", Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1998).

- [27] Karabacak, M., "3-*p*-metoksibenzil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5on üzerine bir çalışma", Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1998).
- [28] Kara, E., "3-Siklopropil-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiğinin sentezi ve bazı reaksiyonlarının incelenmesi", Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (2000).
- [29] İkizler, A. A., "3-Substitue-4-amino- Δ^2 -1,2,4-triazolin-5-on'ların ester karbetoksi-hidrazon'lardan elde edilmeleri ve reaksiyonlarının incelenmesi", Doçentlik Tezi, İstanbul Üniversitesi Kimya Fakültesi, İstanbul (1975).
- [30] İkizler, A. A., Ün, R., "Reactions of ester ethoxycarbonylhydrazones with some amine type compounds", Chim. Acta Turc., 7: 269-290 (1979).
- [31] Köksal, C., "Bazı 3-alkil(aril)-4-(3',4'-dihidroksibenzilidenamino)-4,5-dihidro-1,2,4-triazol-5-on bileşiklerinin sentezi ve özelliklerinin incelenmesi", Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (2001).
- [32] Bahçeci, Ş., Yüksek, H., Ocak, Z., Köksal, C., Özdemir, M., "Synthesis and non-aqueous medium titrations of some new 4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives", Acta Chim. Slov., 49: 783-794 (2002).
- [33] Yüksek, H., Kolaylı, S., Küçük, M., Yüksek, M.O., Ocak, Ummuhan ., Şahinbaş, E., Sivrikaya, E., Ocak, M., "Synthesis and antioxidant activities of some 4-benzylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives", Indian Journal of Chemistry 45B, 715-718 (2006).
- [34] Stollé, R., "Über Führung von hydrazinabkömmlingen", J. Prakt. Chem., 75 (2): 416-432 (1907).
- [35] Kröger, C. F., Hummel, L., Mutscher, M., Beyer, H., "Synthesen und reaktionen von 4-amino-1,2,4-triazolonen-(5)", Chem. Ber., 98: 3025-3033 (1965).
- [36] Milcent, R., Redeuilh, C., "Synthesis of 4-amino-3-aryl-1,2,4-triazol-5(4H)ones", J. Heterocycl. Chem., 16 (2): 403-407 (1979).
- [37] Sykes, P., "A guidebook to mechanizm in organic chemistry", Fourth Edition, Great Britain (1977).
- [38] Roger, R., Neilson, O. G., "The chemistry of imidates", Chem. Rev., 61: 179-211 (1961).
- [39] Ün, R., İkizler, A. A., "Preparations of aromatic amide carbethoxyhydrazones, aromatic amide carbamylhydrazones and related 3-aryl- Δ^2 -1,2,4triazolin-5-ones", Chim. Acta Turc., 3: 1-22 (1975).

- [40] İkizler, A., İkizler, A. A., Yüksek, H., "Adipik asit dihidrazin bazı iminoesterler ile reaksiyonu", Doğa TU Kim. D. C., 13: 7-12 (1989).
- [41] Ikizler, A. A., Yuksek, H., Bahceci, Ş., "¹H-NMR spectra of some ditriazolyls and ditriazolylalkanes", Monatsh. Chem., 123 (1-2): 191-198 (1992).
- [42] İkizler, A. A., İkizler, A., Yüksek, H., Bahçeci, Ş., Sancak, K., "Synthesis of some *tert*-buthoxyhydrazones and related 4,5-dihydro-1*H*-1,2,4-triazol-5ones", Tr. J. Chem., 18 (9): 51-56 (1994).
- [43] İkizler, A., "Bazı 1,2,4-triazol türevlerinin sentezi", Doğa Bilim Dergisi Temel Bilm., 7: 31-36 (1983).
- [44] Ayça, E., İkizler, A. A., Aslan, R., "Preparations and some reactions of aromatic ester thiosemicarbazones", Chim. Acta Turc., 12: 305-314 (1984).
- [45] Ayça, E., İkizler, A. A., Serdar, M., "Preparation of 3-alkyl(aryl)-4-aryl- Δ^2 -1,2,4-triazolin-5-ones", Chim. Acta Turc., 9: 99-108 (1981).
- [46] Yavuz E., "Bazı 4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi", Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1997).
- [47] İkizler, A. A., Serdar, M., Uzunismail, N., "Bazı 1,2,4-triazolin-5-on türevlerinin elde edilmesi", Doğa TU Kim. D. C., 12: 271-275 (1988).
- [48] Ayça, E., İkizler, A. A., Serdar, M., "Preparation of 3-alkyl(aryl)-4alkylamino(arylamino)- Δ^2 -1,2,4-triazolin-5-ones", Chim. Acta Turc., 9: 381-388 (1981).
- [49] Ikizler, A. A., Ikizler, A., Yuksek, H., "¹H-NMR spectra of some 4,5-dihydro-1,2,4-triazol-5-ones", Magn. Reson. Chem., 31 (12): 1088-1090 (1993).
- [50] İkizler, A. A., Yüksek, H., "Synthesis of 3-alkyl-4-(2-hydroxyethyl) and 3alkyl-4-(2-chloroethyl)-4,5-dihydro-1*H*-1,2,4-triazol-5-ones", Doğa-Tr. J. Chem., 16: 284-288 (1994).
- [51] İkizler, A. A., Sancak, K., "Synthesis of 4-hydroxy-4,5-dihydro-1,2,4-triazol-5-ones", Monatsh. Chem., 123 (3): 257-263 (1992).
- [52] Menteşe, E., Özil, M., Alpay-Karaoğlu, Ş., Kahveci, B., "Rapid and efficient microwave-assisted synthesis of some new triazol-3-one derivatives", J. Heterocyclic Chem., 50: 386 (2013).
- [53] Yüksek, H., İkizler, A. A., "Synthesis of 4-succinimido-4,5-dihydro-1*H*-1,2,4-triazol-5-ones", Tr. J. Chem., 18: 57-61 (1994).
- [54] İkizler, A. A., Yüksek, H., "A study on 4,5-dihydro-1*H*-1,2,4-triazol-5-ones", Rev. Roum. Chem., 41 (7-8): 585-590 (1996).

