KAFKAS ÜNİVERSİTESİ

T.C.

FEN BİLİMLER ENSTİTÜSÜ

BİYOMÜHENDİSLİK ANABİLİM DALI

BAZI SÜLFONLANMIŞ POLİİMİD YAPILARININ TEORİK HESAPLANMASI VE DENEYSEL KARŞILAŞTIRILMASI

Güneş ULUÇAY NEMLİ YÜKSEK LİSANS TEZİ

Danışman

Dr. Öğr. Üyesi Ümit YILDIKO

HAZİRAN -2019

KARS

T.C. KAFKAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİYOMÜHENDİSLİK ANABİLİM DALI

BAZI SÜLFONLANMIŞ POLİİMİD YAPILARININ TEORİK HESAPLANMASI VE DENEYSEL KARŞILAŞTIRILMASI

Güneş ULUÇAY NEMLİ YÜKSEK LİSANS TEZİ

Danışman

Dr. Öğr. Üyesi Ümit YILDIKO

HAZİRAN -2019

KARS

T.C. Kalkus Üniversitesi Fen Bilimler Enstitüsü Biyomühendislik Anabilim Dah Yüksek Lisans öğrencisi Güneş ULUÇAY NEMLİ'ninDr.Öğr.Üyesi Ümit YILDIKO'nun danışmanlığında yöksek lisans tezi olarak hazırladığı "Bazı Sülfonlarınış Poliimid Yapılarının Teorik Hesaplanması ve Deneysel Karşılaştırılması" adl. bu çalışma, yapıları tez savunması sınavı sonunda jüri tarafından Lisansüsth Eğitim Yönetmeliği uyarınca değerlendirilerek Ort. kedelişin.

20 : 06:2019

Adı ve Soyadı

Başkan : Dr. Öğr. Üyesi Ümit YILDIKO (Toz danışmanı) Üye : Dr. Öğr. Üyesi Alunct Turan TEKEŞ Üye : Dr. Öğr. Üyesi Melahat GÖKTAŞ

June Hur

intza

Dog. Dr. Fikiel AKDENİZ

Enstitü Müdürü

ETİK BEYAN

Kafkas Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,
- Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,
- Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,
- Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- > Bu tezde sunduğum çalışmanın özgün olduğunu,

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

İmza Güneş ULUÇAY NEMLİ Tarih

TEŞEKKÜR

Bilgi ve tecrübeleriyle beni yönlendiren, yüksek lisans öğrenimim boyunca her konuda desteğini gördüğüm değerli hocam Sayın Dr. Öğr. Üyesi Ümit YILDIKO hocama ve Prof. Dr. İsmail ÇAKMAK hocama, öğrenim hayatım boyunca bana destek veren aileme ve eşime teşekkür ederim.

ÖZET

Bu çalışmamızda yeni tip membran oluşturacak ve yakıt hücresinde kullanma özelliğine sahip olan polimerik malzeme sentezlenmiştir. Bu amaçla 4,4-diamino-2,2'- stilbendisülfonik asidin, 1,4,5,8 naftalentetrakarboksilik dianhidrit, 3,3',4,4'- bifeniltetracarboksilik dianhidritin kondenzasyon reaksiyonundan sülfonik asit grubu ihtiva eden poliimidler sentezlenmiştir. Polimer elektrolit yakıt hücresinde membran olarak kullanılma özelliğini veren sülfon grupları ile fonksiyonel hale getirilen bu polimerler NMR, UV-VIS ve FT-IR spektroskopik analizler ile karakterize edilmiştir. Elde edilen veriler sülfonlanmış poliimidlerin oluşumunu iyi bir şekilde desteklemektedir.

Geometrik yapıların temel seti B3LYP / 6-311G+ (d, p) olan elektronik özelliklerine dayalı detaylı bir DFT ve TD-DFT çalışması sunuyoruz. Polimer molekülleri oligomer yapılarına sahip olduğundan teorik çalışmalara uygun olması açısından monomer ve dimer olarak ele alınmıştır. Ek olarak, Doğal Bağ Orbitalleri (NBOs), nonlineer orbitaller (NLO), HOMO – LUMO enerji boşluğu ve Haritalı moleküler Elektrostatik Potansiyel (MEP) yüzeyleri gibi moleküler orbital hesaplamaları da yapıldı. Hesaplamada HOMO-LUMO analizine dayalı enerji boşluğu (Δ), iyonizasyon potansiyeli (I)Elektron ilgisi (A), Küresel Sertlik (η), Kimyasal Potansiyel (μ), Elektrofillik (ω), Elektronegativite(χ) ve Polarize edilebilirlik (α) gibi parametreler elde edildi. Titreşim analizlerine dayanarak bileşiğinin termodinamik özellikleri de hesaplandı.

Anahtar Kelimeler: Sülfonlanmış Poliimid, Yakıt Hücresi, DFT, HOMO-LUMO aralığı, MEP

ABSTRACT

In this work, we have synthesized a polymeric material that will form a new type of membrane and have the ability to be used in the fuel cell. For this purpose, 4,4'-diamino-2,2'-stilbenedisulfonic acid, 1,4,5,8 naphthalene tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic polyimides containing sulfonic acid group were synthesized by condensation reaction . These polymers were characterized by NMR, UV-VIS and FT-IR spectroscopic analyzes technique, which are functionalized with sulfonic groups which are used as membranes in the polymer electrolyte fuel cell. The obtained data well supports the formation of sulfonated polyimides.

We offer a detailed HF and DFT study based on the electronic features of the basic set of geometric structures B3LYP / 6-311G + (d, p). In addition, molecular orbital calculations such as Natural Bond Orbitals (NBOs), HOMO - LUMO energy gap and maped molecular electrostatic potential (MEP) surfaces were also performed. Energy gap based on HOMO-LUMO analysis (Δ), ionization potential (I) Electron affinity (A), Spherical Hardness (η), Chemical Potential (μ), Electrophilization (ω), Electronegativity (χ) and Polarization (α) parameters were obtained. Based on the vibration analysis, the thermodynamic properties of the compound were also calculated.

Key Words: Sulfonated Polyimide, Fuel Cell, DFT, HOMO-LUMO range, MEP

İÇİNDEKİLER

ÖZET	iii
ABSTRACT	iv
İÇİNDEKİLER	V
ŞEKİLLER DİZİNİ	ix
TABLOLAR DİZİNİ	xii
EK ŞEKİLLER DİZİNİ	XV
SİMGELER VE KISALTMALAR DİZİNİ	xvi
1. GİRİŞ	1
1.1. Yakıt Hücreleri	3
1.1.1 PEM yakıt hücre teknoloji uygulamaları ve şu andaki durumu	5
1.1.2. Yakıt hücresinin çalışma prensibi	6
1.1.3. Yakıt Hücresinde Membran Tabakası	7
1.2. Teorik Hesaplama Yöntemleri	9
1.2.1. Yarı-Empirik Yöntemler(Semiempirical)	
1.2.1.1. Hückel	
1.2.1.2. PM3	
1.2.1.3. PM3/TM	
1.2.2. Hartree-Fock Öz Uyumlu Alan Teorisi (HF/SCF)	
1.2.3. Yoğunluk Fonksiyonel Teorisi(DFT)	14
1.2.3.1. Temel Teori	14
1.2.3.2. Lineer Ölçeklendirme Teknikleri	16
1.2.3.3. Pratik Değerlendirmeler	
1.3. Polimerlerde Teorik Çalışmalar	19
1.3.1. Teori Seviyesi	20
1.3.2. Simülasyon Oluşturma	22
1.3.3. Polimer Simülasyon Özellikleri	23
1.3.4. Polimerlerin Kristal Yapıları	24
1.3.5. Esneklik	25
1.3.6. Elastiklik	26
1.3.7. Camsı Geçiş Sıcaklığı	26

1.3.8. Hacimsel Özellikler	27
1.3.9. Termodinamik Özellikler	27
1.3.10. Çözünürlük Parametreleri	28
1.3.11. Optik Özellikler	28
1.3.12. Mekanik Özellikler	28
1.3.13. Isıl Kararlılık	29
2. YAPILAN ÇALIŞMALAR	
2.1. Materyaller	
2.2. Kullanılan Aletler	
2.2.1. Isıtıcı Magnetik Karıştırıcı	30
2.2.2. Vakumlu Etüv	30
2.2.3. Mantolu Isitici	30
2.2.4. Yağ Banyosu	31
2.2.5. Rotary Evaporator	31
2.2.6. NMR Spektrofotometre	31
2.2.7. TGA Analizi	31
2.3.Deneysel Çalışmalar	32
2.3.1. Kopoliimidlerin Sentezi:	32
2.3.1.1. 1,4,5,8-Naftalentetrakarboksilik Dianhidrit ile Poilimid Sentez	zi32
2.3.1.2. 3,3',4,4'-Bifeniltetrakarboksilik Dianhidrit ile Poilimid Sentez	i33
2.4. Teorik Analiz	35
3. BULGULAR VE TARTIŞMA	
3.1. Deneysel Değerlendirmeler	36
3.2.Teorik Bulgular ve Değerlendirmeler	40
3.2.1 Poliimid (NTDA – DASDA)'in Semi Empirical(SM) çalışmaları	40
3.2.1.1 Poliimid (NTDA – DASDA) Monomerin Semi Empirical(SM) m Geometri Optimizasyonu	netodu ile 40
3.2.1.2 Mulliken Atomik Yükleri (SM PM6)	44
3.2.1.3. Poliimid (NTDA - DASDA) Monomerin HOMO ve LUMO A	nalizi46
3.2.2. Poliimid(NTDA-DASDA)DFT Çalışmaları	47
3.2.2.1. Poliimid (NTDA - DASDA) monomer Geometri Optimizasyo	nu47
3.2.2.2. Mulliken Atomik Yükleri	54
3.2.2.3. Titreşim Analizleri	57
3.2.2.3.1. C-H titreşimler	57

3.2.2.3.2. C-O ve O-H grup titreșimleri	60
3.2.2.3.3. C-C titreşimleri	61
3.2.2.3.4. N-H ve N-C titreşimler	62
3.2.2.4. NMR Analizleri	63
Şekil 25. Poliimid (NTDA - DASDA) Monomerin H-NMR Deneysel ve DF Çalışması Korelasyon Grafiği	T 66
3.2.2.5. HOMO ve LUMO analizi	66
3.2.2.6.Lineer Olmayan Optik Özellikler (NLO)	69
3.2.2.7. Moleküler Elektrostatik Potansiyel Yüzey (MESP)	70
3.2.2.8. NBO Analizi	71
3.2.3. Poliimid (NTDA - DASDA) DFT Dimer Çalışması	74
3.2.3.1. Poliimid (NTDA - DASDA) Dimer Molekülün Mulliken Atomik Yükleri	78
3.2.3.2. Poliimid (NTDA - DASDA) Dimer Molekülün HOMO ve LUMO Analizi	81
3.2.3.3. Lineer Olmayan Optik Özellikler (NLO)	82
3.2.4. Poliimid (BPDA - DASDA) Semi Empirical(SM) Çalışmalar	84
3.2.4.1. Poliimid (BPDA - DASDA) Monomerin Geometri Optimizasyonu	84
3.2.4.2.Mulliken Atomik Yükleri (SM PM6)	88
3.2.4.3. Poliimid (BPDA - DASDA) Monomerin HOMO ve LUMO(SM)	90
3.2.5. Poliimid (BPDA - DASDA) DFT Çalışmalar	91
3.2.5.1. Geometri Optimizasyonu	91
3.2.5.2. Mulliken Atomik Yükleri	98
3.2.5.3.Titreşim Analizleri	101
3.2.5.3.1. C-H titreşimler	101
3.2.5.3.2. C-O ve O-H grup titreşimleri	104
3.2.5.3.3. C-C titreşimleri	105
3.2.5.3.4. N-H ve N-C titreşimler	106
3.2.5.4. NMR Analizleri	107
3.2.5.5. HOMO ve LUMO Analizi	110
3.2.5.6. Lineer Olmayan Optik Özellikler (NLO)	113
3.2.5.7. Moleküler Elektrostatik Potansiyel Yüzey (MESP)	114
3.2.5.8. NBO analizi	115
3.2.6. Poliimid (BPDA - DASDA)Dimer DFT Çalışması	118

3 2 6 1 Poliimid (BPDA - DASDA)Dimer Geometri Ontimizasyonu	118
5.2.0.1. I ominia (DI DIY DI SDIY)Dinici Ocometri Optimizasyona	
3.2.6.2. Mulliken Atomik Yükleri	122
3.2.6.3. HOMO ve LUMO Analizleri	125
3.2.6.4. Lineer Olmayan Optik Özellikler (NLO)	126
4. SONUÇ	
5. KAYNAKLAR	
6. EK ŞEKİLLER	
ÖZGEÇMİŞ	147

ŞEKİLLER DİZİNİ

Şekil 1.	Polimer Elektrolit Membran (PEM) Yakıt Hücresi	4	
Şekil 2.	PEM Yakıt Hücresinde Polimer Membranın Çalışma Şekli		
Şekil 3.	1,4,5,8-Naftalentetrakarboksilik Dianhidrit ile Poilimid Sentezi 3		
Şekil 4.	3,3',4,4'-bifeniltetrakarboksilik Dianhidrit ile Poilimid Sentezi	33	
Şekil 5.	Poilimid Termal Düzeneği Sentezi	34	
Şekil 6.	Sülfonlanmış Poilimid UV-VIS Spektrumları	37	
Şekil 7.	Sülfonlanmış Poilimid FT-IR Spektrumları	38	
Şekil 8.	Poliimid (NTDA - DASDA) Monomerin Total Enerji Dönüşümü	40	
Şekil 9.	Poliimid (NTDA - DASDA) Monomer Molekülünün Optimize Edilmiş Yapısı	41	
Şekil 10.	Poliimid (NTDA - DASDA) Monomerin Mulliken Yük Resmi	44	
Şekil 11.	Poliimid (NTDA - DASDA) Monomer İçin Ön Molekülün Atomik Orbital Bileşimi	46	
Şekil 12.	Poliimid (NTDA - DASDA) Monomerin Teorik Olarak Elde Edilen FT-IR Spektrumu(SM)	47	
Şekil 13.	Poliimid (NTDA - DASDA) Monomerin Total Enerji Dönüşümü	47	
Şekil 14.	Poliimid (NTDA - DASDA) Monomer Molekülünün DFT İçin Optimize Yapı Resmi	48	
Şekil 15.	Poliimid (NTDA - DASDA) Monomer Molekülünün TD-DFT İçin Optimize Yapı Resmi	48	
Şekil 16.	Poliimid (NTDA - DASDA) Monomer Molekülünün Bağ Uzunlukları	49	
Şekil 17.	Poliimid (NTDA - DASDA) Monomerinin DFT ve TD DFT Bağ Uzunlukları Korelasyon Grafiği	51	
Şekil 18.	Poliimid (NTDA - DASDA) DFT ve TD-DFT Bağ Açıları Korelasyon Grafiği	53	
Şekil 19.	Poliimid (NTDA - DASDA) Monomerinin DFT İçin Mulliken Atom Yükleri	54	
Şekil 20.	Poliimid (NTDA - DASDA) Monomerinin TD-DFT İçin Mulliken Atom Yükleri	54	

Şekil 21.	Poliimid (NTDA - DASDA) Monomerin DFT/ TD-DFT İçin Mulliken Korelasyon Grafiği	56
Şekil 22.	Poliimid (NTDA - DASDA) Monomerin Teorik Olarak Elde Edilen FT-IR Spektrumu	62
Şekil 23.	Poliimid (NTDA - DASDA) Monomerin Teorik Olarak Elde Edilen ¹ H-NMR spektrumu	63
Şekil 24.	Poliimid (NTDA - DASDA) monomer in teorik olarak elde edilen ¹³ C-NMR Spektrumu	63
Şekil 25.	Poliimid (NTDA - DASDA) Monomerin H-NMR Deneysel ve DFT Calısması Korelasvon Grafiği	65
Şekil 26.	Poliimid (NTDA - DASDA) Monomerinin DFT HOMO ve LUMO'nun Yoğunluk Gösterimi	66
Şekil 27.	Poliimid (NTDA - DASDA) Monomerinin TD-DFT HOMO ve	66
Şekil 28.	Poliimid (NTDA - DASDA) Monomerin DFT Metodu İle Moleküler Elektrostatik Potansiyeli	69
Şekil 29.	Poliimid (NTDA - DASDA) Dimere Ait Total Enerji Dönüşümü	73
Şekil 30.	Poliimid (NTDA - DASDA) Dimer Molekülünün Optimize Yapı Resmi	74
Şekil 31.	Poliimid (NTDA - DASDA) Dimerin Bağ Uzunlukları	74
Şekil 32.	Poliimid (NTDA - DASDA) Dimerin Mulliken Atom Yükleri	78
Şekil 33.	Poliimid (NTDA - DASDA) Dimer Molekülün DFT için HOMO, LUMO Haritaları	80
Şekil 34.	Poliimid (NTDA - DASDA) Dimerin Teorik Olarak Elde Edilen FT- IR Spektrumu	82
Şekil 35.	Poliimid (NTDA - DASDA) Monomerin Teorik Olarak Elde Edilen TD-DFT UV-VİS Spektrumu	82
Şekil 36.	Poliimid (BPDA - DASDA) Monomerin ve Total Enerji Dönüşümü	83
Şekil 37.	Poliimid (BPDA - DASDA) Monomerinin Optimize Edilmiş Yapı Resmi	83
Şekil 38.	Poliimid (BPDA - DASDA) Monomerin Mulliken Atomik Yükleri (PM6)	87
Şekil 39.	Poliimid (BPDA - DASDA) Monomer İçin Ön Molekülün Atomik Orbital Bileşimi	89
Şekil 40.	Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen FT-IR Spektrumu	90
Şekil 41.	Poliimid (BPDA - DASDA) Monomerin Total Enerji Grafiği	91

