KAFKAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FİZİK ANABİLİM DALI

2,3-2,4-2,5-2,6-DİFLOROFENİLBORONİK ASİT MOLEKÜLLERİNİN YAPISAL ELEKTRONİK VE LİNEER OLMAYAN ÖZELLİKLERİNİN DENEYSEL VE TEORİK İNCELENMESİ

HİLAL YENİCE GÖKTAŞ

YÜKSEK LİSANS TEZİ

DANIŞMAN

Dr. Öğr. Üyesi Güventürk UĞURLU

ŞUBAT-2019

KARS

T.C.

T.C. KAFKAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FİZİK ANABİLİM DALI

2,3-2,4-2,5-2,6-DİFLOROFENİLBORONİK ASİT MOLEKÜLLERİNİN YAPISAL ELEKTRONİK VE LİNEER OLMAYAN ÖZELLİKLERİNİN DENEYSEL VE TEORİK İNCELENMESİ

HİLAL YENİCE GÖKTAŞ

YÜKSEK LİSANS TEZİ

DANIŞMAN Dr. Öğr. Üyesi Güventürk UĞURLU

Bilimsel Araştırma Projeleri Koordinasyon birim tarafından 2015-FM-21 nolu proje ile desteklenmiştir.

ŞUBAT-2019

KARS

T.C. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Fizik Ana Bilim Dalı Yüksek Lisans öğrencisi Hilal YENİCE GÖKTAŞ 'ın Dr.Öğr. ÜyesiGüventürk UĞURLU ' nun danışmanlığında yüksek lisans tezi olarak hazırlandığı " 2,3 - 2,4 - 2,5 - 2,6 -DİFLOROFENİLBORONİK ASİT MOLEKÜLLERİNİN YAPISAL ELEKTRONİK VE LİNEER OLMAYAN ÖZELLİKLERİNİN DENEYSEL VE TEORİK İNCELENMESİ " adlı bu çalışma, yapılan tez savunması sınavı sonunda jüri tarafından Lisans Eğitim Yönetmeliği uyarınca değerlendirilerek oy birliği ile kabul edilmiştir.

08 /02/ 2019

Adı ve Soyadı

Başkan : Dr.Öğr. ÜyesiGüventürk UĞURLU

Üye : Doç.Dr. Engin ATEŞER

Üye : Dr.Öğr. Üyesi Gülçin BİLGİCİ CENGİZ

Jumututh Dyckn Por

Bu tez kabulü, Fen Bilimleri Enstitüsü Yönetim Kurulunun/ 2019 gün ve/ sayılı kararı ile onaylanmıştır.

Doç.Dr. Fikret AKDENİZ

Enstitü Müdürü V.

ETİK BEYAN

Kafkas Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,
- Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,
- Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,
- Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- > Bu tezde sunduğum çalışmanın özgün olduğunu,

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

ii

Hilal YENİCE GÖKTAŞ 08/ 02 / 2019

ÖZET

(Yüksek Lisans Tezi)

2,3-2,4-2,5-2,6-DİFLOROFENİLBORONİK ASİT MOLEKÜLLERİNİN YAPISAL ELEKTRONİK VE LİNEER OLMAYAN ÖZELLİKLERİNİN DENEYSEL VE TEORİK İNCELENMESİ

HİLAL YENİCE GÖKTAŞ

Kafkas Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı

Danışman: Dr. Öğr. Üyesi Güventürk UĞURLU

Bu tez çalışmasında 2,3-diflorofenilboronik asit (I), 2,4-diflorofenilboronik asit (II), 2,5-diflorofenilboronik asit (III) ve 2,6-diflorofenilboronik asit (IV) moleküllerinin en düşük enerjili konformasyonunu belirlemek için DFT-B3LYP / 6-31G teori seviyesi ile potansiyel enerji yüzeyleri hesaplatıldı. Her bir molekül için elde edilen en düşük enerjili konformasyonları 6-311++G (d,p) temel seti kullanılarak hem Density Functional Theory (DFT/ B3LYP) hemde ab initio Hartree-Fock (HF) metotlarında optimize edildi.Daha sonra, incelenen moleküllerin temel hal geometrik enerji, titreşim frekansları, dipol momenti (μ), polarize edilebilirlik (α), hiperpolarize edilebilirlik (β), işgal edilen en yüksek moleküler orbital (HOMO) ve en düşük boş moleküler orbital (LUMO) değerleri her iki yöntemde de hesaplatıldı. Ayrıca, 2,4-diflorofenilboronik asit molekülünün FT-IR ve FT-Raman spektrumları deneysel olarak kaydedildi. Bunlara ek olarak, elde edilen optimize yapı ile GIAO yöntemine göre ¹H-NMR ve ¹³C-NMR kimyasal kayma değerleri B3LYP / 311 + + G (2d, p) ve Hartree Fock HF / 6-31G teori

düzeyinde hesaplandı Teorik ve deneysel IR ve Raman spektrumları çizildi. I, II, III ve IV moleküllerinin enerji bant aralığı ($\Delta E = E_{LUMO}-E_{HOMO}$) sırasıyla DFT-B3LYP/6-311++ G (d,p) yönteminde 5.717, 5.998, 5.546, 5.879 eV ve HF/6-311++G (d,p) yönteminde 10.668, 10.878, 10.613, 10.824 ev olarak hesaplandı. Titreşim modlarının işaretlenmesi için toplam enerji dağılımı (TED) VEDA4f programı kullanılarak hesaplandı. Teorik olarak hesaplanan yapı parametrelerinin değerleri literatürdeki deneysel verilerle kararlaştırılmıştır. Bütün hesaplama çalışmaları Gaussian 09W programı ile yapılmıştır.

Anahtar Kelimeler: 2,3-diflorofenilboronik asit, 2,4-diflorofenilboronik asit, 2,5-diflorofenilboronik asit, 2,6-diflorofenilboronik asit, E_{LUMO} - E_{HOMO} , DFT, HF.

2019, 106 Sayfa

ABSTRACT

(M. Sc. Thesis)

EXPERIMENTAL AND THEORETICAL INVESTIGATION OF STRUCTURAL ELECTRONICS AND NONLINEAR PROPERTIES OF 2,3-2,4-2,5-2,6-DIFLOROPHENYLBORONIC ACID MOLECULES

HİLAL YENİCE GÖKTAŞ

Kafkas University Graduate School of Applied and Natural Sciences Department of Physics

Supervisor: Güventürk UĞURLU

In this study, 2,4-difluorophenylboronic acid molecule have been characterized by Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman), and, ¹H, ¹³C nuclear magnetic resonance (NMR) and UV-Vis. spectroscopy techniques. Density Functional Theory (DFT), using B3LYP functional and*ab* initioHartree-Fock (HF) calculations have been performed to characterize the ground state geometrical energy, the dipole moment (μ), mean polarizability (α), the total first static hyperpolarizability (β), highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of 2,3-difluorophenylboronic acid (**I**), 2,4-difluorophenylboronic acid (**II**), 2,5-difluorophenylboronic acid (**III**), 2,6-difluorophenylboronic acid (**IV**) molecules using the 6-311++G (d,p) basis set.¹H and ¹³C NMR chemical shifts were calculated by using the gaugein dependent atomic orbital (GIAO) method by using the DFT with B3LYP functional and HF methods, where the 6-311+G (2d, p) and 6-31G (d) basis sets were employed. All computational studies have been performed with the Gaussian 09W program. In addition, using the calculated the highest occupied molecular orbital energies ($E_{\rm HOMO}$) and the lowest unoccupied molecular orbital energies ($E_{\rm LUMO}$), electronic properties of the studied molecules such as energy gap ($\Delta E = E_{\rm LUMO}$ - $E_{\rm HOMO}$), chemical potential, electrophilic index, ionization potential, electron affinity, electronegativity, molecular softness, molecular hardness were obtained. The energy gap ($\Delta E_{\rm gap} = E_{\rm LUMO}$ - $E_{\rm HOMO}$) of **I**, **II**, **III** and **IV** molecules have been calculated at 5.717, 5.998, 5.546 and 5.879 eV with DFT-B3LYP/6-311++ G (d,p), and 10.668, 10.878, 10.613 and 10.824 ev.with HF/6-311++G (d,p) level of theory, respectively.

Key Words: 2,3-difluorophenylboronic acid, 2,4-difluorophenylboronic acid, 2,5-difluorophenylboronic acid, 2,6-difluorophenylboronic acid, E_{LUMO} - E_{HOMO} , DFT, HF.

2019, 106 pages

ÖNSÖZ

Bu çalışmada Kafkas Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim dalında yüksek lisans tezi olarak hazırlanmıştır.

Çalışmada 2,3-2,4-2,5-2,6- Diflorofenilboronik Asit Moleküllerinin Yapısal Elektronik ve Lineer Olmayan Özelliklerinin Deneysel ve Teorik olarak incelenmiştir. Bu tez çalışması Bilimsel Araştırma Projeleri Koordinasyon birim tarafından **2015-FM-21** nolu proje ile desteklenmiştir.

Tez çalışmamda bilgi birikimi ve tecrübesiyle bana her zaman destek olan danışmanım ve değerli hocam Sayın Dr. Öğr. Üyesi Güventürk UĞURLU ' ya ve bölümümdeki tüm hocalarıma teşekkürlerimi sunarım.

Çalışmalarım esnasında maddi, manevi desteklerini ve yardımlarını hep hissettiğim aileme ve eşime teşekkürlerimi sunarım.

İÇİNDEKİLER

Sayfa no

ÖZETii
ABSTRACTv
ŞEKİLLER DİZİNİx
TABLOLAR DİZİNİxi
1.GENEL BILGILER 1
1.1. GİRİŞ 6
1.1.1. Hartree–Fock Yöntemi (HF)9
1.1.2. Varyasyon Metodu 10
1.1.3. LCAO (Linear Combination of Atomic Orbitals) Yaklaşımı 12
1.1.4. Yoğunluk Fonksiyon Teorisi (DFT) 15
1.1.5. Thomas – Fermi Teorisi
1.1.6. Hohenberg-Kohn Yaklaşımı 19
1.1.7. Kohn–Sham Yaklaşımı 21
1.1.8. Yerel Yoğunluk Yaklaşımı (LDA) 21
1.1.9. Genelleştirilmiş Gradyent Yaklaşımı (GGA) 23
1.1.10. B3LYP Karma Yoğunluk Fonksiyonel Teorisi 25
1.1.11. Baz Setleri
1.11.1.1. Minimal Baz Seti
1.1.11.2. Bölünmüş Valans Baz Seti (Splıt – Valance Basıs Set) 28
1.1.12. Difüzyon Fonksiyonları
1.1.13. Polarizasyon Fonksiyonları (Kutuplanma) 31
1.1.14. Doğrusal ve Doğrusal Olmayan Optik Özellikler 31
1.1.15. Molekül Geometrisi ve Optimizasyon 33
2. MATERYALVE METOT
2.1. Metot
2.2. Materyal
3. BULGULAR
3.1. Potansiyel Enerji Yüzeyi (PES) 40
3.2. Yapısal Parametreler

ÖZGECMİŞ	91
EKLER	83
5.KAYNAKLAR	.77
4.TARTIŞMA VE SONUÇ	74
3.6. Nükleer Manyetik Rezonans Spektroskopisi	70
3.5. Homo-Lumo Enerji Farkları	68
3.4. Molekülün Titreşim Dalga Sayıları ve İşaretlemeleri	59
3.3. Moleküllerin IR ve Raman Spektrumları	53

ŞEKİLLER DİZİNİ

Sayfa no

Şekil 1.1: Bölünmüş valans Bant Fonksiyonunun Yapısı [28]	29
Şekil 1.2: Baz Setinin 4- 31 G Seviyesi için Gösterimi[28]	30
Şekil 1.3: Elektronik Enerji Fonksiyonu [33]	34
Şekil 2.1: Diflorofenilboronik Asit Molekülünün Kimyasal Konfigürasyonu	37
Şekil 2.2: 2,3- Diflorofenilboronik Asit Molekülünün Optimizasyon Durumu	38
Şekil 2.3: 2,4- Diflorofenilboronik Asit Molekülünün Optimizasyon Durumu	38
Şekil 2.4: 2,5- Diflorofenilboronik Asit Molekülünün Optimizasyon Durumu	39
Şekil 2.5: 2,6- Diflorofenilboronik Asit Molekülünün Optimizasyon Durumu	39
Şekil 3.1: 2,3- Diflorofenilboronik Asit Molekülünün Potansiyel Yüzeyi (PEY)	44
Şekil 3.2: 2,4- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY)
	44
Şekil 3.3: 2,5- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY))
	45
Şekil 3.4: 2,6- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY))
	45
Şekil 3.5: 2,3- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri	46
Şekil 3.6: 2,4-Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri	46
Şekil 3.7: 2,5- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri	47
Şekil 3.8: 2,6- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri	47
Şekil 3.9: 2,4- Diflorofenilboronik Asitin Raman Deneysel Ölçümü [36]	54
Şekil 3.10: 2,3- Diflorofenilboronik Asit DFT Raman Grafiği	54
Şekil 3.11: 2,4-Diflorofenilboronik Asit DFT Raman Grafiği5	55
Şekil 3.12: 2,5-Diflorofenilboronik Asit DFT Raman Grafiği	55
Şekil 3.13: 2,6- Diflorofenilboronik Asit DFT Raman Grafiği	56
Şekil 3.14: 2,4- Diflorofenilboronik Asitin IR Deneysel Ölçümü [37]5	57
Şekil 3.15: 2,3-Diflorofenilboronik Asit DFT IR Grafiği	57
Şekil 3.16: 2,4- Diflorofenilboronik Asit DFT IR Grafiği	58
Şekil 3.17: 2,5- Diflorofenilboronik Asit DFT IR Grafiği	58
Şekil 3.18: 2,6- Diflorofenilboronik Asit DFT IR Grafiği	59
Şekil 3.19: Molekülerin en yüksek dolu ve en düşük boş orbitallerinin üç boyutlu(3D)	
çizimi	59

TABLOLAR DİZİNİ

Tablo 3.1: Diflorofenilboronik Asit Hesaplamaları 43
Tablo 3.2: 2-X-DiFlorofenilboronik Asit Molekülünün Denge durumu Elektronik
enerjisi (a.u), Dipol momenti (μ (D)), Polarizebilitesi (α (a.u)) ve Hiperpolarizebilitesi
$((\beta (a.u))$
Tablo 3.3: 2,3-Diflorofenilboronikasit Toplam Enerji Dağılımı62
Tablo 3.4: 2,4-Diflorofenilboronikasit Toplam Enerji Dağılımı63
Tablo 3.5: 2,5-Diflorofenilboronikasit Toplam Enerji Dağılımı64
Tablo 3.6: 2,6-Diflorofenilboronikasit Toplam Enerji Dağılımı
Tablo 3.7: 2-X Diflorofenilboranik asit molekülünün HF / 6-311 ++ G(d,p) setinde
frekans değerleri (cm-1)66
Tablo 3.8: 2-X Diflorofenilboranik asit molekülünün HF / 6-311 ++ G(d,p) setinde
frekans değerleri (cm-1)67
Tablo 3.9: 2-X - DiFlorofenilboronik Asit 2,3 - diflorofenilboronik Asit, 2,4-
diflorofenilboronik Asit, 2,5-diflorofenilboronik Asit, 2,6-diflorofenilboronik Asit
Molekülünün Denge durumu Homo-Lumo enerjileri ve enerji farkı ΔE (eV) değerleri
(X(F)=R3, R4, R5, R668
Tablo 3.10: 2-X DiFlorofenilboronik Asit Molekülünün HF / 6-311++G (d,p) setinde
optimize edilmiş NMR değerleri (X (F) = R3, R4, R5, R6)73

SİMGELER VE KISALTMALAR DİZİNİ

Simgeler ve Kısaltmalar

Ε	Hamiltonyen işlemcisi öz değeri
Ψ	Dalga fonksiyonu
F	Fock operatörü
$arphi_{\mu}$	Atomik orbital
ρ	Elektron yoğunluğu
$C_{\mu i}$	Moleküler orbital açılım katsayısı
E^{T}	Kinetik enerji
E^{ν}	Potansiyel enerji
E ^j	Elektron- elektron itme enerjisi
E ^{XC}	Değiş-tokuş ve korelâsyon enerjisi
→ E	Dış elektrik alan
α_{ij}	Polarizebilite tensörü
β_{ijk}	Hiper polarizebilite tensörü
μ	Dipol moment
A^0	Angstrom

a.u	Atomik Birim
HF	Hartree Fock
DFT	Yoğunluk Fonksiyon Teoremi
B3LYP	LYP Korelasyon Enerjili 3 Parametreli Becke Karma Metodu
НОМО	En Yüksek Dolu Moleküler Orbital
LUMO	En Düşük Boş Moleküler Orbital
МО	Moleküler Orbital
LCAO	Atomik Orbitallerin Lineer Kombinasyonu
LDA	Yerel Yoğunluk Fonksiyonu Yaklaşımı
GGA	Genelleştirilmiş Grandyent Yaklaşımları
SCF	Öz Uyumlu Alan
PES	Potansiyel Enerji Yüzey

1.GENEL BİLGİLER

Madde, aynı veya ayrı atomların kimyasal bağlar yaparak oluşturdukları moleküllerden oluşur. Molekülün yapı ve özelliklerinin belirlenmesi, molekülün kimyasal reaksiyon yeteneği ve oluşturduğu madde hakkında bilgi verir. Molekülün reaksiyon yeteneği atomların elektron bulutu dağılımı ile ilgilidir. Bu dağılımı belirlemek molekülün geometrisini yani uzaydaki yapısını belirlememize olanak sağlar. Molekülün geometrik yapısı ile molekülün simetrik özellikleri, geometrik yerleşimi ve yerleşimdeki düzenler belirlenir. Molekülün elektriksel özelliği, molekülün optik özellikleri molekülün iç özelliklerini inceler. Molekülün optik özellikleri molekülün iç özelliklerinin dış etki ile maddenin elektromanyetik dalgalarla (morötesi, kızılötesi vb.)karşı yapısal özelliklerini incelememizi sağlar. Molekülün optik özelliği, molekül titreşimini, ışığın moleküler saçılmasını, kırılma indisiyle elektrik alanda değişimi gibi özelliklerini verir. Manyetik özelliği ise manyetik veya dia manyetikliği, manyetik alanda kalan molekülün elektron ve kimyasal özelliklerini belirlememizi sağlar [1].

Maddelerin kullanılmasında maddenin kimyasal özelliği ve yapısı önemli bir ölçüttür. Herhangi bir malzeme yapımında, malzemeden elde edilen verimin optimum olabilmesi için, kullanılan maddelerin kimyasal yapıları hakkında bilgi sahibi olmalıyız. Bu nedenle malzemenin yapısını oluşturan maddeler kimyasal özellik ve yapılarına göre seçilir. Malzemenin kullanım amacına göre istenilen özelliklere sahip tek bir malzeme üretilmek amaçlanır. Teorik ve deneysel olarak malzemeyi oluşturan atomlar veya moleküllerin fiziksel ve kuantum kimyasal özellikleri hesaplanabilir. Yapılacak yeni çalışmalar materyalin fiziksel özelliklerinin daha iyi anlaşılmasını sağlayacak aynı zamanda bu materyal ile yapılacak yeni çalışmalara yardımcı olacaktır. Son yıllarda, dünya rezervlerinin büyük bir kısmı ülkemizde bulunan bor minareleri, kullanım alanlarının artmasından dolayı her geçen gün borlu bileşiklerle ilgili çalışmaların önem kazanmaktadır.

Doğada yaklaşık 230 bor minerali mevcuttur. Türkiye'de yaygın olarak bulunan bor mineralleri sodyum bazlı tinkal, kalsiyum bazlı kolemanit ve sodyum-kalsiyum bazlı üleksittir. Bu bileşikler fiziksel işlemlerle (konsantrebor) zenginleştirilip rafine edilerek çeşitli bor kimyasallarına dönüştürülür [2].

Sodyum bazlı bileşikler; cam, metalürji, kozmetik, ilaç, tarım, temizlik, tekstil gibi birçok alanda kullanılır. Kalsiyum bazlı bileşikler ise cam, metalürji, nükleer, tekstil ve fiberglas alanında, sodyum- kalsiyum bazlı bileşikler ise selülozik, izolasyon, fiberglas, metalürji, nükleer ve cam gibi birçok alanda kullanılmaktadır. Günümüzde yaklaşık 500 farklı alanda bor ve bileşikleri kullanılmaktadır. Dünya bor rezervleri bakımından Türkiye %72'lik oranla birinci ülkedir. Türkiye'yi %8'lik oranla Rusya ve %6'lık oranla ABD ülkeleri ve diğer ülkeler takip etmektedir. Ekonomik anlamda dünyadaki arz-talep dengelerine göre Türkiye'nin rezerve bakımından ilk sırada yer aldığı ve bor ekonomisini belirleyen ülke olduğu görülmektedir ancak bor elementini işletme konusunda yetersiz kalmıştır. Bor elementini işletmek için ileri teknoloji gerektiği bilinmektedir. Türkiye gerçek anlamda rekabet üstünlüğü sağlamak için, yüksek katma değerde özellikli bor bileşikleri üzerinde yoğunlaşarak ileri teknolojiyi kullanmalıdır. Tübitak, MTA ve ulusal düzeyde yapılan çalışmalar git gide artsada bunlar henüz yeterli değildir.

Boronik asitlerle ilgili çalışmalar ise 1912 yılında bor hibritlerinin elde edilmesiyle Alfred Stock tarafından başlamıştır. Fenilboronik asit ise ilk olarak 1860 yılında Frankland tarafından bulunmuş.1880 yılında Michealis ve Becker tarafından sentezlenmiştir1954 yılında ise Kuivala ve arkadaşları fenilboronik asit ve diolleri ilk bileşiklerini keşfetmiştir [3,4].

Fenilboronik asit için yapılan birçok çalışma vardır bunlardan bazıları ise;

Ketil J.Flanagan ve arkadaşları dörtlü fenilboranik asidin (metaksikarbonil) kristal yapısını incelemiş ve bağ uzunlukları, açılarını raporlamıştır [5].