- [55] Bahçeci, Ş., "Bazı biheteroaril bileşiklerinin sentezi ve özelliklerinin incelenmesi", Doktora Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1994).
- [56] İkizler, A., Bahçeci, Ş., İkizler, A. A., "Synthesis of new 4,5-dihydro-1*H*-1,2,4-triazol-5-ones", Indian J. Chem. Sect. B, 35 (2): 137-140 (1996).
- [57] İkizler, A., Bahçeci, Ş., İkizler, A. A., "Synthesis of some new *N*,*N*'-linked biheteroaryls", Polish J. Chem., 69 (11): 1497-1502 (1995).
- [58] İnce, N., "3-Alkil(aril)-4-Amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on'ların bazı karboksilli asit anhidritleri ile reaksiyonlarının incelenmesi", Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1995).
- [59] İkizler, A. A., Yüksek, H., "Synthesis of some *N*,*N*'-linked biheteroaryles", Doğa Tr. J. Chemistry, 17: 150-153 (1993).
- [60] İkizler, A. A., Yüksek, H., "Reaction of 4-amino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones with 2,5-dimetoxytetrahydrofuran", Collect. Czech. Chem. Commun., 59 (3): 731-735 (1994).
- [61] Doğan, N., "Bazı 4,5-Dihidro-1*H*-1,2,4-Triazol-5-on türevlerinin sentezi ve özelliklerinin incelenmesi, Doktora Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1995).
- [62] Ikizler, A., Dogan, N., Ikizler, A. A., "The acylation of 4-amino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones", Rev. Roum. Chim.,43 (8): 741-746 (1998).
- [63] Alkan, M., "Bazı 3-alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi ve reaksiyonlarının incelenmesi", Doktora Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (2001).
- [64] Yüksek, H., Ocak, Z., Alkan, M., Bahçeci, Ş., Özdemir, M., "Synthesis and determination of pK_a values of some new 3,4-disubstituted-4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives in non-aqueous solvents", Molecules, 9: 232-240 (2004).
- [65] Yüksek, H., Alkan, M., Bahceci, S., Cakmak, I., Ocak, Z., Baykara, H., Aktaş, O., Ağyel, E., "Synthesis, determination of pK_a values and GIAO NMR calculations of some new 3-alkyl-4-(p-methoxybenzoylamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-ones", J. Mol. Struc., 873: 142-148 (2008).
- [66] Alkan, M., Yuksek, H., Islamoglu, F., Bahceci, S., Calapoglu, M., Elmastas, M., Aksit, H., Ozdemir, M., "A study on 4-acylamino-4,5-dihydro-1*H*-1,2,4triazol-5-ones", Molecules, 12 (8): 1805-1816 (2007).
- [67] Becker, H. G. O., Timpe, H. J., "Synthesis and reactions of 1-alkyl-4sulfonylimino-1,2,4-triazolium ylides", J. Prakt. Chem., 312 (6): 1112-1120 (1970).

- [68] Kim, H. R., Song, J. H., Ryu, E. K., "Study on the alkylation and sulfonylation of 3-aryl-1-methyl-1,2,4-triazolin-5-ones", Synth. Commun., 24 (21): 3065-3071 (1994).
- [69] Kahveci, B., "Synthesis of 4-amino-4,5-dihydro-1*H*-1,2,4-triazole-5-ones and their isatin-3-imine derivatives", Molecules., 10: 376-382 (2005).
- [70] Ikizler, A. A., Ikizler A., Yıldırım, N., "Synthesis of some benzylidenamino compounds", Monatsh. Chem., 122 (6-7): 557-563 (1991).
- [71] İkizler, A. A., Yıldırım, N., Yüksek, H., "Synthesis of some arylidenamino compounds", Modelling, Measurement & Control C, 54: 21-30 (1996).
- [72] Ikizler, A. A., Uçar, F., Yuksek, H., Aytin, A., Yasa, I., Gezer, T., "Synthesis and antifungal activity of some new arylidenamino compounds", Acta Pol. Pharm., 54 (2): 135-140 (1997).
- [73] Ermiş, B., "Bazı amino triazollerden arilidenamino türevlerinin sentezi, Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1996).
- [74] Mutlu, T., "Bazı 4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin asetik anhidrid ile reaksiyonları", Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1998).
- [75] Yuksek, H., Bahceci, S., Ocak, Z., Alkan, M., Ermis, B., Mutlu, T., Ocak, M., Ozdemir, M., "Synthesis of some 4,5-dihydro-1*H*-1,2,4-triazol-5-ones", Indian J. Heterocycl. Ch., 13 (4): 369-372 (2004).
- [76] Yuksek, H., Bahceci, S., Ocak, Z., Ozdemir, M., Ocak, M., Ermis, B., Mutlu, T., "Synthesis and determination of acid dissociation constants of some new 4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives", Asian J. Chem., 17 (1): 195-201 (2005).
- [77] Yüksek, H., Ocak, Z., Özdemir, M., Ocak, M., Bekar, M., Aksoy, M., "A study on novel 4-heteroarylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones", Indian J. Heterocycl. Chem., 13 (1): 49-52 (2003).
- [78] Bekar, M., "Bazı 4-arilidenamino-4,5-dihidro-1,2,4-triazol-5-on'ların sentezi ve özelliklerinin incelenmesi", Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1996).
- [79] Aksoy, M., "Bazı 3,4-disubstitue-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin *N*-asetil türevlerinin sentezi, Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1997).
- [80] Yokuş, Ö. A., "Bazı yeni 1,2,4-triazol türevlerinin sentezi ve biyolojik aktivitelerinin incelenmesi", Doktora Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2012).

- [81] Gürsoy-Kol, Ö., Yüksek, H., İslamoğlu, F., "*In-vitro* Antioxidant and acidic properties of novel 4-(5-methyl-2-thienylmethyleneamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one Derivatives. Synthesis and Characterization", Revista de Chimie (Rev. Chim.) (Bucharest), 63(11), 1103-1111 (2012).
- [82] Gürsoy-Kol, Ö., Yüksek, H., İslamoğlu, F., "Synthesis and *In-vitro* Antioxidant Activities of Novel 4-(3-Methyl-2-thienylmethylene-amino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one Derivatives with Their Acidic Properties", J. Chem. Soc. Pak., 35(4), 1179-1190 (2013).
- [83] Yuksek, H., Kucuk, M., Alkan, M., Bahceci, S., Kolaylı, S., Ocak, Z., Ocak, U., Sahinbas, E., Ocak, M., "Synthesis and antioxidant activities of some new 4-(4-hydroxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives with their acidic properties", Asian J. Chem., 18 (1): 539-550 (2006).
- [84] Yüksek, H., Yıldırım, N., Ocak, U., Ocak, M., Bahçeci, Ş. "Bazı yeni 4benzilidenamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi ve yapılarının aydınlatılması", XVIII. Ulusal Kimya Kongresi, Kars, 897 (2004).
- [85] Üçüncü, O., "Bazı potansiyel biyolojik aktif Schiff bazlarının sentezi ve susuz ortamda potansiyometrik titrasyonları", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2003).
- [86] Yuksek, H., Ucuncu, O., Alkan, M., Ocak, Z., Bahceci, S., Ozdemir, M., "Synthesis and non-aqueous medium titrations of some new 4benzylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives", Molecules, 10 (8): 961-970 (2005).
- [87] Manap, S., "Bazı yeni 3-alkil(aril)-4-(3,4-disubstituebenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi, yapılarının aydınlatılması, antioksidan ve asitlik özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2009).
- [88] Üre, S., "Bazı 1-metil-3-alkil(aril)-4-(3,4-dimetoksibenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi, yapılarının aydınlatılması ve antioksidan özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2010).
- [89] Kardaş, F., "Bazı yeni 3-substitue-4-(4-metiltiyobenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi, potansiyometrik titrasyonları ve antioksidan özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2006).
- [90] Gürsoy-Kol, Ö., "Bazı 4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi, yapılarının aydınlatılması, antioksidan ve asitlik özelliklerinin incelenmesi", Doktora Tezi, Kafkas Üniversitesi, Fen Bilimleri Enstitüsü, Kars (2008).