Poliimid (BPDA - DASDA) Monomerinin DFT Metodu ile	91
Optimize Edilmiş Yapı Resmi	
Poliimid (BPDA - DASDA) Monomerin TD-DFT Metodu ile	92
Optimize Yapı Resmi	
Poliimid (BPDA - DASDA) Monomer Molekülünün Bağ	92
Uzunlukları	
Poliimid (BPDA - DASDA) DFT ve TD-DFT Bağ Uzunlukları	94
Rorelasyon Graligi Poliimid (RPDA - DASDA) DET ve TD-DET Bağ Acıları	07
Korelasvon Grafiği	97
Poliimid (BPDA - DASDA) Monomerinin DET Metodu İçin	00
Mulliken Atom Vükleri	98
Poliimid (BPDA - DASDA) Monomerin TD-DET Metodu İçin	00
Mulliken Atom Yükleri	90
Poliimid (BPDA - DASDA) Monomer DET/TD-DET Mulliken	100
Korelasvon Grafiği	100
Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen	105
FT-IR Spektrumu	105
Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen	106
¹ H-NMR Spektrumu	100
Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen	107
¹³ C-NMR Spektrumu	107
Poliimid (BPDA - DASDA) Monomerin Teorik ve Deneysel H-	109
NMR Korelasyon Grafiği	
Poliimid (BPDA - DASDA) Monomer Molekülün DFT için HOMO,	110
LUMO Haritaları	
Poliimid (BPDA - DASDA) Monomer Molekülün TD-DFT için	111
HOMO, LUMO Haritaları	
Poliimid (BPDA - DASDA) Monomerin DFT Metodu ile Moleküler	113
Elektrostatik Potansiyeli	
Poliimid (BPDA - DASDA) Dimerin Total Enerji Dönüşümü	117
Poliimid (BPDA - DASDA) Dimerin Optimize Edilmiş Yapı Resmi	118
Poliimid (BPDA - DASDA) Dimerin Mulliken Atom Vükleri Fotosu	121
Tommid (DI DA - DASDA) Dimerin Munken Atom Tukien Totosu	121
Poliimid (BPDA - DASDA) Dimer Molekülün DFT için HOMO,	124
LUMO Haritaları	
Poliimid (BPDA - DASDA) Dimerin Teorik Olarak Elde Edilen FT-	125
IR Spektrumu	
Poliimid (BPDA - DASDA) Monomerin TD-DFT UV Spektrumu	126
	 Poliimid (BPDA - DASDA) Monomerinin DFT Metodu ile Optimize Edilmiş Yapı Resmi Poliimid (BPDA - DASDA) Monomerin TD-DFT Metodu ile Optimize Yapı Resmi Poliimid (BPDA - DASDA) Monomer Molekülünün Bağ Uzunlukları Poliimid (BPDA - DASDA) DFT ve TD-DFT Bağ Uzunlukları Korelasyon Grafiği Poliimid (BPDA - DASDA) DFT ve TD-DFT Bağ Açıları Korelasyon Grafiği Poliimid (BPDA - DASDA) Monomerinin DFT Metodu İçin Mulliken Atom Yükleri Poliimid (BPDA - DASDA) Monomerinin DFT Metodu İçin Mulliken Atom Yükleri Poliimid (BPDA - DASDA) Monomerin TD-DFT Metodu İçin Mulliken Atom Yükleri Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen FT-IR Spektrumu Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen ¹⁴-NMR Spektrumu Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen ¹³C-NMR Spektrumu Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen ¹³C-NMR Spektrumu Poliimid (BPDA - DASDA) Monomerin Teorik Ve Deneysel H- NMR Korelasyon Grafiği Poliimid (BPDA - DASDA) Monomer Molekülün DFT için HOMO, LUMO Haritaları Poliimid (BPDA - DASDA) Monomerin DFT Metodu ile Moleküler Elektrostatik Potansiyeli Poliimid (BPDA - DASDA) Dimerin Total Enerji Dönüşümü Poliimid (BPDA - DASDA) Dimerin Optimize Edilmiş Yapı Resmi Poliimid (BPDA - DASDA) Dimerin Mulliken Atom Yükleri Fotosu Poliimid (BPDA - DASDA) Dimerin Teorik Olarak Elde Edilen FT-IR Spektrumu

TABLOLAR DİZİNİ

Sa	y	fa
	•	

Tablo 1.	Yoğunluk Fonksiyonelleri	16
Tablo 2.	SPDI Polimerik Bileşiklerinin Genel FT-IR Absorbansları	38
Tablo 3.	Poliimid (NTDA - DASDA) Monomer Molekülün Teorik Olarak	41
	Elde Edilen Bağ Uzunlukları (Å)	41
Tablo 4.	Poliimid (NTDA - DASDA) Monomer Molekülünün Teorik	12
	Olarak Elde Edilen Bağ Açıları (°)	72
Tablo 5.	Poliimid (NTDA - DASDA) Monomerin Mulliken Atomik	15
	Yükleri, SM ab initio PM6 ile Hesaplanmıştır.	4 J
Tablo 6.	HOMO, LUMO, Enerji Boşlukları (HOMO - LUMO) ve İlgili	46
	Poliimid (NTDA - DASDA) Moleküler Özellikleri	-0
Tablo 7.	Poliimid (NTDA - DASDA) Monomer Molekülünün Teorik	49
	Olarak Elde Edilen Bağ Uzunlukları (Å)	77
Tablo 8.	Poliimid (NTDA - DASDA) Monomer Molekülünün Teorik	51
	Olarak Elde Edilen Bağ Açıları (°)	01
Tablo 9.	Poliimid (NTDA - DASDA) Monomerin Optimize Mulliken Atom	55
	Yükleri	
Tablo 10.	Poliimid (NTDA - DASDA) Monomerine Ait Gerilme Titreşimleri	57
Tablo 11.	Poliimid (NTDA - DASDA) Monomerine Ait Eğilme Titreşimleri	58
Tablo 12.	Poliimid (NTDA - DASDA) Monomerine Ait Burulma	59
	Titreșimleri	
Tablo 13.	Poliimid (NTDA - DASDA) Monomerine Ait Düzlem Dışı Eğilme	60
T 11 44	Titreşimleri	
Tablo 14.	Poliimid (NIDA - DASDA) Monomerin ²⁵ C-NMR DF1/ID-DF1	64
T. 1.1. 15	(referans=1MS B3LYP/6-311+G(2d,p) GIAO) Kayma Degerleri Dell'ini d (NTDA \sim DASDA) Menomenia ¹ U NMD DET(TD DET	
1 abio 15.	Politimid (NIDA - DASDA) Monomerin H-NMK DF1/ID-DF1	64
Tabla 14	(leteralis= TMS BSL 1 P/0-511+0(20,p) GIAO) Kayina Degerleri Doliimid (NTDA DASDA) Monomorino oit Elektronogetifiik (ii)	
1 abio 10.	Follinita (NTDA - DASDA) Monomenne alt Elektronegatink (χ) ve Küresel Elektrofil (ω) vb. Değerlerin Karşılaştırmaşı	67
Tabla 17	DET B3I VP / 6-31G (d. s) Temel Set Kullanılarak Elektrik	
14010 17.	Hesanlanan Dinol Momentleri(Debye) (au) Polarisability ß	68
	Bilesenleri	00
Tablo 18.	Poliimid (NTDA - DASDA) Monomerin Secilmis NBO Sonuclari	
	(TD-DFT B3LYP / $6-31G++$ (d, p) temel set)	71
Tablo 19.	Poliimid (NTDA - DASDA) Dimer Molekülün Teorik Olarak	
	Elde Edilen Bağ Uzunlukları (Å)	75
Tablo 20.	(Poliimid (NTDA - DASDA) Dimer Molekülün Teorik Olarak	
	Elde Edilen Bağ Açıları (°)	/6
Tablo 21.	Poliimid (NTDA - DASDA) Dimerin Optimize Mulliken Atom	70
	Yükleri	/8

Tablo 22.	Poliimid (NTDA - DASDA) Dimer Molekülüne ait Elektronegatiflik (χ) ve Küresel Elektrofil (ω) vb. Değerleri	81
Tablo 23.	DFT B3LYP / 6-31G (d, s) Temel Set Kullanılarak Elektrik Hesaplanan Dipol Momentleri(Debye), (au) Polarisability, β Bileşenleri	82
Tablo 24.	Poliimid (BPDA - DASDA) Monomer Molekülün Teorik Olarak Elde Edilen Bağ Uzunlukları (Å)	84
Tablo 25.	Poliimid (BPDA - DASDA) Monomer Molekülünün Teorik Olarak Elde Edilen Bağ Açıları (°)	85
Tablo 26.	Poliimid (BPDA - DASDA) Monomer Molekülün Mulliken Atomik Yükleri, SM ab initio PM6 ile Hesaplanmıştır.	88
Tablo 27.	HOMO ve LUMO, Enerji Boşlukları ve İlgili (au) Moleküler Özellikleri	90
Tablo 28.	Poliimid (BPDA - DASDA) Monomerine Ait Teorik Olarak Elde Edilen Bağ Uzunlukları (Å)	93
Tablo 29.	Poliimid (BPDA - DASDA) Monomer Molekülün Teorik Olarak Elde Edilen Bağ Acıları (⁰)	95
Tablo 30.	Poliimid (BPDA - DASDA) Monomerinin Optimize Mulliken Atom Yükleri	99
Tablo 31.	Poliimid (BPDA - DASDA) Monomerine Ait Gerilme Titreşimleri	101
Tablo 32.	Poliimid (BPDA - DASDA) Monomerine Ait Eğilme Titreşimleri	102
Tablo 33.	Poliimid (BPDA - DASDA) Monomerine Ait Burulma	
	Titreșimleri	103
Tablo 34.	Poliimid (BPDA - DASDA) Monomerine Ait Düzlem Dışı Eğilme Titreşimleri	104
Tablo 35.	Poliimid (BPDA - DASDA) Monomerin ¹³ C-NMR DFT/TD-DFT (referans= TMS B3LYP/6-311+G(2d,p) GIAO) Kayma Değerleri	107
Tablo 36.	Poliimid (BPDA - DASDA) Monomerin ¹ H-NMR DFT/TD-DFT (referans= TMS B3LYP/6-311+G(2d,p) GIAO) Kayma Değerleri	108
Tablo 37.	Poliimid (BPDA - DASDA) Monomer Molekülün HOMO, LUMO, Enerji Boşlukları (HOMO – LUMO) ve İlgili Moleküler	111
	Özelliklerin karşılaştırılması	
Tablo 38.	Poliimid (BPDA - DASDA) Monomer DFT B3LYP / 6-31G (d, s)	
	Temel Set Kullanılarak Elektrik Hesaplanan Dipol	112
Tahla 30	Momentieri (Debye), (au) Polarisability, p Bileşenleri Polijimid (BPDA - DASDA) Monomerin Secilmis NBO Sonuclari	
1 aviv 37.	(TD-DFT B3LYP / $6-31G++$ (d, p) temel set)	115
Tablo 40.	Poliimid (BPDA - DASDA) Monomerine Ait Teorik Olarak Elde	118
Tablo 41.	Poliimid (BPDA - DASDA) Monomerine Ait Teorik Olarak Elde	119

Edilen Bağ Açıları(⁰)

- Tablo 42.Poliimid (BPDA DASDA) Dimerin Optimize Mulliken Atom
Yükleri122
- Tablo 43.Poliimid (BPDA DASDA) Dimer Molekülüne Ait
Elektronegatiflik (χ) ve Küresel Elektrofil (ω) vb. Değerleri124
- Tablo 44. DFT B3LYP / 6-31G (d, s) Temel Set Kullanılarak Elektrik Hesaplanan Dipol Momentleri(Debye), (au) Polarisability, β 125 Bileşenleri

EK ŞEKİLLER DİZİNİ

		Sayfa
Ek Şekil 1.	4,4'-diamino-2,2'-stilbendisülfonik asit FT-IR Spektrumu	134
Ek Şekil 2.	1,4,5,8-Naftalentetrakarboksilik dianhidrit FT-IR Spektrumu	135
Ek Şekil 3.	3,3',4,4'-bifeniltetrakarboksilik dianhidrit FT-IR Spektrumu	136
Ek Şekil 4.	1,4,5,8-Naftalentetrakarboksilik dianhidrit ile Poilimid SPI-1	137
	FT-IR Spektrumu	
Ek Şekil 5.	3,3',4,4'-bifeniltetrakarboksilik dianhidrit ile Poilimid SPI-2	138
	FT-IR Spektrumu	
Ek Şekil 6.	1,4,5,8-Naftalentetrakarboksilik dianhidrit ile Poilimid SPI-1	139
	¹ H-NMR Spektrumu	
Ek Şekil 7.	3,3',4,4'-bifeniltetrakarboksilik dianhidrit ile Poilimid SPI-2	140
	¹ H-NMR Spektrumu	
Ek Şekil 8.	1,4,5,8-Naftalentetrakarboksilik dianhidrit ile Poilimid SPI-1	141
	UV-VIS Spektrumu	
Ek Şekil 9.	3,3',4,4'-bifeniltetrakarboksilik dianhidrit ile Poilimid SPI-2	142
	UV-VIS Spektrumu	
Ek Şekil 10.	Poliimid (NTDA – DASDA) in TGA grafiği	143

Ek Şekil 11. Poliimid (BPDA – DASDA) in TGA grafiği 144

SİMGELER VE KISALTMALAR DİZİNİ

PEM	Hücreleri polimer elektrolit membran
PEMFC	Hücreleri polimer elektrolit membran () yakıt hücreleri
SOFCs	Katı oksit yakıt hücresi
AFC	Alkalin yakıt hücresi
PAFC	Fosforik asit yakıt hücreleri
HFC	Hidrojen yakıt hücreleri
GDL	Gaz difüzyon tabakası
MPL	Mikro gözenek tabaka
GFC	Gaz akış kanalları
CL	Katalizör tabaka
PTFE	Nafion politetra floro etilen
PESF	Polieter sülfonlar
РЕК	Polieter ketonlar
Ы	Poliimitler
SPI	Sülfonlu poliimidler
Tg	Geçiş sıcaklığına
HNMR	Proton nükleer manyetik rezonansı spektroskopisi
UV-VIS	Ultraviyole ve görünür ışık absorpsiyon spektroskopisi
FT-IR	Fourier dönüşümlü infrared spektrofotometre
EA	Elementel analiz
SM	Semi Emprical teorik çalışma yöntemi
HF	Hartree-Fock teorik çalışma yöntemi
DFT	Yoğunluk fonksiyonel yöntemler teorik çalışma metodu

1. GİRİŞ

Güç kaynağı, sabit ve otomotiv uygulamaları gibi portatif cihazlar gibi çeşitli uygulamalarda kullanılmak üzere yüksek verimli ve güvenilir tek PEM yakıt hücresi ve yığınları geliştirmek için önemli birçok araştırma çalışmaları yapılmaktadır[1]. Son zamanlarda özellikle malzeme ve akım yoğunluğunda önemli bir gelişme sağlanmış olup, bu da sonuç olarak güç yoğunluğunun artmasına ve cihazın daha verimli ve güvenilir olmasına neden olacaktır[2]. Proton değişim membranlarının (PEM) yakıt hücrelerinin 2001 yılında statik uygulamalarda ve 2003 yılında nakil uygulamalarında ticarileştirilmesine başlanmıştır. Bununla birlikte, bazı teknik zorluklar bu hedefe giden yolda engeller olarak kalmaktadır. Yani, bunlar yakıt hücresi sistemlerine ek olarak hidrojen yakıtının altyapısı ve depolanması ile ilgilidir. En önemli konulardan biri, yakıt hücresinin kendisinin yüksek maliyeti. Teknolojiyi, güç kaynakları olarak uygulayan diğer teknik engeller, farklı çalışma koşulları altında performans, güvenilirlik ve dayanıklılıktır[3]. Yakıt hücresi kullanım ömrü gereksinimleri, uygulamaların doğası gereği, otomobiller için 5000 s'den otobüsler için 20.000 saate ve sürekli çalışmayla statik uygulamalar için 40.000 saate kadar değişmektedir. Yakıt hücresinin hedeflenen yasına rağmen, ulaştırma sektöründe, bunlar statik uygulamalardan çok daha düsüktür, başlatma ve kapatma işlemleri gibi çalışma koşulları, yük döngüsü ve donma-çözülme gibi dinamik yükler, bu hedefi akım için çok zorlaştırır mevcut teknolojiler.

Yakıt hücrelerinin üretilmesi ve montajı, operasyonel şartlar, kontrol stratejileri, materyallerin bozulması, kirlilikler ve kirleticiler, performanslarını ve güvenilirliklerini değerlendirirken göz önünde bulundurulması gereken başlıca kaygılardır[4].

PEM yakıt hücrelerinin performans bozulma ve kullanım ömrünü anlamak için aşağıdaki terimler ve tanımlar;

• Güvenilirlik: tanımlanmış çalışma süresi içinde normal çalışma koşullarında çalışırken gerekli olan fonksiyonları yerine getirmek için yakıt hücrelerinin kapasitesi.

Bu, önemli bir güvenilirlik sorununa ve kabul edilebilir düzeyde performansa neden olan arıza modlarını kapsar.

• Dayanıklılık: bir yakıt hücresinin zamanla performans bozulmasına direnme kapasitesi. Dayanıklılıktaki bozulma, kurtarılamayan bir hataya yol açar. Bu hesap verebilirlik, operasyonel hücrenin yaşı ile yakından bağlantılıdır.

• Stabilite: Hücre çalışırken enerji kaybını telafi etmek için bir yakıt hücresinin kapasitesi. Kararlılık çürümesi, cihazın zayıf su ve ısı yönetimi gibi çalışma koşullarıyla yakından ilişkilidir.

Bir yakıt hücresinin genel bozulma oranının güvenilirliği ve performansı genellikle, belirli bir süre boyunca herhangi bir kesinti olmaksızın, çalışırken (sürekli bir durumda) ölçüldüğünde ölçülür. Yakıt hücresinin performansı, dayanıklılık ve kararlılık bozunma oranlarının toplamı olarak ifade edilebilir.

Yakıt hücresinin kararlı durumda veya hızlandırılmış koşullarda çalışma koşullarını içerir. Kararlı hal ve hızlandırılmış durumlar hava ve / veya yakıt açlığı yükünü veya termal çevrimleri içerir[5]. Saf metanol içerisindeki hidrojenden elektrik enerjisine dönüştüren bir elektrokimyasal reaksiyon ile oksijenle birleştirilebilir. Bu tip çalışma prosesleri elektrokimyasal yakıt hücresi veya yalnızca yakıt hücresi olarak değerlendirilir. Yakıt hücreleri içten yanmalı motorlara kıyasla temiz, sessiz, hareketli parça içermeyen ve yüksek verimli, elektrik ve ısı enerjisi üreten araçlardır. Yakıt hücreleri elektrik gereksinimleri olan her alanda kullanmak mümkündür. Yakıt hücrelerinin dışarıdan sürekli yakıt beslemesi yapıldığından elektrik üretimi sürdürebilen az yer kaplayan güç yoğunlukları yüksek olan sistemlerdir. Yakıt hücrelerin temel devre elemanları arasında önemli bir yere sahip olan elektrolit tabakasıdır. Bu tabakanın türüne göre yakıt hücreleri polimer elektrolit membran (PEM) yakıt hücresi (AFCs)[10, 11], Fosforik asit yakıt hücreleri (PAFCs)[12, 13], Erimiş karbonat yakıt hücresi şeklinde sınıflandırılır[14, 15].

Çalışmamamızın temeli olan polimer elektrolit membranların kullanıldığı, PEM yakıt hücrelerinin anot elektrotunda hidrojenin proton ve elektrona ayrılması sağlanır. Elektrolit olarak proton iletkenliği yüksek olan membranlar tercih edilir. Membranlar katı iyon değiştiren polimerik malzemeden oluşur. Bu amaçla ticari olarak ta kullanılan Nafion, Aciplex, Doe ya da Sülfonik asit polimerleri gibi malzemeler kullanılmaktadır. PEM yakıt hücrelerinin diğer yakıt hücrelerinden üstünlüğü korozyon ve deformasyona daha dayanıklı olmasıdır ayrıca kullanılan polimerik membran tabakasının katı olması, taşınabilirlik, modellerin hazırlanmasında ve kullanılmasında bir üstünlük sağlayacaktır[16, 17]. Polimer elektrolit membran (PEM) yakıt hücreleri üzerine yapılan çalışmalar iki noktada toplanmıştır. İlki yakıt hücre modülasyonlarının hazırlanmasında maliyet düşürme çalışmaları ve ikinci önemli husus ise yüksek verim elde etme çalışmalarıdır. PEM yakıt pillerinin etkinli membran tabakasının etkinliğine bağlıdır. Yakıt pillerinde kullanılan membran tabakasının yüksek sıcaklıkta iyi performans ve dayanıklılık göstermesi gerekir. Yüksek sıcaklık dayanımları iyi olan ve hücre ekipmanında performansı yüksek olan membranlardan bir tanesi fosforik asitle fonksiyonel hale getirilmiş polibenzimidazol polimerleridir. Bu tabakanın mümkün olduğu kadar üst düzeyde proton iletkenliği ve tabaka kalınlığının en ince düzeye getirilmesidir. Laboratuvar çalışmaları tek bir hücre üzerindeki dizayn, verim hesaplama yapılır. Burada denen geliştirilen ve özellikleri karakterize edilen elektrot ve membran tabakaları seri olarak birbirine bağlanır. Ticari boyutta çalışmalarda yakıt hücrelerinin paket haline gelmesiyle elde edilen yığın yakıt hücrelerinin kullanımını gerektiren çalışmalara bağlıdır[17].