Güventürk Uğurlu ve arkadaşları 4-methoxcarbon fenilboronik asidin taban durumu geometrik enerjisini, titreşim frekanslarını, konformosyon analizini, dipol momentini, polarizibilite ve statik hiperpolarizibilite olabilirliğini, homo-lumo enerji farklarını inceleyerek, bağ uzunluklarını, açılarını ve dihedral açıları gibi yapısal parametrelerini literatürdeki verilerle karşılaştırmışlardır [6].

Araceli Vega ve arkadaşları 3-amino fenilboronik asit için çalışmalarında şunları dile getirmiştir. 3-Aminofenilboronik asit birbiri yerine kullanılan fenilboronik asit türevleri,esas alınarak, organik sentezde ve biyokimyasal olarak aktif molekül olarak tanınması için kullanılmıştır. Son yıllarda, bu tür boranik asit türevleri makrokolik ve polimerik grupların kendiliğinden birleşmesi için de dikkat çekicidir. Bu amaçla, boronik asit genelde alifatik ve aromatik diol ile yoğunlaşma yoluyla esterlere dönüştürülür daha sonra B-fenil halkasına bağlı ek fonksiyonel grubun reaksiyonu ile bir makromolekül yapıya birleştirilir ve kafes üretimi için 3-aminofenil boronik asit kullanılır [7].

Sasmita Das ve arkadaşları 4-Amino-3-florofenil boronik asit; amin grubunu koruyarak ve lityum-brom değişimi için trimetil borat bağımlılığını ve asidik hidroliz ile 4-bromo-2-floroaniline'den sentezlemişlerdir ve %47 verim elde etmişlerdir. X-ray kristal yapısını da ölçmüşlerdir[8]. Özgür Alver ve Mehmet Fatih Kaya I-2B(OH)2'nin kararlı konformeleri ve molekül yapılarını, FT-IR ve FT-Raman spektroskopik yöntemlerle deneysel ve teorik incelemişlerdir. İncelenen molekül belli FT-IR ve FT-Raman spektra bölgesinde kaydedilmiş, optimize edilerek temel yapı,6-31++G(d,p) temel setinde DFT ve B3LYP ile araştırılmıştır. Deneysel ve teorik sonuçlarla, titreşimsel dalgalanmaların öngörmek için tatmin edici sonuçlar verdiğini göstermişler ve muhtemelen yüksek dalga sayısı bölgesinde artan uyumsuzluk ve alt kenarlarında olası intra ve inter moleküler inteksiyondan kaynaklanmakta olduğunu söylemişlerdir [9].

Serap uzun ve arkadaşları kilinolin türevinin biyolojik molekül farklı çerçevelerde çizgisel olmayan optik davranışlarını yoğunluk fonksiyoneli teorisi ile incelemiş ve 2amino-4-(4-klorofenil)-5,6 [H] kinolin-3-karbonotril kristalinin moleküler yapısını tek kristal X-ışını kırınım yöntemiyle deneysel olarak incelemişlerdir. İncelenen moleküllerin moleküler geometrisi, bağ uzunlukları ve bağ açılarna bakıldığında DFT'nin denevsel sonuclarla ufak farklılıkları dışında uyum içinde olduğunu, molekülün MEP haritasına bakıldığı zaman amino grubu hidrojenleri civarında nükleofilik atak için en uygun bölge olduğunu, çözücü polaritesiyle molekülün HOMO-LUMO enerji aralığı daralmakta ve hiper-kutupsanabilirlik değerlerinin artmakta olduğunu ifade etmişlerdir [10]. Patrica Rodriguez ve arkadaşları 4diflorofenilboronik asit calısmalarında 3–florofenilboronik asit, 2,6-diflorofenilboronikasit ve pentaflorofenilboronik asit yapılarını raporlamışlardır. Patrica Rodriguez ve arkadaşları 2,4-diflorofenilboronik asit için, C6H5BF2O2'nin moleküler yapısını esasen düzlemseldir ve dihidurrxyborly grubu ile aramatik halka arasındaki elektronik delokalizasyonu gösterir. Bu kristal yapısında iki O-H hidrojen bağı ile bağlanan inversiyon dimerleri ortaya çıkar. Bir molekül arası O-H-O hidrojen bağı, konformasyonu güçlendirir ve aynı H atomu kristal içinde moleküler tabakalara yol açan molekül arası O-H-F bağlantısında da yer alabildiğini söylemiştirler [11].

E.B.Sas.ve arkadaşları çalışmalarında 5-bromo-2-ethox fenil boronik asidin FT-IR ve FT-Raman spektrumlarını sırasıyla 4000-4000 cm⁻¹ ve 3500-10 cm⁻¹ bölgesinde katı fazda kaydettiler. 5Br2EPBA molekülünün ¹*H* ve ¹³*CNMR* kimyasal değişimleri, en kararlı konformerin monomer ve dimer yapıları için DMSO ve gaz fazındaki GIAO metodu kullanılarak hesaplanmıştır. Ayrıca, HOMO ve LUMO enerjileri ve moleküler elektrostatik potansiyel yüzey gibi elektronik özelliklerde ortaya çıkarılmıştır. Hiper – konjugatif etkileşimlerden kaynaklanan molekül stabilitesi, yük delokalizasyonu doğal bağ orbital analizi kullanılarak analiz eder. Doğrusal olmayan optik özellikler ve termodinamik özellikler sunulmaktadır. Tüm hesaplanan sonuçlar başlık molekülünün deneysel sonuçların korelasyonu, başlık molekülünün yapısal ve fizyokimyasal özellikleri ayrıntılı bir açıklamasını sağlamışlardır [12].

Bu çalışmamızda, GAUSSIAN 09 paket programında, hartre-fock (HF) ve yoğunluk fonksiyonu teorisi (DFT)ile 6-311++G(d,p) temel seti kullanarak 2-3,2-4,2-5,2-6diflorofenil boronik asit molekülünün geometrik optimizasyonları yapılmış ve yapısal parametreleri, elektronik enerji, dipol moment, polarizibite, hiperpolarizibite, titreşim ve HOMO-LUMO değerleri hesaplanmıştır. Moleküllerin potansiyel enerji yüzeyleri (PES) ve potansiyel enerji eğrileri denge durumunda incelendi. Ayrıca 2-4 diflorofenilboronik asit molekülü hem IR ve hemde Raman spektrumları deneysel olarak kayıt edilmiş ve elde edilen sonuçlar teorik değerlerle karşılaştırılmıştır.

1.1. GİRİŞ

Alfred stock ve arkadaşları 1912 yılında bor hibritlerinin elde edilmesi için çalışmalar yapmışlardır.1936 yılına kadar B_nH_{n+4} ve B_nH_{n+6} şeklinde iki tür bileşik elde edip bunlara boran adını vermişlerdir. Yani borun hidrojenle yaptığı bileşiklere boran denir. Boranlar kolay yanan zehirli bileşiklerdir [3,13-15].

Günümüzde tanımlanmış,18 adet boran bulunmaktadır. Boranlar yapılarında ki bor atomu sayısına göre isim alırlar. Örneğin: B₂H₆diboran, B₄H₈ tetraboran, B₅H₁₁ pentaboran, B₁₀H₁₄ dekaboran gibi. Boranların en önemlileri diboran, pentaboran ve dekaborandır [16]. BH₃ serisi henüz elde edilmemiştir, bu bileşik kararlı yapıda olmadığı için en basiti diboran B_2H_6 -165 ^oc'da donar -92,5 ^oc'da kaynar. Birincil tür boranlar B_nH_{n+4} daha kararlı yapıdadır. B_2H_6 , gaz, B₅H₉ sıvı, B₁₀H₁₄ ise katı hale doğru bir değişim gözlemlenir [13-17].

Boranların

- 1.Yükseltgenme ürünü borinik asit,
- 2. Yükseltgenme ürünü boronik asit,
- 3. Yükseltgenme ürünü CO2 'dir.

Boraksın asitlendirilmesi sonucu ortoborikasit elde edilmektedir. Boronik asitler boronların ikincil hidratasyon ürünleridir [3,19]. Boronik asitler alkil yada arildirler, carbon-boron bağı içeren ve daha geniş sınıf (oranaboranlar) dahil olan borik asidi oluşturur [17-20].

Değerlilik elektronu eksikliğinden dolayı boronik asitler boş "p" orbitaline sahiptirler bu özellik onları ılımlı lewis asidi yapar,boronik asitlerin lewis asitliliği ve hidroksil gruplarının hidrojen bağ yapabilme özelliği onlara polar karakter özelliği kazandırır. Aynı zamanda boronik asitler valans eksiklikleri sebebiyle boş "p" orbitaline sahip olmaları onları ılımlı lewis asidi özelliği kazandırarak bazik moleküllerle koordinasyonu sağlar. Buda karbon konfigürasyonu gibi onları tetrahedral bir yapıya dönüştürür [18]. Beyaz kristal katı olarak bulunan boronik asit, açık havada kullanılabilir. Bozunma süresinin uzun olması ve son bozunma ürünü olarak borik asit oluşturmaları sebebiyle ve doğaya zarar vermediklerinde, "yeşil" bileşikler olarak da kabul edilirler. Yani borik asitler kimyasal olarak kararlı ve uzun süreli raf ömrüne sahiptirler. Atmosferik oksitler ile oto-oksidasyonu azaltmak için inert atmosfer altında saklanmalıdırlar. Dehidrasyona uğradıklarında boronik asitler halkalı veya linear oligomerik anhidrürleri oluştururlar. Kolayca dehidrasyona uğradıkları için erime noktaları güvenilir değildir [19,20].

Fenil boronik asit ise 1860 yılında Frankland tarafından etil boronik asit senteziyle raporlanmış ve 20 yıl sonra Michealis ve Becker tarafından sentezlenmiştir. Borklorür ve difenil civanın etkileşiminden diklorofenil boronatın sentezini ve bu bileşiğin hidroliz ve kristallenmesiyle boronik asit oluşturmasını yayınlamıştırlar. Bu reaksiyon yöntemi boronik asitlerin Grignard reaktifleri ve triakil borotlardan elde edilmesi için klasik bir yöntem olarak 1909'da geliştirildi [3,21].

Fenil boronik asidin X-ışını kristal yapısı ise 1977 'de Rettig ve Trotter tarafından raporlanmıştır.1954 yılında Kuivila ve arkadaşları farklı türden dioller ve fenilboronik asit karışımının solvasyonunu rapor ederek, Polyos'li esterlerin hızlı ve ters çevrilebilir oluşunu buldular [3,4].

Lorand ve Edwarda farklı sakkaritler ve fenilboronik asit arasındaki bağlanma etkileşimlerini incelemişlerdir. Bu bilim adamları fenilboronik asit anyonunun tetrohedral geometrisini ilk olarak önermişlerdir.1959 yılında ise boronik asitlerin poliol komplekslerini anlatan makalelerinde; trivalent nötral formun anyonlu tetrahedral türevleri ile dengede kalarak yapısal olarak Bronsted bazı ile dengede olmadığını bildirdiler [3,19].

Boronik asitlerin susuz veya bazik sulu ortamlarda diollerle hızlı ve geri dönüşümlü olacak şekilde reaksiyona girerek halkalı boronat esterlerini oluştururlar. Bu esterler genelde tıp alanında ve ilaç yapımında kullanılır [3,19].

Halkalı boronatın oluşumunda ki bor merkezindeki hibritleşmede değişiklik olur. Serbest boronik asit üçgen düzlem yapılı ve sp² hibritleşmesi yapmış bir geometridedir. Boronik asit diolerle etkileştiğinde bağ açısı 120° 'den yaklaşık 113° 'ye kadar azalabilir.Sp³ hibritleşmesinde ideal bağ açısı 109° 'ye yakındır. Boronik asit diollerle etkinleştiğinde bor merkezindeki hibritleşme türü sp² den sp³ 'e değişir buda tetrahedral geometriği gösterir. Boronik asidin sp³ hibritleşmesi oluşumunu Wulff ve arkadaşları 1982 yılında raporlamışlardır [3].

Boronik asitler genelde moleküler biyoloji, eczacılık, endüstri, organik sentezleme gibi alanlarda kullanılırlar. Kullanımın en yaygın olduğu reaksiyon ise Suzuki çapraz eşleşme reaksiyonlardır. Tıp alanında ostreopoz tedavisi, kemik gelişimi ve nötron yakalama tedavisi gibi birçok alanda kullanılmaktadır [3,19]. Boronik asitle ilgili çalışmalar ise 1912 yılında bor hibritlerinin elde edilmesiyle Alfred stock tarafından yapılmıştır. Fenilboronik asit ise ilk olarak 1860 yılında Frankland tarafından bulunmuş,1880 yılında Michealis ve Becker tarafından sentezlenmiştir. 1954 yılında ise Kuivila ve arkadaşları fenilboronik asit ve diollerin ilk bileşikleri keşfedilmiştir [3,4].

1.1.1. Hartree–Fock Yöntemi (HF)

Öz uyumlu alan yaklaşıklığı olarak da bilinen HF metodu elektronların hareketini dikkate almamıştır. Bu eksiklik schrödinger denkleminin çözümünü mümkün kılmamış ve öz uyumlu olan slater determinatı ve LCAO yaklaşımlarıyla geliştirilmiştir.

Merkezi alan yaklaşıklığının esas alındığında elektron potansiyellerini yalnızca çekirdekten uzaklıklarına göre değiştiği düşünülür. Bir elektronun çekirdeği diğer elektronların oluşturduğu ortalama küresel potansiyel alanı içinde hareket edebileceği varsayılıp, coulomb elektron-elektron itme potansiyeli hesaba katılmamıştır. Sonraları düzeltilerek itme potansiyelinin net etkisi hesaba katılmıştır. Bu metot çok elektronlu atomlar için üretilse de daha sonra moleküllerde uygulanabilir [21-,24].

Molekülün dalga fonksiyonu HF hesaplamalarında baz fonksiyonlarından yararlanılarak oluşturulur. Baz fonksiyonu, molekülün toplam dalga fonksiyonu, molekülü oluşturan atomların lineer birleşimi olarak yazılır.

Ardından schrödinger denklemi çözülerek enerji öz değerleri bulunur, varyasyon metoduyla enerji minimize edilerek, en uygun enerji öz değeri ve frekanslar bulunur. Schrödinger denklemi atomdaki bir elektron için çözülerek ortalama küresel potansiyel hesaplanır.

Bu yöntem atomdaki her bir elektron için hesaplanır. Hesaplamalar sonunda geliştirilmiş dalga fonksiyon gruplarına sahip olunur. Bunlar ortalama küresel potansiyel hesabı için kullanılır, çeşitli hesaplamalarla tekrarlı olarak yapılarak en düşük enerjiyi verecek dalga fonksiyonu bulunur [21-23,25].

1.1.2. Varyasyon Metodu

Varyasyon metodu tahmin ettiğimiz dalga fonksiyonunu geliştirmeyi ve taban durum enerjisini minimize ederek bulmayı hedefleyen bir yöntemdir. Varyasyon yöntemi önceleri en düşük enerji seviyelerinin yaklaşık olarak hesaplanmasında kullanılsa da sonraları uyarılmış haller ve çarpışmalarda kullanılmıştır [24].Varyasyon metodu borhoppenheimer yaklaşımına dayanır [22,25].

Sistemin taban durum enerjisi

 E_0 olsun ve Rayleigh oranı

$$E = \langle \hat{H} \rangle = \frac{\int \psi_{d}^{*} \psi d d_{v}}{\int \psi_{d}^{*} \psi d d_{v}}$$
(1.1)

İntegralini inceleyelim.

 ψ_d normalize ise denklemimizin paydası 1 olur. Varyasyon metoduna göre E > E_0 dir.

E'nin değeri ne kadar küçük ise bu enerji taban durumu enerjisine o kadar yakındır ve bunun sonucu olarak" ψ_d " deneme fonksiyonu taban durumu dalga fonksiyonuna o kadar yakındır.

Bir sistemin dalga fonksiyonuna ulaşmak için içindeki değişkenler, Rayleigh oranı minimum değerini alıncaya kadar değiştirilir. Sonra E'yi minimum yapan değişkenlerin değerleri en iyi dalga fonksiyonunu oluşturmak için kullanılır [26].

Schrödinger eşitliğinin (H Ψ =E Ψ) her iki tarafı Ψ^* ile çarpılırsa

(1.2)

elde edilir.

H bir işlemcidir ve E ise bir işlemci olmadığından

$$\Psi^* H \Psi = E |\Psi|^2 \tag{1.3}$$

şeklinde yazılır.

Bağlantının integrali alınıp E yalnız bırakılıp, integrali alınırsa

$$E = \frac{\int \Psi^* H \Psi d_{\tau}}{\int |\Psi|^2 d_{\tau}}$$
(1.4)

elde edilir. Varyasyon yöntemine göre 1.3'nolu denklemde elde edilen E, E'nin gerçek değerinden (E_0) büyük olacaktır. Buna göre varyasyon prensibinin matematiksel ifadesi

$$E = \frac{\int \Psi^* H \Psi d_\tau}{\int |\Psi|^2 d_\tau} \ge E_0 \tag{1.5}$$

şeklindedir. Bu çok önemli sonuç ilk defa eckart tarafından 1930 yılında ispatlanmıştır[24].

1.1.3. LCAO (Linear Combination of Atomic Orbitals) Yaklaşımı

LCAO (Linear Combination of Atomic Orbitals)metodun da molekülün dalga fonksiyonu, kendisini oluşturan atomların dalga fonksiyonların cebirsel toplamı.

 $\Psi_{\mu} = \sum_{i} C_{\mu i} \varphi_{i} (i=1,2,3,\ldots) \text{ seklinde yazılabilir.}$ (1.6)

Burada'' $C_{\mu i} \varphi_i$ '' atomik orbitalinin katsayını '' Ψ_{μ} '' moleküller dalga fonksiyonunu gösterir.

Moleküller orbitaller için aşağıdaki kurallar geçerlidir.

1-Moleküller her elektron, çekirdeklerini bir arada tutan moleküller orbitali belirleyen bir dalga fonksiyonu ile gösterilir.

2-Her dalga fonksiyonu belirli kuantum sayıları ile tanımlanır.

3-Her dalga fonksiyonu belirli bir enerjiye sahiptir.

4-Her elektron spin kuantum sayısı +1/2 veya -1/2'dir [24].

5-Pauli prensibi ve Hund kuralı moleküller için de geçerlidir. (1.5) eşitliği (1.6) eşitliğinde yerine konulursa;

$$E = \frac{\int (\sum_{i} C_{i} \phi_{i}) H (\sum_{j} C_{j} \phi_{j}) d\tau}{\int (\sum_{i} C_{i} \phi_{i}) (\sum_{j} C_{j} \phi_{j}) d\tau}$$
(1.7)

$$E = \frac{\sum_{i} \sum_{j} C_{i}C_{j} \int \phi_{i} H \phi_{j} d\tau}{\sum_{i} \sum_{j} C_{i}C_{j} \int \phi_{i} \phi_{j} d\tau}$$
(1.8)

eşitlikleri elde edilir. 1.8'deki bazı integraller özel sembollerle gösterilir.

$$H_{ij} = \int \phi_i H \phi_j d\tau \tag{1.9}$$

$$S_{ij} = \int \phi_i \phi_j d\tau \tag{1.10}$$

yukarıdaki eşitlikler 1.8' deki denklemde yerine yerleştirilirse;

$$E = \frac{\sum_{i} \sum_{j} C_{i} C_{j} H_{ij}}{\sum_{i} \sum_{j} C_{i} C_{j} S_{ij}}$$
(1.11)

olarak bulunur. Molekülün normal halindeki enerjisi minimum değerdedir. Bu sebeple dalga fonksiyonunun katsayılarının E'yi minimum yapacak şekilde ifade edilmeleri gerekir.

Cebirsel olarak;

$$\left(\frac{\partial E}{\partial C_i}\right) = 0$$
 , $\left(\frac{\partial E}{\partial C_j}\right) = 0$ (1.12)

olmalıdır. 1.11 denklemi C_i 'ye göre türevi alınır sıfıra eşitlenirse

$$\sum_{i} C_i \left(H_{ij} - ES_{ij} \right) = 0 \tag{1.13}$$

elde edilir. Aynı şekilde Cj 'ye göre türev alınır ve sıfıra eşitlenirse

$$\sum_{j} C_j \left(H_{ij} - ES_{ij} \right) = 0 \tag{1.14}$$

elde edilir.

1.13 ve 1.14 denklemler homojen bir denklemdirler. Bu iki denklemi sağlayan E değeri, katsayı determinantı sıfıra eşitlenerek bulunur.

$$|H_{ij} - ES_{ij}| = 0 (1.15)$$

bulunan *E* değerinden yararlanılarak orbital katsayıları bulunur. Bu determinanta "serküler determinant" denir [27].

1.1.4. Yoğunluk Fonksiyon Teorisi (DFT)

Yoğunluk fonksiyonu teorisi hesaplamalı kuantum mekanik modelleme yöntemi olup, hesaplamalarda elektron yoğunlukları fonksiyonlarını kullanılır. Çok atomlu moleküllerde schrödinger denkleminin çözümü yollarından biri de DFT 'dir [28,29].

Thomas-Fermi tarafından 1927 yılında bu teorinin ilk çalışmalara başlamıştır. Teoriye göre çekirdek – çekirdek ve elektron- elektron etkileşimleri elektron yoğunluğunun bir fonksiyonu olarak ele alınmıştır. Fakat elektronlara ait korelasyon ve değiş tokuş potansiyellerini ele alınmamıştır.1928 yılında Dirac bu terimleri teoriye eklemiştir. Daha sonraları Hohenberg ve Kohn 1964 yılında çok parçacıklı sistemlerin taban durumlarını incelemek için teoriyi genişletmiştir ve bu gelişmeyi 1990 yılında Born-Oppeinheimer ve Kohn-Shom yaklaşımları ile birlikte değiş tokuş ve korelasyon potansiyellerinin eklenmesiyle daha hassas hesaplamalar yapılmıştır [21,27,28,30].