- [91] Kol, Ö. G., Yüksek, H., "Synthesis and invitro antioxidant evaluation of some novel 4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives", E-Journal of Chem., 7 (1): 123-136 (2010).
- [92] Yüksek, H., Kol, Ö. G., "Preparation, characterization and potentiometric titrations of some new di-[3-(3-alkyl/aryl-4,5-dihydro-1*H*-1,2,4-triazol-5-one-4-yl)-azomethinphenyl]isophthalate/terephtalate derivatives", Turk.J. Chem., 32 (6): 773-784 (2008).
- [93] Yüksek, H., Akaras, S., Küçüktürkmen, Ç., Manap, S., Tokalı, F. S., "Bazı yeni 3-alkil(aril)-4-[2-(3-nitrobenzoksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi ve yapılarının aydınlatılması", 24. Ulusal Kimya Kongresi, OP 287, Zonguldak (2010).
- [94] Yüksek, H., Şahin, N., Ağırbaş, Gürsoy-Kol, Ö., Manap, S., "Bazı 3alkil(aril)-4-[4-(4-nitrobenzoksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4triazol-5-on bileşiklerinin antioksidan özelliklerinin incelenmesi", 24. Ulusal Kimya Kongresi, OP 300,Zonguldak (2010).
- [95] Yüksek, H., Kutanis, O., Boz, M. E., Erkurt, Y., Ocak, Z., Manap, S., Beytur, M., "Bazı 3-alkil(aril)-4-(3-kloroasetoksi-4-metoksibenzilidenamino]-4,5dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin asitlik sabitlerinin tayini", 24. Ulusal Kimya Kongresi, OP 295, Zonguldak (2010).
- [96] Alkan, M., Gürbüz, A., Yüksek, H., Ocak, Z., "Bazı di-[2-(3-alkil/aril-4,5dihidro-1H-1,2,4-triazol-5-on-4-il)-azometin-5-metoksifenil] tereftalat bileşiklerinin susuz çözücülerde p K_a sabitlerinin tayini", 5. Ulusal Analitik Kimya Kongresi, Bildiri Özetleri Kitapçığı, 88, Erzurum (2010).
- [97] Alkan, M., Gürbüz, A., Yüksek, H., Ocak, Z., "Bazı 3-alkil(aril)-4-(2fenilasetoksi-3-metoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin potansiyometrik titrasyonları", 5. Ulusal Analitik Kimya Kongresi, Bildiri Özetleri Kitapçığı, 89, Erzurum (2010).
- [98] Yüksek, H., Alkan, M., Oğuz, Ş., Oğuzalp, T., Kayalar, M.T., Beytur, M., "Bazı yeni 3-alkil(aril)-4-(3-etoksi-4-fenilasetoksibenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi ve susuz ortam titrasyonları", 24. Ulusal Kimya Kongresi, OP 293, Zonguldak (2010).
- [99] Kara S. "Bazı yeni 4-[3-(3,5-dinitrobenzoksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi ve bazı özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2013).
- [100] Akyıldırım, O. "Bazı potansiyel biyolojik aktif heterosiklik bileşiklerin sentezi, Yapılarının Aydınlatılması ve Bazı Özelliklerinin İncelenmesi", Doktora Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2011).

- [101] Tokalı, F. S., "1,2,4-Triazol-5-on türevlerinin sentezi üzerine bir çalışma", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2011).
- [102] Toz, M., "Bazı yeni azot içeren beşüyeli heterosiklik bileşiklerin sentezi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2012).
- [103] Berkyürek, A., "Bazı Yeni 3-alkil(aril)-4-[2-(4-nitrobenzoksi)benzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on Bileşiklerinin Sentezi, Yapılarının Aydınlatılması, Antioksidan ve Asitlik Özelliklerinin İncelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2011).
- [104] Demirci, S. "Beşüyeli heterosiklik bileşikler üzerine bir çalışma", Doktora Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2011).
- [105] Kutanis, O., "Bazı Yeni 4-[3-(2-Metilbenzoksi)-4-metoksi]-benzilidenamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on Türevlerinin Sentezi ve Bazı Özelliklerinin İncelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2012).
- [106] Kardaş, F. "Bazı yeni heterohalkalı 1,2,4-triazol bileşiklerinin sentezi ve bazı özelliklerinin incelenmesi", Doktora Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2012).
- [107] Koca, E., "Bazı yeni 4-(4-metilbenzoksi)benzilidenamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi, yapılarının aydınlatılması ve bazı özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2013).
- [108] Medetalibeyoğlu, H., "Bazı Yeni 4-[2-(4-nitrobenzoksibenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi, yapılarının aydınlatılması ve asitlik sabitlerinin tayini", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2008).
- [109] Zafer, Z., "3-Alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin 3-(3,5-dinitrobenzoksi)-4-metoksibenzaldehid ile reaksiyonları", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2013).
- [110] Polat, M., "Bazı yeni 1-asetil-3,4-disubstitue-4,5-dihidro-1*H*-1,2,4-triazol-5on türevlerinin sentezi, yapılarının aydınlatılması ve *in-vitro* antioksidan özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2014).
- [111] Aytemiz, F., "3-Alkil(aril)-4-[3-(3-nitrobenzoksi)-4-metoksibenzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi, yapılarının aydınlatılması ve bazı özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2013).