1.1. Yakıt Hücreleri

Hidrokarbon esaslı petrol, doğal gaz ve kömür kullanımı her yıl hızla artan bir çevre kirliliğine neden olmaktadır. Dünyanın çoğalan nüfusunun enerji gereksinimlerine karşılık, petrol ve doğal gaz türü yakıtlarının rezervlerinin azalması, farklı ve temiz enerji kaynaklarına yönelimi sağlamaktadır[4, 18].

Yakıt hücreleri, platin katalizör serilerinin kullanıldığı kimyasal enerjiyi doğrudan elektrik enerjisine dönüştüren cezbedici alternatif enerji araçlarıdır. Günümüzde yakıt hücreleri enerji ihtiyacı duyulan, uzay araştırmaları, otomotiv, hava araçları, deniz araçları, sanayi ve konutlar gibi her alanda kullanılmaktadır. Hidrojenin yakıt olarak kullanıldığı bu araçların geliştirilmesi Hidrojenin ekonomisinin verimli bir şekilde temin edilmesine bağlıdır. Hidrojen Yakıt Hücreleri (HFCs)[19] elektrokimyasal proses sonucu enerjiyi elektrik ve ısı enerjisine dönüştüren, atık olarak da sadece su çıkışı olan araçlardır[4, 20, 21].

Yakıt hücreleri birçok sınıflandırması mevcuttur. Elektrolit kullanımına göre sınıflandırılmada polimer bileşiklerinin kullanıldığı yakıt hücrelerine Polimer Elektrolit

Membran (PEM) denir. Taşınabilir araçlar için enerji sağlamada ve ısı ve enerji kombinasyonunu için PEM yakıt hücreleri idealdir. PEM yakıt hücreleri cezbedici özellikleri, yüksek enerji yoğunluğu, hızlı başlatılır olması ve yüksek veriminden dolayı taşıma araçlarında önemlidir. Ayrıca bu hücrelerin dizaynı, hafif olması hareketsiz elektrolit olan katı polimer membranların kullanılması PEM yakıt hücrelerinin gelecek vaat eden enerji kaynağı olmasını sağlar. PEM yakıt hücrelerinde proton iletken elektrolit olarak polimer membran ve platin bazlı katalizörler kullanılmaktadır. Bu hücrelerin kayda değer önemli özelliği düşük sıcaklıklarda verimli olarak çalışma kapasiteleridir[17]. Şekil 1 de PEM yakıt hücresinin şematik olarak göstermektedir.

Şekil 1. Polimer Elektrolit Membran (PEM) Yakıt Hücresi

PEM yakıt hücrenin düşük sıcaklıkta çalışması ve yüksek güç yoğunluğuna sahip olması gerekir. Yakıt hücrelerinde kullanılan elektrot ve elektrolit seçimi önemlidir. Anot elektrotunda hidrojenin elektron ve protona dönüşmesinin yüksek düzeyde olması gerekir kullanılan elektrolitin elektron geçişine izin vermemesi ancak proton için iyi bir taşıyıcı olması gerekir. Membran seçimi yakıt hücresinin verimi, çalışma sıcaklığı gibi bir çok kriter için önemlidir. Yeni tip membranların geliştirilmesi için literatürde birçok çalışma mevcuttur. Günümüze kadar yapılan araştırmalar içerisinde Nafion, fosforik asit kullanılan polibenzimidazol katkılanmış polimerik membranları proton iletiminde en verimli olanlardır. Ancak PEM yakıt hücrelerin düşük ve yüksek sıcaklık skalada etkisini en üst düzeye taşınması yeni tip membranların geliştirilmesi ve sentezlenmesine bağlıdır.

1.1.1 PEM yakıt hücre teknoloji uygulamaları ve şu andaki durumu

PEM yakıt hücrelerinin önemli uygulamasının odaklandığı nokta çevrede potansiyel etkisinde green hause gazlarının kontrol edilmesindedir. Diğer uygulamalar enerji yenilenmesi noktasındadır. Önemli motor şirketleri yüksek enerji dönüşümü ve harika dinamik karakteristiklerinden dolayı PEM yakıt hücrelerinde birçok araştırmaları kendi bünyelerinde gerçekleştirmektedirler. Büyük araba firmaları yakıt hücreleri ile çalışan arabalarının geliştirmişlerdir. Ayrıca ticari olarak kullanımı için 2015 yılını ilan etmişlerdir. Dağıtılabilir yakıt hücre sistemleri küçük ölçekte (50- 250 kW 10 kW altında ki ev kullanımları) planlanmıştır. Ayrıca ilk dizaynlarda PEM yakıt hücreleri için diğer gelecek vaat eden nokta ise taşınabilir enerji kaynaklarıdır. Modern taşınabilir elektrik araçları dizüstü bilgisayarlar, cep telefonları taşınabilir radyo iletişim araçları için taşınabilir yakıt hücresi ile devamlı uzun süreli güç sağlar. Yakıt hücrelerin maliyetleri bu alanda gelişmelerin hızını azaltan bir faktördür. Önemli elektronik firmaları Sony, Toshiba, Motorola, LG, Samsung, gibi portabıl yakıt hücreleri üzerine çalışmaları mevcuttur.

1.1.2. Yakıt hücresinin çalışma prensibi

Spesifik olarak Şekil 2 'de gösterilen yakıt hücresinde birçok fiziksel taşınmalar ve elektrokimyasal olayların kombinasyonundan ibarettir. PEM yakıt hücresinin kalbi kabul edilen polimer elektrolit gazların geçişine izin vermezken sadece hidrojen iyonlarının geçişini sağlar. Bu bakımdan bu polimer proton değiştirebilen membran olarak adlandırılır[23, 24]. Membran gözenekli yapıya sahip iletken iki elektrot arasında bir elektrolit gibi hareket etmektedir. Bu elektrotlar genellikle karbon fiberlerden yapılmaktadır. Elektrot ve membranlar arasında platin ve diğer malzemelerden meydana gelmiş katalizörler bulunur. Elektrokimyasal reaksiyonlar elektrolit ve membran arasındaki katalizör yüzeyinde meydana gelmektedir. Bir PEM hücresi aşağıdaki işlem basamaklarını takip eder.

1. Hidrojen gazı ve hava pompa yardımıyla gaz akış kanallarından anot ve katoda iletilir. (GFC)

2. H₂ ve O₂ akımı kendi kısımlarındaki gözenekli tabakalara GDLs/MPLs ve oradan katalizörlere CL difüze olur.

3. H₂ anot katalizöründe yükseltgenerek proton ve elektron ayırımı gerçekleşir.

4.Oluşan proton membran boyunca taşınır.

5. Elektronlar karbonla desteklenmiş anot akım toplayıcısına iletilir. Oradan katot akım toplayıcısına iç akım olarak iletilir.

6. O₂ protonlarla ve iletilen elektronlarla katot CL'de indirgenerek su oluştururlar.

7. Oluşan su katot CL dışına katot GDL/MPL 'ye doğru taşınır. Nihayetinde GFC yardımıyla yakıt hücresi dışına atılır.

8. Verimsizlikten dolayı oluşan ısı başlıca katot katalizör tabakada gerçekleşen oksijen yavaş indirgenmesi ve karbon destekli bipolar tabakadan yakıt hücresi dışına aktarımlardan dolayı oluşur.

Anotta gerçekleşen elektrokimyasal oksidasyon reaksiyonu:

 $CH_3OH+H_2O\rightarrow 6H^+ + 6e^- + CO_2$

Katotda gerçekleşen elektrokimyasal indirgenme reaksiyonu:

 $O_2 ~+~ 4e^- ~+~ 4H^+ ~\rightarrow~ 2H_2O$

İndirgenme ve yükseltgenmenin gerçekleştiği toplam elektrokimyasal reaksiyon ise;

 $CH_3OH + 3/2O_2 \rightarrow 2H_2O + CO_2$

Taşınma olayı üç boyutludur çünkü yakıt (H_2) ve oksidant (O_2) akışı anot ve katot gaz akış kanalarında gerçekleşir. Proton taşıması membrana doğru olur. Gaz taşınma olayı ise kendine yakın elektrottaki gaz difüzyon tabakalarında ve katalizör tabaklarına geçer.

PEM yakıt hücrelerinin en önemli avantajı düşük sıcaklıklarda çalıştırabilmeleridir. Membran olarak kullanılan polimer malzemenin yüksek maliyette oluşu bu sistemin en önemli dezavantajıdır.

Bir hidrojen-oksijen yakıt pilinin ideal verimi 0,83 kutuplar arasındaki elektrik potansiyeli 1,23 V dır. Gerçekte elde edilen gerilim değerleri, işlemlerin tersinmezliği nedeniyle bu hesaplamalarla belirlenenden bir miktar küçük olmaktadır.

Yakıt pillerinin verimlerinin artırılması aşağıdaki parametrelere bağlıdır.

- Gaz yakıt-elektrot-elektrolit temas yüzeylerinin artırılması
- Elektrotlarla birlikte veya elektrotlar üzerinde katalizörlerin kullanımı,
- Daha uygun elektrolitin bulunması,
- Basıncın artırılması,
- Sıcaklığın artırılması,
- Uygun yakıtın ya da yakıt değişikliğinin sağlanması,
- Farklı bileşimlere sahip ucuz membranların eldesi gibi faktörlere bağlıdır.

1.1.3. Yakıt Hücresinde Membran Tabakası

Membran olarak anottan katotta doğru proton iletkenliğini sağlayan ince elektrolit tabakası kullanılır[25]. Kalınlığı genellikle 10-100µm arasında değişir. Yüksek iyon iletkenliğini sağlayan membran materyalleri en çok tercih edilenlerdir. Ayrıca bu tabaka elektron geçişini ve anottan hidrojen yakıtını katottan ise oksijenin geçişinin engellemesi gerekir. Ek olarak membran tabakasının HO• - HOO• radikal türlerinin ile çevresinde kimyasal kararlılığı istenir. Yakıt hücresinin çalışma sıcaklığında termal karalılığı sahip olması ve mekanik olarak dayanıklı olması istenir. Günümüzde kullanılan membranlar perflorosülfonik asit üzerine temellenmiştir. En önemlisi 1960'larda DoPont firması tarafından geliştirilen Nafion 'dur. Nafion politetra flora etilen (PTFE ticari olarak teflondur) yapı iskeletine sahiptir. Bu yapı membrana fiziksel gerilim sağlar. Nafionda bulunan sülfonik asit grupları proton taşınmasını sağlar. Ayrıca yakıt perflorinlenmiş polimer materyalleri PEM hücresi uygulamalarında kullanılmaktadır. PEM yakıt hücrelerinde membran materyallerin yüksek sıcaklık (100-200°C) kullanılabilir olanları tercih edilir. Amaç CO tolerans avantajına ve soğutma stratejilerine yardımcı olur.

Membran olarak genellikle Genel olarak yapısında –SO₃H grubu ihtiva eden polimerler kullanılmaktadır. Yüksek verime ulaşmak için PEM yakıt hücresinde kullanılacak membranların aşağıdaki özelliklerde olması gerekmektedir.

- minimum direnç kaybı ve sıfır elektronik iletkenliğiyle yüksek akım sağlamak için yüksek proton iletkenliği
- yeteri kadar mekanik güç ve dayanıklılık,
- çalışma koşulları altında kimyasal ve elektrokimyasal kararlılık,
- dizin içerisinde nem kontrolü sağlanabilmesi, (anlayamadım)
- kulombik verimliliği maksimize etmek için çok düşük yakıt ve oksijen geçişi,
- üretim fiyatının amaçlanan uygulamalar için uygun olması

PEM yakıt hücrelerinde perfloro, hidrokarbon ve aromatik yapıda polimerik membranlar kullanılmaktadır.

Perfloro membranlarda ana zincir teflon yapısındadır ve ana zincire aşılanmış yan zincirlerin uçlarında sülfonik asit grupları bulunmaktadır. Hidrofobik ve hidrofilik yapı

içerdiği için su ve H^+ iyonu iletimi kolayca sağlanabilmektedir. H^+ iletimi sülfonik asit grupları üzerinden yürür ve her iyon başına 1-2,5 su molekülü anottan katoda taşınır.

Hidrokarbon membranların perfloro membranlara göre bazı avantajları vardır. Daha ucuzdurlar, ticari olarak bulunabilir ve kimyasal yapıları su alımını arttırmak amacıyla polar grupların eklenmesi için uygundur. Buna karşılık hidrokarbon membranlarda proton iletkenliği perfloro membranlara göre düşüktür. Ayrıca kimyasal ve ısıl olarak kararlı değildirler ve ömürleri kısadır[26]

Ana zincirde veya yan zincirlerde aromatik gruplar içerenler yüksek sıcaklıklara dayanıklıdırlar. Aromatik gruplara sahip olan poliarilenlerin T_g değeri 200°C'den büyüktür ve yüksek sıcaklıkta kararlıdırlar. Aromatik gruplar elekrofilik ve nükleofilik yer değiştirme reaksiyonlarına olanak sağlarlar. Polieter sülfonlar (PESF), polieter ketonlar (PEK), poliesterler, poliarilen eterler ve poliimitler (PI) bazı poliarilenler membran olarak kullanılabilmektedir.

Şekil 2. PEM Yakıt Hücresinde Polimer Membranın Çalışma Şekli

1.2. Teorik Hesaplama Yöntemleri

Kullanılan teorik hesaplama yöntemleri, şimdiye kadar elde edilmemiş veya edilememiş ve gerçek koşullarda oluşamayacak bileşikler için kolayca uygulanabilmektedir ve istenen sonuçlar alınabilmektedir. Tek bir deneyle moleküler yapı, elektron yükleri, bağ uzunlukları bağ açıları, enerjiler, dipol moment vb. gibi birçok bilgiyi verebilecek bir yöntem yoktur. Bazı teorik çalısmalarda deneysel yöntemlerden daha hassas sonuçlar elde edilebilmektedir. Hesaplama yöntemlerinde elde edilen verilerin sonuçlarının güvenirliliği oldukça yüksektir. En hassas deneysel çalısmalarda dahi elde edilen değerlerin doğruluğu kişinin gözlem ve hassasiyetine bağlıdır. Yüksek maliyet gerektiren deneysel çalışmalar, teorik çalışmalar ile veriler hazırlanarak bilgisayar süresi içerisinde sonuçlandırılabilir. Fakat teorik hesaplamalar deneysel çalışmaların yerini alamaz. Araştırmacılar için gerçek ve güvenilir olan sonuç deneysel veriler olacaktır. Genellikle deneysel veriler ile teorik çalışma sonucu elde edilen veriler karşılaştırılıp yorumlanmaktadır. Deneysel çalışma ile açıklanamayan bir sonuç teorik çalışma ile yorumlanıp aydınlatılabilmektedir. Teorik veriler deneysel verileri yönlendirici ve aydınlatıcı olmaktadır[27].

1.2.1. Yarı-Empirik Yöntemler(Semiempirical)

Semiempirical hesaplamalar, bir Hamiltonian ve bir dalga fonksiyonuna sahip olmaları için HF hesaplamasıyla aynı genel yapıya sahip olarak yapılır. Bu çerçevede, belirli bilgi parçalarına yaklaşılmakta veya tamamen ihmal edilmektedir. Genellikle, çekirdek elektronlar hesaplamaya dahil edilmez ve sadece minimum bir temel seti kullanılır[26]. Ayrıca, iki elektronlu integrallerin bazıları hesaplamaya katılmamıştır. Hesaplamanın bir kısmını atlayarak getirilen hataları düzeltmek için yöntem parametrize edilir. İhmal edilen değerleri tahmin etmek için parametreler, sonuçları deneysel verilere veya ab initio hesaplamalarına göre hesaplayarak elde edilir. Genellikle, bu parametreler hariç tutulan bazı integrallerin yerine geçer[28].

Yarı empirik hesaplamaların avantajı, ab initio hesaplamalarından çok daha hızlı olmalarıdır. Yarı empirik hesaplamaların dezavantajı, sonuçların düzensiz olabileceği ve daha az özelliklerin güvenilir bir şekilde tahmin edilebiliyor olmasıdır. Hesaplanan molekül, metodu parametreleştirmek için kullanılan veritabanındaki moleküller ile aynıysa, sonuçlar çok iyi olabilir. Hesaplanan molekül, parametre setindeki herhangi bir şeyden önemli ölçüde farklıysa, cevaplar çok zayıf olabilir. Örneğin, siklopropan ve küban içindeki karbon atomları, diğer birçok moleküldeki bileşiklerden önemli ölçüde farklı bağ açılarına sahiptir; bu nedenle, bu moleküller, parametreleştirmeye dahil

edilmedikçe iyi tahmin edilemeyebilir. Bununla birlikte, yarı-empirik yöntemler, moleküler mekanik hesaplamaları gibi ayarlanan parametrelere duyarlı değildir[29].

Yarı empirik yöntemler, çeşitli sonuçların çoğaltılması için parametrelendirilir. Çoğu zaman, geometri ve enerji (genellikle oluşum 15151) kullanılır. Bazı araştırmacılar, parametre belirleme setine dipol momentleri, reaksiyon sıcaklıkları ve iyonlaşma potansiyellerini dahil ederek bunu genişletmiştir.[30] Elektronik spektrumlar veya NMR kimyasal kaymaları gibi belirli bir özelliği yeniden üretmek için birkaç yöntem parametreleştirilmiştir. Parametre setinde belirtilenler dışındaki özellikleri hesaplamak için yarı empirik hesaplamalar kullanılabilir.

Pek çok yarı empirik yöntem, enerjileri oluşum ısıları olarak hesaplar. Araştırmacı, termodinamik düzeltmeler parametrelemede gizli olduğundan, bu enerjilere sıfır noktalı düzeltmeler eklememelidir[31].

Yarı empirik dalga fonksiyonundan CIS hesaplamaları, elektronik uyarılmış durumları hesaplamak için kullanılabilir. Bazı yazılım paketleri, yarı-empirik referans alanından CIS dışındaki CI hesaplamalarının yapılmasına izin verir. Bu, tek belirleyici bir dalga fonksiyonu ile doğru bir şekilde tarif edilmeyen bileşiklerin modellenmesi için iyi bir tekniktir. Yarı empirik CI hesaplamaları, genellikle iki kez (bir kez CI ile ve bir kez de parametre) korelasyon içerdiklerinden, sonuçların doğruluğunu arttırmaz.

Yarı empirik hesaplamalar organik kimyanın tanımlanmasında çok başarılı olmuştur, burada yoğun olarak kullanılan az sayıda element vardır ve moleküller orta büyüklüktedir. İnorganik kimyanın tanımı için özel olarak bazı yarı empirik yöntemler geliştirilmiştir. Aşağıdakiler, en yaygın kullanılan yarı deneysel yöntemlerden bazılarıdır[31, 32].

1.2.1.1. Hückel

Hückel metodu ve en eski ve en basit yarı empirik metotlardan biridir. Bir Hückel hesaplaması sadece düzlemsel konjuge hidrokarbondaki değer π değerlik elektronlarını modellemektedir. Bağlanmış atomlar arasındaki etkileşimi tanımlamak için bir parametre kullanılır. İkinci bir atom etkisi yoktur. Hückel hesaplamaları, yörüngesel simetriyi yansıtır ve yörüngesel özellikleri nitel olarak tahmin eder. Hückel

hesaplamaları, konjuge bileşikler hakkında kaba kantitatif bilgi veya kalitatif bilgi sağlayabilir, ancak bugün nadiren kullanılır[33].