Bu teoride önemli olan üç kavram içerir bunlar;

1) Elektron yoğunluğu; (p), herhangi bir noktadaki elektron yoğunluğudur. P=P(r)

2) Fonksiyonel, bağımsız x değişkelerine bağımlı değişkene fonksiyon denilmektedir. F(x) ile gösterilir. Bir F fonksiyonu f(x) 'e bağlı ise F, x'e bağımlı ise bu duruma fonksiyonel denilir ve F(f) ile temsil edilir.

3)Homojen elektron gazı modeli, bir bölgedeki yük dağılımının sisteme düzgün dağılmış N tane elektron ve sistemi nötr duruma getirebilen pozitif yükten oluştuğu varsayımına idealleştirilmiş bir modeldir. Klasik DFT modelinde enerji ifadesi elektron dağılımının V hacimli bir küp içinde varsayılarak ve n ve V 'nin sonsuza yaklaştığı varsayımı ile elektron yoğunluğunun p=n/v ile ifade edilerek sabit kabul edilmiştir [21,27,30,31].

DFT metodunda elektron yoğunluğunun ifadesi coulomb itme kuvvetlerinin ve elektron korelasyonunun farklı bir hesaplamaya ihtiyaç duymadan eşitliğe eklenmesini sağlar. İşlem yükü basitleşerek HF yöntemine göre daha hızlı hesaplamalar yapılır.

HF yönteminde değiş tokuş ve korelasyon enerji hesaplamaları yetersiz kalsa da kinetik enerji için uygun bir yöntemdir. DFT ise HF'un tersine kinetik enerji için uygun sonuçlar vermemektedir [21,27,29].

H moleküldeki etkileşimleri tanımlayan operatör, Ψ moleküler dalga fonksiyonu, E ise moleküler sistemin farklı kararlı durumlarına karşılık gelen enerjileridir. Moleküllerin hareketli kuantum mekaniksel olarak elektron hareketi ve çekirdeğin hareketli olmak üzere iki kısma ayrılır. Born-Oppenheinmer yaklaşımına göre çekirdeğin kütlesi elektronun kütlesinden çok büyük olması sebebiyle bu hareketleri ayrı ayrı düşünülebilir.

Bir molekülün elektronik enerjisi kuantum mekaniksel olarak kapalı formu,

 $E_e = E^T + E^v + E^J + E^{XC}$ şeklinde ifade edilebilir.

 E^{T} = Elektron hareketinden oluşan kinetik enerji

 E^{V} =Çekirdek – elektron çekimi ve çekirdek çiftlerinin itmesine ait potansiyel enerji

 E^{J} =Elektron-elektron itmesine ait terim (elektron yoğunluğunun coulomb öz etkileşimi)

E^{XC}=Geriye kalan diğer elektron-elektron etkileşimleri yani değişim korelasyonu

 $E^{\mathrm{XC}} = E^{\mathrm{X}} + E^{\mathrm{C}}$

 E^{X} = Değiş tokuş enerjisi

 E^{C} = Korelasyon enerjisi terimi

Değiş tokuş enerjisi aynı spinli elektronlar arsındaki etkileşim enerjisidir. Korelasyon enerji ise farklı spinli elektronlar arasındaki etkileşim enerjisidir.

1.1.5. Thomas – Fermi Teorisi

Geleneksel teoride bir sistemin bütün özelliğini özetleyen " Ψ " dalga fonksiyonu hesaplanmaya çalışılır. Ancak " Ψ " dalga fonksiyonu çok karmaşık bir büyüklüktür. " Ψ " dalga fonksiyonu 4N değişkene bağlıdır bunlardan üçü uzaysal ve biri spinsel 'dir.1927'da Thomas ve Fermi tek düze elektron gazı modelinde kinetik enerji için formül oluşturmuşlardır. Bu formül [27,28].

$$T_{\rm TF}[p(r)] = \frac{3}{10} (3 \pi^2)^{2/3} \int p^{5/3}(r) dr$$
(1.16)

Daha sonra bu formülü iyon-elektron ve elektron-elektron etkileşimleri ile birleştirilmişlerdir. Her iki etkileşmede elektron yoğunluğu için ifade edilince,

$$E_{\rm Tf}[p(r)] = \frac{3}{10} (3 \pi^2)^{2/3} \int p(r)^{5/3} dr - Z \int \frac{p(r)}{r} dr + \frac{1}{2} \iint \frac{p(r)p(r)}{r} dr_1 dr_2$$
(1.17)

ikinci ve üçüncü terimler sırasıyla elektron-iyon ve elektron-elektron etkileşimlerini ifade etmektedir. Thomas-fermi sistemdeki parçacıkların değiş-tokuş ve korelasyonu ihmal ettiği için yeterli bir çözüm olmamıştır. Bu denklem daha sonra Dirac eşitliğinde verilen değiş-tokuş enerji terimiyle düzenlenerek, Thomas Fermi-Dirac denklemine dönüştürülmüştür.

$$\varepsilon_x \rho(r) = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int \rho(r)^{1/3} dr$$
(1.18)

$$E_{TFD}[\rho(r)] = \frac{3}{10} (3\pi)^{\frac{2}{3}} \int \rho(r)^{\frac{5}{3}} dr - 2 \int \frac{\rho(r)}{r} dr + \frac{1}{2} \iint \frac{\rho(r_1)\rho(r_2)}{r_{12}} - \frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \int \rho(r)^{\frac{3}{4}} dr$$
(1.19)

Bu eşitlik N elektronlu sistemin enerjisi minimize olması ve temel durum yoğunluğunu ifade eder. Denkleme lagrange çarpanı kullanılarak çözülebilir ancak bu teori uygulamalarda doğru sonuçlar vermemiştir.

1.1.6. Hohenberg-Kohn Yaklaşımı

Hohenberg ve Kohn, Thomas–Fermi yaklaşımından esinlenerek elektron yoğunluğu ile çok parçacıklı sistemlerde schrödinger denklemi arasındaki ilişkiyi bulmak için 1960 'da V (r) dış potansiyelde etkileşen homojen olmayan elektron gazı için elektron yoğunluğunu baz alarak, toplam enerji, yük yoğunluğunun bir işlevi olduğunu söylemişlerdir [28]. DFT teorisinin temel değişkeni olan ρ (r) elektron yoğunluğunu bulmak için, sistemin hamiltonyen operatöründe, çekirdeğin atom numarası (Zk), çekirdeğin konumu (R_K) ve elektron sayısını (N)' i tanımlamışlardır.

M çekirdek ve N elektron dan oluşan sistemin Hamiltonyeni;

$$H = H_{\rm el} + H_{\rm nucl} \tag{1.20}$$

Bu terimler;

$$\mathbf{H}_{\rm el} = -\frac{1}{2} \sum_{i=1}^{N} \nabla i^2 - \sum_{i=1}^{N} \sum_{k=1}^{M} \frac{Z_k}{r_{ik}} + \sum_{i=1}^{N} \sum_{i< j}^{N} \frac{1}{r_{ij}}$$
(1.21)

$$\mathbf{H}_{\text{nucl}} = -\frac{1}{2} \sum_{k=1}^{N} \frac{1}{M_k} \nabla_k^2 + \sum_{k=1}^{N} \sum_{k < l} \frac{Z_k Z_l}{R_{kl}}$$
(1.22)

Eşitlikler 1.21ve 1.22, 1.20 'de yazılıp,

Born – Oppenheimer yaklaşımı uygulanırsa;

$$H_{el} \Psi_{el} = E_{el} \Psi_{el} \tag{1.23}$$

Bu denklem, öz değer eşitliğiyle çözülür.

Sistemin toplam enerjisi;

$$E_{tot} = E_{el} + E_{nucl} \tag{1.24}$$

1.24 denklemi 1.22 denklemin ikinci terimine denk gelir ve sabitdir. Bu durum herhangi bir sistem için hamiltoniyen N, R_k , ve Z_k 'nın bilinmesi ile ifade edilir. $\rho(r)$ temel durumda elektron yoğunluğu

$$\rho(r) = N \int |\Psi(x_1 x_2, \dots, x_n)|^2 \, ds_1 x_2 \dots dx_n = \langle \Psi | \Psi_{el}^*(r \, \Psi_{el}(r) | \Psi \rangle \tag{1.25}$$

Burada;

$$N = \int \rho(r) dr \tag{1.26}$$

şeklinde sistem normalize edilmiştir. Bu teorem bir sistem temel durumda iken kuantum mekaniksel olarak, sistemin tüm özelliklerinin temel durum yoğunluğu ile bulunabileceğini ispatlamıştır.

1.1.7. Kohn-Sham Yaklaşımı

Kohn-sham, Hohenberg-Khon yaklaşımı elektron sistemleri için bir yaklaşım geliştirdiler. Khon–Sham 'a göre gerçek ve birbiriyle etkileşim içinde olan bir elektron sistemi, elektronların birbiriyle etkileşim içinde olmadığı bir hayali sistemde elektronların etkin bir potansiyelde hareket ettiğini kabul ettiler. Bu potansiyel Khon-Sham tek parçacık potansiyeli adını verdiler. Bu yaklaşım sayesinde DFT hesaplamaları bilgisayar yazılımı ile kolayca yapılabilmektedir.

Khon–Sham eşitlikleriyle taban durumunda etkileşen cisim için taban durum yoğunluğu hesaplanır. Yine bu eşitlikle değiş-tokuş korelasyon enerjisi içerir. Ancak dış potansiyel eksiklik nedeniyle kesin çözüme ulaşılmasada yaklaşılmıştır [28].

1.1.8. Yerel Yoğunluk Yaklaşımı (LDA)

Kohn ve Sham yaklaşımlarındaki değiş-tokuş korelasyon (XC) enerjisindeki eksikliği 1965 yılında tamamlamaya çalıştılar. Sınırlandırılmış bir bölgenin elektron yoğunluğunu kullanarak yani bir katı veya moleküler sistemde her bir noktada belirli bir elektron yoğunluğunun bulunduğunu kabul ettiler. Her bir elektronun etrafındaki diğer elektronlarla aynı çok cisim etkileşmesine karşılaştığını düşünerek hesaplamalar yapılır. E_{XC} değiş-tokuş korelasyon enerjisini sabit yoğunluklu (homojen elektron gazı) elektron sistemindeki çok elektron etkileşmesi sonucu ile çözümlenmeye çalışılır. LDA'da değiş-tokuş korelasyon enerjisi [28].

$$E_{XC}[p] \approx E_{XC}^{LDA}[p] = \int \rho(r) \,\varepsilon_{XC}^{hom}(\rho(r)) dr \tag{1.27}$$

ve potansiyel,
$$V_{XC}^{LDA}(r)\frac{\partial E_{XC}^{LDA}}{\partial \rho(r)} = \varepsilon_{XC}^{hom} \quad , \qquad \rho(r) + \frac{\rho(r)\partial \varepsilon_{XC}^{hom}}{\partial \rho(r)}$$
(1.28)

Burada $\varepsilon_{XC}^{hom}\rho(r)$ terimi, $\rho(r)$ yoğunluğundaki elektron gazının parçacık başına düşen değiş-tokuş korelasyon enerjisidir. LDA teorisiyle, Khon-Sham denklemleri aşağıdaki şeklini alır.

$$\left[-\frac{1}{2}\nabla^{2} + V(r) + \int \frac{\rho(r')}{|r-r'|} dr' + V_{XC}^{LDA}(r)\right] \Psi i = \varepsilon_{i} \Psi_{i}$$
(1.29)

Değiş tokuş korelasyon enerji fonksiyonu değiş-tokuş ve korelasyon terimleri olmak üzere

$$\varepsilon_{XC}^{hom}\rho(r) = \varepsilon_X^{hom}\rho(r) + \varepsilon_C^{hom}\rho(r)$$
(1.30)

Bu denklem;

$$\varepsilon_{XC}^{hom}\rho(r) = \varepsilon_X\rho(r) = -\frac{3}{4}(\frac{3}{\pi})^{1/3}\int\rho(r)^{4/3}$$
(1.31)

fermi-dirac denklemi Thomas-Fermi-Dirac tarafından tanımlandı. Bu hesaplamada Winger-Seitz tarafından (r_s) yarı çapı cinsinden hesaplanmıştır.

$$\varepsilon_X[\rho] = -\frac{3}{4} \left(\frac{3}{4}\right)^{1/3} \rho^{1/3} = -\frac{3}{4} \left(\frac{9}{4\pi^2}\right)^{1/3} \frac{1}{r_s} = -\frac{0.458}{r_s}$$
(1.32)

Burada " r_s " aşağıdaki gibi verilir.

$$r_s = \left(\frac{4\pi\rho(r)}{3}\right)^{-1/3} \tag{1.33}$$

Bu yaklaşımda korelasyon enerji terimi sayısal olarak çözümlensede, gerçek değiş – tokuş korelasyonu fonksiyoneli kullanılmadığı için schrödinger denklemine net çözüm getiremez. LCA yöntemi yapısal özellikle metaller ve geçiş metalleri içeren bileşiklerin yapısal özellikleri için başarılı sonuç verebilir [27,28].

1.1.9. Genelleştirilmiş Gradyent Yaklaşımı (GGA)

GGA uzayın belirli bir "r" noktasında $\rho(r)$ parçacık yoğunluğu ve yük yoğunluğu gradyenti büyüklüğünüde $|\nabla \rho(r)|$ dikkate alınmıştır. Bu yaklaşıma göre;

$$E_{XC}^{GGA}[\rho] = \int F_{XC}[\rho(r), |\nabla\rho(r)|]dr$$
(1.34)

Bu denklemde " F_{XC} " terimi için çeşitli çalışmalar vardır. Katılar için en fazla kullanılan fonksiyonellerden, Perdew– Wana fonksiyoneli (PW91) ve Perdew–Burke– Enzerhof fonksiyonudur. (PBE) Değiş- tokuş enerjisi LDA 'ya " F_{XC} " eklenerek çözüme ulaştırılır.

$$E_{XC}^{GGA}[\rho] = \int \rho(r) \, \varepsilon_X^{hom} F_{XC}(r_s, s) \, dr \tag{1.35}$$

 $s(r) = \frac{|\nabla_{\rho}|}{2kF_{p}}$ boyutsuz yoğunluk gradyentini ifade eder [28].

PBE parametrizasyonunda $F_x(s)$ değiş-tokuş terimi;

$$F_X^{PBE}(s) = 1 + k - \frac{k}{1 + \frac{\mu s^2}{k}}$$
(1.36)

"μ" kimyasal potansiyel terimi ise,

$$\mu = \beta(\frac{\pi^2}{3}) \quad \text{'dir.} \tag{1.37}$$

Düzenleme yapılan " F_c " ise,

$$F_{C}^{PBE}[\rho(r), |\nabla \rho(r)|] = \int \rho(r) \left[\varepsilon_{c}^{hom}(\rho(r)) + H_{C}^{PBE}(r_{s}, t) \right] \, \text{'dir.}$$
(1.38)

$$H_{C}^{PBE}(r_{s},t) = \gamma ln \left[1 + \frac{\beta}{\gamma} t^{2} \left(\frac{1 + At^{2}}{1 + At^{2} + A^{2}t^{2}} \right]$$
(1.39)

$$A = \frac{\beta}{\gamma} \frac{1}{e^{-(\frac{e_c^{hom}}{\gamma - 1})}}$$
(1.40)

$$\gamma = \frac{1 - ln2}{\pi^2} \text{ olarak tanımlanır.}$$
(1.41)

$$t = \frac{v_p}{2k_s p}$$
 ise boyutsuz bir gradyenti temsil eder. (1.42)

Bir çok sistemde deneye yakın taban durum özellikleri iyi bir şekilde ifade ettiği için GGA yaygın olarak kullanılır [28].

1.1.10. B3LYP Karma Yoğunluk Fonksiyonel Teorisi

HF yaklaşımı temeli dalga mekaniğine dayanan kinetik enerji için uygun sonuç vermediğinden korelasyon hesaplamaları yapılamamaktadır.

DFT yaklaşımı değiş-tokuş ve korelasyon enerjileri için daha iyi sonuç verir. Bu yüzden saf HF veya saf DFT metotları yerine bu modellerin her ikisinin enerji ifadeleri, toplam elektronik enerji ifadesi kullanılarak, melez modeller üretilmiştir. Bu karma modeller saf modellere göre toplam enerji, bağ uzunluğu, iyonizasyon enerjileri gibi değerlerini daha iyi hesaplamaktadır. Karma metotlar içerisinde en çok B3LYP olarak ifade edilen Lee, Young, Parr korelasyon enerjili üç parametreli Becke karma metodu kullanılır [27,28,32,33].

Literatürde sıkça kullanılan enerji fonksiyonları;

Kinetik Enerji fonksiyonları = H28, TF 27 Değiş-Tokuş Enerji Fonksiyonu = F 30, D30 Korelasyon Enerji fonksiyonları = LYP, VWN Becke geliştirdiği üç değişkenli hibrit fonksiyonelleri ile Lee, Yang ve Parr tarafından oluşturulan korelasyon fonksiyonellerini birleştirerek karma bir modeli geliştirdiler.

$$E_{B3LYP}^{Xc} = C_{HF}E_{Hr}^X + C_{DFT}E_{DFT}^{XC}$$
(1.43)

Denklemdeki "C" katsayıları deneysel sabittirler. B3LYP modelinde değiş-tokuş ve korelasyon enerjisi;

$$E_{B3LYP}^{Xc} = E_{LBA}^X + C_0 (E_{HF}^X - E_{LBA}^X) + C_1 \nabla E_{B88}^X + E_{VMN3}^C + C_2 (E_{LYP}^C - E_{VMN3}^C)$$
(1.44)

Burada $C_{0,}C_{1,}C_{2}$ katsayıları deneysel değerlerden üretilmiş olup sırasıyla 0.2,0.7 ve 0.8 değerlerindeki sabitlerdir. Dolayısıyla B3LYP modelinde bir molekülün toplam elektronik enerji ifadesi aşağıdaki gibi verilir [28].

$$E_{B3LYP} = E^{T} + E^{V} + E^{J} + E^{XC}_{B3LYP}$$
(1.45)

1.1.11. Baz Setleri

Atomik orbitallerin matematiksel ifadesine temel set denir. Atomların molekülleri oluşturur ve aynı cins atomların farklı moleküllerde benzer özellikler gösterirler. Bunun için moleküler orbital (MO), atomik orbitaller (AO) çizgisel toplamları olarak yazılabilir. Ψ_i moleküler orbitali ile \emptyset_{μ} atomik orbitaller arası bağıntı, aşağıdaki eşitlikteki gibidir;

$$\Psi_i = \sum_{\mu=1}^N C_{\mu i} \phi_\mu \tag{1.46}$$

Bu eşitlikte ki;

 $C_{\mu i}$ = Moleküler orbital açılım katsayıları

ise temel fonksiyonlar olarak adlandırabiliriz.

Temel setlerden en yaygın kullanılanları Gaussian Tipi (GTO) ve Slater Tipi (STO) fonksiyonlar seçilebilir. GTO tipi fonksiyonlar sistemin fiziksel özelliklerini atom olarak ifade edememiştir.

Bunun için STO fonksiyonları türetilmiş, bu fonksiyonlar sistemin fiziksel özelliklerini tanımlamış GTO fonksiyonlarına göre daha ayrıntılı sonuçlar vermiş olmasına rağmen hesaplamalar uzun zaman almıştır.

STO tipi fonksiyonların kullanılması çok merkezli moleküler integral hesaplamalarda yetersiz kalmıştır. Bu yüzden GTO fonksiyonlarını STO fonksiyonlarına benzetilmiştir.

Bu integrallerin çözümü içi dört çeşit temel küme çeşidi vardır [27,28,32].

- 1. Minimal baz setleri (STO-nG) = STO-3G, STO-4G gibi
- 2. Split Valence Basis set (4-21G,6-31G gibi bölünmüş valans baz seti)

3. Polarization Basis Set	$= 6-31G^*, 6-31G^{**}$ gibi
---------------------------	------------------------------

4. Difüzyon Fonksiyonları $= 6-31+G^*, 6-31+G^{***}$ [32].

1.11.1.1. Minimal Baz Seti

Minimalbaz seti STO ve GTO fonksiyonlarının karışımıdır. En basit temel kümedir. STO-nG şeklinde sembolleştirilmiştir. STO stoler tipi orbitali, n ise kaç tane gaussion fonksiyonu ve G. Gaussian'ı sembol eder. Bu sette elektronların hepsini bulunduran, küresel simetriyi sağlayan en az sayıda orbital kullanılır. Örneğin, bu baz seti bir Li atomunda iki kabuğu tanımlar.

İlki 1s slater orbitali ile s kabuğu, diğeri 2s ve 2p slater tipi orbitalleri ile sp kabuğudur. Bu baz seti karbon atomu için ise beş fonksiyon kullanır (1s, 2s, 2px, 2py, 2pz). Minimum baz setleri moleküler orbital tanımlamalarında esnek bir yapıya sahip olmadığından, moleküler enerjilerin hesaplanmasında hassas sonuçlar vermez. Bununla beraber basitlikleri ve sonuç vermeleri nedeniyle kimyasal bağlanmanın nitel özelliklerini göstermek için iyi bir araçtır [28].

1.1.11.2. Bölünmüş Valans Baz Seti (Splıt – Valance Basıs Set)

Minimal temel setler uzun yıllar kullanılsada yerini bölünmüş valans baz setlerine bırakmıştır. Moleküler etkileşimler sırasında oluşan bağlar farklı atomların valans orbitallerindeki değerlilik elektronları arasında gerçekleşir [28].

Minimal temel setlerin eksikliği molekül orbitallerini kolayca genişletme ve daraltma özelliğinin olmamasıdır. Minimal temel set hesaplamasında her iki molekül orbitali içinde aynı atomik orbital kullanılır. Bu eksiklik bölünmüş valans baz seti giderilir. Bu yöntem atomik orbitali aşağıda verilen şekildeki gibi iç ve dış kısım olmak üzere ikiye bölünür. İç kısım sıkıştırılmış dış kısım ise daha serbesttir. Moleküler orbitali oluşturan atomik orbitallerin büyüklüğü bu limitler arasında değiştirilip moleküle esneklik kazandırılır. "Split-Valence bosis set" yalnızca valans orbitallerini bölerken "Double zeta bosis set" iç kabuktaki valans orbitallerinide böler [27,28,32].