- [112] Ulufer, S., "Bazı yeni 4-[3-(2-metilbenzoksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi, yapılarının aydınlatılması ve bazı özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2014).
- [113] Bankoğlu, B., "3-Alkil(aril)-4-amino-4,5-dihidro-1*H*-1,2,4-triazol-5-on'ların 3-etoksi-4-(2-metil-benzoksi)-benzaldehid ile reaksiyonlarının incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2014).
- [114] Alkan, M., Gürbüz, A., Yüksek, H., Ocak, Z., "Synthesis and non-aqueus medium titrations of some new 3-alkyl(aryl)-4-[2-(4-methoxybenzoxy)-3-methoxy-benzyliden)amino)-4,5-dihydro-1*H*-1,2,4-triazole-5-ones", 2-nd International Conference on Organic Chemistry: "Advances in Heterocyclic Chemistry", GeoHet-2011, Tbilisi, Georgia, PP 64, (2011).
- [115] Yüksek, H., Akyıldırım, O., Gürsoy-Kol, Ö., "Synthesis and *in-vitro* evaluation of new 1,3,5-tri-{2-methoxy-4-[(4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethine]-phenoxycarbonyl}-benzene", Journal of Chem, Volume 2013, Article ID 517420, (2012).
- [116] Akyıldırım, O., Yüksek, H., Gürsoy-Kol, Ö., "Bazı 1,3,5-tri-{2-metoksi-4-[(3-alkil/aril-4,5-dihidro-1H-1,2,4-triazol-5-on-4-il)-azometin]fenoksikarbonil}-benzen bileşiklerinin *in-vitro* antioksidan özelliklerinin incelenmesi", 24. Ulusal Kimya Kongresi, OP 296, Zonguldak (2010).
- [117] Alkan, M., Gürbüz, A., Yüksek, H., Kotan, G., "Gaussian 09W programi kullanarak yeni 3-metil-4-(2-asetoksi-3-metoksi)benzilidenamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on molekülünün deneysel ve teorik özelliklerinin incelenmesi", *Uluslararası katılımlı I. Ulusal hesaplamalı Kimya Çalıştayı*, Yüzüncü Yıl Üniversitesi, Van, Bildiri Özetleri Kitabı, P60, S:48, (2014).
- [118] Aras, A., "Bazı 4-(3-metoksi-4-asetoksi)-benzilidenamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi ve *in-vitro* antioksidan özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2012).
- [119] Albayrak, Ö., "Bazı yeni 3-alkil(aril)-4-[2-(p-toluensulfoniloksi)benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi, yapılarının aydınlatılması ve susuz ortam titrasyonları", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2008).
- [120] Medetalibeyoğlu, H., Yüksek, H., "Bazı 3-alkil(aril)-4-[3-metoksi-4-(p-toluensulfoniloksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi", XXIII. Ulusal Kimya Kongresi, Bildiri Özetleri Kitabı, OP 084, Sivas (2009).
- [121] Yüksek, H., Medetalibeyoğlu, H., Gürsoy-Kol, Ö., Akyıldırım, O., Calapoğlu, M., "Bazı 3-alkil(aril)-4-[3-metoksi-4-(p-toluensulfoniloksi)benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin *in-vitro* antioksidan özelliklerinin incelenmesi", 24. Ulusal Kimya Kongresi, OP 290, Zonguldak (2010).
- [122] Yıldız, Ç., "Bazı yeni 4-(2-benzensülfoniloksi-3-metoksi)-benzilidenamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi ve bazı özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2014).
- [123] Gündüz, T., "Susuz ortam titrasyonları", Gazi Büro Kitabevi Tic. Ltd. Şti, Ankara, (1998).
- [124] Gündüz, T., "Susuz ortam reaksiyonları ve önemi", XI. Ulusal Kimya Kongresi, Van, 117 (1997).
- [125] Huber, W., "Titrations in nonaqueous solvents", Express Translation Service, Academic Press Inc., New York (1967).
- [126] Ocak, Z., "Bazı yeni triazol türevlerinin potansiyometrik özellikleri", Doktora Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (2003).
- [127] Alkan, M., Bahçeci, Ş., Yüksek, H., Ocak, Z., ve Özdemir, M., "Bazı yeni 3alkil(aril)-4-izobutirilamino-4,5-dihidro-1H-1,2,4-triazol-5-on bileşiklerinin sentezi ve susuz ortamda p K_a değerlerinin tayini", XVI. Ulusal Kimya Kongresi, Konya, 684 (2002).
- [128] İkizler, A. A, Erdoğan, Y., "Determination of pKa values of some benzylidenamino compounds in non-aqueous media", Doğa-Tr. J. Chemistry, 15: 337-344 (1991).
- [129] İkizler, A. A., Şentürk, H. B., İkizler, A., "p*K*_a Values of some 1,2,4-triazole derivatives in non-aqueous media", Doğa-Tr. J. Chemistry, 15: 345-354 (1991).
- [130] Erdogan, Y., Aslan, A., Demirbas, A., Yaylı, N., "Potentiometric titration of two carboxylic acids and two triazol derivatives in non-aqueous media", Modelling, Measurement & Control, C, AMSE Press, 46 (3): 49-54 (2006).
- [131] Woodward, L. A., "Int. Theory and Mol. Vibration Spectrocopy", Oxford, (1972).
- [132] Barrow, G.M., "Molecular Spectroscopy", Mc. Graw -Hill, New York, (1962).
- [133] Chang, R., "Basic Principles of Spectroscopy", Mc. Graw -Hill, New York, (1971).

- [134] Gümüştüfek, İ., "2-Fenilbenzimidazolasit molekülünün titreşimsel spektrumlarının teorik ve deneysel yöntemlerle incelenmesi", Yüksek Lisans Tezi, Nevşehir Üniversitesi, Fen Bilimleri Enstitüsü, Nevşehir (2013).
- [135] Whiffen, D. H., "Spectroscopy", Second Edition, Longman London, (1971).
- [136] Akyüz, S., "An Infrared and Raman Spectroscopic Investigation of Copper (II)" Journal of Inclusion Phenomena, 4:219-223, (1986).
- [137] Banwell, C.N., "Fundamentals of Molecular Spectroscopy", 3.ed., Mc.Graw Hill, London, (1983).
- [138] Kurt. M., Doktora Tez. Gazi Üniv. Fen Bil. Enst. Ankara, (2003).
- [139] Cotton, F. A., "Chemical Applications of Group Theory 2nd ed." Wiley, London, (1971).
- [140] Apaydın, F., "Magnetik Rezonans", Hacettepe Üniversitesi, 3, 6-8, (1991).
- [141] Gündüz, T., "İnstrümental Analiz", Gazi Kitapevi Tic. Ltd. Şti., 749-769, (2002).
- [142] Gans, P., "Vibrating Molecules", Chapman and Hall, 18-59, (1971).
- [143] Atkins, P., W., Friedman, R., S., 1997, "Molecular Quantum Mechanics", Third Edition, Oxford University Press, 335 (1997).
- [144] Alpert, N., L., Keiser, W., E., Szymanski, H., A., "IR Theory and Practice of Infrared Spectroscopy", Plenum Press, 379, (1964).
- [145] Mc. Cullough, R.L., Jones, L. H. And Crosby, G. A., "An analysis of the vibrational spectrum of the tetracynonickelate (II) Ion in a crystal lattice", Spectrochim Acta, 16, 929 (1960).
- [146] Herzberg, G., "Molecular Spectra and Molecular Structure, II. Infrared and Raman Spectra of Polyatamic Molecules", VRN Company, 35, 190-241, (1945).
- [147] Rao, C., "Chemical Application of Infrared Spectroscopy", Academic Press Inc., 50-85, (1963).
- [148] Colthup, N., B., Daly, L., H., Wiberley, S., E., "Introduction to Infrared and Raman", Academic Press Inc., (1964).
- [149] Davies, M., "Infrared Spectroscopy and Molecular Structure", Elsevier, (1963).