1.2.1.2. PM3

Parametreleme metodu 3 (PM3), AM1 yöntemiyle neredeyse aynı denklemleri, geliştirilmiş bir parametre grubuyla birlikte kullanır. PM3 yöntemi şu anda organik sistemler için son derece popüler. Hidrojen bağ açıları için AM1'den daha doğrudur, ancak AM1 hidrojen bağ enerjileri için daha doğrudur. PM3 ve AM1 yöntemleri de, bu hesaplamalara çözme etkilerini dahil etmek için algoritmaların bulunmasından dolayı diğer yarı deneysel yöntemlerden daha popülerdir[34].

PM3'ün bilinen bazı güçlü yönleri ve sınırlamaları da vardır. Genel oluşum ısıları, MNDO veya AM1'den daha kesindir. Hipervalent moleküller de daha doğru tahmin edilmektedir. PM3, peptidlerde C-N bağı etrafında dönme bariyerinin çok düşük olduğunu tahmin etme eğilimindedir. Si ve halojenür atomları arasındaki bağlar çok kısa. PM3 ayrıca germanyum bileşikleri için hatalı elektronik durumları da öngörme eğilimindedir. sp³ azotunu her zaman piramidal olarak tahmin etme eğilimindedir[35]. Bazı sahte minimalar tahmin ediliyor. Proton eğilimleri doğru değil. Bazı polisiklik halkalar düz değildir. Azot üzerindeki öngörülen yük yanlıştır. Bağlanmayan mesafeler çok kısa. Hidrojen bağları yaklaşık 0.1Å ile çok kısa, ancak oryantasyon genellikle doğru. Ortalama olarak, PM3 enerjileri ve bağ uzunluklarını AM1 veya MNDO'dan daha doğru tahmin eder[30, 32].

1.2.1.3. PM3/TM

PM3 / TM, PM3 yönteminin, geçiş metalleriyle kullanım için d orbitalleri içerecek bir uzantısıdır. Diğer birçok yarı empirik yöntemin aksine, PM3 / TM'nin parametreleştirilmesi yalnızca X ışını kırınım sonuçlarından elde edilen geometrilerin çoğaltılmasına dayanır. PM3/TM ile elde edilen sonuçlar metal merkezinin koordinasyonuna bağlı olarak makul olabilir veya olmayabilir. Bazı geçiş metalleri, iyi çalıştığı belirli bir hibridizasyonu tercih etme eğilimindedir.

Yarı empirik yöntemler, özellikle PC veya Macintosh bilgisayarlarda uygun hale getirmek için yeterince düşük hesaplama gereksinimlerine sahip organik moleküller için

faydalı olabilecek kadar doğru sonuçlar sağlayabilir. Bu yöntemler genellikle moleküler geometri ve enerjiyi öngörmede iyidir. Yarı empirik yöntemler, titreşim modlarını ve geçiş yapılarını tahmin etmek için kullanılabilir, ancak bunu ab initio yöntemlerinden daha az güvenilir bir şekilde yapın. Yarı deneysel hesaplamalar, Van der Waals ve dağılım molekülleri arası kuvvetler için, yaygın temel fonksiyonların bulunmamasından dolayı genellikle kötü sonuçlar verir[36].

1.2.2. Hartree-Fock Öz Uyumlu Alan Teorisi (HF/SCF)

Hartree-Fock teorisi, ab initio yöntemlerinin ve yarı deneysel kuantum mekaniksel yöntemlerinin çoğunun başlangıç noktasıdır. Elektron-elektron itmesi özellikle hesaba katılmamıstır. Sadece onun ortalama etkisi hesaba katılır. Avantajı çok elektronlu Schrödinger denklemini basit tek elektronlu denklemlere dönüstürmesidir. Hartree-Fock teorisinin en önemli problemi, moleküler bir sistem içindeki özellikle karşıt spinli elektronlar arasındaki korelasyonları tanımlamada yetersiz oluşudur.

Bu yöntemle ilgili elektron korelasyon eksikliği ve bunun geçiş metal sistemlerdeki önemi, sayısal sonuçların geçerliliğini sınırlar. SCF (Self Consistent Field) sonuçları elektron korelasyon etkileri ile diğerlerinden biraz kötü olmasına rağmen HF/3-21G ve HF/6-31G* hesaplamaları uygun geometriler sağlar ve pratik anlamda muhtemelen yararlıdır. HF/SCF hesaplamalar, hata iptali önemli bir rol oynadığında nispi kaymaların yorumu için oldukça kullanışlı olmuştur.

HF dalga fonksiyonu, elektron korelasyonunu antisimetri nedeniyle kısmen göz önüne alır. SCF (self consistend field) metodunda elektronların, diğer elektronların ortalama bir potansiyeli içinde hareket ettiği kabul edilir ve anlık elektron-elektron etkileşmelerini göz ardı eder. Bu nedenle, Hartree-Fock teorisi kullanılarak yapılan bir hesaplamada moleküler sistem için elde edilen toplam elektronik enerji (HF enerjisi) en doğru ya da en düşük enerji değildir. Sistemin non-rölativistik enerjisi (deneysel enerji) ile HF enerjisi arasındaki fark korelasyon enerjisi olarak tanımlanır. Elektron korelasyonunun ihmali bu teoriyi bazı amaçlar için uygunsuz yapar. Dengedeki türlerle ilgilenildiğinde korelasyon etkileri çok önemli değildir. Fakat yine de kantitatif sonuçlar gerektiğinde elektron korelasyon etkilerini hesaba katmak gerekir. Elektron korelasyon etkisini hesaplamalarına dahil eden SCF metotları post-SCF (variasyon teorisi) metotları olarak adlandırılır[37]. Hartree-Fock yaklaşımı, N elektronun ortalama potansiyelinde elektronun enerji seviyeleri hesabıdır. Bu matematiksel olarak, elektronların dalga fonksiyonu, N elektronun tek elektron fonksiyonlarının çarpımı olarak alınmasıdır. N elektronlu bir sistem için Hamiltonianin genel formu:

$$\mathbf{H} = (-\frac{1}{2}\sum_{i=1}^{N} \nabla^{2} - \frac{1}{r^{1}\mathbf{A}} - \frac{1}{r^{1}\mathbf{B}} \wedge \wedge + \frac{1}{r^{12}} + \frac{1}{r^{13}} + \wedge)$$

Elektronlar: 1,2,3,... Çekirdekler: A,B,C,...

Enerji ifadesini, sistemin toplam elektronik enerjisine katkıda bulunan üç tip etkileşimin genel bir formu seklinde yazmak daha uygun olacaktır. İlki, çekirdek alanında hareket eden her bir elektronun potansiyel enerjisidir. İkincisi elektron çiftleri arasındaki elektrostatik itmelerden gelir. Bu etkilesimler, elektron-elektron arasındaki uzaklığa bağlıdır. Üçüncüsü ise değiş tokuş etkileşimidir[38, 39].

1.2.3. Yoğunluk Fonksiyonel Teorisi(DFT)

Yoğunluk fonksiyonel teorisi (DFT) son yıllarda çok popüler oldu. Bu, benzer doğruluğa sahip ve diğer yöntemlerden daha az hesaplama hassasiyete sahiptir. Bu teori diğer ab initio yöntemlerinden daha yakın zamanda geliştirilmiştir[40]. Bu nedenle, bu teori ile henüz keşfedilmemiş problem sınıfları vardır, bu da bilinmeyen sistemlere uygulanmadan önce metodun doğruluğunu test etmeyi çok daha önemli hale getirir[41].

1.2.3.1. Temel Teori

DFT'nin arkasındaki öncül, bir molekülün enerjisinin bir dalga fonksiyonu yerine elektron yoğunluğundan belirlenebileceğidir. Bu teori Hoenburg ve Kohn tarafından bunun mümkün olduğunu belirten bir teorem ile ortaya çıkmıştır. Orijinal teorem, yalnızca bir molekülün temel durum elektronik enerjisini bulmak için uygulanır. Bu teorinin pratik bir uygulaması, Hartree-Fock yöntemine benzer bir yöntem geliştiren Kohn ve Sham tarafından geliştirilmiştir[42, 43].

Bu formülasyonda, elektron yoğunluğu matematiksel formda HF orbitallerine benzer temel fonksiyonların doğrusal bir kombinasyonu olarak ifade edilir. Kohn-Sham orbitalleri denilen bu fonksiyonlardan bir belirleyici oluşur. Enerjiyi hesaplamak için kullanılan bu yörünge belirleyicisinin elektron yoğunluğudur. Bu prosedür gereklidir, çünkü Fermion sistemleri yalnızca antisimetrik bir dalga fonksiyonundan kaynaklanan elektron yoğunluklarına sahip olabilir. Kohn-sham orbitallerinin yorumlanması üzerine bazı tartışmalar olmuştur. İlişkilendirilmiş hesaplamalardan ya HF orbitallerine ya da doğal orbitallerine matematiksel olarak eşdeğer olmadıkları kesindir[44, 45]. Bununla birlikte, Kohn-Sham orbitalleri, elektronların bir moleküldeki davranışını tanımlamaktadır, tıpkı bahsi geçen diğer orbitallerin yaptığı gibi. DFT orbital özdeğerleri, HF orbital enerjilerinin yanı sıra fotoelektrik spektroskopi deneylerinden elde edilen enerjilerle eşleşmiyor. Halen tartışılmakta olan sorular benzerliklerin nasıl atanacağı ve farkların nasıl fiziksel olarak yorumlanacağıdır[43, 46].

Elektron yoğunluğu için enerji elde etmek üzere bir yoğunluk fonksiyonu kullanılır. Bu durum elektron yoğunluğunda fonksiyonel bir işlevdir. Tam yoğunluk fonksiyonelliği bilinmemektedir. Bu nedenle, avantaj veya dezavantajları olan farklı fonksiyonellerin bir listesi vardır. Bu fonksiyonalitelerin bazıları temel kuantum mekaniğinden, bazıları ise deneysel sonuçları en iyi şekilde üretmek için geliştirilmiştir[26]. Bu nedenle, özünde DFT'nin initio ve semiempirical versiyonları vardır. DFT ya ab initio yöntemi olarak ya da kendi başına bir grupta sınıflandırılma eğilimindedir[46].

Elektron yoğunluğunu kullanmanın avantajı, Coulomb itme kuvvetinin sadece üç boyutlu elektron yoğunluğu üzerindeki fonksiyonel ifadedir ve dolayısıyla N³ olarak ölçeklendirilmesi gerekmektedir. Ayrıca, en azından bir miktar elektron korelasyonu hesaplamaya dahil edilebilir. Bu, HF hesaplamalarından (N⁴ olarak ölçeklendirilen) ve biraz da daha doğru olan hesaplamalardan daha hızlı bilgisayar kullanım zamanına neden olur. Daha iyi DFT fonksiyonları, MP2 hesaplamasına benzer bir hassasiyetle sonuç verir[43, 47].

Yoğunluk fonksiyonları birkaç sınıfa ayrılabilir. En basitine Xα yöntemi denir. Bu hesaplama türü elektron değişimini içerir ancak korelasyonu içermez. Hartree-Fock'a bir yaklaşımda bulunmaya çalışırken istemeden DFT'nin en basit biçimini keşfetmiş olan J. C. Slater tarafından tanıtıldı. Xα yöntemi, HF'nin doğruluğuna benzer ve bazen daha iyidir[48].

Tüm problemin en basit yaklaşımı, sadece yerel yoğunluk yaklaşımı (LDA) olarak adlandırılan elektron yoğunluğuna dayanmaktadır[49]. Yüksek spin sistemlerinde buna yerel spin yoğunluğu yaklaşımı (LSDA) denir[50]. LDA hesaplamaları bant yapısı hesaplamaları için yaygın olarak kullanılmaktadır. Performansları hem niteliksel hem de

niceliksel hataların yaşandığı moleküler hesaplamalar için daha az etkileyicidir. Örneğin, bağlar çok kısa ve çok güçlü olma eğilimindedir. Son yıllarda literatürde LDA, LSDA ve VWN (Vosko, Wilks ve Nusair fonksiyonel) eşanlamlı hale geldi[50-52].

Daha kompleks bir fonksiyonel set elektron yoğunluğunu ve gradyanını kullanır. Bunlara gradyan düzeltme yöntemleri denir. Fonksiyonellikleri diğer yöntemlerden Hartree-Fock un bir parçasıyla hibrit yöntemler de vardır, bunlar genellikle değişim integralleridir.

Genel olarak, gradyan düzeltmeli veya hibrit hesaplamalar en doğru sonuçları verir. Ancak, Xα ve LDA'nın oldukça iyi olduğu birkaç durum var[53]. LDA'nın daha az doğru geometri sağladığı ve bağlanma enerjilerinin çok fazla büyük olduğu tahmin ediliyor[49]. Mevcut hibrit fonksiyonal üretimi, mevcut gradyan düzeltmeli tekniklerden biraz daha kesin sonuç verir. Daha yaygın olarak kullanılan işlevlerden bazıları Tablo 1'de listelenmiştir[37].

1.2.3.2. Lineer Ölçeklendirme Teknikleri

DFT'deki son gelişmelerden biri, lineer ölçeklendirme algoritmalarının ortaya çıkışıdır. Bu algoritmalar, molekülün uzak bölgeleri için Coulomb terimlerini çok kutuplu açılımlarla değiştirir. Bu, yeterince büyük moleküller için N'nin zaman karmaşıklığına sahip bir metotla sonuçlanır. En yaygın lineer ölçeklendirme teknikleri, hızlı çok kutuplu yöntem (FMM) ve sürekli hızlı çok kutuplu yöntemdir (CFMM)[27].

DFT, sayısal integral doğruluğuna ve ayarlanan temele bağlı olarak, 10-15'ten fazla hidrojen olmayan atomu olan sistemler için genellikle Hartree-Fock'tan daha hızlıdır. Lineer ölçeklendirme algoritmaları, molekülün genel şekline bağlı olarak fazla atom sayısı 30 veya daha fazla olana kadar avantajlı hale gelmez.

Kısaltmalar	Isim	Тір
Χα	X alfa	Değişim
HFS	Hartree-Fock Slater	HF ile LDA değişimi
VWN	Vosko, Wilks ve Nusair	LDA
BLYP	Becke doğrulama fonksiyonu ile Lee, Yang, Parr değişimi	Gradient-doğrulanmış
B3LYP, Becke3LYP	Becke 3 faz ile Lee, Yang, Parr Değişimi	Hibrit

Tablo 1. Yoğunluk Fonksiyonelleri

PW91	Perdue ve Wang 1991	Gradient-doğrulanmış
G96	Gill 1996	Değişim
P86	Perdew 1986	Gradient-doğrulanmış
B96	Becke 1996	Gradient-doğrulanmış
B3P86	Becke değişimi, Perdew korelasyonu	Hibrit
B3PW91	Becke değişimi, Perdew ve Wang Korelasyonu	Hibrit

Doğrusal ölçeklendirme DFT yöntemleri, büyük moleküller için en hızlı ab initio yöntemi olabilir. Bununla birlikte, bu alanda birçok yanıltıcı literatür olmuştur. Literatür, doğrusal ölçekleme yöntemlerinin, n-alkanlar veya grafit levhalar gibi bazı test sistemleri için geleneksel algoritmalardan daha az CPU zamanı büyüklüğüne sahip olduğunu gösteren grafiklerle olgunlaşmıştır. Bununla birlikte, ticari yazılımla yapılan hesaplamalar çoğu zaman yalnızca yüzde birkaç veya belki biraz daha yavaş bir hesaplama hızını gösterir. Bu tutarsızlıkların birçok nedeni vardır[26, 54].

Unutulmaması gereken ilk faktör, verimli çalışma için tasarlanan çoğu yazılım paketinin ab initio hesaplamaları ile bütünleşik doğruluk kesimleri kullanmasıdır. Bu, uzaktaki atomları içeren integrallerin, son enerjiye, genellikle 0.00001 Hartre'den daha az veya Van der Waals etkileşiminin enerjisinin yüzde birinden daha düşük bir katkısı olduğu tahmin edildiğinde hesaplamaya dahil edilmediği anlamına gelir. Hesaplamanın lineer ölçeklendirme yöntemi olmadan daha hızlı çalıştığı durumlar, integral doğruluk sınırlarının lineer ölçeklendirme yönteminden daha fazla zaman almasından kaynaklanmaktadır[37].

İkinci husus molekülün geometrisidir. Çok kutuplu tahmin yöntemleri, yalnızca molekülün uzak bölgeleri arasındaki etkileşimleri tanımlamak için geçerlidir. Aynısı, integral hassasiyetleri için de geçerlidir. Bunun nedeni, hesaplanan CPU zamanının bulunmasında farklı konformasyonlar etkilemektedir. Lineer sistemler en verimli şekilde modellenebilirken katlanmış, küresel veya düzlemsel sistemler daha az verimli şekilde modellenebilir. C_{40} -H₈₂ n-alkan üzerindeki test hesaplamasında, katlanmış bir konformasyondaki enerji hesaplama, lineer konformasyondaki hesaplamadan dört kat daha fazla CPU zamanı almıştır.

Sonuç olarak, lineer ölçeklendirme yöntemlerinin geleneksel yöntemlere göre daha az CPU zamanı kullanabilmesi, ancak hızlanmanın bazı literatürlerde belirtildiği kadar
büyük olmamasıdır. Çeşitli hesaplamalarda bir C_{40} n-alkan ve iki yazılım paketi içeren bir C_{40} grafit levha üzerinde test hesaplamaları yapıldı[55]. Bu hesaplamalar lineer ölçeklendirme yöntemlerinin geleneksel hesaplama için gereken CPU zamanının % 60-80'ini gerektirdiğini göstermiştir. Algoritmanın kullandığı çoklu kutup sırasını manuel olarak ayarlayarak bundan daha iyi performans elde etmek mümkündür, ancak araştırmacılar, sonuçların doğruluğunu etkileyebileceği için bunu yapma konusunda son derece dikkatli davranmalıdırlar.

1.2.3.3. Pratik Değerlendirmeler

Yukarıda belirtildiği gibi, DFT hesaplamaları bir temel seti kullanmalıdır. Bu, DFT ile optimize edilmiş veya tipik HF ile optimize edilmiş temel setlerin kullanılıp kullanılmayacağı sorusunu gündeme getirmektedir. DFT optimizasyonlu temel setleri kullanan çalışmalar, benzer büyüklükteki geleneksel temel setlerin kullanımına göre çok az veya hiç gelişme olmadığını göstermiştir. Günümüzde çoğu DFT hesaplaması HF optimize edilmiş GTO temel setleriyle yapılmaktadır. Sonuçların doğruluğu, çok küçük temel setlerinin kullanılmasıyla önemli ölçüde bozulma eğilimindedir. Kesinlik değerlendirmeleri için, kullanılan en küçük temel genellikle 6-31G * veya eşdeğeridir. İlginçtir ki, çok büyük temel setleri kullanılarak elde edilen doğrulukta sadece küçük bir artış vardır. Bu muhtemelen yoğunluk fonksiyonelliği temel set sınırlamalarından daha fazla doğruluk sınırlaması olması nedeniyledir[53].

DFT hesaplamaları sayısal integraller kullandığından, GTO temel setlerini kullanan hesaplamalar diğer temel setleri kullananlardan daha hızlı değildir. STO temel setlerinin veya sayısal temel setlerinin (örneğin kübik bağlayıcılar) çekirdek etkisi ve uzun mesafelerde üssel bozulma nedeniyle daha doğru olması beklenir[56]. Pek çok DFT çalışması doğruluk veya hesaplama süresi avantajlarına sahip olmayan GTO temel setlerini kullanır. Bunun nedeni, GTO HF hesaplamaları için yazılmış çok sayıda program bulunmasıdır. HF programları kolayca DFT programlarına dönüştürülebilir, bu nedenle her ikisini de yapan programları bulmak çok yaygındır. Kübik bağlayıcı temel setlerini (örneğin, dMol ve Spartan programları) ve STO temel setlerini (örneğin, ADF) kullanan programlar vardır.