Şekil 1.1: Bölünmüş Valans Bant Fonksiyonunun Yapısı [28].

1.1.11.2.1. Pople Baz Setleri (Pople Basis Sets)

Jhon pople ve arkadaşlarının X-YZg şeklinde formülize edilmiştir. Burada X Çekirdek atomik orbitallerinin her birinin baz fonksiyonlarının Gaussien Tipi orbital sayısını ifade eder. Y iç valans ve Z dış valans orbitallerini ifade eder. Bu temel kümenin bir çok seviyesi vardır. Başlangıçta en çok kullanılan 4-31G idi. Yani iç yörüngedeki orbitallerin 4 Gaussian fonksiyonundan, valans yörüngesindekilerin ise iç p- fonksiyonu 3, dış p- fonksiyonu ise 1 Gaussian fonksiyonundan oluşmuş anlamını taşır [27,28,32]. Bu gösterimde tireden sonra gelen iki sayı zeta yarılmış valans baz setlerini vurgular eğer bu sayı üç olursa (X-YZWg) üçlü, dörtlü olursa (X-YZWVg) dörtlü zeta yarılmış valans baz setlerini gösterir [28].

Şekil 1.2 Baz Setinin 4- 31 G Seviyesi için Gösterimi[28].

3-21G, 4-31G, 6-21G, 6-31G ve 6-311G en çok tercih edilen yarılmış baz setlerdir. Son yıllarda molekülün başlangıç setini tayin etmek için STO-3G 'nin yerine 3-21G içinde kullanılmaya başlandı. Daha ileri seviyedeki hesaplamalar içinde başlangıç noktası olarak kullanılabilir.

1.1.12. Difüzyon Fonksiyonları

Elektronların çekirdekten uzak olduğu sistemler, boş elektron çifti bulunduran elektronların çekirdekten uzak olduğu sistemler boş elektron eksi yüklü sistemler (anyonlar) ve uyarılmış sistemler gibi atomik orbitallerin uzayda daha fazla yer kaplama özelliği yanında, yalnızca sıkılaştırılmış baz setlerini kullanmak yetersiz kalmıştır. Temel kümeye dağınık fonksiyonlar (difüze) eklenerek bu eksiklik giderilmeye çalışılır. Difüze fonksiyonlu temel setler orbitallerin uzayda fazla yer kaplamasına izin verir. Difüze fonksiyonlarının eklenmesi + veya ++ işaretleriyle temsil edilir. 6-31+G veya 6-31++G gibi temel setlerdeki fonksiyon aralığı genişledikçe daha net sonuçlar alabiliriz [27,28].

1.1.13. Polarizasyon Fonksiyonları (Kutuplanma)

Molekül içinde atomlar ve atomik orbitaller tam olarak ayrı düşünülemez. Atomlar birbirlerine yaklaştıkça yük dağılımları bir kutuplanmaya sebep olur. Negatif yükler bir tarafa, pozitif yükler bir tarafa yoğunlaşırlar. Kutuplanma orbitallerin şeklini bozar. Polarizasyon fonksiyonu bu kutuplanmayı önler. Yani temel kümeyi geliştirmek için hidrojen hariç tüm atomlara d ve f orbitalleri ilave edilir ve p orbitalleri ile karıştırılır. Polarizasyon fonksiyonunu belirlemek için G harfinden sonra parantez içinde karbon atomları için "d" hidrojen atomları için "p" ve geçiş metalleri için " f "harfleri kullanılmaktadır. Bu fonksiyonlardan en çok kullanılanı 6-31G(d)'dir. 6-31G^{*} olarak da isimlendirilir [21-28,31,33].

1.1.14. Doğrusal ve Doğrusal Olmayan Optik Özellikler

Organik materyaller çizgisel olmayan optik özellikleri gösterirken hızlı bilgi erişimi ve optiksel depolama uygulamalarında önemlidirler. Optik özellikler polarizebilite ile ifade edilir. Polarizebilite bir atomda ya da moleküldeki çekirdek ve elektronların kararlı durumlarından yer değiştirme kolaylığıdır. Bu kolaylık çekirdeğe en uzak olan valans elektronları sayesinde olur ve bu şekilde polarizebiliteye etkisi çok fazladır [25,34]. Atomik moleküler sistemlerde, dipol momentleri nötr bir atom için atomdaki pozitif ve negatif yüklerin çekim merkezleri üst üste gelerek atomik dipol momenti sıfır yaparlar [27]. Bir malzemeye dış elektrik alan polarizebilitesi aşağıdaki eşitlik ile verilir.

$$\mu^* = \mu_0 + \alpha E + \frac{1}{2} \beta E^2 \tag{1.47}$$

Burada; μ^* ise İndüklenmiş dipol momenti, " μ_0 "ise sürekli dipol momenti, " α " ise polarizebilite tensörü, " β " ikinci mertebeden polarizebilite ya da birinci mertebeden hiperpolarizebilite tensörü olarak adlandırılır.

Doğrusal olmayan optik özellikler hesaplanırken; ortalama polarizabilite için

$$\alpha = \frac{1}{2}(\alpha_{ii} + \alpha_{jj} + \alpha_{kk}) \tag{1.48}$$

ve toplam hiperpolarizebilite için

$$\beta_{top} = \left[(\beta_{iii} + \beta_{ijj} + \beta_{ikk})^2 + (\beta_{jjj} + \beta_{jkk} + \beta_{jii})^2 + (\beta_{kkk} + \beta_{kii} + \beta_{kjj})^2 \right]^{1/2} (1.49)$$

ifadeleri kullanılır.

Polarizebilite bir molekülde dipol momente sebep olan ve elektron yoğunluğunda uyarılmış etki oluşturacak şartları sağlayan dış elektrik alan ile ilgilidir ve bundan dolayı süreklidir. Kısaca, bu ilişki ($\mu = \alpha E$) gibi görülür. Moleküler sistemin elektrik alan ile etkileşim enerjisinin elektrik alana bağımlılığı taylor seri açılımı verilir.

$$U(E) = U(0) + \sum_{i} \left(\frac{\partial U}{\partial E_{i}}\right)_{0} E_{i} + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^{2} U}{\partial E_{i} \partial E_{j}}\right)_{0} E_{i} E_{j}$$
$$+ \frac{1}{6} \sum_{i} \sum_{j} \sum_{k} \left(\frac{\partial^{3} U}{\partial E_{i} \partial E_{j} \partial E_{k}}\right)_{0} E_{i} E_{j} E_{k} + \cdots$$
(1.50)

Eşitlikte de enerjinin birinci türevi sürekli dipol moment, ikinci türevi polarizebilite üçüncü türevi ise hiperpolarizebilite olarak tanımlanır [27].

$$\mu_{i} = -\left(\frac{\partial U}{\partial E_{i}}\right)_{0, \alpha_{ij}} = -\left(\frac{\partial^{2} U}{\partial E_{i} \partial E_{j}}\right)_{0, \beta_{ij}} = -\left(\frac{\partial^{3} U}{\partial E_{i} \partial E_{j} \partial E_{k}}\right)_{0}$$
(1.51)

1.1.15. Molekül Geometrisi ve Optimizasyon

Moleküllerin minimum enerji durumunu ve molekülün geometrik yapısını belirlemek için molekülün en kararlı geometrik yapısının yani molekülün minimum enerjisine karşılık gelen moleküldeki atomların uzayda yerleşimlerini bulmaya geometrik optimizasyon denir. Geometrik optimizasyon gradyent optimizasyonu veya kuvvet metodu olarak bilinir [25,27,33,34].

Bütün hesaplamalar moleküler yapı belli bir geometrideyken yapılır. Molekül yapısında oluşan herhangi bir değişim molekül enerjisinde ve diğer birçok özelliklerinin değişmesini sağlar. Molekülün yapısındaki küçük değişimler sonucu oluşan enerjinin koordinata bağımlılığına potansiyel enerji yüzeyi (PES) denir.

İki atomlu molekülde bağ gerilmesini ifade eden elektronik enerji grafiği şekil 1.2'de verilmiştir. Bu grafikte E_m minimum enerji nokta ve X_m minimum enerjiye karşılık gelen koordinat noktaları bulunmaktadır.

Şekil 1.3: Elektronik Enerji Fonksiyonu [33].

Potansiyelin harmonik kısmı Hooke yasası ile ifade edilir.

$$E = E_m + \frac{1}{2}G(X - X_m)^2$$
(1.52)

Bu ifade de *G* enerjinin, konuma (x) göre ikinci türevidir ve kuvvet sabitidir. Kuvvet sabiti;

$$G = \frac{d^2 E}{dx^2} \equiv k \tag{1.53}$$

ile ifade edilir.

Gradyent vektörü;

$$\langle g \mid \equiv g = \left(\frac{\partial E}{\partial X_1}, \frac{\partial E}{\partial X_2}, \dots\right) \mid$$
 (1.54)

Burada *E* enerji, x₁ ve x₂ ise konumdur. Bu aşamada verilen gradyent vektörünü bulmak ve sonrasında bu vektörü sıfır yapan noktaları hesaplanır.< $g \mid = (0,0,...)$

Bu vektörün sıfır olduğu noktalar bize minimum enerjili durumu verir ve molekülün bu durumdaki geometrisi de denge durumu geometrisidir.

Bir molekül için potansiyel enerji yüzeyinde birden çok maksimum ve minimum noktaları bulunur. Bu minimum noktaları sistemin dengede olduğu konumdur ve bu minimumlara lokal minimum denir. "local minimumların" en düşük enerjisine ise "global minimum" denir. Bir molekül için farklı minimumlar, farklı yapısal izomerlere ve konformasyonlara karşılık gelir. Potansiyel enerji yüzeyinde, bir yönde yerel minimum diğer yönde ise yerel maksimum olan noktalara eğer noktaları (saaddle point) denir. " E_{eyer} " noktası iki kararlı yapı arasındaki geçiş halidir. Geometrik optimizasyon geçiş yapılarını da araştırmaktadır. Minimum ve eyer noktalarında enerjinin birinci türevi yani gradyenti sıfırdır, kuvvet gradyentin negatifidir bu yüzden bu noktalarda kuvvet sıfırdır. Potansiyel enerji yüzeyinde gradyent vektörü g'nin sıfır olduğu noktalara ''kararlı noktalar'' denir ve başarılı geometri optimizeleri bu kararlı noktaları bulmak için hesaplanır. Enerjinin atomik koordinatlara göre ikinci türevi kuvvet sabitleri bir noktadaki yüzeyin eğriliğini tanımlayarak sonraki aşamanın belirlenmesinde yol gösterir. Hesaplamalar minimum değere ulaşıncaya kadar sürdürülür.

Optimizasyonun tamamlanması için bir sonraki aşamada hesaplanan geometrik parametreler ile hesaplanan değerler arası fark ihmal edilebilir duruma gelmesi gerekir [25,27,32,33,35].

2. MATERYALVE METOT

2.1. Metot

Bu çalışmada fenilboronik asit molekülü ve bu molekülden türetilen 2,3diflorofenilboronik asit (I), 2,4-diflorofenilboronik asit (II), 2,5-diflorofenilboronik asit (III) ve 2,6-diflorofenilboronik asit (IV) moleküllerinin giriş dosyaları Gauss View 09 paket programında oluşturulmuştur. Tüm hesaplamalar HF ve DFT/B3LYP metotlarında, 6-311++G(d,p) temel seti kullanılarak Gaussian 09W paket programında yapılmıştır. Moleküllerin geometrik optimizasyonları, her iki hesaplama modelinde de hiçbir sınırlama yapılmadan hesaplanmıştır. Yapılan optimizasyonlar sonucu moleküllerin denge durumu yapısal parametreleri, bağ uzunlukları (A^0), dihedral açıları (⁰),elektronik enerjileri (a.u.) ve dipol momentleri (debye), elde edildi. Her iki hesaplama modelinde de moleküllerin potansiyel enerji yüzeyi (PES),potansiyel enerji eğrileri, elektronik enerjileri, en yüksek dolu molekül orbital enerjileri (HOMO), en düşük boş molekül orbital enerjileri (LUMO), polarizebilite ve hiperpolarizebilite değerleri, titreşim frekansları molekülün denge durumunda incelendi. Ayrıca 2,4diflorofenilboronik asit molekülünün titreşim spektrumu hem IR hemde Raman grafikleri deneysel olarak kayıt edildi.

Moleküllerin özelliklerini incelemek için denge durumu optimizasyonları kullanıldı. Hesaplama sonucu elde edilen molekül özelliklerinin, molekül üzerinde F atomlarının konumlarına göre değişimleri yorumlandı.

2.2. Materyal

Bu çalışmada incelenen 2,3-diflorofenilboronik asit molekülünün kimyasal konfigürasyonu şekil 2.1' de ve 2,3-diflorofenilboronik asit (I), 2,4-diflorofenilboronik asit (II), 2,5-diflorofenilboronik asit (III) ve 2,6-diflorofenilboronik asit (IV)geometrik yapıları sırasıyla şekil 2.2, 2.3, 2.4 ve 2.5'de verildi.

 $\begin{array}{l} R_3 = F_{2,} \ R_4 = H_{4,} \ R_5 = H_{5,} \ R_6 = H_6 \ ; \ R_4 = F_{2,} \ R_3 = H_{3,} \ R_5 = H_{5,} \ R_6 = H_6; \\ R_5 = F_{2,} \ R_3 = H_{3,} \ R_4 = H_4 \ R_6 = H_6 \ ; \ R_6 = F_{2,} \ R_3 = H_{3,} \ R_4 = H_{4,} \ R_5 = H_5 \end{array}$

R ₃	R ₄	R ₅	R ₆	Molekülün adı
F ₂	Н	Н	Н	2,3- diflorofenilboronik asit
Н	F ₂	Н	Н	2,4- diflorofenilboronik asit
H	Н	F_2	Н	2,5- diflorofenilboronik asit
Н	Н	Н	F_2	2,6- diflorofenilboronik asit

Şekil 2.1: Diflorofenilboronik Asit Molekülünün Kimyasal Konfigürasyonu

Şekil 2.2: 2,3- Diflorofenilboronik Asit Molekülünün Optimizasyon Durumu

Şekil 2.3: 2,4- Diflorofenilboronik Asit Molekülünün Optimizasyon Durumu

Şekil 2.4: 2,5- Diflorofenilboronik Asit Molekülünün Optimizasyon Durumu

Şekil 2.5: 2,6- Diflorofenilboronik Asit Molekülünün Optimizasyon Durumu

3. BULGULAR

2,3-Diflorofenilboronik Asit, 2,4-Diflorofenilboronik Asit, 2,5-Diflorofenilboronik Asit 2,6-Diflorofenilboronik Asit Molekülünün potansiyel enerji yüzeyleri B3LYP / 6-311++G(d,p) yöntemi ile hesaplandı. Her bir molekülden elde edilen minimum enerji konformasyonları tekrar optimize edilerek moleküllerin temel (denge) durumları elde edildi. Bu moleküllerin optimize edilen yapıları kullanılarak yapısal parametreleri (denge durum geometrisi, bağ uzunlukları, bağ ve dihedral açıları), dipol moment, elektronik enerji, HOMO-LUMO enerji farkı, polarizebilite ve hiperpolarizebilite değerleri, hem B3LYP /6-311++G(d,p) hemde HF B3LYP /6-311++G(d,p) yöntemleri ile hesaplandı. Ayrıca 2,4-diflorofenilboronik asit molekülünün titreşim spektrumu hem IR hemde Raman grafikleri deneysel olarak kayıt edildi.

3.1. Potansiyel Enerji Yüzeyi (PES)

Moleküllerin enerjileri, molekülün yapısını karakterize eden değişik parametrelerin karışık bir fonksiyonu olarak ifade edilebilir. Moleküllerin uzaysal yapıları ve bu yapıların değişme ihtimallerini ifade etmek için iç enerjilerinin belirlenmesi gerekir. Moleküllerin enerjilerinin minimum olduğu durumlarda, molekül fiziksel olarak denge durumuna geldiğinden, molekülün enerji fonksiyonunun minimum değerleri bu parametrelerle ifade edilmelidir. Moleküllerin denge durumunda molekül içi etkileşmeler ve moleküller arası etkileşimler oldukça etkilidir. Moleküler sistemlerde, grupların σ -bağı etrafında dönmesiyle oluşan molekül şekline molekül konformasyonu denirken bu grupların σ -bağı etrafında dönmesiyle molekülün uğradığı enerji değişiminin analizine de konformasyon analizi denir. Molekülün toplam potansiyel enerjisini minimum yapan molekül yapısı bulunur. Molekül mekanik hesaplamalarında elektronlar dikkate alınmazlar. Molekül yaylarla birbirine bağlanmış ağırlıklardan oluşan bir sisteme benzer şekilde harmonik kuvvetlerle birbirleriyle etkileşen kütleler topluluğu olarak düşünülür. Burada kütleler, elektronların etrafında küresel olarak dağıldığı atom çekirdeklerini, yaylar ise atomlar arası kimyasal bağları temsil eder. Konformasyon analizi yapmanın pek çok yöntemi vardır. Bunlar arasında en iyi olan moleküler enerjilerini molekül yapısına bağlayan potansiyel enerji yüzeylerinin taramasıdır [25,27,34].

Bu çalışmada 2,3-diflorofenilboronik asit, 2,4-diflorofenilboronik asit, 2,5diflorofenilboronik asit ve 2,6-diflorofenilboronik asit minimum enerji durumlarının elde etmek için her bir molekülün toplam enerjisi dihedral açıların (C1-B-O1-H1) ve (C1-B-O2-H2) fonksiyonu olarak hesaplatıldı. Bu moleküllerin potansiyel enerji yüzeyleri şekil 3.1, şekil 3.2, şekil 3.3, şekil 3.4 verildi. 2,3-diflorofenilboronik asit, 2,4diflorofenilboronik asit, 2,5-diflorofenilboronik asit, 2,6-diflorofenilboronik asit moleküllerinin optimize edilmiş geometrileri kullanılarak B3LYP modeli ve 6-31G temel seti kullanılarak potansiyel enerji yüzeyleri (PES) hesaplatıldı.

Potansiyel enerji yüzey (PES) değerleri her bir molekül için dihedral açıların (C1-B-O1-H1) ve (C1-B-O2-H2) fonksiyonu olarak hesaplandı.

Hesaplamalarda dihedral açılar 0^{0} 'den 180^{0} ' ye kadar 10 adımlarla ve her değeri için, dihedral açısı 0^{0} den 180^{0} ' ye kadar 10 adımlarla artırıldı. Toplam potansiyel enerji değerleri 2,3 - diflorefenilboronik asit molekülü için $11^{2} = 121$ noktada hesaplatıldı ve başlangıç değerleri 2,3 - diflorofenilboronik asit, 2,4 - diflorofenilboronik asit, 2,5-diflorofenilboronik asit ve 2,6 - diflorofenilboronikasit moleküllerinin her biri için denge durumu dihedral açının değerini göstermektedir.

2,3 - diflorofenilboronik asit molekülü için elde edilen PEY üzerinde 2 tane minimum enerjili durum tesbit edildi. Tespit edilen bu noktalar potansiyel enerji eğrileri çizimleri üzerinde siyah noktaları ifade etmektedir. 4 tane maksimum nokta vermektedir bunlar ise potansiyel enerji eğrileri çiziminde kırmızı nokta olarak görülmektedir. 2,4 - diflorofenilboronik asit molekülü için elde edilen PEY üzerinde 3 tane minimum enerjili durum tesbit edildi. 4 tane maksimum nokta vermektedir. 2,5 - diflorofenilboronik asit molekülü için elde edilen PEY üzerinde 4 tane minimum enerjili durum tesbit edildi. 4 tane maksimum nokta vermektedir. 2,6 - diflorofenilboronik asit molekülü için elde edilen PEY üzerinde 8 tane minimum enerjili durum tesbit edildi.4 tane maksimum nokta vermektedir. Bu noktalar ise potansiyel enerji eğrileri çiziminde minumum enerji noktaları siyah renk ile maksimum enerji noktaları ise kırmızı nokta olarak görülmektedir.

Diflorofenilboronik asit molekülünün 2,3-diflorofenilboronik Asit Molekülü (I) 121 modunda 2,4-diflorofenilboronik Asit Molekülü (II) 7,79 ve 163 modunda, 2,5diflorofenilboronik Asit Molekülü (III) 1,13,145,163 ve 169 modunda, 2,6diflorofenilboronik Asit Molekülü (IV) 14,19 ve 25 modunda önce scan edilerek enerji ve dipol moment değerleri bulunarak her moleküldeki en düşük enerji değerli mod 2,3-diflorofenilboronik Asit Molekülü (I) için 121, 2,4-diflorofenilboronik Asit için 7, 2,5-diflorofenilboronik Asit Molekülü(III) için 145, 2,6-Molekülü (II) diflorofenilboronik Asit Molekülü (IV) için 25 modları seçilip bu moleküllerin yapısal parametreleri (denge durum geometrisi, bağ uzunlukları, bağ ve dihedral açıları), dipol HOMO-LUMO moment. elektronik enerji, enerji farkı, polarizebilite ve hiperpolarizebilite ve NMR değerleri hesaplandı. Her molekül için hesaplanan scan değerleri tablo 3.1'de verilmiştir.