- [150] Alpert., N., L., Keiser., W., E. and Szymanski., H., A., "IR theory and practica of infrared spectroscopy", Second edition, Plenum press, (1970).
- [151] Avcı D., "Heteroatom içeren bazı aromatik molekülerin lineer olmayan optik ve spektroskopik özelliklerinin teorik olarak incelenmesi", Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya (2009).
- [152] Günay, N., "Bromo ve kloro kumarin karboksilatlarin geometrik ve spektroskopik özelliklerinin teorik olarak incelenmesi", Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Kocaeli (2010).
- [153] Slichter, C., P., "Manyetik Rezonansın İlkeleri", Ankara Üniversitesi Basımevi, 292, (1984).
- [154] Sadi, S., "Bazı yeni 4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2003).
- [155] Yüksek, H., Çakmak, İ., Sadi, S., Alkan, M., Baykara, H., "Synthesis and GIAO NMR calculations for some novel 4-heteroarylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives: Comparison of theoretical and experimental ¹H and ¹³C chemical shifts", Int. J. Mol. Sci., 6 (6-8): 219-229 (2005).
- [156] İnce-Demirci, S., "Bazı yeni 4-(2-hidroksi-5-bromobenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi ve yapılarının aydınlatılması", Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2005).
- [157] İnce, S., Yuksek, H., Alkan, M., Çakmak, I., "B3LYP density functional calculations of ¹H and ¹³C nuclear shielding constants of some novel 4-(5bromo-2-hydroxy-benzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives", 2nd International Aegean Physical Chemistry Days, Balıkesir, 67 (2004).
- [158] Kemer, G., "Bazı yeni 1,2,4-triazol türevlerinin sentezi, antioksidan ve asitlik özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2007).
- [159] Yüksek, H., Gürsoy Kol, Ö., Kemer, G., Ocak, Z., Anıl, B., "Synthesis and *in-vitro* antioxidant evaluation of some novel 4-(4-substituted)benzylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones", Indian J. Heterocy. Ch.,20: 325-330 (2011).
- [160] Kayalar, M. T., "Bazı 4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin spektroskopik özelliklerinin deneysel ve bilgisayar destekli teorik incelenmesi", Doktora Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2012).
- [161] Kemer, G., Yüksek, H., Kayalar, M.T., "B3LYP density functional

calculations of ¹H and ¹³C nuclear shielding constants of some 4,5-dihydro-1*H*-1,2,4-triazol-5-one derivates", 2-nd International Conference on Organic Chemistry: "Advances in Heterocyclic Chemistry", GeoHet-2011, Tbilisi, Georgia, PP 65, (2011).

- [162] Gül, H., "Bazı yeni 3-alkil(aril)-4-(4-fenilasetoksibenzilidenamino)-4,5dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi, yapılarının aydınlatılması ve asitlik özelliklerinin İncelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2010).
- [163] Kurt, İ. H., "Bazı yeni 1,2,4-triazol-5-on türevlerinin sentezi ve *in-vitro* antioksidan özelliklerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2013).
- [164] Yüksek, H., Gül, H., Manap, S., Ocak, Z., Şen, H., "Bazı yeni heterosiklik schiff bazlarının sentezi, yapılarının aydınlatılması ve susuz ortam titrasyonları", XXIII. Ulusal Kimya Kongresi, Bildiri Özetleri Kitabı, OP 083, Sivas (2009).
- [165] Yüksek, H., Gül, H., Şen, H., Gürsoy-Kol, Ö., Koca, E., "Bazı 3-alkil(aril)-4-(4-fenilasetoksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin antioksidan özelliklerinin incelenmesi", 24. Ulusal Kimya Kongresi, OP 289, Zonguldak (2010).
- [166] Kayalar, M.T., Yüksek, H., GIAO nmr calculations of some 3-alkyl(aryl)4-(4-phenylacetoxy-benzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-ones: comparison of theoretical and experimental ¹H and ¹³C chemical shifts, 2-nd International Conference on Organic Chemistry: "Advances in Heterocyclic Chemistry", GeoHet-2011, Tbilisi, Georgia, PP 66, 2011
- [167] Tomruk, Z., "Bazı yeni heterosiklik schiff bazlarının sentezi, pK_a değerlerinin tayini ve DNA ile etkileşimlerinin incelenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2008).
- [168] Tomruk, Z., Yüksek, H., Arslantaş, A., Ocak, Z., "Non-aqueus medium titrations of some 4-(4-benzensulfonyloxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives", 7th Aegean Analytical Chemistry Days (AACD), International Conference, Fatsa, Turkey, Book of Abstracts PPII-5, page 118 (2009).
- [169] Tomruk, Z., Arslantaş, A., Yüksek, H., Gürsoy-Kol, Ö., Manap, S., "Bazı yeni 3-alkil(aril)-4-(4-benzensulfoniloksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4triazol-5-on bileşiklerinin sentezi ve *in-vitro* antioksidan özelliklerinin incelenmesi", 24. Ulusal Kimya Kongresi, OP 301, Zonguldak (2010).
- [170] Gürsoy, Ö., "Bazı yeni potansiyel biyolojik aktif 4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi ve özelliklerinin incelenmesi, Yüksek Lisans Tezi, Kafkas Üniversitesi, Fen Bilimleri Enstitüsü, Kars (2003).