DFT hesaplamalarından elde edilen sonuçların doğruluğu, temel set ve yoğunluk fonksiyonunun seçimine bağlı olarak iyi olmayabilir. Yoğunluk fonksiyonunun seçimi

daha da zorlaştırılmıştır, çünkü yeni fonksiyoneller oluşturmak hala aktif bir araştırma alanıdır. Bu, çok çeşitli bileşikler, özellikle organik moleküller için elde edilen B3LYP sonuçlarının doğruluğundan kaynaklanmaktadır[57].

Şu anda, DFT sonuçları organik moleküller, özellikle kapalı kabukları olanlar için çok iyi bir seviyeye gelmiştir. Ağır elementler, yüksek yüklü sistemler veya elektron korelasyonuna çok duyarlı oldukları bilinen sistemler için çalışmalar devam etmektedir DFT'nin son zamanlardaki yoğun kullanımı, CPU zamanına göre çoğu zaman en uygun doğruluktan kaynaklanmaktadır. 6-31G * veya daha büyük temelli B3LYP yöntemi birçok organik molekül hesaplaması için tercih edilen yöntemdir.

1.3. Polimerlerde Teorik Çalışmalar

Polimerler kimyada çok önemli bir çalışma alanıdır. Sadece pek çok endüstriyel uygulama değil, aynı zamanda bunların araştırılması karmaşık bir araştırma alanıdır. Polimerler, en basit durumda, tekrar eden bazı fonksiyonel gruplara sahip uzun zincirli moleküllerdir. Ticari olarak önemli olan çoğu polimer organiktir. Temel bağlanma kuvvetleri ve moleküller arası etkileşimler, küçük moleküllerdeki polimerler için aynıdır. Bununla birlikte, polimer özelliklerinin birçoğuna (zincir uzunluğundan dolayı) boyut etkileri hâkimdir. Dolayısıyla, basitçe küçük moleküllü modelleme tekniklerini uygulamak sadece sınırlı değerdedir.

Polimerler, çeşitli nedenlerden dolayı karmaşık sistemlerdir. Bunlar amorf veya kristal olabilir veya her ikisinin de mikroskobik alanlarına sahip olabilirler. Çoğu, bazı kristalin etki alanlarına sahip amorf veya sadece amorftur. Ayrıca, bu çoğu zaman bir dengede olmayan durumdur çünkü çoğu üretim metodu malzemeyi optimal bir konformasyona ulaşmak için yeterince yavaş bir şekilde tavlamaz. Bu nedenle, polimer özellikleri, üretim işlemine (yani, soğutma hızı) ve ayrıca moleküler yapıya göre değişir. Belirli bir polimerin zincirleri, öncelikle Van der Waals kuvvetleri, hidrojen bağı, π etkileşimleri veya yük transfer etkileşimleri ile etkilenir. Moleküller arası ikinci dereceden etkiler, sentetik polimerlerin tanımlanmasında proteinler için olduğundan daha önemli görünmektedir[37].

Burada hesaplamalı yöntemler ve polimer simülasyonu arasındaki bağlantıyı sağlar. Referanslarda bulunabilen birçok polimer simülasyon yönteminin ayrıntılarını sunmamaktadır.

1.3.1. Teori Seviyesi

Polimerleri modellemenin en basit yollarından biri, çeşitli özelliklere sahip bir sürekliliktir. Bu tür hesaplamalar, genellikle bu malzemeden yapılmış bir obje üzerindeki gerginliği ve gerilimi belirlemek için mühendisler tarafından yapılır. Bu, genellikle, burada daha fazla tartışılmayacak olan bir konu olan sayısal sonlu eleman veya sonlu farklılık hesaplamasıdır.

Polimerler, dengede olmayan sistemlerin simülasyonu ve mikro kristalin ağırlıklı büyük boyutlarından dolayı modellemek zordur. Bu tür sistemlerin kullanılmasına yönelik bir yaklaşım mezoskale tekniklerinin kullanılmasıdır. Bu, mikroskobik kristalin ve amorf bölgelerin oluşumunu ve yapısını öngörmede başarılı bir yaklaşım olmuştur.

Polimer kimyası alanında büyük ilgi çeken bir alan yapı-aktivite ilişkileridir. En basit biçimde, bunlar dallı polimerlerin düz zincirli polimerlerden daha biyobozunur olduklarını gözlemleme gibi nitel açıklamalar olabilir. Hesaplamalı simülasyonlar daha çok, dökme malzemenin gerilme mukavemeti gibi özelliklerin kantitatif tahminine yöneliktir.

Bu tür tahminleri gerçekleştirmenin bir yolu, grup ekleme teknikleridir. Bir fonksiyonel grupların bir tablosunu parametrelerini belirleyip ve daha sonra polimer özelliklerini elde etmek için her bir fonksiyonel grubun etkilerini öngörürler. Grup ekleme yöntemleri kullanışlıdır, fakat doğası gereği mümkün olan doğrulukla sınırlıdır. Yenilenen birimlerde çoklu fonksiyonel gruplar olduğunda genellikle daha az güvenilirdirler. Bununla birlikte, grup katkıları en karmaşık tekrarlama birimleri için bile küçük bilgisayarlarda kolayca hesaplanır. Daha yakın zamanlarda, QSPR teknikleri popüler hale gelmiştir[58].

Küçük bilgisayarlarda iyi çalışan diğer teknikler, moleküllerin topolojisine veya grafik teorisindeki indislere dayanmaktadır. Bu matematiksel sınıflandırma alanları ve belirli sistemler atomlara ve bağlara karşılık gelen, birbirine bağlı noktaların sistemlerini tanımlar ve sınıflandırır. Sistemin doğrusal olup olmadığını veya birçok döngüsel gruba veya çapraz bağlara sahip olup olmadığını ölçmek için indisler tanımlanabilir. Polimerik özellikler ait bu indisler ampirik olarak fitedilebilir. Topolojik ve grup teorisi indisleri de grup katkı teknikleriyle birleştirilir veya QSPR tanımlayıcısı olarak kullanılır[58].

Kafes simülasyon teknikleri, atomların muhtemel konumlarının bir tür normal örgü köşelerine düştüğünü varsayarak bir polimer zincirini modellemektedir. Bu teknik, genel eğilimleri iyi bir şekilde tahmin edebilme yeteneğine sahiptir, ancak sonuçların kesin doğruluğu bakımından oldukça sınırlıdır. Kafes simülasyonları, kübik veya tetrahedral (elmas benzeri) olabilen iki veya üç boyutlu kafesleri kullanabilirler. Polimerin şekli, zincirin sonunun rastgele yürüme algoritmasıyla büyütülmesiyle simüle edilir[59]. Bu, zincirdeki önceki noktaya iki katına çıkmak dışında bitişik kafes konumlarından birini rastgele seçmek anlamına gelir. Daha basit simülasyonlar, aynı yeri iki kez geçerek zincirin kendi etrafında geri dönmesini sağlar. Bir kafes modelinin doğruluğu dahilinde, bu tamamen mantıksız değildir, çünkü polimerler, zincirin farklı bölümleri arasında bağlanmamış etkileşimler olduğunda kıvrımlı veya düğümlü olabilirler. Bazı simülasyonlar, kafes konumlarının iki kez kullanılmasını önleyen dışlanmış bir hacmi içerecektir.

Bir diğer basitleştirilmiş model, serbest bir şekilde birleştirilmiş veya rastgele bir uçuş zinciri modelidir. Tüm bağ ve uyum açılarının, enerji kesintisi olmadan herhangi bir değere sahip olduğunu varsayar ve esnekliğin ve ortalama uçtan uca mesafenin basitleştirilmiş istatistiksel bir açıklamasını verir[37].

Rotasyonal izomerik durumu (RIS) modeli, konformasyonel açıların yalnızca belirli değerleri alabileceğini varsayar. Bu deneme yapıları enerjilerin moleküler mekanikler kullanılarak hesaplanabilmesi için kullanılabilir[60]. Bu varsayım, istatistiksel ortalamaların kolayca hesaplanmasına izin verirken fiziksel olarak makuldür. Bu model, tekrar birimleri arasında tercih edilen açı gibi birkaç değeri temel alan polimer özelliklerini öngören basit analitik denklemleri türetmek için kullanılır. RIS modeli, ilgilenilen spesifik polimeri tanımlayan parametrelerle, aşağıdakileri hesaplamak için kullanılabilir: ortalama kare uçtan uca mesafe, ortalama kare dönme yarıçapı, ortalama kare dipolemomer, ortalama kare optik anizotropi, optik konfigürasyon parametresi, molar Kerr sabiti ve Cotton - Mouton parametresi[61-63]. Monte Carlo örnekleme teknikleriyle birleştirilmiş RIS, aşağıdakileri hesaplamak için kullanılabilir: uçtan uca uzunluklar ve dönme yarıçapı, atom- atom çifti korelasyon fonksiyonu, saçılma fonksiyonu ve tek zincirler için kuvvet- uzama ilişkisi için olasılık dağılımları[64-66]. RIS yapıları ayrıca MD simülasyonları için iyi bir başlangıç noktasıdır. Büyük polimer boyutlarından ötürü, çoğu atomik seviye modellemesi moleküler mekanik yöntemlerle yapılır. Genel organik sistemler için parametrelenmiş kuvvet alanları, organik polimerler için iyi sonuç verir. Bu nedenle, PCFF ve MSXX gibi yalnızca birkaç polimer kuvvet alanı oluşturulmuştur. Birleşik atom yaklaşımı (örtük hidrojenler) bazen hesaplama süresini azaltmak için kullanılır. Bununla birlikte, tüm atom simülasyonları zincir dolaşıklığı ve oryantasyonel korelasyonlara karşı daha hassastır[37]. Bükülme ve bağlanmayan etkileşimleri korurken bağ uzunluklarını ve açılarını sabitlemek, birçok özellik için belirgin bir doğruluk kaybı olmadan simülasyon süresini iyileştirir. Orbital bazlı teknikler, elektronik özellikler, optik özellikler vb. için kullanılır. Bu hesaplamalar için basitleştirici bazı varsayımlar yapmak genellikle gereklidir. Bazı yarı empirik programlar, bir bant aralığı ve tipik bant yapısı elektronik durum bilgisi veren bir boyutlu sonsuz uzunluklu zincir için hesaplamalar yapabilir. Bu, bitişik polimer zincirler ve katlanma etkileri arasındaki etkileşimlerin önemsiz olduğunu varsayar. Diğer bir seçenek, art arda daha büyük oligomerler üzerinde simülasyonları tamamlamak ve daha sonra sonsuz uzunluktaki zincir için değerler elde etmek için sonuçları tahmin etmektir. Üçüncü bir seçenek, 100 ila 200 üniteli bir oligomerin ortasındaki bir tekrar ünitesindeki Fock matris elementlerini kullanarak tipik bir tekrar ünitesini incelemektir.

1.3.2. Simülasyon Oluşturma

Polimerlerin kristalimsi olmayan, denge dışı doğası nedeniyle, istatistiksel bir mekanik açıklama titizlikle en doğrudur. Bu nedenle, sadece minimum enerji konformasyonunu ve hesaplama özelliklerini bulmak genellikle yeterli değildir. Genellikle moleküler özellikleri belirlemek için ortalamalarını hesaplamak gerekir. Simülasyonu kurmak için hem araştırmacının hem de simülasyonu çalıştıracak bilgisayarın ihtiyaç duyduğu ek çalışmalar dikkate alınmalıdır. Mümkün olduğunda, grup katkısı veya analitik tahmin yöntemlerinin kullanılması tavsiye edilir[67].

Bir projenin başlangıcında, model sistemi belirlenmelidir. Oligomerler, yalnızca zincirin yerel bölgelerinin bir fonksiyonu olan özellikleri modellemek için kullanılabilir. Tek bir polimer zincirin simülasyonları, çeşitli şekillerde katlanma eğilimini belirlemek ve ortalama uçtan uca mesafeleri ve genellikle tek bir molekülün özellikleri olarak kabul edilen diğer özellikleri bulmak için kullanılabilir. Makroskobik materyalin fiziksel

özelliklerini modellemek için gerekli olan toplu polimer simülasyonuna birden çok zincir dahil edilmelidir. Katı hal sistemdeki polimeri simüle etmek için periyodik sınır koşulları kullanılır. Sıvı hal simülasyonları da yapılabilir[37].

Bir polimerin yapısının konformasyon örneklemesi bir dizi teknikle elde edilebilir. En yaygın kullanılan tekniklerden bazıları şunlardır:

- > Konvensiyonel moleküler dinamikler veya Monte Carlo simülasyonları.
- Her seferinde bir üniteyi bir araya getiren zincir büyüme algoritmaları. Bu işlem, çoklu uyum sağlamak için tekrarlanabilir[65].
- Bir tekrarlama algoritması, birimleri zincirin bir ucundan kaldırır ve diğer uca ekler.
- Kink-jump algoritması, her adımda zincirdeki bir noktada birkaç atomun yerini alır.
- Konformasyon arama teknikleri, uzun bir hesaplama süresine sahip olacak polimerler ile alakalı olan en düşük enerjili konformasyonları bulmak için kullanılabilir.

Bir dizi zincir büyüme tekniği geliştirilmiştir. Bu, zincirin farklı kısımlarının üst üste gelmesine yol açacak herhangi bir konformatör hariç, bazı rasgele uygun konform seçimli bir yapıya birimler eklemek anlamına gelir. Bu tür bir model, çok basit bir potansiyel fonksiyon ya da moleküler mekanik hesaplamalarından enerji karakteristikleri kullanılarak örgüdeki noktalarla uygulanabilir. Monomerleri ilave etme enerjisini dikkate almak, sarmal alanlar geliştirme eğilimi olup olmadığını belirlemeye yardımcı olacaktır[68].

Polimer özelliklerinin Ab initio hesaplamaları diğer oligomerlerin simülasyonları veya bant yapısı hesaplamalarıdır. Genellikle ab initio yöntemleriyle hesaplanan özellikler konformasyonel enerjiler, polarize edilebilirlik, hiperpolarize edilebilirlik, optik özellikler, dielektrik özellikler ve yük dağılımlarıdır. Ab initio hesaplamaları aynı zamanda mevcut polimer için moleküler mekanik yöntemlerinin doğruluğunu belirlemek için bir kontrol aracı olarak kullanılır. Bu tür hesaplamalarda moleküler mekanik mevcut metotlar yetersiz olduğunda kullanılır[69, 70].

1.3.3. Polimer Simülasyon Özellikleri

Bir polimeri simüle etmede yöntem seçerken öngörülecek özellik dikkate alınmalıdır. Özellikler genel olarak iki kategoride sınıflandırılır. Polimer nesnesinin doğasının bir fonksiyonu olan malzeme özellikleri veya esas olarak bitmiş nesnenin boyutu, şekli ve aşaması nedeniyle örnek özellikleri birinci sıradadır. Böylece, malzeme özellikleri monomerlerin seçimi ile kontrol edilirken, numune özellikleri proses ile kontrol edilir. Bu bölüm çoğunlukla malzeme özelliklerine odaklanmasına rağmen, mezoskala metodu örnek özelliklerini öngörme yeteneğine sahiptir[71].

Malzeme özellikleri ayrıca temel özellikler ve türetilmiş özellikler olarak da sınıflandırılabilir. Temel özellikler Van der Waals hacmi, birleşik enerji ve ısı kapasitesi gibi moleküler yapının doğrudan bir sonucudur. Türetilmiş özellikler, moleküler yapının belirli bir yönü ile kolayca tanımlanmamaktadır. Camsı geçiş sıcaklığı, yoğunluk, çözünürlük ve kütle modülü, türetilmiş özellikler olarak kabul edilebilir. Temel özelliklerin bir simülasyondan elde edilme şekli genellikle açıkça görülür. Türetilmiş özelliklerin hesaplanma şekli genellikle temel özelliklerin ampirik olarak belirlenmiş bir kombinasyonudur. Bu tür ampirik yöntemler, bir bileşik sınıfı için güvenilir, ancak bir başkası için güvenilir olmayan daha düzensiz sonuçlar verebilir.

Bir polimer geometrisi tanımlandıktan sonra, yoğunluğu, gözenekliliği vb. özellikleri öngörmek için kullanılabilir. Tek başına geometri çoğu zaman yalnızca küçük ilgi alanına girer. Hesaplamalı modellemenin amacı genellikle malzemenin özelliklerinin deneysel sonuçla uyumlu olup olmadığını belirlemektir. Öngörülebilen özelliklerden bazıları aşağıdaki bölümlerde ele alınmıştır.

Birçok simülasyon mümkün olan polimer hareketlerini belirlemeye çalışır. Bu, zincir bölümlerinin, Monte Carlo simülasyonlarının veya reprodüksiyonun yer değiştirimlerinin modellenmesiyle yapılabilir (polimer zincirinin diğer zincirlerden geçerken bir kıvrılma hareketi gibi). Bu hareket çalışmaları sonuçta mümkün olan moleküler hareket arasındaki makroskobik esneklik, sertlik vb. korelasyonu belirlemeye çalışır.

Aşağıdaki bölümlerde, bir polimer özelliklerinin seçim öngörüsü tartışılmaktadır. Bu liste hiçbir şekilde kapsamlı değildir.

1.3.4. Polimerlerin Kristal Yapıları

Polimerler kristal olabilir, ancak kristalleşmesi kolay olmayabilir. Bir polimerin kolayca kristalleşmesinin muhtemel olup olmadığını tahmin etmek için teorik hesaplama çalışmaları kullanılabilir. Polimerlerin kristalleşememesinin bir nedeni, benzer enerjili birçok konformasyona sahip olabilir ve bu nedenle istenilen konformasyon için çok az termodinamik itici kuvvet olabilir. Kısa bir oligomerin muhtemel konformasyonlarının hesaplanması, en stabil konformasyon ve diğer düşük enerjili konformasyonlar arasındaki enerjideki farklılığı belirlemek için kullanılabilir[37].

Kristalize bir duruma ulaşmak için, polimerlerin yeterli hareket serbestliğine sahip olması gerekir. Polimer kristalleri hemen hemen her zaman bir paralel dolgulu birçok zincirden oluşur. Basitçe zincirleri paralel sıralamak, daha sonra düşük enerjili içeriği bulmak için gerekli hareket özgürlüğüne sahip olmalarını sağlamaz. Araştırmacı bunu, polimerin enine kesit profilini inceleyerek kontrol edebilir. Profil kabaca dairesel ise, zincirin gerektiği gibi konformasyonu değiştirmesi muhtemeldir.

Önceki iki paragraftaki testler sıklıkla kullanılır çünkü gerçekleştirilmeleri kolaydır. Bununla birlikte, moleküller arası etkileşimleri ihmalleri nedeniyle sınırlıdırlar. Moleküller arası etkileşimlerin etkisinin test edilmesi çok daha yoğun simülasyonlar gerektirir. Bunlar, birçok polimer zincirini ve çoğu zaman periyodik sınır koşullarını içeren yığın malzemelerin simülasyonları olacaktır. Böyle bir yığın sistem daha sonra kristalin fazları oluşturma eğilimini incelemek için moleküler dinamik, Monte Carlo veya benzetilmiş tavlama yöntemleriyle simüle edilebilir[72].