Molekül	Mod	Dipol	Enerji
1	(121)a.	1,62	-606,930749044
	(7) a	0.41	-606 937636392
	(/)	0,11	000,00000000
II	(70) h	0.41	606 027626201
	(79) 0.	0,41	-000,937030391
	(163) c.	0,41	-606,937636391
	(1) a.	1,35	-606,936358416
	(13) b.	1,35	-606,936358416
TT			
m	(145) c.	1,35	-606,936358507
	(163) d	1 35	-606 936358507
	(105) u.	1,55	000,750550507
	(1(0))	1.25	606 026259417
	(109) e.	1,55	-000,930338417
	(14) a.	4,99	-606,933517520
IV			
	(19) b.	2,42	-606,933260292
	(25) c.	4,99	-606,933517545

 Tablo 3.1: Diflorofenilboronik Asit Hesaplamaları

Şekil 3.1: 2,3- Diflorofenilboronik Asit Molekülünün Potansiyel Yüzeyi (PEY)

Şekil 3.2: 2,4- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY)

Şekil 3.3: 2,5- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY)

Şekil 3.4: 2,6- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY)

Şekil 3.5: 2,3- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri

Şekil 3.6: 2,4-Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri

Şekil 3.7: 2,5- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri

Şekil 3.8: 2,6- Diflorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri

3.2. Yapısal Parametreler

Bu bölümde; I,II,III ve IV moleküllerinin HF/6-311++(d,p) ve B3LYP/6-311++(d,p) yöntemler ile hesaplanmış denge durumu elektronik enerji değerleri, dipol moment değerleri, polaribilizite ve hiperpolaribilizite değerleri Tablo 3.2'de verildi. Herbir molekül için her iki yöntemle hesaplanan yapısal parametreler(bağ uzunluğu, bağ açıları ve dihedral açıları) EKLER' de verilmiştir.

B3LYP modelinde2,3-diflorofenilboronik asit molekülünde $C_1 - C_2$, $C_1 - C_6$, $C_2 - C_3$ C_3 , $C_3 - C_4$, $C_4 - C_5$, $C_5 - C_6$ bağ uzunlukları 0,0228 A^0 fark olduğu, B- O_1 , B- O_2 bağ uzunlukları arasındaki farkın 0,0006 A^0 iken O - H, $O_1 - H_4, O_2 - H_5$ bağ uzunluklarındaki farkın 0,0009 A^0 ve O-H, $O_1 - H_4, O_2 - H_5$ bağları arasındaki uzunluğu diğer $C_4 - H_1, C_5 - H_2, C_6 - H_3$ bağları arasındaki uzunluğa göre 0,001 A^0 azalma olduğu görüldü.2,4-diflorofenilboronik asitte ise $C_1 - C_2$, $C_1 - C_6$, $C_2 - C_6$ C_3 , $C_3 - C_4$, $C_4 - C_5$, $C_5 - C_6$ bağ uzunluğunun diğer karbon bağlarına göre 0,0228 A^0 büyük olduğunu, B- O_1 , B- O_2 bağ uzunlukları farkının 0,0009 A^0 , O_1 – H_4 , $O_2 - H_5$ bağ uzunlukları farkı ise 0,0008 A^0 ve $C_3 - H_1$, $C_5 - H_2$, $C_6 - H_3$ bağları arasındaki uzunluğuna göre 0,0015 A⁰olduğu görüldü.2,5-diflorofenilboronik asitte ise $C_1 - C_2$, $C_1 - C_6$, $C_2 - C_3$, $C_3 - C_4$, $C_4 - C_5$, $C_5 - C_6$ bağ uzunluğunun diğer karbon bağlarına göre 0,0227 A⁰ büyük olduğunu, B-O₁, B-O₂ bağ uzunlukları farkının 0,001 A^0 , $O_1-H_4,\,O_2-H_5$ bağ uzunlukları farkı ise $0,0005\,A^0$ ve $C_3-H_2,C_4-H_1,C_6-H_1,C$ H_3 bağ uzunluğuna göre 0,0002 A^0 olduğu görüldü.2,6-diflorofenilboronik asitte ise $C_1 - C_2$, $C_1 - C_6$, $C_2 - C_3$, $C_3 - C_4$, $C_4 - C_5$, $C_5 - C_6$ bağ uzunluğunun diğer karbon bağlarına göre 0,0071 A^0 büyük olduğunu, B- O_1 , B- O_2 bağ uzunlukları, $O_1 - H_4$, $O_2 - H_5$ bağ uzunlukları farkının olmadığı ve $C_3 - H_2, C_4 - H_1, C_5 - H_3$ bağ uzunluğuna göre 0,001 A⁰ farkın olduğu görüldü.

Bilindiği gibi HF modeli elektron korelasyonu içermediğinden B3LYP modeline göre bağ uzunluklarını daha kısa olarak hesaplar. Hesaplama sonucunda da HF modeli bağ uzunluğu değerlerinin B3LYP modeline göre daha kısa olduğunu görüldü. 2,3-diflorofenilboronik asit,2,4-diflorofenilboronik asit,2,5-diflorofenilboronik asit ve 2,6-diflorofenilboronik asit moleküllerinde B3LYP modeli elektron korelasyonunu göz önüne aldığından halka üzerinde bulunan π -elektronları etkileşimi nedeni ile halka üzerinde ki karbon atomları arasındaki bağ uzunluğunu daha kısa olarak hesaplanır ve HF modelinde 2,3-diflorofenilboronik asit molekülünde $C_1 - C_2$, $C_1 - C_6$, $C_2 - C_3$, $C_3 - C_4$, $C_4 - C_5$, $C_5 - C_6$ arasında bağ uzunluklarına göre 0,0237 A^0 daha büyük olduğunu, B- O_1 , B- O_2 ve $C_3 - H_2$, $C_4 - H_1$, $C_5 - H_2$, $C_6 - H_3$ bağ uzunlukları arasındaki farkın B3LYP ile aynı farkı verdiğini, $O_1 - H_4$, $O_2 - H_5$ bağ uzunluklarındaki farkın ise 0,0018 A^0 olup DFT modeline göre 2 kat artış ile farklılaştığı gözlendi.

DFT modelinde 2,3-diflorofenilboronik asit molekülü, 2,4-diflorofenilboronik asit molekülü, 2,5- diflorofenilboronik asit moleküllerinin $C_1 - C_2$, $C_1 - C_6$, $C_2 - C_3$, $C_3 - C_4$, $C_4 - C_5$, $C_5 - C_6$, $O_1 - H_4$, $O_2 - H_5$, 2,3 ve 2,4 diflorofenilboronik asit molekülündeki $C_4 - H_1$, $C_5 - H_2$, $C_6 - H_3$ 2,5-diflorofenilboronik asit moleküllünün $C_3 - H_2$, $C_4 - H_1$, $C_6 - H_3$ ve B- O_1 , B- O_2 bağ uzunluklarının farklarının birbirlerine çok yakın iken 2,6-diflorofenilboronik asit molekülünde $C_1 - C_2$, $C_1 - C_6$, $C_2 - C_3$, $C_3 - C_4$, $C_4 - C_5$, $C_5 - C_6$ bağ uzunluklarının diğer moleküllerdeki bağ uzunluklarına göre daha küçük olduğu görülmüştür. B- O_1 , B- O_2 , $O_1 - H_4$, $O_2 - H_5$ bağ uzunluklarının farkının olmadığı ve diğer moleküllerdeki bağlar arası farka göre daha büyük olduğu görüldü.

 $C_3 - H_2, C_4 - H_1, C_5 - H_3$ bağlarının diğer moleküllerdeki bağlar arası farka göre yine büyük olduğu görüldü ve diğer moleküllerde 16 bağ uzunluğu varken, 2,6-diflorofenil boronik asit molekülünde 18 bağ uzunluğu bulunmaktadır bunlar $F_1 - H_4 - O_1$ ve $F_2 - H_5 - O_2$ arasında hidrojen bağlarıdır.

DFT modelinde; 2,3-diflrofenilboronik asit molekülü $C_2 - C_1 - C_6, C_1 - C_2 - C_3, C_2 - C_3 - C_4, C_3 - C_4 - C_5, C_4 - C_5 - C_6, C_1 - C_6 - C_5$ atomları arasındaki bağ açısı farkı 5,9⁰, $C_3 - C_4 - H_1, C_5 - C_4 - H_1, C_4 - C_5 - H_2, C_6 - C_5 - H_2, C_1 - C_6 - H_3, C_5 - C_6 - H_3$ atomları arasındaki bağ açısı farkı 3,9⁰,2,4-diflorofenilboronik asit

molekülündeki $C_2 - C_1 - C_6, C_1 - C_2 - C_3, C_2 - C_3 - C_4, C_3 - C_4 - C_5, C_4 - C_5 - C_6, C_1 - C_6 - C_5$ atomları arasındaki bağ açıları farkı 9,2⁰ iken $C_2 - C_3 - H_1, C_4 - C_3 - H_1, C_4 - C_5 - H_2, C_6 - C_5 - H_2, C_1 - C_6 - H_3, C_5 - C_6 - H_3$ atomları arasındaki bağ açısı farkı 3,9⁰ dir.2,5- fenilboronik asit molekülü $C_2 - C_1 - C_6, C_1 - C_2 - C_3, C_2 - C_3 - C_4, C_3 - C_4 - C_5, C_4 - C_5 - C_6, C_1 - C_6 - C_5$ atomları arasındaki bağ açısı farkı 8,2⁰, $C_2 - C_3 - H_2, C_4 - C_3 - H_2, C_3 - C_4 - H_1, C_5 - C_4 - H_1, C_1 - C_6 - H_3, C_5 - C_6 - H_3$ atomları arasındaki bağ açısı farkı 1,7⁰, 2,6-diflorofenilboronik asit molekülü $C_2 - C_1 - C_6, C_1 - C_2 - C_3, C_2 - C_3 - C_4, C_3 - C_4 - H_1, C_5 - C_4 - H_1, C_5 - C_4 - H_2, C_4 - C_5 - C_6, C_1 - C_5 - C_6, C_1 - C_5 - C_6, C_1 - C_5 - C_6, C_1 - C_5 - C_6 - C_5 - H_3$ atomları arasındaki bağ açısı farkı 1,7⁰, 2,6-diflorofenilboronik asit molekülü $C_2 - C_1 - C_6, C_1 - C_2 - C_3, C_2 - C_3 - C_4, C_3 - C_4 - C_5 - C_6 - C_5 - H_3$ atomları arasındaki bağ açısı farkı 1,7⁰, 2,6-diflorofenilboronik asit molekülü $C_2 - C_1 - C_6, C_1 - C_2 - C_3, C_2 - C_3 - C_4, C_3 - C_4 - C_5, C_4 - C_5 - C_6 - C_5 - H_3$ atomları arasındaki bağ açısı farkı 1,2⁹⁰, $C_2 - C_3 - H_2, C_4 - C_5 - C_6, C_1 - C_6 - C_5 - H_3$ atomları arasındaki bağ açısı farkı 1,2⁹⁰, $C_2 - C_3 - H_2, C_4 - C_3 - H_2, C_3 - C_4 - H_1, C_5 - C_4 - H_1, C_4 - C_5 - H_3, C_6 - C_5 - H_3$ atomları arasındaki bağ açısı farkı 1,2⁹⁰, $C_2 - C_3 - H_2, C_4 - C_3 - H_2, C_3 - C_4 - H_1, C_5 - C_4 - H_1, C_5 - C_5 - H_3$ atomları arasındaki bağ açısı farkı 1,2⁹⁰, $C_2 - C_3 - H_2, C_4 - C_3 - H_2, C_3 - C_4 - H_1, C_5 - C_4 - H_1, C_4 - C_5 - H_3, C_6 - C_5 - H_3$ atomları arasındaki bağ açısı farkı 2,4⁰ dir.

modelinde;2,3-diflorofenilboronik asit molekülü $C_2 - C_1 - C_6, C_1 - C_2 - C_1 - C_6, C_1 - C_2 -$ HF $C_3, C_2 - C_3 - C_4, C_3 - C_4 - C_5, C_4 - C_5 - C_6, C_1 - C_6 - C_5$ atomları arasındaki bağ açısı farkı 5,7⁰, $C_3 - C_4 - H_1$, $C_5 - C_4 - H_1$, $C_4 - C_5 - H_2$, $C_6 - C_5 - H_2$, $C_1 - C_6 - C_5 - H_2$, $C_1 - C_6 - C_5 - H_2$, $C_1 - C_6 - C_5 - H_2$, $C_2 - C_3 - H_2$, $C_3 - C_4 - H_1$, $C_5 - C_4 - H_1$, $C_6 - C_5 - H_2$, $C_6 - C_5 - H_2$, $C_7 - C_6 - C_5 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - C_8 - H_2$, $C_8 - H_2$, H_3 , $C_5 - C_6 - H_3$ atomları arasındaki bağ açısı farkı 3,4⁰,2,4-diflorofenilboronik asit molekülündeki $C_2 - C_1 - C_6, C_1 - C_2 - C_3, C_2 - C_3 - C_4, C_3 - C_4 - C_5, C_4 - C_5 - C_5$ C_6 , $C_1 - C_6 - C_5$ atomları arasındaki bağ açıları farkı 5,7⁰ iken $C_3 - C_4 - H_1$, $C_5 - C_6$ $C_4 - H_1, C_4 - C_5 - H_2, C_6 - C_5 - H_2, C_1 - C_6 - H_3, C_5 - C_6 - H_3$ atomları arasındaki bağ açısı farkı 3,4⁰ dir.2,5-diflorofenilboronik asit molekülü $C_2 - C_1 - C_6, C_1 - C_2 - C_1 - C_6$ $C_{3}, C_{2} - C_{3} - C_{4}, C_{3} - C_{4} - C_{5}, C_{4} - C_{5} - C_{6}, C_{1} - C_{6} - C_{5}$ atomları arasındaki bağ açısı farkı 5,7⁰ dir. $C_2 - C_3 - H_2$, $C_4 - C_3 - H_2$, $C_3 - C_4 - H_1$, $C_5 - C_4 - H_1$, $C_1 - C_6 - H_1$ $H_3, C_5 - C_6 - H_3$ atomları arasındaki bağ açısı farkı 1,9⁰,2,6-diflorofenilboronik asit molekülü $C_2 - C_1 - C_6, C_1 - C_2 - C_3, C_2 - C_3 - C_4, C_3 - C_4 - C_5, C_4 - C_5 - C_6, C_1 - C_5 - C_6, C_5 - C_5 - C_6, C_5 - C_5 - C_5 - C_5 - C_5 C_6 - C_5$ atomları arasındaki bağ açısı farkı $12,1^0$, $C_2 - C_3 - H_2, C_4 - C_3 - H_2, C_3 - H_3, C_3 C_4 - H_1, C_5 - C_4 - H_1, C_4 - C_5 - H_3, C_6 - C_5 - H_3$ atomları arasındaki bağ açısı farkı $2,6^{0}$ dir.

2,6-diflorofenilboronikasitin karbon atomları arsındaki bağ açısı farkının HF ve DFT/ B3LYP modellerinde diğer karbon atomları açılarına göre büyük olduğu gözlemlenmiştir. Denge dihedral açısı moleküllerin geometrisinde önemli bir faktördür. Çünkü denge dihedral açısı moleküldeki etkileşen iki kuvvetin denge durumunda oluşturmaktadır.

Bu etkileşimlerden biri fenil ve boranik asit halkaları üzerinde bulunan π elektron etkileşimi (Bu etkileşim halkaları düzlemsek tutma eğilimindedir) diğeri ise halkalar üzerinde bulunan orto-atomlarının sterik etkileşimidir. (Bu etkileşim halkaları düzlemsellikten ayırma eğilimindedir.) Bu çalışmada denge durumu dihedral açıları; fenil halkalı düzlemi ile boronik asit halkalı düzlemi arasındaki (C1-B-O1-H1) ve (C1-B-O2-H2) açıdır.

Denge durumu moleküllerin elektronik enerjileri B3LYP / 6 -311 ++ G (d.p) modelinde HF modeline göre 3^0 kadar daha büyüktür. HF ve DFT / B3LYP modelleriyle hesaplanan denge durumu elektronu enerjileri, denge durumu dipol moment değerleri ve denge durumu polarizibilite ve hiperpolarizibilite Tablo 3.2' de verilmiştir.

2,3-diflorofenilboronik asit, 2,4-diflorofenilboronik asit, 2,5-diflorofenilboronik asit, ve 2,6-diflorofenilboronikasit molekülünün yapısal parametreleri üzerinde flor atomlarının konumlarının etkili olduğu hesaplama sonuçlarından görülmektedir. DFT / B3LYP modeline göre HF modelinde fenilboronik asit türevlerinin elektronik enerji değerlerinin azaldığı görülmüştür. Denge durumu dipol momentleri, polaribilizite ve hiperpolarizibilite değerlerinin flor atomunun hidrojen atomu ile yer değiştirmesi sonucu farklı büyüklükler vermiştir.

Tablo 3.2: 2-X-DiFlorofenilboronik Asit Molekülünün Denge durumu Elektronik enerjisi (a.u), Dipol momenti (μ (D)), Polarizebilitesi (α (a.u)) ve Hiperpolarizebilitesi ((β (a.u)))

	B3LYP / 6-311 + + G(d.p)							
	Electronic Energy (a.u)	μ (D)	α (a.u)	β(a.u)				
I	-606.93074904	1.62	87,67569113	306,1354712				
II	-606.93763639	0.41	87,75006757	262,1580955				
III	-606.93635851	1.35	87,43278003	74,90399609				
IV	-606.93351754	4.99	87,085154	197,0632711				
		HF/6-311++ G	(d.p)					
Ι	-603.69246513	1.69	78,85278187	236,3212293				
II	-603.70028583	0.46	78,68351193	173,3374205				
III	-603.69783555	1.40	78,644082	40,61176934				
IV	-603.69759110	5.07	77,81014933	133,5416964				

3.3. Moleküllerin IR ve Raman Spektrumları

2,3-diflorofenilboronik asit, 2,4-diflorofenilboronik asit, 2,5-diflorofenilboronik asit, 2,6-diflorofenilboronik asit molekülünün raman spektrum grafikleri sırasıyla şekil 3.10,3.11,3.12,3.13'de ve IR spektrum grafikleri sırasıyla şekil 3.15, 3.16, 3.17, 3.18'de verilmiştir. Ayrıca 2,4 diflorofenilboronik asit molekülünün teorik Raman ve IR spektrum grafikleri sırasıyla şekil 3.9 ve şekil 3.14 'de verilmiştir.

Raman grafiklerinde 2,3-2,4-2,5 diflorofenilboronik asidin 500-1500 cm⁻¹ aralığında zayıf titreşimleri varken 3000cm⁻¹ şiddetli titreşim verdiği 3000-4000 cm⁻¹ arası şiddetli titreşime yakın titreşim verdiği gözlenmektedir.2,6-diflorofenilboronik asidin 500-1500 cm⁻¹ aralığında zayıf titreşimleri varken 3000cm⁻¹ şiddetli titreşim verdiği 3000-4000 cm⁻¹ arası şiddetli titreşime yakın titreşime yakın titreşim verdiği şözlenmektedir.2,6-diflorofenilboronik asidin 500-1500 cm⁻¹ arası şiddetli titreşimleri varken 3000cm⁻¹ şiddetli titreşim verdiği şözlenmektedir.2,6-diflorofenilboronik asidin 500-1500 cm⁻¹ arası şiddetli titreşimleri varken 3000cm⁻¹ şiddetli titreşim verdiği şözlenmektedir.

IR spektrum grafiklerinde ise 2,3-2,4- diflorofenilboronik asidin 500-1000 cm⁻¹ aralığında zayıf şiddetli titreşimleri 1000-1500cm⁻¹ aralığında şiddetli titreşim verdiği 3500-4000cm⁻¹ aralığında raman grafiğinde beklenenin aksine göre daha az şiddetli titreşim piki vermiştir. 2,5-diflorofenilboronik asit molekülünün 500-1000 cm⁻¹ aralığında daha fazla titreşim değeri verip,1000-1500cm⁻¹ aralığında şiddetli titreşim verdiği ve 3500-4000cm⁻¹ aralığında 2,3–2,4 diflorofenilboronik asit molekülüne göre daha büyük titreşim değeri verdiği gözlenmektedir. 2,6-diflorofenilboronik asidin 500-1500 cm⁻¹ aralığında zayıf titreşimleri varken 1000-1500cm⁻¹ şiddetli titreşim verdiği 3000-4000 cm⁻¹ arası 2,3-2,4 diflorofenilboronik aside göre büyük ancak, 2,5-diflorofenilboronik aside göre küçük titreşim değeri vermiştir.

Şekil 3.9: 2,4- Diflorofenilboronik Asitin Raman Deneysel Ölçümü [36].

Şekil 3.10: 2,3- Diflorofenilboronik Asit DFT Raman Grafiği

Şekil 3.11: 2,4-Diflorofenilboronik Asit DFT Raman Grafiği

Şekil 3.12: 2,5-Diflorofenilboronik Asit DFT Raman Grafiği

Şekil 3.13: 2,6- Diflorofenilboronik Asit DFT Raman Grafiği

Şekil 3.14: 2,4- Diflorofenilboronik Asitin IR Deneysel Ölçümü [37].

Şekil 3.15: 2,3-Diflorofenilboronik Asit DFT IR Grafiği

Şekil 3.16: 2,4- Diflorofenilboronik Asit DFT IR Grafiği

Şekil 3.17: 2,5- Diflorofenilboronik Asit DFT IR Grafiği

Şekil 3.18: 2,6- Diflorofenilboronik Asit DFT IR Grafiği

3.4. Molekülün Titreşim Dalga Sayıları ve İşaretlemeleri

Bu bölümde 2,3 - diflorofenilboronik asit, 2,4 - diflorofenilboronik asit, 2,5 - diflorofenilboronik asit ve 2,6 - diflorofenilboronik asit molekülünün 6-311++G (d,p) temel setlerinde DFT(B3LYP) metodu kullanılarak elde edilen titreşim frekansları, bunların deneysel frekans değerleri ile karşılaştırılması ve Toplam Enerji Dağılımı (TED) yardımıyla belirlenen işaretlemeleri yer almaktadır [38]. IR ve Raman spektrumları yukarıda grafikler olarak verilmiştir.