- [171] Yüksek, H., Gursoy, O., Cakmak, I., Alkan, M., "Synthesis and GIAO NMR calculation for some new 4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives: comparison of theoretical and experimental ¹H and ¹³C chemical shifts", Magn. Reson. Chem., 43 (7): 585-587 (2005).
- [172] Yüksek, H., Gursoy, O., Cakmak, I., Baykara, H., Alkan, M., "Synthesis and GIAO NMR calculations for some novel 1-acetyl-4-(arylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives: comparison of theoretical and experimental ¹H and ¹³C chemical shifts", Asian J. Spect., 11: 43-50 (2007).
- [173] Yüksek, H., Alkan, M., Çakmak, İ., Ocak, Z., Bahçeci, Ş., Calapoğlu, M., Elmastaş, M., Kolomuç, A., Aksu, H., "Preparation, GIAO NMR calculations and acidic properties of some novel 4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives with their antioxidant activities", Int. J. Mol. Sci., 9, 12-32 (2008).
- [174] Yüksek, H., Alkan, M., Atalay, Y. ve Bahçeci, Ş., "Yoğunluk Fonksiyonu Teorisini (DFT) ve Hartree-Fock Yöntemini Kullanarak 3-Metil-4-Fenilasetilamino-4,5-Dihidro-1*H*-1,2,4-Triazol-5-on Molekülünün Titreşim Frekanslarının Hesaplanması," Kimya 2004, XVIII. Ulusal Kimya Kongresi, Kars, Bildiri Özetler Kitabı, 1017, (2004).
- [175] Atalay, Y., Alkan, M., Bahçeci, Ş., Yüksek, H., "3-Metil(benzil)-4-(4hidroksibenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on Bileşiklerinin Molekül Titreşim Frekanslarının DFT ve HF Yöntemi İle Hesaplanması", Kimya 2005, XIX. Ulusal Kimya Kongresi, İzmir, Bildiri Özetleri Kitabı, 730, (2005).
- [176] Yüksek, H., Atalay, Y., Ocak, M., Ocak, Ü., Bahçeci, Ş. ve Yıldırım, N., "DFT ve HF Yöntemi Kullanarak Bazı 4,5-Dihidro-1*H*-1,2,4-Triazol-5-on Türevlerinin Molekül Titreşim Frekanslarının Hesaplanması," Kimya 2004, XVIII. Ulusal Kimya Kongresi, Kars, Bildiri Özetler Kitabı, 950, (2004).
- [177] Gökçe, H., Bahçeli, S., Akyıldırım, O., Yüksek, H., Gürsoy Kol, Ö., "the syntheses, molecular structures, spectroscopic properties (ir, micro-raman, nmr and uv-vis) and dft calculations of antioxidant 3-alkyl-4-[3-methoxy-4-(4-methylbenzoxy)benzylidenamino]-4,5-dihydro-1*H*-1,2,4-triazol-5-one molecules", Lett. Org. Chem., 10, 395-441 (2013).
- [178] Gokce H., Akyildirim O., Bahceli S., Yuksek H., Gursoy Kol O., "The 1-acetyl-3-methyl-4-[3-methoxy-4-(4-methylbenzoxy)benzylidenamino]-4,5-dihydro-1*H*-1,2,4-triazol-5-one molecule investigated by a joint spectroscopic and quantum chemical calculations", J. Mol. Struct., 1056-1057, 273-284, (2014).
- [179] Koca, E., Yüksek, H., Kayalar, M.T., "3-Etil-4-(4metilbenzoksi)benzilidenamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiğinin teorik GIAO hesaplamaları", XVI. Ulusal Kimya Kongresi, Burdur, 684

(2013).

- [180] Aytemiz, F., Yüksek, H., Kayalar, M.T., "3-Metil-4-[3-(3-nitrobenzoksi)-4metoksibenzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiğinin spektroskopik özelliklerinin deneysel ve teorik olarak incelenmesi", XVI. Ulusal Kimya Kongresi, Burdur, 684 (2013).
- [181] Göksu, B., Yüksek, H. "3-Etil-4-[2-(2-metilbenzoksi)]-benzilidenamino-4,5dihidro-1*H*-1,2,4-triazol-5-on bileşiğinin GIAO hesaplamaları", I. Uluslararası Katılımlı Ulusal Hesaplamalı Kimya Çalıştayı, Özet Kitapçığı, Van, Sayfa 18 (2014).
- [182] Ozdemir, G., Yüksek, H., Beytur, M., "The investigation of novel 3-methyl-4-(3-ethoxy-4-benzenesulfonyloxybenzilidenamino)-4,5-dihydro-1*H*-1,2,4triazol-5-one with gaussian 09W program", International Symposium on Molecular Chemistry, Molchem, PP-98, (2014).
- [183] Kara, S., Gürsoy Kol, Ö., Yüksek, H., Beytur, M., "3-etil-4-[3-(3,5-dinitrobenzoksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiğinin bazı spektroskopik özelliklerinin incelenmesi", I. Uluslararası Katılımlı Ulusal Hesaplamalı Kimya Çalıştayı, Özet Kitapçığı, Van, Sayfa 61 (2014).
- [184] Bankoğlu, B., Yüksek, H. "3-Benzil-4-[3-etoksi-4-(2-metilbenzoksi)benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on molekülünün teorik spektral değerleri ile deneysel değerlerinin karşılaştırılması", I. Uluslararası Katılımlı Ulusal Hesaplamalı Kimya Çalıştayı, Özet Kitapçığı, Van, Sayfa 17 (2014).
- [185] Akyıldırım, O., Yüksek, H., Beytur, M., "Yeni 3-n-propil-4-[2-(2-naftilsulfoniloksi)-benzilidenamino]-4,5-dihidro-1H-1,2,4-triazol-5-on bileşiğinin bazı spektroskopik özelliklerinin incelenmesi", I. Uluslararası Katılımlı Ulusal Hesaplamalı Kimya Çalıştayı, Özet Kitapçığı, Van, Sayfa 54 (2014).
- S., Yüksek. Н., "Yeni 3-metil-4-[3-metoksi-4-(2-[186] Manap. metilbenzoksi)benzilidenamino-4,5-dihidro-1H-1,2,4-triazol-5-on teorik spektral değerlerinin deneysel molekülünün değerlerle karşılaştırılması", I. Uluslararası Katılımlı Ulusal Hesaplamalı Kimya Calıstayı, Özet Kitapçığı, Van, Sayfa 64 (2014).
- [187] Beytur, M., "Bazı yeni beş üyeli heterosiklik bileşiklerin sentezi ve bazı özelliklerinin incelenmesi", Doktora Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Kars (2014).
- [188] Beytur, M., Yüksek, H., "Gaussian calculations of 3-(*p*-methylbenzyl)-4-(4-sinnamoyloxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one molecule", The 22nd Iranian Seminar of Organic Chemistry, PO 184, Tabriz,

Iran, (2014).

- [189] Parker, B., "Kuantumu Anlamak", Güncel Yayıncılık, çeviri: Aklın E., 278, (2005).
- [190] Türkpençe, D., "Kuantum Mekaniğine Felsefi Bakış", Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü Fizik Anabilimdalı, Yüksek Lisans Semineri, Samsun, (2006).
- [191] Jensen, F., "Introduction to Computational Chemistry", John Wiley & Sons Ltd., 26-38, (1999).
- [192] Haken, H., and Wolf, H., C., "Atom ve Kuantum Fiziği", çeviri: Okur, İ., Değişim yayınları, 345-350, (2000).
- [193] Hohenberg, P., Kohn, W., "Inhomogeneous Electron Gas", Phys. Rev. B, 136, 864 (1964).
- [194] Parr R., G. and Yang W., "Density Functional Theory", Oxford University Press, (1989).
- [195] Bartolotti, L., J., Flurchick, K., "An Introduction to Density Functional Theory". Rev. Comp. Chem.,7, 187-216, (1996).
- [196] Bransden, B., H., Joachain, C., J., "Physics of Atoms Molecules", Longman, 505, 386-387, (1983).
- [197] Leach, A., R., "Molecular Modeling: Principles and Applications", Addison Wesley Longman Ltd., (1996).
- [198] Kohn, W. and Sham, L., J., "Self-consistent equations including exchange and correlation effects", Phys. Rev. A, 140(4), 1133-1138, (1965).
- [199] Becke, A., D., "Density functional thermochemistry. III. The role of exact Exchange", J. Chem. Phys., 98, 5648-5652, (1993).
- [200] Cramer, J., C., "Essential of computational chemistry: theories and models", Second edition, John Wiley & Sons, Ltd., 266-267, (2004).
- [201] Foresman, B., J., "Exploring Chemistry with Electronic Structure Methods", Second Edition, Gaussian Inc., 261, (1996).
- [202] Frisch, A. and Frisch, M., J., "Gaussian 98 User"s Reference", Gaussian Inc., (1998).
- [203] Frisch, E., Nielsen, A., B., Holdre, A., J., "GaussView User"s Reference", Version 2.0, Gaussian Inc., (2000).