1.3.5. Esneklik

Bir yığın polimerin esnekliğinin zincirlerin esnekliği ile ilgili olduğu genel olarak kabul edilmektedir. Zincir esnekliği temel olarak burulma hareketinden kaynaklanır (değişen konformasyonlar). Zincir esnekliğinin tipik olarak iki yönü incelenir. Birincisi, diğer konformasyonlardan en düşük enerjili konformeri belirlemede yer alan bariyerdir. İkincisi, çok az engelle veya hiç engel olmadan erişilebilen en düşük enerji konformasyonunun etrafındaki konformasyonel hareket aralığıdır. Konformasyonel esnekliğin bu yönlerinden hangisinin yığın esneklikle en yakından ilişkili olduğu konusunda henüz net bir fikir birliği yoktur. Araştırmacılara ilk önce yığın esnekliğin bilindiği bazı temsili bileşikleri incelemeleri önerilir.

1.3.6. Elastiklik

Elastik polimerler, neredeyse aynı enerjiye sahip birçok konformer ile uzun zincirlere sahiptir. Gevşeme durumunda, entropi, zincirlerin en lineer yapıdaki zincir uzunluğundan çok daha düşük uçlara kadar olan bir mesafe ile kıvrımlı biçim almasına neden olan itici güçtür, fakat bu durum enerjide çok az farklıdır Bu nedenle, elastik geri yükleme kuvveti temel olarak entropiktir, ancak hafif bir enerjik bileşen de olabilir. Elastikiyetin öngörülmesi, uzunluktaki büyük bir fark ve gevşeyen ve doğrusal konformasyonlar arasındaki enerji arasındaki küçük farkın bulunmasına dayanır. Bu nitel bir tahmin olma eğilimindedir. Bir lastik bant elastik bölgesinin ötesine gerildiğinde, esnemesi çok zorlaşır ve kısa sürede kırılır. Bu noktada, polimer zincirleri doğrusaldır ve birbirlerini geçen zincirlere kaydırmak ve bağları kırmak için daha fazla enerji uygulanmalıdır. Bu nedenle, materyali kırmak için gereken enerjinin belirlenmesi farklı bir simülasyon tipini gerektirir.

Polimerler, camsı geçiş sıcaklığının üstünde ve erime sıcaklığının altındaki sıcaklıklarda elastik olacaktır. Esneklik genellikle zincirlerin hafif çapraz bağlanmasıyla ortaya çıkar. Bu, erime sıcaklığını arttırır. Aynı zamanda, gerginken malzemenin kalıcı bir şekilde deforme olmasını önler, bu da birbirinden geçen zincirlerden kaynaklanır. Hesaplamalı teknikler, aşağıda açıklandığı gibi camsı geçiş ve erime sıcaklıklarını tahmin etmek için kullanılabilir.

Ticari olarak üretilen elastik malzemeler, birçok katkı maddesine sahiptir. Aktif karbon gibi dolgu maddeleri, zincirler arasında zayıf çapraz bağlar oluşturarak gerilme mukavemetini ve elastikiyetini arttırır. Bu aynı zamanda malzemenin daha sert olmasına neden olur ve tokluğu arttırır. Malzemeyi yumuşatmak için plastikleştiriciler eklenebilir. Katkı maddelerinin etkisinin belirlenmesi genellikle deneysel olarak yapılır, ancak mezoskale metotları bunu simüle etme potansiyeline sahiptir[37].

1.3.7. Camsı Geçiş Sıcaklığı

Genel olarak, esnek zincirli polimerlerin düşük camsı geçiş sıcaklıklarına sahip olma eğiliminde oldukları bilinmektedir. Bununla birlikte, kantitatif tahminlerde bulunmak için tamamen güvenilir bir yol yoktur. Grup katkı yöntemleri önerilmiştir, ancak yalnızca sınırlı bileşik sınıfları için güvenilirdir. Mevcut olan en iyi yöntem, zincirler arası enerjiye, çözünürlük parametresine ve zincir sertliğini ölçen yapısal parametrelere

dayanarak Tg'yi tahmin eden bir yapı-özellik ilişkisidir. Moleküler mekanik simülasyonlarından elde edilen sonuçlarla grup katkısını birleştiren yöntemler de tatmin edici sonuçlar vermiştir[73].

1.3.8. Hacimsel Özellikler

Bir molekülün van der Waals hacmi, atomların gerçekte işgal ettiği hacimdir. Bir grup katkı tekniği ile güvenilir bir şekilde hesaplanır. Bağlantı endeksleri de kullanılabilir.

Molar hacim genellikle van der Waals hacminden daha büyüktür, çünkü iki ilave değer eklenmelidir[68]. Birinci etki, zincirlerin bir arada ne kadar sıkı toplanabileceğini kısıtlayan yığın materyaldeki boş hacim miktarıdır. İkincisi, atomların titreşim hareketini belirli bir sıcaklıkta tutmak için gereken ek boşluktur.

Birçok polimer artan sıcaklıkla genişler. Bu, belirli bir sıcaklıktaki V (T) hacmini van der Waals hacmine Vw ve camsı geçiş sıcaklığı gibi basit analitik denklemlerle tahmin edilebilir.

$$V(T) = Vw[1,42+0,15\left(\frac{T}{Tg}\right)]$$

Bununla birlikte, bu yaklaşım, Tg'nin doğru bir şekilde tahmin edilmesindeki zorluktan dolayı sınırlı öngörülebilirlik avantajına sahiptir. Molar hacminin 298 K'da hesaplanması ve dolayısıyla bazı sıcaklıklara yol açan diğer sıcaklıklara ekstrapolasyon yapılması için yöntemler önerilmiştir. Bunlar bağlantı endekslerini kullanır. Tg'nin üstünde ve altında farklı termal genleşme denklemlerinin kullanılması gereklidir[54, 68].

1.3.9. Termodinamik Özellikler

Entalpi, enerji, entropi ve benzeri gibi termodinamik özellikler birbiriyle ilişkilidir. Bu nedenle, polimer yapısından bazı bilgiler elde edilmeli, diğer veriler ise termodinamik bağıntılar yoluyla elde edilmelidir. Çoğu zaman, moleküler yapıdan hesaplanan Cp(T) sıcaklığının bir fonksiyonu olarak ısı kapasitesidir.

Isı kapasitesi, atomların titreşim hareketi ve dönme serbestlik dereceleri incelenerek hesaplanabilir. Erime sonrası ısı kapasitesinde sürekli olmayan bir değişiklik var. Bu nedenle, katı ve sıvı faz ısı kapasiteleri için farklı algoritmaları kullanılır. Bu algoritmalar, farklı miktarlarda hareket serbestliği olduğunu varsayar[37].

1.3.10. Çözünürlük Parametreleri

Çözünürlük parametresi doğrudan hesaplanmaz. kohezif enerji yoğunluğunun karekökü olarak hesaplanır. kohezif enerjiyi hesaplamak için çok sayıda grup katkı tekniği vardır. Bu tekniklerin hiçbiri tüm polimerler için en iyisi değildir[54].

1.3.11. Optik Özellikler

Hesaplanan optik özellikler, polimerler için aşırı derecede hassas olma eğilimindedir. Optik absorpsiyon spektrumları (UV / VIS), yarı sayısal veya ab initio teknikleriyle hesaplanmalıdır[70]. Titreşimsel spektrumlar (IR), bazı moleküler mekanikler veya yoğunluk düzeltmesi tekniği ile orbital bazlı yöntemler ile hesaplanabilir.

1.3.12. Mekanik Özellikler

Mühendislik uygulamaları için mekanik özellikler son derece önemlidir. Malzemenin deformasyonunu sağlamak için gereken enerji miktarını (stres) ölçen stres-gerinme ilişkileri olarak ifade edilirler. Bu özellikler, kristallik, oryantasyon ve çapraz bağlamaya bağlıdır. Ayrıca malzeme işlemeye de bağımlıdırlar, böylece moleküler modelleme teknikleriyle tahmin edilmelerini zorlaştırırlar. Mezoskala teknikleri muhtemelen bunlar için en iyisidir. Ancak, yapı-özellik ilişkileri pratik nedenlerden dolayı sıklıkla kullanılır (basitlik ve minimum bilgisayar süresi). Bölüm tamamen kristal ve tamamen amorf fazların daha basit durumlarına odaklanacaktır.

Amorf fazlara birkaç teknik uygulanabilir. QSPR teknikleri, camsı geçiş sıcaklığının ve tekrar ünite boyutunun bir fonksiyonu olarak mekanik özellikleri sunar. Bu teknikler camsı geçiş sıcaklığının yakınında güvenilir değildir. Moleküler mekanik, eğer yapı moleküler mekanik tabanlı bir simülasyonla elde edilmişse de kullanılabilir. Bu, yığın

malzemenin bir bölümü için bir enerji bulmaktan (genellikle bir periyodik sınır içinde) ve daha sonra kutunun boyutunu kaydırmaktan ve ikinci bir enerji elde etmek için yeniden açılmaktan ibarettir. Moleküler dinamikler ve Monte Carlo simülasyonları camsı geçiş sıcaklığına yakın polimer hareketini tahmin etmek için kullanılabilir[66]. Molar ses hızı, grup katkı teknikleri ile tahmin edilebilir. Buna karşılık, yüksek frekanslı deformasyonlara bağlı mekanik özellikleri tahmin etmek için kullanılabilir. Lastik malzemeler genellikle hafifçe çapraz bağlanır. Özellikleri çapraz bağlar ve zincir sertliği arasındaki ortalama mesafeye bağlıdır. Çapraz bağlama, Rao veya molar Hartmann fonksiyonları gibi grafik teorisinden türetilen fonksiyonların kullanılmasıyla ölçülebilir. Bunlar hem grup katkısına hem de QSPR denklemlerine dahil edilebilir. Kristalli polimerler için, yığın modül, bant yapısı hesaplamalarından elde edilebilir. Kristal yapının aynı yöntemle optimize edilmesini sağlayan moleküler mekanik hesaplamaları da kullanılabilir[74].

1.3.13. Isıl Kararlılık

Bir polimerin kararlı olup olmadığını, yani belirli bir sıcaklıkta ayrışmayacağını bilmek önemlidir. Bunlardan en önemlisi (ekonomik açıdan) Underwriters Laboratories (UL) sıcaklık endeksi) olan birkaç termal kararlılık ölçütü vardır.

Ne yazık ki, şu anda UL sıcaklık endeksini önceden belirlemek için hesaplanmış bir yöntem yoktur. Yarı ayrışma sıcaklığı olan Td, 1/2'yi tahmin etmek için bir QSPR yöntemi vardır; bu, bir maddenin piroliz nedeniyle kütlesinin yarısını kaybettiği sıcaklığı ifade eder. QSPR metodu bağlantı endeksi ve çeşitli fonksiyonel grupların sayısı için ağırlıklar kullanır[37].

2. YAPILAN ÇALIŞMALAR

2.1. Materyaller

4,4'-diamino-2,2'-stilbendisülfonik asit(technical grade, 85% Sigma-Aldrich), 1,4,5,8 naftalentetrakarboksilik dianhidrit(Sigma-Aldrich, 97%), 3,3',4,4'-bifeniltetracarboksilik dianhidrit(assay, 97% Sigma-Aldrich), m–krezol(99% Sigma-Aldrich) ve trietilamin (\geq 99% Sigma-Aldrich), benzoik asit(assay \geq 99.5% Sigma-Aldrich), aseton(\geq 99.9% Sigma-Aldrich), dietil asetat(99.8% Sigma-Aldrich).

2.2. Kullanılan Aletler

2.2.1. Isıtıcı Magnetik Karıştırıcı

Heidolph MR 3001 model ısıtıcılı magnetik karıştırıcı sentez reaksiyonlarında karıştırmayı ve istenilen sıcaklığı sağlamak amacı ile kullanılırken Heidolph MR 3002 model ısıtıcılı magnetik karıştırıcı polimerizasyon sırasında karıştırma ve polimerizasyon sıcaklığını sabit tutmak için kullanıldı.

2.2.2. Vakumlu Etüv

Heraeus Vacutherm VT 6025 model olup, elde edilen başlatıcılar ve polimerler sabit sıcaklık ve basınç altında kurutmak için kullanıldı.

2.2.3. Mantolu Isitici

Medline Scientific Limited MS-ES 305 model ısıtıcılı ve magnetik karıştırıcılı ceket ısıtıcı üzerine destilasyon düzeneği kurularak monomerlerin destilasyonu yapıldı.

2.2.4. Yağ Banyosu

Polimer sentez reaksiyonlarında kullanıldı. Üzerinde sabit sıcaklık ayar sistemi ve sıcaklığın homojen dağılımını sağlayan mekanik karıştırıcı sistemi bulunmaktadır. Silikon yağı kullanıldı.

2.2.5. Rotary Evaporator

BUCHI R-200 Model olup, çözücüyü çözeltilerden buharlaştırmak için kullanıldı.

2.2.6. NMR Spektrofotometre

İnönü Üniversitesi'nde analizi yapıldı. Cihazlar 1H-NMR BrukerAvance III HD 600.134 Mhz modeli olup, 13C-NMR BrukerAvance III HD 150.918 Mhz modelidir. Organik bileşiklerin vs. yapı aydınlatmalarında kullanıldı.

2.2.7. TGA Analizi

Hacettepe Üniversitesi'nde yapıldı. DSC-60 SHIMADZU 10 °C /dk ısıtma hızı. 100 ml/dk azot gazı altında. Polimerlerin camsı geçiş sıcaklıkları ve erime sıcaklıklarının tespitinde kullanıldı.

2.3.Deneysel Çalışmalar

2.3.1. Kopoliimidlerin Sentezi:

2.3.1.1. 1,4,5,8-Naftalentetrakarboksilik Dianhidrit ile Poilimid Sentezi

250 ml'lik tamamen kurutulmuş bir balona 0.44 g (1.2 mmol) 4,4'-diamino-2,2'stilbendisülfonik asit, 6 ml m - krezol ve 0.4 ml trietilamin sırayla azot akışı altında ilave edildi. 4,4'-diamino-2,2'-stilbendisülfonik asit tamamen çözündükten sonra, 0.268 g (1.0 mmol) 1,4,5,8 naftalentetrakarboksilik dianhidrit ve 0.173 g benzoik asit ilave edildi. Karışım oda sıcaklığında birkaç dakika karıştırıldı ve daha sonra 80 ° C'de 4 saat ve 180 ° C'de 16 saat ısıtıldı. Soğutmadan önce, ilave bir 10 ml yüksek derecede yapışkan çözeltiyi seyreltmek için m -kresol ilave edildi ve daha sonra çözelti, etil asetata döküldü. Çöktürülmüş poliimid süzme yoluyla toplandı, aseton ile yıkandı ve 15 saat boyunca 60 ° C'de vakum içinde kurutuldu.

1,4,5,8-naftalentetrakarboksilik dianhidrit

4,4'-diamino-2,2'-stilbendisülfonik asit

Şekil 3. 1,4,5,8-Naftalentetrakarboksilik Dianhidrit ile Poilimid Sentezi

2.3.1.2. 3,3',4,4'-Bifeniltetrakarboksilik Dianhidrit ile Poilimid Sentezi

250 ml'lik tamamen kurutulmuş bir balona 0.44 g (1.2 mmol) 4,4'-diamino-2,2'stilbendisülfonik asit, 6 ml m - krezol ve 0.4 ml trietilamin sırayla azot akışı altında ilave edildi. 4,4'-diamino-2,2'-stilbendisülfonik asit tamamen çözündükten sonra, 0.294 g (1.0 mmol) 3,3',4,4'-bifeniltetrakarboksilik dianhidrit ve 0.173 g benzoik asit ilave edildi. Karışım oda sıcaklığında birkaç dakika karıştırıldı ve daha sonra 80° C'de 4 saat ve 180° C'de 16 saat ısıtıldı. Soğutmadan önce, ilave bir 10 ml yüksek derecede yapışkan çözeltiyi seyreltmek için m-kresol ilave edildi ve daha sonra çözelti, etil asetata döküldü. Çöktürülmüş poliimid süzme yoluyla toplandı, aseton ile yıkandı ve 15 saat boyunca 60° C'de vakum içinde kurutuldu.

Şekil 4. 3,3',4,4'-Bifeniltetrakarboksilik Dianhidrit ile Poilimid Sentezi

Şekil 5. Poilimid Termal Düzeneği Sentezi

Bu çalışmamızda Iğdır BAP 2016-FBE-B11 nolu proje kapsamında 4,4'-diamino-2,2'stilbendisülfonik asidin, 1,4,5,8 naftalentetrakarboksilik dianhidrit ve 3,3',4,4'bifeniltetracarboksilik dianhidritin kondenzasyon reaksiyonundan sülfonik asit grubu ihtiva eden poliimidler sentezlenmiştir. Polimer elektrolit yakıt hücresinde membran olarak kullanılmasına aday olarak sunulan poliimidlerin teorik karakterizasyonu yapılmıştır. Kullanılmış dianhidritler bir aromatik halkaya bağlı durumdadır. Aromatik halkalar fenil, bifenil, naftalen ve perilen şeklinde değişmektedir. Poliimidlerin termal özelliklerine bu gurupların etkisinin olacağı ve halka büyüklüğü arttıkça termal ve mekanik özelliklerinin artacağı beklenmektedir.

2.4. Teorik Analiz

Tüm hesaplamalar, B3LYP / 6-311G (d, p) temel set teorisi düzeyinde, 6-311G (d, p) esasına göre HF ve DFT hesaplamaları kullanılarak yapılmıştır. Semi-empirical metotla konformasyonel analiz yapılmıştır. Geometri optimizasyonu, sentezlenen moleküller için hesaplamalı çalışmanın ilk görevi olarak gerçekleştirildi. Özellikle, genel olarak çekirdek pozisyonlarının hareketi ile indüklenen molekül şeklinin değişmesine karşı etkileşim enerjisinin hassasiyetini gerektirir. Moleküllerin optimize edilmiş geometrilerinin moleküler yapısı, titreşim frekansları ve enerjileri, Gaussian 09 programı kullanılarak HF ve DFT yöntemi kullanılarak hesaplanmıştır. Lee'nin-Yang-Parr korelasyon işlevselliği (B3LYP) ile 6-311G (d, p) temelli program paketi esas alınmıştır. Ağır atomlar üzerinde 'd' polarizasyon fonksiyonlarının ve hidrojen atomları üzerinde 'p' polarizasyon fonksiyonlarının incelendiği 6-311G (d, p) temel seti kullanılmıştır.

3. BULGULAR VE TARTIŞMA3.1. Deneysel Değerlendirmeler

Polimer kimyasında poliimidlerin yüksek camsı geçiş sıcaklığına (Tg) sahip olduğu belirtilmektedir. Yakıt hücrelerinde yüksek sıcaklığa dayanabilen polimerler tercih edildiğinden burada elde edilmesi düşünülen polimerler membran olarak kullanılabilirler. Bu poliimidlerin başlangıç maddelerinin ticari olarak kolayca temin edilmesi de ayrı bir avantajdır. Sentezlenmiş poliimidlerin içerdiği aromatik gruplar tekrar sülfolandığında bu polimerlerin proton iletkenlikleri artacaktır. Bu çalışmamızda 4,4'-diamino-2,2'-stilbendisülfonik asidin, 1,4,5,8 naftalentetrakarboksilik dianhidrit, 3,3',4,4'-bifeniltetracarboksilik dianhidrit aromatik grupların kaynağı olarak kullanılmıştır. Sonuç olarak elde edilecek poliimidlerin başlangıç maddeleri kolay ve temin edilebileceği, proton iletme kapasitesinin bulunabileceği veya ucuz

artırılabileceği gibi özellikleri dikkate alındığında membran olarak kullanılabilme potansiyelleri mevcuttur. Aromatik poliimidler termal, mekanik ve elektriksel özelliklerinin ve kimyasal dirençlerinin çok iyi olmasından dolayı yüksek performans polimerleri sınıfına dahil edilmektedirler. Sentezlenen bu polimerlerin en önemli dezavantajı çözünürlüklerinin az olmasıdır.