2,3-diflorofenilboronik asit (TED) titreşimleri v OH 3854, 3846 cm⁻¹aralığında güçlü titreşimler vermiştir. v CH titreşimi 3204, 3198, 3181 cm⁻¹'de güçlü titreşimler vermiştir. v CC titreşimi 1657, 1617, 1490, 1327, 1285, 1081, 645 cm⁻¹ 'de güçlü ve zayıf titreşimler göstermiştir. β HCC titreşimi 1502, 1285, 1233, 1168, 1081, 984 cm⁻¹

'de güçlü ve zayıf titreşimler göstermiştir. β CCC titreşimi 1502, 1189, 914, 645, 583, 484, 304 cm⁻¹ 'de zayıf titreşimler göstermiştir. τ CCCC titreşimi 984, 827, 741, 568, 535, 466, 295, 208, 100cm⁻¹ 'de güçlü ve zayıf titreşimler göstermiştir. τ HCCC titreşimi 926, 805 cm⁻¹ 'de güçlü titreşimler, 741, 568 cm⁻¹ 'de zayıf titreşimler göstermiştir.

2,4-diflorofenilboronik asit (TED) titreşimleri v OH titreşimi 3716, 3710 cm⁻¹'de aralığında güçlü titreşimler vermiştir. v CH titreşimi 3226, 3207, 3192 cm⁻¹'de aralığında güçlü titreşimler vermiştir. v CC titreşimi 1627, 1594, 1498, 1419, 1333, 1282, 1179, 1134, 1112, 909, 720, 672 cm⁻¹'de aralığında güçlü ve zayıf titreşimler vermiştir. β HCC titreşimi 1498, 1419, 1257, 1134, 1112, 1069 cm⁻¹'de aralığında güçlü ve zayıf titreşimler vermiştir. β HCC titreşimi 1498, 1419, 1257, 1134, 1112, 1069 cm⁻¹'de aralığında güçlü ve zayıf titreşimler vermiştir. β CCC titreşimi 1594, 1419, 1257, 1179, 1112, 997, 720, 672, 556, 508, 502cm⁻¹'de aralığında zayıf titreşimler vermiştir. τ CCCC titreşimi 978, 742, 651, 474, 309, 300, 255, 123 cm⁻¹'de aralığında güçlü ve zayıf titreşimler vermiştir. τ HCCC titreşimi 978, 861, 838, 474 cm⁻¹ 'de aralığında güçlü ve zayıf titreşimler vermiştir.2,4-diflorofenilboronik asit titreşimleri raman deneysel ölçümünde 3000 cm⁻¹ şiddetli v CH titreşimi gözlenmiştir. Teorik olarak çizilen grafik ile uyum halindedir.

2,4 - diflorofenilboronik asit IR deneysel ölçümünde alınan grafikte ise v OH titreşimleri 3629,08 cm⁻¹ aralığında , v CH titreşimi 3385,08 cm⁻¹ve . v CC titreşimi 1610,89 cm⁻¹,1587,78 cm⁻¹,1431,52 cm⁻¹aralıklarında orta titreşim göstermiştir.

2,5-diflorofenilboronik asit (TED) titreşimleri v OH titreşimi 3847 cm⁻¹ 'de aralığında güçlü titreşimler vermiştir. v CH titreşimi 3210, 3207, 3197 cm⁻¹ 'de aralığında güçlü titreşimler vermiştir. v CC titreşimi 1658, 1620, 1507, 1325, 1242, 1087, 917 cm⁻¹ 'de aralığında zayıf titreşimler vermiştir. β HCC titreşimi 1507, 1450, 1354, 1264, 1190, 1134, 1087 cm⁻¹ 'de aralığında güçlü ve zayıf titreşimler vermiştir.

β CCC titreşimi 1620, 1450, 1190, 1087, 759, 703, 506, 458, 381, 299 cm⁻¹ 'de aralığında zayıf titreşimler vermiştir. τ CCCC titreşimi 951, 920, 742, 666, 431, 376, 166, 121 cm⁻¹ 'de aralığında zayıf titreşimler vermiştir. τHCCC titreşimi 951, 920, 835 cm⁻¹ 'de aralığında güçlü,666, 524 cm⁻¹zayıftitreşimler vermiştir.

2,6-diflorofenilboronik asit (TED) titreşimleri v OH titreşimi 3881, 3878 cm⁻¹ 'de aralığında güçlü titreşimler vermiştir. v CH titreşimi 3213, 3208, 3189 3878 cm⁻¹ 'de aralığında güçlü titreşimler vermiştir. v CC titreşimi 1658, 1608, 1495, 1475, 1321, 1248, 1227, 1174, 1129, 1076,780, 626, 518 cm⁻¹ 'de aralığında güçlü ve zayıf titreşimler vermiştir.

β HCC titreşimi 1495, 1475, 1417, 1227, 1174, 1129, 1076 cm⁻¹ 'de aralığında güçlü ve zayıf titreşimler vermiştir.β CCC titreşimi 1608, 1475, 1248, 1129, 1076, 977, 780,518, 389, 320 cm⁻¹ 'de aralığında zayıf titreşimler vermiştir. τ CCCC titreşimi 973, 630, 473 251, 237, 89 cm⁻¹ 'de aralığında güçlü ve zayıf titreşimler vermiştir. τ HCCC titreşimi 973, 893, 792, 730, 612 cm⁻¹ 'de aralığında güçlü ve zayıf titreşimler vermiştir.

Γ	1	3854,74	v OH (99)
Ī	2	3846,1	v OH (99)
Ē	3	3204,369	v CH (93)
F	4	3198,325	v CH (94)
Ē	5	3181,262	v CH (96)
F	6	1657,099	v CC (57)
Γ	7	1617,431	v CC (57)
Γ	8	1502,94	β HCC (42), β CCC(19)
ſ	9	1490,38	v CC (34)
Γ	10	1394,231	v OB (72)
Γ	11	1368,922	ν OB (26), ν CB (26), β HOB (18)
-	12	1327,02	v CC (74)
	13	1285,69	ν CC (12), ν FC(27), β HCC (32)
Γ	14	1233,109	β HCC(42), β CCC (15)
Γ	15	1189,829	ν FC (33), βCCC (29)
	16	1168,499	β HCC (52)
Γ	17	1081,385	ν CC (42), β HCC (31)
Γ	18	1043,675	β HOB (89)
Γ	19	1018,402	ν OB (34), β HOB (54)
	20	984,2869	ν ΗCC (58), τ CCCC (25)
	21	926,9342	τ ΗССС (90)
	22	914,7238	ν OB (17), ν FC (27), ν CB (12), β CCC (13)
	23	827,6058	ν FC (29) , τ CCCC (36)
	24	805,5574	τ HCCC (70), τ FCCC (11)
	25	741,8569	τ HCCC (22), τ CCCC(19), τ FCCC(19), τ OCOB (15), τ BCCC(14)
	26	671,3866	τ FCCC (23), τ OCOB (54)
	27	645,4445	ν CC (17), ν FC(16), ν CB (11), β CCC (16)
	28	606,5248	τ HOBC (76)
	29	583,6528	β CCC (34), β FCC (35)
	30	568,9322	τ HOBC(28), τ HCCC(12), τ CCCC(22), τ FCCC (27)
	31	535,1472	τ ΗΟΒC(55), τ СССС (12)
Ļ	32	521,2371	β FCC(10), β OBO (44)
	33	484,1343	β FCC(11), β CCC(58)
Ļ	34	466,4198	τ HOBC(15), τ CCCC(12), τ FCCC(30), τ OCOB (13)
	35	357,7964	β OBC(43), β OBO (15)
Ļ	36	317,4367	ν CB(21), β OBC(13), β OBO(21), β FCC (16)
Ļ	37	304,2425	β CCC(15), β FCC (64)
Ļ	38	295,7727	τ CCCC(35), τ FCCC (58)
Ļ	39	208,3786	τ CCCC(62), $τ$ BCCC (16)
Ļ	40	167,0869	β OBC(20), β BCC (66)
Ļ	41	100,4977	τ СССС(45), τ ВССС (43)
	42	58,2819	τ OBCC (89)

Tablo 3.3: 2,3-Diflorofenilboronikasit Toplam Enerji Dağılımı

	1	3716,21	v OH (100)
	2	3710,43	v OH (100)
	3	3226,506	v CH (98)
	4	3207,657	v CH (96)
	5	3192,921	v CH (99)
	6	1627,549	v CC (62)
	7	1594,891	ν CC (44), β CCC (22)
	8	1498,547	ν CC (23), β HCC (38)
	9	1419,65	ν CC (26), β CCC (10), β HCC (23)
	10	1353,655	ν OB(21), ν CB (26), β HOB (18)
	11	1333,764	v CC (15), v OB (47)
-	12	1282,04	v CC (54), v OB (15)
	13	1257,38	β CCC (14), β HCC (57)
	14	1179,308	ν CC(26), ν FC (37), βCCC (13)
	15	1134,864	ν CC(21), β HOB(11), β HCC(37)
	16	1112,36	ν CC(11), β HOB (23), β HCC (14), β CCC (14)
	17	1069,679	ν FC (14), β HOB (22), β HCC (24)
	18	1041,142	β HOB (65)
	19	997,2006	ν OB (40), β HOB (31), β CCC (16)
	20	978,599	τ ΗССС (71), τ СССС (12)
	21	909,553	v CC(15), v FC (51)
	22	861,1886	τ ΗССС (64), τ FCCC (20)
	23	838,8886	τ HCCC (75)
	24	742,264	τ СССС (25), τ ОСОВ (20), τ ВССС (16)
	25	720,0326	ν CC(17), ν FC(19), β CCC (38)
	26	709,48	τ HOBC (71), τ OCOB (17)
	27	672,309	ν CC(12), β CCC (10), τ HOBC (23)
	28	651,9875	τ ΗΟΒC (15), τ СССС (16), τ ОСОВ (14)
	29	640,0113	τ HOBC (54), τ FCCC (25)
	30	610,3032	τ HOBC (22), τ FCCC (36), τ OCOB (29)
	31	556,6925	β CCC (22), β FCC (26)
	32	508,2595	ν FC (11), β CCC (18), β OBO (40)
	33	502,4111	ν FC (10), β CCC (23), β OBO (13), β FCC (34)
	34	474,1806	τ ΗССС (15), τ СССС (40), τ FCCC (30)
	35	371,8169	β OBC (39), β FCC (35)
	36	344,4453	β OBC (21), β FCC (38)
	37	309,3892	ν CB (12), β CCC (13), β OBO (14), β FCC (16), τ CCCC (11)
	38	300,4777	τ СССС (27), τ ВССС (13)
	39	255,8494	τ СССС (59), τ FCCC (36)
	40	192,9734	β OBC (14), β BCC (70)
	41	123,2	τ СССС (21), τ ОВСС (34), τ ВССС (22)
Γ	42	100,9254	τ ΟΒCC (51), τ ΒCCC (30)

Tablo 3.4: 2,4-Diflorofenilboronikasit Toplam Enerji Dağılımı

1	3847,7537	v OH (100)
2	3847,0403	v OH (100)
3	3210,5113	v CH (98)
4	3207,2674	v CH (94)
5	3197,8089	v CH (93)
6	1658,839	v CC (62)
7	1620,1161	ν CC (59), β CCC (11)
8	1507,9467	ν CC (33), β HCC (34)
9	1450,1635	ν OB (19), β HCC (11), β CCC (24)
10	1397,0218	v OB (53)
11	1354,9518	ν OB (20), ν CB (16), β HOB (14), β HCC (17)
12	1325,3571	v CC (82)
13	1264,6294	β HCC (59)
14	1242,7868	v CC (32), v FC (38)
15	1190,4552	ν FC (32), β HCC (27), β CCC (17)
16	1134,4189	β HCC (64)
17	1087,5398	ν CC (26), β HOB (18), β HCC (13), β CCC (15)
18	1043,2997	β HOB (84)
19	1014,7484	ν OB (37), β HOB (43)
20	951,626	τ ΗССС (78), τ СССС (12)
21	920,7355	τ ΗССС (70),τ СССС (10)
22	917,6942	ν CC (30), ν OB (14), ν FC (22)
23	835,3043	τ ΗССС (76),τ FCCC (15)
24	759,2837	ν FC (39), β CCC (30)
25	742,194	τ СССС (20),τ ОСОВ (26),τ ВССС (21)
26	703,0943	ν CB (10), β CCC (44)
27	666,5049	τ ΗССС (10),τ СССС (21), τ FCCC (14), τ ОСОВ (42)
28	608,4986	τ HOBC (74)
29	573,596	ν CB (11), β OBO (22), β FCC (31)
30	552,8811	τ HOBC (66), τ FCCC (13)
31	524,1176	τ HOBC (33), τ HCCC (19), τ FCCC (30)
32	506,0756	β CCC (19), β OBC (11), β OBO (16), β FCC (20), β BCC (11)
33	458,8284	ν FC (16), β CCC (61)
34	431,465	τ СССС (55)
35	381,3889	β CCC (11), β OBO (13), β FCC (51)
36	376,2469	τ CCCC (27), τ FCCC (67)
37	345,5077	β OBC (48), β FCC(21)
38	299,519	ν CB (18), β CCC (10), β OBO (21), β FCC (28)
39	166,6013	τ CCCC (51), τ FCCC (24), τ BCCC (14)
40	163,2771	β OBC (20), β BCC (66)
41	121,9942	τ CCCC (36), τ BCCC (43)
42	58,7803	τ OBCC (83)

Tablo 3.5: 2,5-Diflorofenilboronikasit Toplam Enerji Dağılımı

Γ	1	3881,01	v OH (100)
	2	3878,32	v OH (100)
	3	3213,31	v CH (91)
	4	3208,49	v CH (100)
Γ	5	3189,26	v CH (92)
	6	1658,48	v CC (61)
Γ	7	1608,38	ν CC (63), β CCC (11)
Γ	8	1495,64	ν CC (13), ν OB (20), β HCC (31)
Γ	9	1475,75	ν CC (12), β HCC (35), β CCC (19), β FCC (11)
	10	1417,01	ν OB (58), β HCC (21)
Γ	11	1330,97	v OB (38), v CB (21), β HOB (22)
-	12	1321,47	v CC (73)
	13	1248,14	ν CC (25), ν FC (47), β CCC (11)
Γ	14	1227,48	ν CC (20), ν FC (20), β HCC (36)
	15	1174,97	ν CC (17), β HCC (73)
Γ	16	1129,71	ν CC (16), β CCC (11), β HOB (17), β HCC (29)
Γ	17	1076,99	ν CC (46), β CCC (11), β HCC (18)
Γ	18	1047,77	β HOB (91)
Ē	19	1018,79	ν OB (42), β HOB (44)
Γ	20	977,661	ν FC (57), β CCC (10)
Ē	21	973,012	τ ΗCCC (73), τ CCCC (16)
Γ	22	893,728	τ HCCC (76), τ FCCC (11)
Γ	23	792,584	τ HCCC (68), τ FCCC (21)
Γ	24	780,561	v FC (16), v CB (10), β CCC (41)
Γ	25	730,477	τ HCCC (23),τ FCCC (10), τ OCOB (25), τ BCCC (22)
	26	630,127	τ CCCC (19), τ OCOB (51)
	27	626,658	ν CC (18), ν FC (18), ν CB (22), β OBO (18)
	28	612,013	τ ΗССС (16), τ FCCC (75)
Γ	29	588,105	τ HOBC (87)
Γ	30	566,999	β CCC (47), β FCC (20)
Γ	31	518,218	ν CC (15), β CCC (36), β OBO (37)
Γ	32	518,127	ν FC (12), β FCC (50)
	33	495,372	τ HOBC (98)
Γ	34	473,627	τ СССС (49), β FCCC (20)
Γ	35	389,039	β CCC (10), β OBO (18), β FCC (48)
Γ	36	338,073	β OBC (63), β FCC (15)
Γ	37	320,439	ν CB (23), β CCC (22), β OBO (18), β FCC (26)
Γ	38	251,633	τ СССС (23), τ FCCC (44), τ BCCC (24)
Γ	39	237,94	τ СССС (78), τ FCCC (12)
Γ	40	213,857	β OBC (12), β BCC (73)
F	41	89,8178	τ СССС (40), τ ВССС (47)
	42	38.0397	τ OBCC (98)

Tablo 3.6: 2,6-Diflorofenilboronikasit Toplam Enerji Dağılımı

	2,3- Diflorofen	ilboronik Asit	2,4- Diflorofe	enilboronik Asit
	Frekans	Scale Edilmiş	Frekans	Scale Edilmiş
1	58,196	52,725576	63,6674	57,6826644
2	110,6837	100,2794322	102,8901	93,2184306
3	176,5065	159,914889	176,5311	159,9371766
4	231,0501	209,3313906	254,5592	230,6306352
5	324,9527	294,4071462	310,2922	281,1247332
6	329,1069	298,1708514	316,446	286,700076
7	339,4626	307,5531156	365,5846	331,2196476
8	380,6177	344,8396362	396,7074	359,4169044
9	512,1762	464,0316372	502,3662	455,1437772
10	520,536	471,605616	532,2105	482,182713
11	560,8061	508,0903266	558,3855	505,897263
12	570,2647	516,6598182	560,5578	507,8653668
13	612,9393	555,3230058	600,4783	544,0333398
14	626,953	568,019418	614,4822	556,7208732
15	629,9248	570,7118688	690,5692	625,6556952
16	692,515	627,41859	714,8168	647,6240208
17	742,5705	672,768873	719,4355	651,808563
18	837,5229	758,7957474	799,4868	724,3350408
19	891,2033	807,4301898	820,6941	743,5488546
20	900,7703	816,0978918	929,4612	842,0918472
21	978,5356	886,5532536	960,3732	870,0981192
22	1042,8013	944,7779778	1050,6374	951,8774844
23	1087,5623	985,3314438	1074,7001	973,6782906
24	1107,7771	1003,646053	1098,5907	995,3231742
25	1113,5459	1008,872585	1112,8544	1008,246086
26	1156,1956	1047,513214	1171,8479	1061,694197
27	1200,6672	1087,804483	1212,3936	1098,428602
28	1266,2445	1147,217517	1220,0836	1105,395742
29	1309,8525	1186,726365	1286,8992	1165,930675
30	1352,4085	1225,282101	1357,3682	1229,775589
31	1403,3008	1271,390525	1408,5363	1276,133888
32	1452,6331	1316,085589	1450,7191	1314,351505
33	1481,6835	1342,405251	1471,343	1333,036758
34	1620,7241	1468,376035	1572,2998	1424,503619
35	1634,7084	1481,04581	1661,0889	1504,946543
36	1773,5963	1606,878248	1764,6557	1598,778064
37	1808,8299	1638,799889	1802,2508	1632,839225
38	3340,4785	3026,473521	3355,814	3040,367484
39	3359,917	3044,084802	3371,3534	3054,44618
40	3369,5464	3052,809038	3377,7483	3060,23996
41	4180,1845	3787,247157	4181,6333	3788,55977
42	4208,9807	3813,336514	4211,3111	3815,447857

Tablo 3.7: 2-X Diflorofenilboranik asit molekülünün HF / 6-311 ++ G(d,p) setinde frekans değerleri (cm-1)

	2,5- Diflorofeni	ilboronik Asit	2,6- Diflorof	enilboronik Asit
	Frekans	Scale Edilmiş	Frekans	Scale Edilmiş
1	58,321	52,838826	17,353	15,721818
2	133,9394	121,3490964	100,1072	90,6971232
3	171,087	155,004822	225,0015	203,851359
4	184,6556	167,2979736	263,5254	238,7540124
5	316,7071	286,9366326	280,0588	253,7332728
6	368,4313	333,7987578	340,3163	308,3265678
7	410,9123	372,2865438	362,7628	328,6630968
8	417,8667	378,5872302	418,4253	379,0933218
9	470,7356	426,4864536	476,1665	431,406849
10	492,6586	446,3486916	517,0701	468,4655106
11	544,6357	493,4399442	557,2761	504,8921466
12	563,6293	510,6481458	559,5162	506,9216772
13	592,8656	537,1362336	581,951	527,247606
14	615,8925	557,998605	608,4933	551,2949298
15	629,2024	570,0573744	673,7407	610,4090742
16	730,2472	661,6039632	686,2808	621,7704048
17	752,4021	681,6763026	694,0066	628,7699796
18	823,0345	745,669257	819,5409	742,5040554
19	823,2022	745,8211932	836,7945	758,135817
20	937,4601	849,3388506	887,2888	803,8836528
21	982,6213	890,2548978	985,8535	893,183271
22	1030,511	933,6428754	1072,652	971,8225308
23	1072,099	971,3213316	1081,222	979,5874944
24	1084,023	982,124385	1090,443	987,9412674
25	1113,427	1008,7645	1129,563	1023,38435
26	1165,273	1055,73761	1149,256	1041,225936
27	1180,916	1069,909715	1197,524	1084,956472
28	1265,011	1146,099875	1214,59	1100,418359
29	1311,907	1188,587561	1299,572	1177,412594
30	1360,808	1232,892048	1344,334	1217,966151
31	1373,096	1244,024795	1381,7	1251,820109
32	1444,821	1309,007826	1434,342	1299,514214
33	1479,244	1340,194611	1501,694	1360,534583
34	1561.055	1414.316102	1606.36	1455.362522
35	1646,244	1491,496611	1624,521	1471,815573
36	1776.528	1609.534368	1760.359	1594.885435
37	1809,976	1639,837894	1808,563	1638.55844
38	3354.349	3039,040194	3377.912	3060,388544
39	3369.539	3052.802425	3399.429	3079,882765
40	3372,797	3055.753991	3405.35	3085.247281
41	4180.513	3787,544416	4245.973	3846,851176
42	4206.026	3810,659194	4247,008	3847,789429

Tablo 3.8: 2-X Diflorofenilboranik asit molekülünün HF / 6-311 ++ G(d,p) setinde frekans değerleri (cm-1)

3.5. Homo-Lumo Enerji Farkları

Moleküllerin en yüksek dolu moleküler orbitale (MO) Homo, en düşük boş moleküler orbitale (MO) Lumo kuantum kimyası için önemli parametrelerdir. Homo elektronları verme eğiliminde olup Lumo elektron alma eğilimindedir. Homo-Lumo arasındaki etkileşimler ile molekül orbital teoriye göre geçiş durumlarında $\pi - \pi^*$ geçişleri gözlenir. Homo enerjisi iyonlaşma potansiyeli ile Lumo enerji ise elektron ilgisi ile ilgilidir. Homo-Lumo orbitalleri arası enerji farkı ise ''enerji aralığı (energy gap)'' şeklinde ifade edilir [29,32]. Bir molekülün diğer moleküllerle etkileşimini yani elektriksel iletkenliği bu şekilde belirlenir. Bu orbitallere öncelikli orbitaller denir [25,27,29,32]. Moleküllerin polarizibilite değeri ile Homo-Lumo enerji farkları arasında şöyle bir ilişki vardır. Molekülün Homo-Lumo enerji farkı küçük ise elektron dağılımı kolayca şekillendirilebilir ve polarlama büyük olur eğer enerji aralığı büyük ise elektron dağılımı daha az değişir ve polarlama düşük olur [25,27].