- [204] Özdemir, M., "Benzosülfonikasit hidrazit"in konformasyon analizi, titreşim ve kimyasal kayma değerlerinin DFT metotu ile hesaplanması", Yüksek lisans tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 30-32, (2007).
- [205] Jensen, F., "Introduction to Computational Chemistry", John Wiley & Sons Ltd, 440-462, (1999).
- [206] Pulay, P., "Analytical Dervative Methods in Quantum Chemistry, Ab Initio Methods in Quantum Chemistry", By K.P. Lavvley 11nd ed., John Wiley & Sons Ltd., 118-143, (1987).
- [207] Csizmadia, G., L., "Computational Adv. In organic chem., Molecular str. And reactivity". Ed. by Öğretir, C., Csizmadia, G., L., NATO ASI series, Kluwer Academic Publishers, 15-74, (1981).
- [208] Mills, I., Cvitas, T., Homann, K., Kallay, N. and Kuchitsu, K., "Quantities, units and symbols in physical chemistry", Blackwell, 119, (1993).
- [209] Hameka, H., F., "On the nuclear magnetic shielding in the hydrogen molecule", Mol. Phys., 1, 203-215, (1958).
- [210] Hameka, H., F., "Relationship between proton shielding constants and electric dipole moments in the hydrogen halides", Mol. Phys., 2, 64-74, (1959).
- [211] Ditchfield, R., "Self-consistent perturbation theory of diamagnetismI. A gauge-invariant LCAO method for N.M.R. chemical shifts", Mol. Phys., 27, 789-807, (1974).
- [212] Wolinski, K., Hinton, J., F. and Pulay, P., "Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations", J. Am. Chem. Soc., 112, 8251-8260, (1990).
- [213] Hansen, A., E. and Bouman, T., D., "Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to 13C shielding tensors", J. Chem. Phys., 82, 5035-5047, (1985).
- [214] Gauss, J., "Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts", J. Chem. Phys., 99, 3629-3643, (1993).
- [215] Keith, T., A. and Bader, R., F., W., "Calculation of magnetic response properties using a continuous set of gauge transformations", Chem. Phys. Lett., 210, 223-231, (1993).
- [216] Kutzelnigg, W., "Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities", Isr. J. Chem., 19, 193-200, (1980).
- [217] Gauss, J. and Stanton, J., F., "Coupled-cluster calculations of nuclear magnetic resonance chemical shifts", J. Chem. Phys., 103, 3561-3578, (1995).

- [218] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R., Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Jr.Vreven, T.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, N.; Staroverov, V.N.; Kobayashi, R.; Normand, J., Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin; L.R.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; and Fox, D.J. Gaussian Inc., Wallingford, CT., (2009).
- [219] GaussView, Version 5, Roy Dennington, Todd Keith and John Millam, Semichem Inc., Shawnee Mission KS, (2009).
- [220] Lee, S.Y., "Molecular Structure and Vibrational Spectra of Biphenyl in the Ground and the lowest Triplet States. Density Functional Theory Study", Bull. Korean chem. Soc., 19(1), 93-98, (1998).
- [221] Gökce, H., Bahçeli, S., Akyıldırım, O., Yüksek, H., "3-Benzil-4-[3-metoksi-4-(4-metilbenzoksi)-benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on Bileşiğinin Molekül Yapısı, Spektroskopik Özellikleri ve Kuantum Kimyasal Hesaplamaları", Adım Fizik Günleri - 2012, Pamukkale Üniversitesi, Denizli, Nisan 26-28, (2012).
- [222] Akyıldırım, O., Yüksek, H., Gökce, H., Bahçeli, S., "1-Asetil-3-benzil-4-[3-metoksi-4-(4-metilbenzoksi)benzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5on Bileşiğinin Molekül Yapısı, Spektroskopik Özellikleri ve Kuantum Kimyasal Hesaplamaları", Fizik Günleri, 2012, Pamukkale Üniversitesi, Denizli, Nisan 26-28, (2012).
- [223] Akyıldırım, O., Yüksek, H., Gökçe, H., Bahçeli, S., "The molecular structure, spectroscopic properties and quantum chemical calculations of 1-acetyl-3methyl-4-[3-methoxy-4-(4-methylbenzoxy)benzylidenamino]-4,5-dihydro-1*H*-1,2,4-triazol-5-ones molecule, 2nd International Conference on Computation for Science and Technology, Niğde, Turkey, PP-17, July 9-11, (2012).
- [224] Gökçe, H., Bahçeli, S., Akyıldırım, O., Yüksek, H., "The molecular structure, spectroscopic properties and quantum chemical calculations of 3-methyl-4-[3methoxy-4-(4-methylbenzoxy)benzylidenamino]-4,5-dihydro-1*H*-1,2,4triazol-5-ones molecule, 2nd International Conference on Computation for Science and Technology, Niğde, Turkey, PP-18, July 9-11, (2012).

- [225] İkizler, A. A., "Organik Kimyaya Giriş", Dördüncü Baskı, KTÜ Basımevi, Trabzon (1996).
- [226] Fessenden, R. J., Fessenden, J. S., "Organic Chemistry", Third Edition, Brooks, Cole Publishing Company, California (1986).
- [227] Ternary, A. L., "Contenporary Organic Chemistry", Second Edition, W. B. Sounders Company, Philadelphia (1979).