Sentezlenen poliimid çeşitleri üzerinde sülfonik asit grupları bulunmaktadır. Hidrofobik ve hidrofilik yapı içerdiği için su ve H⁺ iyonu iletimi kolayca sağlanabilmektedir. H⁺ iletimi sülfonik asit grupları üzerinden yürür ve her iyon başına 1-2,5 su molekülü anottan katoda taşınır.

Yakıt pilleri kimyasal enerjiyi doğrudan elektrik enerjisine dönüştürebilen cihazlardır. Metanol yakıt hücreleri grubunda yakıt olarak hidrojen içeren metanol bileşiği kullanılmaktadır. Bu bileşikler doğrudan yakıt olarak bir makinede kullanıldıklarında verebilecekleri verim sınırlı iken bir yakıt hücresinde kullanılmaları halinde daha yüksek verimde enerji üretilebilmektedir. Farklı tipte yakıt hücreleri mevcut olmasına karşılık bunların içinde düşük sıcaklıkta yüksek verimde çalışabilen polimer elektrolit membranlı (PEM) yakıt hücreleri son yıllarda büyük ilgi görmektedir.

Şekil 6. Sülfonlanmış Poilimid UV-VIS Spektrumları

Ticari olarak kullanılan polimerik membranların birçoğu da halen yakıt hücreleri için istenilen özellikleri tam olarak taşımadığı ve NAFION ticari adıyla bilinen membranın metrekare fiyatının 600 dolar olduğu dikkate alınırsa membranlar üzerindeki araştırmaların bundan sonra da devam edeceği aşikârdır.

Sülfonlanmış Poilimid UV-VIS spektrumları Şekil 6. incelendiğinde 320-375nm dalga boyundaki absorbsiyonu poliimide ait karakteristik soğurma bölgesidir. Makro molekül içindeki aromatik halkalar absorblamayı farklı boyutlarda etkilemektedir. Ancak elde edilen veriler poliimid oluşumunda önemlidir ve yapı aydınlatılmasında açıklık sağlamaktadır. Her poliimide ait SPDI- 1-4 UV-VIS spektrumları Ek Şekil. 8-9 da verilmiştir. Her bir UV-VIS spektrumları polimer yapısı hakkında bilgi sunmaktadır.

Şekil 7. Sülfonlanmış Poilimid FT-IR Spektrumları

Sülfonatlı poliimidasyonunu incelemek için Fourier transform infrared spektroskopisi (FT-IR) kullanıldı. Sülfonlanmış poilimid FT-IR spektrumları Şekil 7 de verildiği birleştirilmiş hali incelendiğinde anhidrit yapılarının poliimid yapısına dönüştüğünü gösteren 1750 cm⁻¹ deki piklerin kaybolduğu görülmektedir. 1720–730 cm⁻¹'deki ana yoğun absorsiyon C = O'ya karşılık gelmekte ve 1378 ve 744 cm⁻¹ sırasıyla C-N

gerdirme ve bükme piklerine karşılık gelmekte; ayrıca, 1660 cm⁻¹ (C = O (CONH)) ve 1550 cm⁻¹'de (C-NH), absorsiyon tepelerinin görülmediği, bu da imidizasyonun başarısını göstermiştir.

Bileşik	Absorpsiyon Bandı (cm ⁻¹)	Şiddet	Yapı	
4,4'-diamino-2,2'- stilbendisülfonik asit	$1070-1240 \text{ cm}^{-1}$	Şiddetli, düşük	–SO ₃ H, asimetrik gerilme	
	1030 cm^{-1}	Düşük	–SO ₃ H, sim.	
		Gerilme		
	$1620 \text{ cm}^{-1}, 3442 \text{ cm}^{-1}$	Orta, düşük	–NH ₂ gerilme	
Sülfonlanmış Poliimidler	1700 cm ⁻¹	Düşük	C=O asimetrik gerilme	
	1728 cm^{-1}	Şiddetli, düşük	C=O sim. Gerilme	
	2960 cm^{-1} - 2850 cm^{-1}	Düşük	CH ₂ bağ	
	1380 cm^{-1}	Düşük	C–N gerilme	
	740 cm^{-1}	Düşük	– C=O bağlanma	
	1275 cm^{-1} -1200 cm ⁻¹	Düşük	C–O–C gerilme	
	2697 cm^{-1}	Orta	$(C_2H_5)_3N$	

Tablo 2. SPDI Polimerik Bileşiklerinin Genel FT-IR Absorbansları

Literatürde poliimidlerin yüksek camsı geçiş sıcaklığına sahip olduğu belirtilmektedir. Yakıt hücrelerinde yüksek sıcaklığa dayanabilen polimerler tercih edildiğinden burada elde edilmesi düşünülen polimerler membran olarak kullanılabilirler. Bu poliimidlerin başlangıç maddelerinin ticari olarak kolayca temin edilmesi de ayrı bir avantajdır. Sentezlenmiş poliimidlerin içerdiği aromatik gruplar tekrar sülfolandığında bu polimerlerin proton iletkenlikleri artacaktır. Ayrıca fosforik asit emdirilmiş poliimidler proton iletmek amacıyla da kullanılmaktadır.

SPDI poliimidlerin için harici bir sülfonatlama maddesi kullanılmamıştır monomer üzerinde SO₃H grubu bulunan yapı kullanılmıştır. Sülfonlanmış Poliimid yapısı üzerindeki -SO₃H grubunun varlığını doğrulamak için ¹H NMR ve FTIR spektrumları kullanıldı. ¹H NMR spektrumundan üç ana pik vardı: 6.42, 6.78 ve 7.05 ppm, bir benzen halkasında amino grubunun orto-, meta- ve orto- (SO₃H yanında) pozisyonlarında H'ye karşılık gelir. (Ek Şekil 7-9.) Sülfonasyon, 1023 ve 1086 cm-1'de iki keskin IR emilim tepesinin varlığıyla teyit edildi; bunlar, sırasıyla SO₃H simetrik ve asimetrik germe titreşimlerine bağlıydı. (Ek Şekil 1-7).

Reaksiyon koşullarında açığa çıkan su molekülünün bozucu etkilerinden kurtulması için sürek uzaklaştırılması gerekmektedir. Termal analizler bakımından sülfonatlı poliimidlerin yüksek erime sıcaklığa sahip olduğu (100-150°C) görülmüştür. Oda sıcaklığında SPDI lerin hepsi katıdır. Sert yapılarından dolayı camsı geçiş sıcaklıkları geniş 80-500 °C aralıkta değişeceği kabul edilebilir.

3.2. Teorik Bulgular ve Değerlendirmeler

3.2.1 Poliimid (NTDA – DASDA)'in Semi Empirical(SM) çalışmaları

3.2.1.1 Poliimid (NTDA – DASDA) Monomerin Semi Empirical(SM) metodu ile Geometri Optimizasyonu

Poliimid (NTDA - DASDA) monomerine ait optimize edilmiş temel durum yapısı ve total enerji dönüşümü Şekil 8 ve Şekil 9 da verilmiştir.

Şekil 8. Poliimid (NTDA - DASDA) Monomerin Total Enerji Dönüşümü

Yarı empirik metodunun PM6 (d, p) temel seti ile hesaplanan monomer molekülünün optimize edilmiş bağ uzunluğu parametreleri Tablo 1 de listelenmiştir. Poliimid (NTDA - DASDA) monomer bileşiğinin optimize edilmiş geometriden hesaplanan tüm değerler verilerek karşılaştırma yapılmıştır. Bu yapının minimum potansiyel enerjiye sahip olduğu anlamına gelir. Fenil halkalarındaki bütün bağ uzunlukları ve bağ açıları normal aralıktadır. C-C bağ mesafeleri 1.378 Å ve 1.495 Å aralığında, C-N için ise bu değerler C16-N15 1.436 ve N15-C14 1.437 Å anhidrit ve sülfonik asit arasındaki azot atomuna aittir. Bu bağ polimer iskeletini oluşturmaktadır.

Şekil 9. Poliimid (NTDA - DASDA) Monomer Molekülünün Optimize Edilmiş Yapısı

Anhidrit gruplarındaki C=O grupları SM metodu için C1-O18 1.213 Å, C3-O19 1.213 Å aralığında bulunmuştur, çift bağ karakteristiği olarak literatür ile uyumlu olarak çıkmıştır. Kükürt atomlarının oksijen (S-O) ile oluşturduğu bağ mesafeleri optimizasyon sonucu SM metodu için S28-O38 1.443, S28-O44 1.689 ve S28-O44 1.689 Å olarak bulunmuştur. Kükürt atomlarının karbon (S-C) ile oluşturduğu bağ mesafeleri optimizasyon sonucu SM metodu için C25-S28 1.717 Å ve C32-S33 1.714 Å olarak bulunmuştur. Sülfon gruplarındaki O-H bağ uzunlukları SM metodu için O44-H64 0.970 Å ve O43-H63 0.966 Å aralığında uzanır. Molekülün bağ uzunluğu parametreleri Tablo 3 de listelenmiştir.

Tablo 3. Poliimid (NTDA - DASDA) Monomer Molekülün Teorik Olarak Elde Edilen Bağ Uzunlukları (Å)

Ato	om grupları	Bağ SM	Uzunlukları	Ato	m grupları	Bağ Uzunlukları SM
1	C1-O18	1.21330	1	34	C24-C25	1.40181
2	C1-N2	1.42583		35	C25-S28	1.71780
3	C1-C6	1.49558		36	S28-O38	1.44316
4	N2-C17	1.49051		37	S28-O44	1.68907
5	C17-H51	1.10549		38	S28-O39	1.43733
6	C17-H50	1.10318		39	O44-H64	0.97033
7	C17-H49	1.10548		40	C25-C26	1.40220
8	C6-C5	1.42916		41	C26-C27	1.41111
9	C6-C10	1.37820	1	42	C27-H54	1.10143
10	C5-C4	1.42923		43	C22-H52	1.09284
11	C4-C3	1.49555		44	C22-C23	1.41035
12	C3-O19	1.21328		45	C26-C30	1.47363
13	C10-H46	1.09778		46	C30-H56	1.10245
14	C10-C9	1.42368		47	C30-C29	1.33714
15	С9-Н45	1.09779		48	С29-Н55	1.10119
16	C9-C8	1.37922		49	C29-C31	1.47405
17	C8-C7	1.42849		50	C31-C32	1.40275
18	C7-C5	1.41613		51	C32-S33	1.71420
19	C8-C16	1.49266		52	S33-O40	1.44898
20	C16-O20	1.21091		53	S33-O41	1.43651
21	C16-N15	1.43676		54	S33-O43	1.68664
22	N15-C14	1.43756		55	O43-H63	0.96697
23	C14-C13	1.49240		56	C32-C37	1.40175
24	C13-C12	1.37919		57	С37-Н59	1.09652
25	C12-C11	1.42376		58	C37-C36	1.40002
26	C11-C4	1.37816		59	C36-C42	1.49239
27	C11-H47	1.09779		60	C42-H60	1.09888
28	C12-H48	1.09786		61	C42-H61	1.09975
29	C14-O21	1.21065		62	C42-H62	1.10086
30	N15-C23	1.45976		63	C36-C35	1.40834
31	C23-C24	1.39874		64	C35-H58	1.09175
32	C24-H53	1.09890	1	65	C35-C34	1.39266
33	C34-C31	1.40517		66	C34-H57	1.09274

Aromatik halkadaki C-H uzunlukları SM metodu için C24-H53 1.098 Â ve C27-H54 1.101 Â aralığındadır.

Tüm C-C-C açıları 118° - 123° arasındadır. SM metodu için C30-C26-C27 118.640 ve C31-C29-C30 123.582 arasındadır. Bileşikteki N-C-C açısı 117°-124°'de arasındadır. SM metodu için C23-N15-C14 117.532 ve C14-N15-C16 124.937 şeklinde hesaplanmıştır. Poliimid (NTDA - DASDA) monomerin bağ açıları Tablo 4 de verilmiştir.

Ato	m grupları	Bağ Açıları SM	Ato	m grupları	Bağ Açıları SM
1	H62-C42-H60	106.82669	49	C23-N15-C16	117.52934
2	H62-C42-H61	107.20647	50	C23-N15-C14	117.53239
3	C42-C36-C35	120.03226	51	N15-C16-O20	120.00211
4	C36-C35-H58	119.69948	52	N15-C14-O21	119.90844
5	H58-C35-C34	119.72752	53	C14-N15-C16	124.93799
6	C35-C34-H57	120.37641	54	O20-C16-C8	123.54721
7	С36-С37-Н59	119.71805	55	C16-C8-C9	119.16789
8	H59-C37-C32	119.82785	56	C8-C9-H45	120.34421
9	C36-C37-C32	120.45363	57	C8-C9-C10	120.23893
10	C36-C35-C34	120.57290	58	С9-С10-Н46	119.48072
11	C34-C31-C32	119.60561	59	H45-C9-C10	119.41681
12	C31-C32-C37	120.06598	60	C9-C10-C6	120.20441
13	C32-S33-O43	100.28899	61	H46-C10-C6	120.31482
14	C32-S33-O40	113.44948	62	C10-C6-C5	120.56539
15	C32-S33-O41	111.56526	63	C6-C5-C7	119.22349
16	S33-O43-H63	116.46629	64	C5-C7-C8	119.23833
17	O43-S33-O41	106.16592	65	C13-C7-C8	121.52823
18	O41-S33-O40	119.43013	66	C7-C13-C14	120.29508
19	С31-С29-Н55	114.63335	67	C13-C14-O21	123.63318
20	C31-C29-C30	123.58287	68	C7-C13-C12	120.53506
21	H55-C29-C30	121.76153	69	C13-C12-H48	120.34635
22	C29-C30-H56	122.31852	70	H48-C12-C11	119.41914
23	H56-C30-C26	115.95805	71	C12-C11-H47	119.47453
24	C30-C26-C25	121.79733	72	H47-C11-C4	120.31999
25	C30-C26-C27	118.64048	73	C11-C4-C5	120.56608
26	C26-C27-H54	119.19336	74	C11-C4-C3	119.42429
27	H54-C27-C22	120.21367	75	C4-C3-O19	123.55207
28	C26-C27-C22	120.59273	76	C4-C5-C6	121.55188
29	С27-С22-Н52	120.41620	77	C5-C6-C10	120.56539
30	C27-C22-C23	119.28946	78	C5-C6-C1	120.56539
31	H52-C22-C23	120.28942	79	C6-C1-O18	123.54561

Tablo 4. Poliimid (NTDA - DASDA) Monomer Molekülünün Teorik Olarak Elde Edilen Bağ Açıları (⁰)

32	C22-C23-C24	120.80458	80	C10-C6-C1	119.42288
33	C22-C23-N15	119.59530	81	O18-C1-N2	120.00876
34	C23-C24-C25	119.42723	82	C1-N2-C3	125.53404
35	N15-C23-C24	119.60004	83	N2-C3-O19	120.00300
36	C23-C24-H53	120.25019	84	O19-C3-C4	123.55207
37	H53-C24-C25	120.31893	85	C3-N2-C17	117.23217
38	C24-C25-S28	117.71232	86	C1-N2-C17	117.23234
39	C25-S28-O38	111.43234	87	N2-C17-H49	110.31033
40	C25-S28-O39	111.87025	88	N2-C17-H51	110.30850
41	C25-S28-O44	101.57330	89	N2-C17-H50	110.32937
42	O38-S28-O44	103.07299	90	H50-C17-H51	108.42088
43	O44-S28-O39	105.69732	91	H51-C17-H49	108.99951
44	S28-O44-H64	115.46475	92	H49-C17-H50	108.41892
45	H61-C42-H60	106.76138	93	H60-C42-C36	112.88652
46	H62-C42-C36	111.12307	94	H61-C42-C36	111.70504
47	O43-S33-O40	103.35642	95	C26-C25-S28	121.95004
48	O38-S28-O39	120.72632	96	O21-C14-C13	123.63318

3.2.1.2 Mulliken Atomik Yükleri (SM PM6)

Mulliken atomik yüklerin hesaplanması, moleküler sisteme kuantum kimyasal hesaplamanın uygulanmasında önemli bir role sahiptir, çünkü atomik yükler dipol momentini, moleküler polarizasyon, elektronik yapı ve moleküler sistemlerin birçok özelliğini etkiler. Yük dağılımı atomu üzerinde, molekülde yük transferi kapsayan, verici ve alıcı çifti oluşumunu göstermektedir. Elektronegatiflik dengeleme ve kimyasal tepkimelerde yük transferi süreçlerini tanımlamak için atomik yük kullanılmıştır.

Şekil 10. Poliimid (NTDA - DASDA) Monomerin Mulliken Yük Resmi

Mulliken atomu, SM metodunun PM6 seti ile hesaplanan Poliimid (NTDA - DASDA) bileşiği için hesaplanmıştır. Mulliken yükü dağılımı, elde edilen veriler Şekil 10 ve Tablo 5'de sunulmuştur. Mulliken yükü dağılımı, SM metodu için amin grubu azot atomu N'nin N2(-0.453), N15 (-0.490) olduğunu gösterir.

Bazı C atomlarının pozitif, bazılarının negatif olduğu da gözlenmiştir. Bunlar C17 (-0.271) ve C26 (0.218) şeklinde hesaplanmıştır. Oksijen (O) atomları ise negatiftir. O19 (-0.474), O38 (-0.923) ve O40 (-0.941) hesaplanmıştır. S atomları ise S28 (2.491) ve S33 (2.486) şeklindedir.

Ato	m grupları	SM	Ato gru	om pları	SM	Ato	m grupları	SM
1	H49	0.174	23	C25	-0.610	44	S33	2.486
2	C17	-0.271	24	C26	0.218	45	O40	-0.941
3	H50	0.159	25	C27	-0.230	46	O41	-0.891
4	H51	0.174	26	H52	0.170	47	O43	-0.803
5	O18	-0.474	27	H53	0.182	48	H63	0.348
6	C1	0.606	28	H54	0.208	49	C42	-0.488
7	N2	-0.453	29	C30	-0.210	50	H60	0.168
8	C3	0.606	30	C29	-0.164	51	H62	0.172
9	O19	-0.474	31	H55	0.190	52	O21	-0.460
10	C4	-0.154	32	H56	0.206	53	N15	-0.490
11	C5	0.040	33	C31	0.175	54	C16	0.619

Tablo 5. Poliimid (NTDA - DASDA) Monomerin Mulliken Atomik Yükleri, SM Ab İnitio PM6 ile Hesaplanmıştır.

12	C6	-0.154	34	C32	-0.592	55	O20	-0.462
13	C7	0.057	35	C34	-0.214	56	C22	-0.057
14	C8	-0.172	36	H57	0.180	57	C23	0.093
15	C9	-0.058	37	C35	-0.090	58	C24	-0.012
16	C10	-0.072	38	H58	0.157	59	H61	0.169
17	H45	0.186	39	C36	0.025	60	H64	0.351
18	H46	0.188	40	C37	-0.033	61	C14	0.618
19	C11	-0.072	41	H59	0.167	62	O39	-0.892
20	C12	-0.057	42	S28	2.491	63	O44	-0.807
21	C13	-0.172	43	O38	-0.923	64	H48	0.186
22	H47	0.188						

3.2.1.3. Poliimid (NTDA - DASDA) Monomerin HOMO ve LUMO Analizi

Şekil 11 SM metodu ile Poliimid (NTDA - DASDA) Monomerin için HOMO ve LUMO'nun yoğunluk orbital gösterimidir.