Tablo 3.9 : 2-X-DiFlorofenilboronik Asit 2,3-diflorofenilboronik Asit, 2,4diflorofenilboronik Asit,2,5-diflorofenilboronik Asit,2,6-diflorofenilboronik Asit Molekülünün Denge durumu Homo-Lumo enerjileri ve enerji farkı ΔE (eV) değerleri (X(F)=R3, R4, R5, R6)

B3LYP / 6-311 + + G (d. P)							
Molekül	E _{HOMO} (a.u)	E _{LUMO} (a.u)	$\Delta Eg~(eV)$				
2,3-diflorofenilboronik Asit	-0,268970	-0,058879	5,716786201				
2,4-diflorofenilboronik Asit	-0,272777	-0,052351	5,998011886				
2,5-diflorofenilboronik Asit	-0.265526	-0.061720	5,545765066				
2,6-diflorofenilboronik Asit	-0.284999	-0.068932	5,879399137				
	HF / 6-311 + +	G (d. P)					
2,3- diflorofenilboronik Asit	-0,352543	0,039498	10,66782765				
2,4- diflorofenilboronik Asit	-0.357453	0.042326	10,87838637				
2,5-diflorofenilboronik Asit	-0.350343	0.039693	10,6132696				
2,6-diflorofenilboronik Asit	-0.365646	0.032156	10,82459022				

Şekil 3.19 : Molekülerin en yüksek dolu ve en düşük boş orbitallerinin üç boyutlu(3D) çizimi

3.6. Nükleer Manyetik Rezonans Spektroskopisi

Atom yapısındaki yüklü parçacıklar olan elektronlar ve çekirdekler kendi eksenleri etrafında dönen yani spini olan taneciklerdir. Bu dönme hareketi ile etraflarında bir elektrik alan oluşur. Bu magnetik olanlarda manyetik dipol momenti oluştururlar.

Manyetik dipol momenti μ ile gösterilir ve vektörel bir büyüklüktür. Spinleri nedeniyle yüklü bir tanecik küçük mıknatıs gibi davranır ve magnetik momentleri olan elektron ve çekirdekler bir dış magnetik alan etkisine maruz kaldıklarında oluşturdukları manyetik dipol moment bu alanda Larmar dönmesi hareketi yapar. Bu parçacıklar belirli bir potansiyel enerjiye sahiptirler. Parçacığın manyetik momentine ve uygulanan manyetik alanın şiddetine bağlıdır;

$$E = -\mu H_0 \tag{3.1}$$

Bu eşitlikte, *E* potansiyel enerji, μ manyetik moment ve H_0 uygulanan manyetik alan şiddetidir.

NMR yönteminde aktif bir çekirdeğin magnetik momenti, çekirdeğin γ Jiromanyetik sabitine ve m manyetik kuantum sayısına bağlılığı

$$\mu = \gamma \frac{\hbar m}{2\pi} \tag{3.2}$$

Her elementin kendine özgü bir jiromanyetik sabiti ve spin kuantum sayısı (I) bulunmaktadır. μ değeri, enerji formülünde yerine konduğunda manyetik alanın

etkisindeki bir çekirdeğin kaç farklı enerji düzeyinde olabileceği ve spin kuantum sayısı bulunabilir.

$$E_{\rm c} = \frac{\gamma \hbar H_0 m}{2\pi} \tag{3.3}$$

 $E_{\rm c}$ bir çekirdeğin potansiyel enerjisidir.

Bir çekirdeğin manyetik kuantum sayısı ile spin kuantum sayısı arasında

$$m = -I, -I+1, -I+2, \dots, 0 \dots I-1, I-2, I.$$
 (3.4)

Her atomun NMR da kaç pik vereceği 3I+1 eşitliğiyle bulunur. Eşitlik (3.4) 'de verilen enerji formülü, NMR ile yapı belirlenmesinde genelde kullanılan ¹*H* çekirdeğine uyarlandığında dış manyetik alanın etkisinde olan ¹*H* çekirdeğinin iki farklı enerji düzeyine yarılanacağını gösterir.

 $m_1 = -1/2$ ve $m_1 = +1/2$ manyetik kuantum sayılarına sahip çekirdeğin iki enerji seviyesi E_1 ve E_2 ise ¹H çekirdeklerinin rezonans için;

 $\Delta E = E_2 - E_1$ kadar enerji soğurması gerekir.

$$E_1 = (-\frac{1}{2})\frac{\gamma\hbar H_0}{2\pi}$$
, $E_2 = (-\frac{1}{2})\frac{\gamma\hbar H_0}{2\pi}$ ve

$$\Delta E = \frac{\gamma \hbar H_0}{2\pi} \tag{3.5}$$

Bir çekirdek manyetik alan etkisiyle farklı enerji seviyelerinde bulunursa, düşük enerji seviyesinde bulunan çekirdeklerin spinleri, uygulanan manyetik alanın yönüyle aynı yönlenmiştir ve bu çekirdeklere paralel çekirdek denir. Dolayısıyla, NMR spektroskopisinde rezonans, bir çekirdeğin spinin uygulanan radyo frakansı ile paralelden anti – parelele dönüşmesi olarak ifade edilir [28]. Organik bileşiklerin yapılarının incelenmesinde kullanılan NMR spektroskopisi magnetik alanda tutunan ve spini olan (dönme hareketi olan) çekirdeğin uygun (daha çok 60mhz'lik) frekansda da bir radyo dalga fotonu ile rezonansa girmesi yöntemine dayanır [28]. NMR spektroskopisiyle molekül geometrisi (konformasyon, cis-trans izomer vb.), analiz edilen bileşiğin fiziksel özellikleri, bağ ve açı değerleri molekülde bulunan fonksiyonel gruplar ve bu gruplarını birbirleriyle bağlanımı gibi birçok özellik belirlenebilir [4,28].

	2,3 Diflorofenilboronik Asit		Difloro	2,4 Diflorofenilboronik Asit		2,5 Diflorofenilboronik Asit		2,6 Diflorofenilboronik Asit	
	2-C	148,8259	2-C	163,3308	2-C	155,6401	2-C	162,5193	
	3-C	141,4065	4-C	160,1945	5-C	149,714	6-C	162,5189	
1	6-C	130,4746	6-C	142,0572	6-C	123,1596	4-C	134,063	
	5-C	120,1907	1-C	106,0689	4-C	118,1592	3-C	105,6415	
	4-C	118,3497	5-C	105,4415	1-C	115,5872	5-C	105,6395	
	1-C	116,017	3-C	97,0487	3-C	111,9315	1-C	102,1182	
	2,3 Diflorofenilboronik Asit		2,4 Diflorofenilboronik Asit		2,5 Diflorofenilboronik Asit		2,6 Diflorofenilboronik Asit		
	14-H	7,9678	14-H	8,3925	14-H	7,8505	12-H	7,5758	
	12-H	7,2233	13-H	6,6974	12-H	7,1349	13-H	6,6576	
	13-H	7,1373	12-H	6,4379	13-H	6,9156	14-H	6,6576	
	16-H	4,5182	15-H	4,3654	16-H	4,5289	16-H	4,242	
	15-H	3,0746	16-H	2,9891	15-H	3,0741	15-H	4,2408	

Tablo 3.10: 2-X DiFlorofenilboronik Asit Molekülünün HF / 6-311++G(d,p) setinde optimize edilmiş NMR değerleri (X (F) = R3, R4, R5, R6).

4.TARTIŞMA VE SONUÇ

Tez çalışmasında 2,3-diflorofenilboronik asit, 2,4-diflorofenilboronik asit, 2,5diflorofenilboronik asit ve 2,6-diflorofenilboronik asit moleküllerinin yapısal ve elektronik özellikleri HF/6-311++G(d,p) ve B3LYP/6-311++G(d,p) modelleri ile hesaplandı. Bu moleküllerin minimum enerji durumlarının elde etmek için her bir molekülün toplam enerjisi dihedral açıların (C1-B-O1-H1) ve (C1-B-O2-H2) fonksiyonu olarak hesaplatıldı. Her bir molekül için farklı modlarda scan edilen moleküllerin en düşük enerjili yani en kararlı yapıları elde edilmiştir. Denge durumu yapısal parametreleri hesaplandıktan sonra moleküllerin elektronik enerjileri, dipol momentleri, HOMO-LUMO enerji farkları ve yüzeyleri, polarizebilite ve hiperpolarizebilite değerleri, potansiyel enerji yüzeyi (PES),potansiyel enerji haritaları, IR ve Raman frekans değerleri hesaplandı. Frekans tablolarında TED işaretlemeleri VEDA4f programı yardımıyla yapıldı.

Bilindiği gibi HF modeli elektron korelasyonu içermediğinden B3LYP modeline göre bağ uzunluklarını daha kısa olarak hesaplar. Hesaplama sonucunda da HF modeli bağ uzunluğu değerlerinin B3LYP modeline göre daha kısa olduğunu görüldü.

Molekülün tamamını ele alırsak; B3LYP modeli elektron korelasyonunu göz önüne aldığından halka üzerinde bulunan π -elektronları etkileşimi nedeni ile halka üzerinde ki karbon atomları arasındaki bağ uzunluğunu daha kısa olarak hesaplanır ve HF modelinde 2,3-diflrofenilboronik asit molekülünde $C_1 - C_2$, $C_1 - C_6$, $C_2 - C_3$, $C_3 - C_4$, $C_4 - C_5$, $C_5 - C_6$ arasında bağ uzunluklarına göre 0,0237 A^0 daha büyük olduğunu, B- O_1 , B- O_2 ve $C_3 - H_2$, $C_4 - H_1$, $C_5 - H_2$, $C_6 - H_3$ bağ uzunlukları arasındaki farkın B3LYP ile aynı farkı verdiğini, $O_1 - H_4$, $O_2 - H_5$ bağ uzunluklarındaki farkın ise 0,0018 A^0 olup DFT modeline göre 2 kat artış ile farklılaştığı gözlendi. DFT modelinde 2,3-diflrofenilboronik asit molekülü, 2,4-diflorofenilboronik asit molekülü, 2,5-diflorofenilboronik asit moleküllerinin $C_1 - C_2$, $C_1 - C_6$, $C_2 - C_3$, $C_3 - C_4$, $C_4 - C_5$, $C_5 - C_6$, $O_1 - H_4$, $O_2 - H_5$, 2,3 ve 2,4-diflorofenilboronik asit molekülündeki $C_4 - H_1$, $C_5 - H_2$, $C_6 - H_3$ 2,5-diflorofenilboronik asit moleküllünün $C_3 - H_2$, $C_4 - H_1$, $C_6 - H_3$ ve B- O_1 , B- O_2 bağ uzunluklarının farklarının birbirlerine çok yakın iken 2,6-diflorofenilboronik asit molekülünde $C_1 - C_2$, $C_1 - C_6$, $C_2 - C_3$, $C_3 - C_4$, $C_4 - C_5$, $C_5 - C_6$ bağ uzunluklarının diğer moleküllerdeki bağ uzunluklarına göre daha küçük olduğu görülmüştür. B- O_1 , B- O_2 , $O_1 - H_4$, $O_2 - H_5$ bağ uzunluklarının farkının olmadığı ve diğer moleküllerdeki bağlar arası farka göre daha büyük olduğu görüldü.

 $C_3 - H_2, C_4 - H_1, C_5 - H_3$ bağlarının diğer moleküllerdeki bağlar arası farka göre yine büyük olduğu görüldü ve diğer moleküllerde 16 bağ uzunluğu varken 2,6diflorofenil boronik asit molekülünde 18 bağ uzunluğu bulunmaktadır bunlar $F_1 - H_4 - O_1$ ve $F_2 - H_5 - O_2$ arasında hidrojen bağlarıdır.

Denge durumu moleküllerin elektronik enerjileri B3LYP / 6 -311 ++ G (d,p) modelinde HF modeline göre 3⁰ kadar daha büyüktür. DFT / B3LYP modeline göre HF modelinde fenilboronik asit türevlerinin elektronik enerji değerlerinin azaldığı görülmüştür.

2,3-diflorofenilboronik asit, 2,4-diflorofenilboronik asit, 2,5-diflorofenilboronik asit ve 2,6-diflorofenilboronik asit molekülünün denge durumu dipol momentleri, polaribilizite ve hiper polarizibilite değerlerinin flor atomunun hidrojen atomu ile yer değiştirmesi sonucu farklı büyüklükler vermiştir.

Raman grafiklerinde 2-3,2-4,2-5 diflorofenilboronik asidin 500-1500 cm⁻¹aralığında zayıf titreşimleri varken 3000 cm⁻¹ şiddetli tireşim verdiği 3000-4000 cm⁻¹ arası şiddetli titreşime yakın titreşim verdiği gözlenmektedir. 2-6 diflorofenilboronik asidin 500-1500

cm⁻¹ aralığında zayıf titreşimleri varken 3000 cm⁻¹ şiddetli tireşim verdiği 3000-4000 cm⁻¹ arası şiddetli titreşime yakın titreşim vermesi beklenirken daha az şiddetli titreşim verdiği gözlenmektedir.

IR grafiklerinde ise 2,3-2,4-diflorofenilboronik asitin 500-1000 cm⁻¹ aralığında zayıf şiddetli titreşimleri 1000-1500 cm⁻¹ aralığında şiddetli titreşim verdiği 3500–4000 cm⁻¹ aralığında raman grafiğinde beklenenin aksine göre daha az şiddetli titreşim piki vermiştir. 2,5-diflorofenilboronik asit molekülünün 500-1000 cm⁻¹ aralığında daha fazla titreşim değeri verip, 1000-1500 cm⁻¹ aralığında şiddetli titreşim verdiği ve 3500–4000 cm⁻¹ aralığında 2,3-2,4-diflorofenilboronik asit molekülüne göre daha büyük titreşim değeri verdiği gözlenmektedir. 2,6-diflorofenilboronik asitin 500-1500 cm⁻¹ aralığında zayıf titreşimleri varken 1000-1500 cm⁻¹ şiddetli titreşim verdiği 3000-4000 cm⁻¹ arası 2,3-2,4-diflorofenilboronik asite göre büyük ancak 2,5-diflorofenilboronik asite göre küçük titreşim değeri vermiştir.

Fenilboronik asitin incelediğimiz tüm türevlerinde TED titreşimlerinde v OH ve v CH titreşimlerinin güçlü olduğunu, v CC, β HCC, τ CCCC, τ HCCC titreşimlerinin güçlü zayıf olduğu görülmüştür.

2,4-diflorofenilboronik asit titreşimleri raman deneysel ölçümünde 3000 cm⁻¹ şiddetli v CH titreşimi gözlenmiştir. Teorik olarak çizilen grafik ile uyum halindedir. 2,4-diflorofenilboronik asit IR deneysel ölçümünde alınan grafikte ise v OH titreşimleri 3629,08 cm⁻¹ aralığında , v CH titreşimi 3385,08 cm⁻¹ve . v CC titreşimi 1610,89 cm⁻¹,1587,78 cm⁻¹,1431,52 cm⁻¹aralıklarında orta titreşim göstermiştir.

5.KAYNAKLAR

[1] Uğurlu G., Gonca N., Gonca Y., (1993). Molekülün Yapısı. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Cilt 1-2. Sayfa: 2-5 Ankara.

[2] Yılmaz A. (2002). Her Derde Deva Hazinemiz Bor, Rector-Reducing Proliferation
Potential of Nuclear Power Fuel Cycle, Science & Global Security, Volume 6, pp.;265-290

[3] Paşa S.,(2014). Bor Türevi Kimyasallarla Çeşitli Bileşiklerin Sentezi ve Uygulamaları. Doktora tezi, Dicle Üniversitesi Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Diyarbakır.

[4] Altıntas Y. (2011). 2-Bromofenil Boronik Asit Molekülünün Spektroskopik ve Geometrik Özelliklerinin Teorik Ve Deneysel Olarak İncelenmesi. Yüksek Lisans Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Sakarya

[5] Ketil J. Flanagan Ve Mathias O.Senge (2015). Dörtlü Fenilboranik Asitin (metoksikarbonil) Kristal Yapısını İncelemiş Ve Bağ Uzunlukları, Açılarını Raporlamıştır. Crystallographic Communications. ISSN: 2056-9890/1416885.

[6] Uğurlu G., Necefoğlu H.,(2017). Theoretical Studies On The Molecular Structure, Conformational And Vibrational Analysis Of 4-(Methoxycarbonyl) Phenylboronic Acid. 3rd International Conference on New Trends in Chemistry. Helsinki / Finland sayfa :111 [7] Araceli Vega, Maria Zarate, Hugo Tlahuext And Herbet Höpfl. (2010). 3 Aminophenylboronic acid monohydrate. Acta Crystallographica Section E. Structure Reports Online ISSN:1600-5368

[8] Sasmita Das, Vladimir L.Alexeev, Anjal C.Sharma, Steven J. Geib And Sanford A.Asher.(2003). 4-Amino, 3-Florofenilboronik Asidin Sentezi Ve Kristal Yapısı, Science Direct.Tetrahedron Letters 44;7719-7722,.

[9] Özgür A., Kaya M.F.,(2014). 1H 'den 2-Boronik Asidin Titreşim Spektrumları Üzerinde Deneyselleri Ve Dft Çalışmaları Journal Of Molecular Structure 1076; 147-152. journal homepage: <u>www.elsevier</u>.com/locate/molstruc.

[10] Uzun S., Koşar B., Esen Z., Koç E.,(2016). Kinolin Türevi Biyolojik Aktif Bir Molekülün Farklı Çevrelerde Çizgisel Olmayan Optik Davranışının Yoğunluk Fonksiyoneli Teorisi Kullanılarak İncelenmesi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 16 Özel Sayı (59-66),.

[11] PatricaR.,Cuamatzi., Hugo Tlahuext., Herbet Höpfl., (2008). 2-4 diflorofenilboronik asit, Acta Crystallographica Section E. Strructure Reports Online ISNN:1600-5368.

[12] Sas E.B., Kose E., Kurt M., Karabacak M., (2015). Ft-Ir, Ft - Raman, Nmr Ve Uv-Vis Spektrumları ve 5-Bromo-2-Etoksifenilboronik Asitin Spektrum ve Dft Hesaplamaları (Monomer Ve Dimer Yapıları). Spectrochimica Acta Part A; Molecular and Biomolecular Spectroscopy 137;1315-1333. [13] Görgülü A.O., Arslan M., (2003). Alternatif Bor Bileşikleri, Fırat Üniversitesi, Fen Bilimleri Kimya Bölümü. BAÜ Fen Bil. Enst. Derg., 5(1); 42-44.

[14] Gül. A., Özçeşmeci İ. (2013). Borlu Sübstitüentler İçeren Tetrapirollerin Sentez, Karakterizasyon ve Uygulamaları, Proje no:110T833. İstanbul.

[15] Sarıhan E., (2006). İstanbul Ticaret Odası Bor Sektör Profili, Sayfa:4-10

[16] Aslan D.I., (2013). Boranlar ve Bor Karbür, Yüksek Lisans Tezi, 19 Mayıs Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği. Samsun.

[17] Aastha P., Priyanka R., Navneet K., Pratima S.Kishore D. (2008). Boronik asit yapı, özellik ve türevlerine genel bakış, International Journal of Chemical and Pharmaceutical Sciences. ISSN: 0976-9390.

[18] Şimşek T. (2013). Amonyum Borandan Sıvı Fazda Hidrojen Üretimi İçin Stiren Divinil Benzen ve Alümina Destekli Katalizör Geliştirilmesi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı. Ankara.

[19] Baseren Sükran C. (2011) Borlu Sübstitüentler İçeren Porfirazinler, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Ana Bilim Dalı, İstanbul. [20] P.Rodrigez-Cuamatzi, H. Tlahuext And H.Höpfl., (2008). 2-4 Diflorufenilboronik Asit, Acta Crystallographica Section E.Structure Reports ISSN: 1600-5368.

[21] Yıldırım S.Ö., Akkurt Mehmet., (2008) 2-Hidroksi-1,2- Difenil-ethanon'un CNDO/2 Yaklaşımı İle Konformasyonun Tayini ve X- Işınlarını Yapı Analiz Sonuçlarının Karşılaştırılması. Erciyes Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, Cilt 24, Sayı 1-2, 191-201.

[22] Delta E. (2010). Hartree - Fock ve Yoğunluk Fonksiyon Teori Metotlarıyla Dihidroksikinon Molekülünün İzomerlerinin Titreşimsel Analizleri ve Temel Hal Konformasyonları., Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Isparta.

[23] Karakaya M. (2012). Yoğunluk Fonksiyon Teori (Dft) Metodu İle Kolin Bileşiklerinin Titreşim Analizleri, Optimize Molekül Yapıları, 1h ve 13c Nmr Kimyasal Kaymaları, Doktora Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Isparta .

[24] Candan M.M. (1996). Moleküler Mekanik Yaklaşımları ve Yarı Deneysel Yöntemler Kullanılarak Bazı Organik Moleküllerin Moleküler Orbital Hesaplamalarının ve Konformasyon Analizlerinin Yapılması, Bilim Uzmanlığı Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Ankara.

[25] Kedirge Ö.(2012) 3 Feniltiyofen Molekülü ile Klorlu Türevlerinin Yapısal Parametreleri, Elektronik ve Lineer Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi. Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Kars.

[26] Etlik İ. (2011). Atomların Form Faktörlerinin Hartree-Fock-Roothaan Metodu İle Hesaplanması, Yüksek Lisans Tezi, Rize Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Rize.