EKLER

Ek Şekil 1. 5 Bileşiğinin IR spektrumu

Ek Şekil 2. 5 Bileşiğinin¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 3. 5 Bileşiğinin¹³C-NMR (DMSO-d₆)spektrumu

Ek Şekil 4. 6 Bileşiğinin IR spektrumu

Ek Şekil 5. 6 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 6. 6 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 7. 7 Bileşiğinin IR spektrumu

Ek Şekil 8. 7 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 9. 7 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 10. 8 Bileşiğinin IR spektrumu

Ek Şekil 11. 8 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 12. 8 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 13. 9 Bileşiğinin IR spektrumu

Ek Şekil 14. 9 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 15. 9 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 16. 10 Bileşiğinin IR spektrumu

Ek Şekil 17. 10 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 18. 10 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 19. 11 Bileşiğinin IR spektrumu

Ek Şekil 20. 11 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 21. 11 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 22. 12 Bileşiğinin IR spektrumu

Ek Şekil 23. 12 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 24. 12 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 25. 13 Bileşiğinin IR spektrumu

Ek Şekil 26. 13 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 27. 13 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 28. 15 Bileşiğinin IR spektrumu

Ek Şekil 29. 15 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 30. 15 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 31. 16 Bileşiğinin IR spektrumu

Ek Şekil 32. 16 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 33. 16 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 34. 17 Bileşiğinin IR spektrumu

Ek Şekil 35. 17 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 36. 17 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 37. 18 Bileşiğinin IR spektrumu

Ek Şekil 38. 18 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 39. 18 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 40. 19 Bileşiğinin IR spektrumu

Ek Şekil 41. 19 Bileşiğinin ¹H-NMR (DMSO-d₆) spektrumu

Ek Şekil 42. 19 Bileşiğinin ¹³C-NMR (DMSO-d₆) spektrumu

Ek Şekil 57. 5 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF(DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 58. 6 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 59. 7 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 60. 8 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 61. 9 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 62. 10 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 63. 11 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 64. 12 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 65. 13 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 66. 15 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 67. 16 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 68. 17 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 69. 18 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleri kullanılarak deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 70. 19 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 71. 21 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 72. 22 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 73. 23 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 74. 24 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 75. 25 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 76. 26 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 77. 27 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 78. 28 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 79.30 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 80. 31 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 81. 32 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 82. 33 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 83. 34 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 84. 36 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 85. 37 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması

Ek Şekil 86. 38 Bileşiğinin B3LYP, HF, B3LYP(DMSO) ve HF (DMSO) yöntemleriyle deneysel ve teorik ¹³C-NMR ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması
<u>ÖZGEÇMİŞ</u>

Adı Soyadı	: Gül KEMER
Adresi	: Kafkas Üniversitesi, Fen-Edebiyat Fakültesi, Kimya Bölümü
Doğum Yeri	: Kars/Arpaçay
Doğum Tarihi	: 06.03.1983
Yabancı Dil	: İngilizce

<u>Eğitim Durumu</u>

Lise : Kars Fen Lisesi

Lisans : Atatürk Üniversitesi (Erzurum)

Yüksek Lisans: Kafkas Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Organik Kimya Bilim Dalı

Uluslararası Dergilerde Yayınlanan Makale:

1. Yüksek, H., Gürsoy Kol, Ö., **Kemer, G**., Ocak, Z., Anıl, B., "Synthesis and *in-vitro* antioxidant evaluation of some novel 4-(4-substituted)benzylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones", Indian J. Heterocy. Ch., 20: 325-330 (2011).

<u>Uluslararası Bilimsel Toplantılarda Sunulan ve Bildiri Kitabında Basılan</u> <u>Bildiriler</u>:

1. Kemer, G., Yüksek, H., Kayalar, M.T., "B3LYP density functional calculations of ¹H and ¹³C nuclear shielding constants of some 4,5-dihydro-1*H*-1,2,4-triazol-5-one derivates", 2-nd International Conference on Organic Chemistry: "Advances in Heterocyclic Chemistry", GeoHet-2011, Tbilisi, Georgia, PP 65, (2011).

2. Aytemiz F., Yüksek, H., Gürsoy-Kol, Ö., Polat, A., Okkalı, İ., **Kemer, G**., "*In-vitro* antioxidant activities of some 4-(4-benzoxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives", 10th International Symposium on Pharmaceutical Sciences (ISOPS-10), Ankara, Turkey, Book of Abstracts, P-35, (2012).

3. Kemer, G., Yüksek H. "The investigation of spectroscopic properties of 3-benzyl-4-(3,4-dihydroxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one using B3LYP and HF basis set", MolChem2014 International Symposium on Molecular Chemistry, İstanbul, Turkey, PP-78, (2014).

Ulusal Bilimsel Toplantılarda Sunulan ve Bildiri Kitaplarında Basılan Bildiriler:

1. Kemer, G., Yüksek H., Baykara. H., "Bazı potansiyel biyolojik aktif tiyadiazol türevlerinin sentezi", XX. Ulusal Kimya Kongresi, Kayseri, OKP-134, (2006).

2. Yüksek, H., Elmastaş, M., **Kemer, G**., Aktaş, Ö., Gürsoy Kol, Ö., "Bazı 4-(4etilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin sentezi ve antioksidan özellikleri", 21.Ulusal Kimya Kongresi, Malatya, BIY036P, (2007)

3. Yüksek, H., **Kemer, G**., Ocak Z., "Bazı 4-(4-etilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin susuz ortamda pK_a değerlerinin tayini", 23.Ulusal Kimya Kongresi, Sivas, OP-082, (2009).

4. Kemer, G., Yüksek, H., Tokalı, F.S., Gürsoy-Kol Ö., Manap, S., "Bazı yeni 1-asetil-3-alkil(aril)4-(4-etilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin sentezi ve *in-vitro* Antioksidan Özelliklerinin İncelenmesi", 24. Ulusal Kimya Kongresi, Zonguldak, OP 288, (2010).

5. Yüksek, H., Kayalar, M.T., **Kemer, G.**, "Bazı 4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiklerinin NMR spektrumlarının deneysel ve teorik olarak incelenmesi", 25. Ulusal Kimya Kongresi, Erzurum, OP 132, (2011).

6. Kotan, G., Yüksek, H., Kayalar, M.T., "Gaussian 03W programi ile 3-etil-4-[2-(4nitrobenzoksi)-3-metoksibenzilidenamino]-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiğinin spektral verilerinin incelenmesi", XIII. Ulusal Spektroskopi Kongresi, Burdur, P53, (2013).

7. Kotan, G., Yüksek, H., "3-fenil-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on bileşiğinin DFT ve HF metodlarına göre titreşim frekanslarının teorik ile deneysel değerlerinin karşılaştırılması ve bazı teorik verilerin incelenmesi", Uluslararası Katılımlı I. Ulusal Hesaplamalı Kimya Çalıştayı, Van, P27, (2014).

8. Alkan, M., Gürbüz, A., Yüksek, H., **Kotan, G.**, "Gaussian 09W programı kullanılarak yeni 3-metil-4-(2-asetoksi-3-metoksi)benzilidenamino-4,5-dihidro-1*H*-1,2,4-triazol-5-on molekülünün deneysel ve teorik özelliklerinin incelenmesi", Uluslararası Katılımlı I. Ulusal Hesaplamalı Kimya Çalıştayı, Van, P60, (2014).