[27] Uğurlu G.(2006) 3-Feniltiyofen Molekülü ve Florlu Türevlerinin Yapısal Parametreleri, Elektronik ve Lineer Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi. Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü. Ankara.

[28] Bayraktar A.(2015). Yeni Floresan Esaslı Azokaliks Arenlerin Sentezi ve Ab-İnitio Yöntemi İle Özelliklerinin İncelenmesi. Doktora Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü. Fizik Ana Bilim Dalı, Denizli.

[29] Dalgıç S. (2007). Halofuran Moleküllerinin Elektronik ve Çizgisel Olmayan Optik Özelliklerinin Teorik İncelenmesi. Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Fizik Ana Bilim Dalı, Ankara.

[**30**] Aslantatar E.(2013). Bis (2-İzobutirilamidofenil) Amin Bileşiğinin Titreşim Spektrumunun İncelenmesi. Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Ana Bilim Dalı, Mersin.

[31] Özçelik F. (2016). 5-Bromo- 2-Metilbenzoksazol ve 2,6 Dibromonaftalin Moleküllerinin Spektroskopik Yöntemlerle İncelenmesi. Yüksek Lisans Tezi, Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı, Kırşehir.

[**32**] Çiftçi S.(2014). 1h-Benzimidazole-2-Carboxylic Acid Monohydrate Molekülünün Elektronik Yapısı Ve Çözücü Etkisi. Yüksek Lisans Tezi, Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Kırşehir. [33] Yalçın Y. (2015). 4-(Metilsülfanil) Fenilboronik Asit Molekülünün titreşim Spektrumlarının Deneysel ve Teorik Yöntemlerle İncelenmesi. Yüksek Lisans Tezi Nevşehir Hacı Bektaş Veli Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Nevşehir.

[34] Öztürk T.(2009). 2-Fenilfuran Molekülü ile Klorlu ve Florlu Türevlerinin Yapısal Parametreleri, Elektronik ve Lineer Olmayan Optik Özelliklerinin Teorik olarak İncelenmesi. Yüksek Lisans Tez, Kafkas Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Kars.

[**35**] Şahin M.(2013). 4-Tolilboronik Asit Molekülünün Titreşimsel Spektrumlarının Teorik ve Deneysel Yöntemlerle İncelenmesi. Yüksek Lisans Tezi, Nevşehir Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Nevşehir.

[**36**] DAYTAM (2019). Fenilboronik Asitin Raman Deneysel Ölçümü. Atatürk Üniversitesi Doğu Anadolu Yüksek Teknoloji Uygulama ve Araştırma Merkezi.

[**37**] (2019). Fenilboronik Asitin IR Deneysel Ölçümü. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Kimya Bölümü.

[38] Veda 4f programı

EKLER

EK.1. 2-X DiFlorofenilboronik Asit Molekülünün B3LYP/6-311++G(d,p)setinde optimize edilmiş geometrik parametreler(X(F)=R3, R4, R5, R6).

B3LYP / 6-311++ G(d,p)										
Bağ uzunluğu (A ^o)										
	3 teorik	4 teorik	4 Den ^a	5 teorik	6 teorik	6 Den ^b				
C1-C2	1,3918	1,3931	1,382 (3)	1,3931	1,3994	1,394 (3)				
C1-C6	1,4068	1,4073	1,394 (3)	1,4057	1,3994	1,392 (3)				
C1-B	1,5748	1,5704	1,566 (3)	1,5744	1,5976	1,562 (3)				
C2-C3	1,3887	1,3845	1,370 (3)	1,3845	1,3838	1,385 (3)				
C2-F1	1,363	1,3698	1,364 (3)	1,3732	1,3672	0				
C3-C4	1,384	1,3862	1,363 (4)	1,3923	1,3919	1,368 (5)				
C4-C5	1,3951	1,3877	1,366 (4)	1,3878	1,3919	1,374 (5)				
C5-C6	1,3908	1,3902	1,374 (3)	1,383	1,3838	1,386 (4)				
B-01	1,3661	1,3664	1,361 (3)	1,3658	1,3597	1,369 (2)				
B-O2	1,3655	1,3673	1,338 (3)	1,3648	1,3597	1,354 (2)				
O1-H4	0,9634	0,9626	0,841 (15)	0,9634	0,9608	0				
O2-H5	0,9625	0,9634	0,841 (15)	0,9629	0,9608	0				
F1-H4	0	0	0	0	1,9657	0				
F2-H5	0	0	0	0	1,9654	0				
C3-F2	1,347	0	0	0	0	0				
C4-H1	1,0832	0	0	1,0826	1,0831	0				
C5-H2	1,0834	1,0824	0,93	0	0	0				
C6-H3	1,0828	1,0831	0	1,0826	0	0				
C3-H1	0	1,0815	0,93	0	0	0				
C4-F2	0	1,3503	1,358 (3)	0	0	0				
C3-H2	0	0	0	1,0824	1,0821	0				
C5-F2	0	0	0	1,3555	0	0				
C5-H3	0	0	0	0	1,0821	0				
C6-F2	0		0		1,3672	0				

a. Patrıca Rodriguez–Cuamatzi, Hugo Tlahuextz Andherbert Höpfl "2–4 diflorofenilboronik asit"

b. Steven J.Retting and James Trotter "Fenilboronik asidin kristal ve moleküler yapısı"

Bağ Açısı (⁰)								
C2-C1-C6	116,4827	115,466	114,6 (2)	116,0948	112,7251	117,2 (2)		
C2-C1-B	123,1762	124,1351	125,3 (2)	124,0252	123,639	120,8 (2)		
C6-C1-B	120,3411	120,3989	120,1 (2)	119,88	123,6359	122,0 (2)		
C1-C2-C3	122,4371	124,7479	125,1 (2)	124,318	125,3665	121,8 (2)		
C1-C2-F1	120,1783	118,832	118,2 (2)	118,7168	118,3211	0		
C3-C2-F1	117,3846	116,42	116,7 (2)	116,9652	116,3124	0		
C2-C3-C4	120,24	116,6128	116,4 (2)	118,461	118,1597	119,5 (3)		
C3-C4-C5	118,9103	122,5372	123,0 (2)	118,5129	120,2225	120,3 (2)		
C4-C5-C6	120,2755	118,1853	117,9 (2)	122,425	118,1592	120,1 (3)		
C1-C6-C5	121,6544	122,4509	122,9 (2)	120,1884	125,367	121,1 (2)		
C1-B-O1	117,1043	124,589	123,8 (2)	117,0519	122,1282	118,7 (2)		
C1-B-O2	124,5909	117,1983	117,4 (2)	124,4027	122,1244	125,0 (2)		
01-B-02	118,3048	118,2127	118,7 (2)	118,5453	115,7475	116,3 (2)		
B-O1-H4	112,2517	113,7659	116 (2)	112,4303	114,1746	0		
B-O2-H5	113,9889	112,2625	115 (2)	113,6751	114,1703	0		
C2-C3-F2	119,3717	0	118,1 (2)	0	0	0		
C4-C3-F2	120,3883	0	118,8 (2)	0	0	0		
C3-C4-H1	119,0204	0	121,8	121,4303	119,8888	0		
C5-C4-H1	122,0694	0	121,8	120,0568	119,8888	0		
C4-C5-H2	119,5028	119,8521	121	0	0	0		
C6-C5-H2	120,2217	121,9626	121	0	0	0		
C1-C6-H3	118,2054	118,0957	118,5	119,9044	0	0		
C5-C6-H3	120,1402	119,4534	118,5	119,9072	0	0		
C2-C3-H1	0	121,6747	121,8	0	0	0		
C4-C3-H1	0	121,7125	121,8	0	0	0		
C3-C4-F2	0	118,3048	0	0	0	0		
C5-C4-F2	0	119,158	0	0	0	0		
C2-C3-H2	0	0	0	120,001	119,704	0		
C4-C3-H2	0	0	0	121,5381	122,1363	0		
C4-C5-F2	0	0	0	118,5426	0	0		
C4-C5-H3	0	0	0	0	122,1365	0		
C6-C5-H3	0	0	0	0	119,7043	0		
C6-C5-F2	0	0	0	119,0325	0	0		
C1-C6-F2	0	0	0	0	118,3207	0		
C5-C6-F2	0	0	0	0	116,3122	0		

	Dihedral Açı (⁰)								
C6-C1-C2-C3	0,0011	-0,0169	0,4 (4)	-0,0005	-0,0005	0			
C6-C1-C2-F1	-180	180,0199	-179,9 (2)	179,9999	-180,018	0			
B-C1-C2-C3	180,0046	179,9428	-178,6 (2)	-179,998	-179,984	0			
B-C1-C2-F1	0,0039	-0,0204	1,1 (4)	0,0021	-0,0014	0			
C2-C1-C6-C5	-0,0011	-0,0024	-0,3 (4)	-0,0001	0,0011	0			
B-C1-C6-C5	-180,004	-179,964	178,8 (2)	179,9979	179,9844	0			
C2-C1-B-O1	180,0512	-0,019	4,5 (4)	180,0035	-0,0223	0			
C2-C1-B-O2	-0,0368	180,0256	-176,5 (2)	0,0054	179,9839	0			
C6-C1-B-O1	0,0548	179,9389	-174,5 (2)	0,0058	179,9962	0			
C6-C1-B-O2	-180,033	-0,0166	4,6 (4)	180,0077	0,0023	0			
C1-C2-C3-C4	-0,0007	0,0199	-0,3 (4)	0,0003	-0,002	0			
F1-C2-C3-C4	180	-180,016	180 (2)	-180	180,0153	0			
C2-C3-C4-C5	0,0002	-0,0036	0,0 (4)	0,0004	0,004	0			
C3-C4-C5-C6	-0,0001	-0,0139	0,1 (4)	-0,001	-0,0035	0			
C4-C5-C6-C1	0,0006	0,017	0,0 (4)	0,0008	0,0009	0			
C1-B-O1-H4	-180,041	0,151	0	-179,989	0,0142	0			
02-B-01-H4	0,0411	-179,894	0	0,0089	-179,992	0			
C1-B-O2-H5	0,0385	-179,999	0	0,0095	0,0027	0			
01-B-02-H5	-180,05	0,0424	0	-179,989	-179,992	0			
C2-C1-C6-H3	180,0011	180,0056	0	-180,001	0	0			
B-C1-C6-H3	-0,0022	0,0443	0	-0,0029	0	0			
C1-C2-C3-F2	-180,001	0	0	0	0	0			
F1-C2-C3-F2	-0,0001	0	0	0	0	0			
C2-C3-C4-H1	-180	0	0	180,0014	-180,003	0			
F2-C3-C4-C5	180,0002	0	0	0	0	0			
F2-C3-C4-H1	-0,0001	0	0	0	0	0			
C3-C4-C5-H2	-180,001	180,0048	0	0	0	0			
H1-C4-C5-C6	180,0002	0	0	179,9981	180,0039	0			
H1-C4-C5-H2	-0,0003	0	0	0	0	0			
C4-C5-C6-H3	-180,002	-179,991	0	180,0016	0	0			
H2-C5-C6-C1	180,0011	179,9979	0	0	0	0			
H2-C5-C6-H3	-0,0012	-0,0102	0	0	0	0			
C1-C2-C3-H1	0	180,0057	0	0	0	0			
F1-C2-C3-H1	0	-0,0304	0	0	0	0			
C2-C3-C4-F2	0	-179,998	179,7 (2)	0	0	0			
H1-C3-C4-C5	0	-179,989	0	0	0	0			
H1-C3-C4-F2	0	0,0163	0	0	0	0			
F2-C4-C5-C6	0	-180,02	-179,6 (2)	0	0	0			
F2-C4-C5-H2	0	-0,0009	0	0	0	0			

C1-C2-C3-H2	0	0	0	-179,997	179,993	0
F1-C2-C3-H2	0	0	0	0,0028	0,0104	0
H2-C3-C4-C5	0	0	0	179,9975	180,0091	0
H2-C3-C4-H1	0	0	0	-0,0016	0,0017	0
C3-C4-C5-F2	0	0	0	180,0001	0	0
H1-C4-C5-F2	0	0	0	-0,0008	0	0
F2-C5-C6-C1	0	0	0	-180	0	0
F2-C5-C6-H3	0	0	0	0,0005	0	0
C2-C1-C6-F2	0	0	0	0	180,0172	0
B-C1-C6-F2	0	0	0	0	0,0005	0
C3-C4-C5-H3	0	0	0	0	-180,009	0
H1-C4-C5-H3	0	0	0	0	-0,0011	0
C4-C5-C6-F2	0	0	0	0	-180,015	0
H3-C5-C6-C1	0	0	0	0	180,0057	0
H3-C5-C6-F2	0	0	0	0	-0,0101	0

EK.2. 2-X DiFlorofenilboronik Asit Molekülünün HF/ 6-311++G(d,p) setinde optimize	е
edilmiş geometrik parametreler(X(F)=R3, R4, R5, R6).	

HF 6-311++G(d,p)						
	Bağ uzunluğu (A ⁰)					
	3 teorik	4 teorik	4 Den ^a	5 teorik	6 teorik	6 Den ^b
C1-C2	1,3818	1,3818	1,382 (3)	1,3824	1,39	1,394 (3)
C1-C6	1,3972	1,3972	1,394 (3)	1,3965	1,39	1,392 (3)
C1-B	1,5836	1,5836	1,566 (3)	1,5833	1,6061	1,562 (3)
C2-C3	1,3772	1,3772	1,370 (3)	1,376	1,3753	1,385 (3)
C2-F1	1,3317	1,3317	1,364 (3)	1,3404	1,3335	0
C3-C4	1,3735	1,3735	1,363 (4)	1,3827	1,3828	1,368 (5)
C4-C5	1,3865	1,3865	1,366 (4)	1,3778	1,3828	1,374 (5)
C4-H1	1,0744	1,0744	0	1,074	1,0724	0
C5-C6	1,382	1,382	1,374 (3)	1,3733	1,3753	1,386 (4)
B-01	1,3527	1,3527	1,361 (3)	1,3525	1,3467	1,369 (2)
B-O2	1,3518	1,3518	1,338 (3)	1,3513	1,3467	1,354 (2)
O1-H4	0,9421	0,9421	0,841 (15)	0,9421	0,9366	0
O2-H5	0,9403	0,9403	0,841 (15)	0,9405	0,9366	0
C3-F2	1,321	1,321	0	0	0	0
C5-H2	1,0744	1,0744	0,93	0	0	0
C6-H3	1,0734	1,0734	0	1,0733	0	0
C3-H2	0	0	0	1,0736	1,071	0
C5-F2	0	0	0	1,3282	0	0
C5-H3	0	0	0	0	1,071	0
C6-F2	0	0	0	0	1,3335	0

			Bağ Açısı (0)		
C2-C1-C6	116,6473	116,6473	114,6 (2)	116,3722	113,0891	117,2 (2)
C2-C1-B	123,3432	123,3432	125,3 (2)	124,0752	123,4578	120,8 (2)
C6-C1-B	120,0096	120,0096	120,1 (2)	119,5526	123,4531	122,0 (2)
C1-C2-C3	122,3355	122,3355	125,1 (2)	123,8875	125,12	121,8 (2)
C1-C2-F1	120,2015	120,2015	118,2 (2)	118,9173	118,4696	0
C3-C2-F1	117,463	117,463	116,7 (2)	117,1952	116,4104	0
C2-C3-C4	120,302	120,302	116,4 (2)	118,624	118,1567	119,5 (3)
C3-C4-C5	119,0181	119,0181	0	118,7313	120,357	
C3-C4-H1	119,0636	119,0636	121,8	121,3159	119,8214	0
C5-C4-H1	121,9183	121,9183	121,8	119,9528	119,8215	0
C4-C5-C6	120,1229	120,1229	118,1853	122,0713	118,1565	120,1 (3)
C1-C6-C5	121,5742	121,5742	118,1853	120,3137	125,1206	121,1 (2)
C1-B-O1	116,9718	116,9718	123,8 (2)	116,9326	122,0581	118,7 (2)
C1-B-O2	124,7141	124,7141	117,4 (2)	124,559	122,0547	125,0 (2)
01-B-02	118,3141	118,3141	118,7 (2)	118,5084	115,8872	116,3 (2)
B-01-H4	113,2528	113,2528	116 (2)	113,3971	115,9659	0
B-O2-H5	115,9662	115,9662	115 (2)	115,686	115,9652	0
C2-C3-F2	119,2882	119,2882	118,1 (2)	0	0	0
C4-C3-F2	120,4098	120,4098	118,8 (2)	0	0	0
C4-C5-H2	119,6202	119,6202	121	0	0	0
C6-C5-H2	120,2569	120,2569	121	0	0	0
C1-C6-H3	118,4898	118,4898	118,5	120,0633	0	0
C5-C6-H3	119,9361	119,9361	118,5	119,623	0	0
C2-C3-H2	0	0	0	119,8827	119,6551	0
C4-C3-H2	0	0	0	121,4933	122,1882	0
C4-C5-F2	0	0	0	118,7219	0	0
C4-C5-H3	0	0	0	0	122,1884	0
C6-C5-F2	0	0	0	119,2068	0	0
C6-C5-H3	0	0	0	0	119,6552	0
C1-C6-F2	0	0	0	0	118,4671	0
C5-C6-F2	0	0		0	116,4123	

]	Dihedral A	Açı (⁰)			
	C6-C1-C2-C3	0	0	0,4 (4)	-0,0002	0,0009	0
	C6-C1-C2-F1	-180,0006	-180,001	-179,9 (2)	-180	179,9997	0
	B-C1-C2-C3	180,0001	180,0001	-178,6 (2)	-180,001	180,0021	0
	B-C1-C2-F1	-0,0005	-0,0005	1,1 (4)	-0,0011	0,001	0
	C2-C1-C6-C5	-0.0001	-0.0001	-0.3 (4)	0.0001	-0.0008	0
	B-C1-C6-C5	-180,0002	-180	178,8 (2)	180,0008	-180,002	0
	C2-C1-B-O1	-180,0047	-180,005	4,5 (4)	-180,015	-0,0213	0
	C2-C1-B-O2	-0,0024	-0,0024	-176,5 (2)	0,0029	180,0159	0
	C6-C1-B-O1	-0,0046	-0,0046	-174,5 (2)	-0,0154	-180,02	0
	C6-C1-B-O2	-180,0024	-180,002	4,6 (4)	180,0021	0.0172	0
	C1-C2-C3-C4	0	0	-0,3 (4)	0,0002	-0,0005	0
-	F1-C2-C3-C4	180,0006	180,0006	180 (2)	180,0003	180,0006	0
	C2-C3-C4-C5	0,0001	0,0001	0,0 (4)	-0,0001	0	0
	C2-C3-C4-H1	180	180	0	-180	180,0001	0
	C3-C4-C5-C6	-0,0002	-0,0002	0,1 (4)	0	0,0001	0
	H1-C4-C5-C6	-180,0001	-180	0	-180	-180	0
	C4-C5-C6-C1	0,0002	0,0002	0,0 (4)	0	0,0004	0
	C1-B-O1-H4	-179,9989	-179,999	0	180,0086	0,0174	0
	O2-B-O1-H4	-0,001	-0,001	0	-0,0079	-180,018	0
	C1-B-O2-H5	-0,0014	-0,0014	0	-0,0081	-0,0133	0
	O1-B-O2-H5	-179,9991	-179,999	0	180,0098	180,0217	0
	C2-C1-C6-H3	-180,0002	-180	0	-180	0	0
	B-C1-C6-H3	-0,0003	-0,0003	0	0,0004	0	0
	C1-C2-C3-F2	-180,0002	-180	0		0	0
	F1-C2-C3-F2	0,0004	0,0004	0		0	0
	F2-C3-C4-C5	180,0003	180,0003	0		0	0
	F2-C3-C4-H1	0,0002	0,0002	0		0	0
	C3-C4-C5-H2	-180	-180	0		0	0
	H1-C4-C5-H2	0,0001	0,0001	0			0
	C4-C5-C6-H3	180,0003	180,0003	0	180,0004	0	0
	H2-C5-C6-C1	-180	-180	0	0	0	0
	H2-C5-C6-H3	0	0	0	0	0	0
	C2-C1-C6-F2	0	0	0	0	-180	0
	B-C1-C6-F2	0	0	0	0	-0,0009	0
	C1-C2-C3-H2	0	0	0	180,0001	0	0
	C1-C2-C3-H2	0	0	0	0	-180,001	0
	F1-C2-C3-H2	0	0	0	0,0002	0	0
	F1-C2-C3-H2	0	0	0	0	0,0005	0
	H2-C3-C4-C5	0	0	0	180	0	0
	H2-C3-C4-C5	0	0	0	0	-180	0
	H2-C3-C4-H1	0	0	0	0,0001	0	0
	H2-C3-C4-H1	0	0	0	0	0,0002	0
	C3-C4-C5-F2	0	0	0	180,0001	0	0
	С3-С4-С5-Н3	0	0	0	0	180	0
	H1-C4-C5-F2	0	0	0	0,0001	0	0
	H1-C4-C5-H3	0	0	0	0	-0,0001	0

C4-C5-C6-F2	0	0	0	0	-180,001	0
F2-C5-C6-C1	0	0	0	-180	0	0
H3-C5-C6-C1	0	0	0	0	180,0005	0
F2-C5-C6-H3	0	0	0	0,0003	0	0
H3-C5-C6-F2	0	0	0	0	-0,0006	0

ÖZGEÇMİŞ

Adı Soyadı	:Hilal YENİCE GÖKTAŞ
Doğum Yeri ve Tarih	ii : Kars / 06.05.1983
Yabancı Dili	:İngilizce
İletişim (e-posta)	:hilalyenice06@gmail.com
Eğitim Durumu (Kur	um ve Yıl)
Lise	: Kars/Fen Lisesi
Lisans	: Kafkas Üniversitesi Fizik Bölümü
Yüksek Lisans	:Kafkas Üniversitesi Fen Bilimleri Enstitüsü
Çalıştığı Kurum/Kuru	ımlar ve Yıl : Kafkas Üniversitesi Kağızman Meslek Yüksek
Okulu Optistenlik Bö	lümü Öğretim Görevlisi.2018