Şekil 11. Poliimid (NTDA - DASDA) Monomer İçin Ön Molekülün Atomik Orbital Bileşimi

Ayrıca bileşiğin E_{LUMO+1} ve E_{HOMO-1} grafikleride alınmıştır. Şekilden moleküle ait SM metodu için $E_{HOMO} = -9,7043$ eV, $E_{LUMO} = -2,7636$ eV değeri, hesaplanmıştır. Diğer orbitaller için; SM metodu için $E_{HOMO-1} = -9,9691$ eV $E_{LUMO+1} = -1,3865$ eV değeri

hesaplanmıştır. HOMO ve LUMO orbitalleri, molekülün diğer türlerle etkileşime girme şeklini belirler. Tablo 6 kimyasal reaktivite endekslerini gösterir.

Moleküler parametreler	SM
$E_{\rm HOMO} (\rm eV)$	-9,7043
$E_{\rm LUMO}~({\rm eV})$	-2,7636
$\Delta E_{\text{HOMO-LUMO}} (eV)$	-6,9407
İyonlaşma potansiyeli, IP (eV)	9,7043
Elektron ilgisi, EA (eV)	2,7636
Elektronegatiflik, χ (eV)	6.2339
Kimyasal potansiyel, μ (eV)	-6.2339
Kimyasal sertlik, η (eV)	3.4703
Kimyasal yumuşaklık, s (eV $^{-1}$)	0.2881
Global elektrofiliklik indeksi, ω (eV)	11.1983

Tablo 6. HOMO, LUMO, Enerji Boşlukları (HOMO – LUMO) ve İlgili Poliimid (NTDA - DASDA) Moleküler Özellikleri

Şekil 12. Poliimid (NTDA - DASDA) Monomerin Teorik Olarak Elde Edilen FT-IR Spektrumu(SM)

3.2.2. Poliimid(NTDA-DASDA)DFT Çalışmaları

3.2.2.1. Poliimid (NTDA - DASDA) monomer Geometri Optimizasyonu

Poliimid (NTDA - DASDA) monomerine ait optimize edilmiş temel durum yapısı ve total enerji dönüşümü DFT/ TD-DFT için sırasıyla Şekil 13,14 ve 15 de verilmiştir.

Şekil 13. Poliimid (NTDA - DASDA) Monomerin Total Enerji Dönüşümü

DFT/ TD-DFT metodunun B3LPY / 6-31G (d, p) temel seti ile hesaplanan monomer molekülünün optimize edilmiş bağ uzunluğu parametreleri Tablo 7 de listelenmiştir. Poliimid (NTDA- DASDA) monomer bileşiğinin optimize edilmiş geometriden hesaplanan tüm değerler verilerek karşılaştırma yapılmıştır. Bu yapının minimum potansiyel enerjiye sahip olduğu anlamına gelir.

Şekil 14. Poliimid (NTDA - DASDA) Monomer Molekülünün DFT İçin Optimize Yapı Resmi

Şekil 15. Poliimid (NTDA - DASDA) Monomer Molekülünün TD-DFT İçin Optimize Yapı Resmi

Fenil halkalarındaki bütün bağ uzunlukları ve bağ açıları normal aralıktadır. DFT ve TD-DFT için sırasıyla C-C bağ mesafeleri 1.327-1.541 Å ve 1.394-1.542 Å aralığında, C-N için ise bu değerler N15-C14 1.491-1.475, N15-C22 1.470-1.471 Å anhidrit ve sülfonik asit arasındaki azot atomuna aittir. Bu bağ polimer iskeletini oluşturmaktadır.

Anhidrit gruplarındaki C=O grupları DFT ve TD-DFT için sırasıyla C14-O20 1.258-1.260 Å, C16-O19 1.258-1.259 Å aralığında bulunmuştur, çift bağ karakteristiği olarak literatür ile uyumlu olarak çıkmıştır. Kükürt atomlarının oksijen (S-O) ile oluşturduğu bağ mesafeleri optimizasyon sonucu DFT ve TD-DFT için sırasıyla S27-O37 1.469-1.670, S27-O42 1.669-1.670 ve S27-O38 1.469-1.670 Å olarak bulunmuştur. Şekil 16 bağ uzunlukları parametrelerini göstermektedir.

Şekil 16. Poliimid (NTDA - DASDA) Monomer Molekülünün Bağ Uzunlukları

Kükürt atomlarının karbon (S-C) ile oluşturduğu bağ mesafeleri optimizasyon sonucu DFT ve TD-DFT için sırasıyla C24-S27 1.779-1.780 Å, C31-S32 1.779-1.780 Å olarak bulunmuştur. Sülfon gruplarındaki O-H bağ uzunlukları DFT ve TD-DFT için sırasıyla O42-H56 0.959-0.960 Å ve O41-H55 0.960-0.959 Å aralığında uzanır.

Tablo	7.	Poliimid	(NTDA	- DASDA)	Monomer	Molekülünün	Teorik	Olarak	Elde
Edilen	Ba	ğ uzunluk	ları (Å)						

Ator	n grupları	Bağ Uzunlukları DFT	Bağ Uzunlukları TD-DFT	Atom grupları		Bağ Uzunlukları DFT	Bağ Uzunlukları TD-DFT
1.	C1-N2	1.49133	1.47473	33.	S27-O37	1.46957	1.67081
2.	C1-O17	1.25841	1.26045	34.	S27-O42	1.66996	1.67058
3.	N2-H58	0.99997	0.99799	35.	S27-O38	1.46961	1.67067
4.	N2-C3	1.49111	1.47404	36.	O42-H56	0.95998	0.96063
5.	C3-O18	1.25841	1.25796	37.	C24-C25	1.40138	1.40635
6.	C3-C4	1.54053	1.53936	38.	C25-C26	1.40148	1.40708
7.	C4-C5	1.51290	1.39464	39.	C26-H49	1.06999	1.07216
8.	C5-C6	1.50945	1.39510	40.	C26-C21	1.40152	1.36241
9.	C6-C1	1.54111	1.54221	41.	C21-H47	1.07003	1.07033
10.	C6-C10	1.36446	1.40264	42.	C21-C22	1.40143	1.39981
11.	C10-H44	1.07002	1.06896	43.	C25-C29	1.54007	1.41275

12.	C10-C9	1.41969	1.36042	44.	C29-H51	1.06998	1.06935
13.	C9-H43	1.07001	1.07189	45.	C29-C28	1.35514	1.36075
14.	C9-C8	1.36451	1.40211	46.	C28-H50	1.07001	1.07289
15.	C8-C7	1.50923	1.39599	47.	C28-C30	1.54010	1.41290
16.	C7-C5	1.32708	1.39456	48.	C30-C33	1.40148	1.40364
17.	C4-C11	1.36013	1.40432	49.	С33-Н52	1.07003	1.07154
18.	C11-H45	1.07002	1.07052	50.	C33-C34	1.40149	1.40281
19.	C11-C12	1.55020	1.35921	51.	C34-H53	1.06999	1.06964
20.	C12-H46	1.07003	1.07165	52.	C34-C35	1.40144	1.39991
21.	C12-C13	1.36015	1.40364	53.	С35-Н57	1.06998	1.07078
22.	C13-C7	1.51267	1.49291	54.	C35-C36	1.40136	1.40034
23.	C13-H14	1.54056	1.40036	55.	C36-H54	1.06998	1.06997
24.	C8-C16	1.54123	1.40321	56.	C36-C31	1.40130	1.35735
25.	C14-O20	1.25840	1.26014	57.	C31-C30	1.40127	1.40765
26.	C16-O19	1.25842	1.25935	58.	C31-S32	1.77994	1.78011
27.	C16-N15	1.49162	1.47266	59.	S32-O39	1.46960	1.66856
28.	N15-C14	1.49135	1.47552	60.	S32-O40	1.46958	1.67086
29.	N15-C22	1.47001	1.47135	61.	S32-O41	1.66996	1.66927
30.	C22-C23	1.40142	1.39612	62.	O41-H55	0.96003	0.95904
31.	C23-H48	1.06998	1.07063	63.	C24-S27	1.77990	1.78000
32.	C23-C24	1.40137	1.35587				

Aromatik halkadaki C-H uzunlukları DFT ve TD-DFT için sırasıyla C23-H48 1.069-1.070 Â, C12-H46 1.070-1.071 Â aralığındadır. Poliimid (NTDA - DASDA) DFT ve TD-DFT bağ uzunlukları korelasyon grafiği Şekil 17 de verilmiştir. Regrasyon değeri R=0,9146 bulunmuştur. Bu değer iki metod için uyumlu bir sonucu ifade etmektedir.

Şekil 17. Poliimid (NTDA - DASDA) Monomerinin DFT ve TD DFT Bağ Uzunlukları Korelasyon Grafiği

Tüm C-C-C açıları 118° - 122° arasındadır. DFT ve TD-DFT için sırasıyla C3-C4-C5 118.544-120.221 ve C3-C4-C11 122.105-119.979 arasındadır. Bileşikteki N-C-C açısı 114°-122°'de arasındadır. Molekülün bağ açıları Tablo 8 da verilmiştir.

Tablo 8. Poliimid (NTDA - DASDA) Monomer Molekülünün Teorik Olarak Elde Edilen Bağ Açıları (°)

Ator	n grupları	Bağ Açıları DFT	Bağ Açıları TD-DFT	Ator	m grupları	Bağ Açıları DFT	Bağ Açıları TD-DFT
1.	O17-C1-N2	118.94243	119.34796	48.	C3-C4-C11	122.10548	119.97939
2.	C1-N2-H58	107.39023	109.03173	49.	C4-C11-H45	120.24162	119.74533
3.	H58-N2-C3	107.39359	109.16594	50.	C4-C5-C6	119.28152	120.42234
4.	N2-C3-O18	118.98051	119.35743	51.	C4-C5-C7	121.11364	119.75366
5.	O18-C3-C4	119.00997	119.56458	52.	C4-C5-C6	119.28152	120.42234
6.	C1-N2-C3	114.58548	112.10395	53.	C5-C6-C1	118.51395	120.28314
7.	N2-C3-C4	122.00500	121.07296	54.	C5-C6-C10	119.54709	119.63895
8.	C3-C4-C5	118.54470	120.22171	55.	C1-C6-C10	121.93879	120.07737
9.	С6-С10-Н44	119.58019	119.69442	56.	C5-C4-C11	119.34965	119.79890
10.	H44-C10-C9	119.58558	119.76981	57.	H45-C11-C12	120.23989	119.87668
11.	C6-C10-C9	120.83374	120.53472	58.	C11-C12-H46	120.24193	119.78717

12.	С10-С9-Н43	119.58426	119.77147	59.	H46-C12-C13	120.23863	119.84981
13.	H43-C9-C8	119.58344	119.77239	60.	C11-C12-C13	119.51887	120.36200
14.	C10-C9-C8	120.83179	120.45495	61.	C12-C13-C7	119.35122	119.86312
15.	C9-C8-C7	119.54556	119.63273	62.	C13-C7-C8	119.25487	120.29328
16.	C9-C8-C16	121.94113	119.88504	63.	C7-C8-C16	118.51315	120.48218
17.	C8-C7-C5	119.61842	119.89051	64.	C7-C13-C14	118.54784	120.19028
18.	C13-C14-O20	118.98113	120.19028	65.	N15-C16-O19	118.91472	119.52294
19.	C13-C14-O20	122.05934	119.37024	66.	O19-C16-C8	118.94895	119.64545
20.	O20-C14-N15	118.95487	119.37996	67.	N15-C22-C23	119.98390	119.19953
21.	C14-N15-C16	114.45548	111.88641	68.	N15-C22-C21	120.01659	120.95997
22.	С22-С23-Н48	119.99955	119.63842	69.	C22-C21-H47	120.00323	119.67124
23.	H47-C21-C26	120.00257	120.18725	70.	C21-C22-C23	119.99950	119.83960
24.	C22-C21-C26	119.99420	120.14100	71.	C22-C23-C24	120.00468	120.40147
25.	H48-C23-C24	119.99577	119.96011	72.	С21-С26-Н49	119.99850	119.87725
26.	H49-C26-C25	119.99851	120.08673	73.	C21-C26-C25	120.00299	120.03602
27.	C23-C24-C25	120.00258	120.19009	74.	C26-C25-C24	119.99604	119.37218
28.	C23-C24-S27	119.99959	119.08809	75.	C25-C24-S27	119.99784	120.72163
29.	C24-S27-O37	109.46997	109.08675	76.	C24-S27-O38	109.46942	109.93383
30.	C24-S27-O42	109.47094	109.49017	77.	O37-S27-O38	109.46920	110.23637
31.	O37-S27-O42	109.47651	110.40174	78.	O38-S27-O42	109.47129	107.67696
32.	S27-O42-H56	109.46976	109.41465	79.	C24-C25-C29	120.00236	119.98265
33.	C26-C25-C29	120.00160	120.64321	80.	С25-С29-Н51	120.01226	119.69216
34.	C25-C29-C28	119.97558	120.69075	81.	H51-C29-C28	120.01216	119.61471
35.	С29-С28-Н50	119.97719	119.71870	82.	C29-C28-C30	120.04327	120.22745
36.	H50-C28-C30	119.97954	120.05165	83.	C28-C30-C31	119.95717	120.29967
37.	C28-C30-C33	120.04460	120.19428	84.	С30-С33-Н52	120.00482	120.18763
38.	C30-C31-C36	120.01214	120.63939	85.	C30-C33-C34	119.99167	119.66897
39.	H52-C33-C34	120.00351	120.14326	86.	C33-C34-H53	120.00133	120.41880
40.	C33-C34-C35	120.00181	119.55053	87.	H53-C34-C35	119.99686	120.03066
41.	С34-С35-Н57	120.00421	120.10104	88.	C34-C35-C36	119.99884	119.98299
42.	H57-C35-C36	119.99695	119.91596	89.	C35-C36-C31	119.99730	120.60899
43.	H54-C36-C31	119.99970	119.80250	90.	C36-C31-S32	120.00806	119.17716
44.	C30-C31-S32	119.97979	120.18332	91.	C31-S32-O40	109.46895	109.35381
45.	C31-S32-O39	109.46794	109.57259	92.	C31-S32-O41	109.47421	109.29568
46.	S32-O41-H55	109.46817	109.47076	93.	O40-S32-O41	109.47140	110.31235
-----	-------------	-----------	-----------	-----	-------------	-----------	-----------
47.	O39-S32-O40	109.46963	110.25911	94.	O40-S32-O39	109.47140	110.25911

DFT ve TD-DFT için sırasıyla C1-N2-C3 114.585-112.103 ve C14-N15-C16 114.455-111.886 hesaplanmıştır. DFT ve TD-DFT değerleri arasında çok küçük farklar vardır. Poliimid (NTDA - DASDA) DFT ve TD-DFT bağ açıları korelasyon grafiği Şekil 18 de verilmiştir Regrasyon değeri R=0,95144 bulunmuştur. Bu değer iki metod için uyumlu bir sonucu ifade etmektedir.

Şekil 18. Poliimid (NTDA - DASDA) DFT ve TD-DFT Bağ Açıları Korelasyon Grafiği

3.2.2.2. Mulliken Atomik Yükleri

Mulliken atomik yüklerin hesaplanması, moleküler sisteme kuantum kimyasal hesaplamanın uygulanmasında önemli bir role sahiptir. Çünkü atomik yükler dipol momentini, moleküler polarizasyon, elektronik yapı ve moleküler sistemlerin birçok özelliğini etkiler. Yük dağılımı atomu üzerinde, molekülde yük transferi kapsayan, donör ve akseptör çifti oluşumunu göstermektedir. Mulliken atomu DFT ve TD-DFT

metotlarının B3LYP / 6-311G (d,p) temel setinde hesaplanmıştır. Elde edilen veriler sırasıyla Şekil 19,20 ve Tablo 9 de sunulmaktadır. Mulliken yükü dağılımı, DFT/TD-DFT metodu için sırasıyla amin grubu azot atomu N'nin, N2 DFT(-0.648) TD-DFT(-0.823), N15 DFT(-0.536) TD-DFT(-0.888) olduğunu gösterir.

Şekil 19. Poliimid (NTDA - DASDA) Monomerinin DFT İçin Mulliken Atom Yükleri Bazı C atomlarının pozitif, bazılarının negatif olduğu da gözlenmiştir. Bunlar C1 DFT(0.373) TD-DFT(0.686) ve C26 DFT(-0.153) TD-DFT(-0.173) şeklinde hesaplanmıştır.

Şekil 20. Poliimid (NTDA - DASDA) Monomerinin TD-DFT İçin Mulliken Atom Yükleri

O atomları ise negatiftir. O17 DFT(-0.345) TD-DFT(-0.345), O37 DFT(-0.533) TD-DFT(-0.529) ve O42 DFT(-0.638) TD-DFT(-0.577) hesaplanmıştır. S atomları ise S27

DFT(1.280) TD-DFT(1.550) ve S32 DFT(1.260) TD-DFT(1.552) şeklindedir. DFT ve TD-DFT değerleri uyumlu çıkmıştır. Poliimid (NTDA - DASDA) monomerinin DFT/TD-DFT mulliken korelasyon grafiği Şekil 21 de verilmiştir.

Ato	m grupları	DFT	TD-DFT	Ator	n grupları	DFT	TD-DFT
1	017	-0.345	-0.512	30	C25	0.146	0.030
2	C1	0.373	0.686	31	C26	-0.153	-0.173
3	H58	0.363	0.331	32	H48	0.279	0.301
4	N2	-0.648	-0.823	33	H49	0.178	0.244
5	C5	-0.041	0.036	34	H47	0.217	0.275
6	C6	0.118	-0.119	35	S27	1.280	1.550
7	C7	-0.024	0.041	36	037	-0.533	-0.529
8	C8	0.067	-0.138	37	O38	-0.557	-0.549
9	C9	-0.159	-0.164	38	O42	-0.638	-0.577
10	C10	-0.148	-0.174	39	H56	0.425	0.391
11	H43	0.191	0.202	40	C28	-0.173	-0.206
12	H44	0.184	0.210	41	C29	-0.119	-0.211
13	C3	0.380	0.685	42	H50	0.233	0.278
14	C4	0.137	-0.119	43	H51	0.192	0.288
15	O18	-0.347	-0.511	44	C30	0.104	0.032
16	C11	-0.161	-0.173	45	C31	-0.352	-0.466
17	C12	-0.169	-0.164	46	C33	-0.129	-0.162
18	C13	0.093	-0.137	47	C34	-0.123	-0.169
19	C14	0.455	0.682	48	C35	-0.097	-0.166
20	H45	0.184	0.210	49	C36	-0.092	-0.146
21	H46	0.194	0.203	50	H52	0.162	0.252
22	O19	-0.416	-0.516	51	H53	0.152	0.237
23	O20	-0.416	-0.516	52	H57	0.150	0.239
24	C16	0.451	0.682	53	H54	0.187	0.269
25	N15	-0.536	-0.888	54	S32	1.260	1.552
26	C21	-0.121	-0.147	55	O39	-0.562	-0.538
27	C22	0.158	0.396	56	H40	-0.530	-0.536
28	C23	-0.101	-0.114	57	H41	-0.628	-0.579

Tablo 9. Poliimid (NTDA - DASDA) Monomerin Optimize Mulliken Atom Yükleri

Şekil 21. Poliimid (NTDA-DASDA) Monomerin DFT/ TD-DFT İçin Mulliken Korelasyon Grafiği

3.2.2.3. Titreşim Analizleri

3.2.2.3.1. C-H titreşimler

Aromatik yapıdaki C-H germe titreşimleri deneysel olarak 3243 cm⁻¹ seviyelerinde gözlenmiştir. Teorik olarak bakıldığında aromatik halkadaki C23-H48, C12-H46 ve C11-H45 gruplarına ait 3245, 3150 ve 2950 frekanslarında DFT çalışmasında hesaplanmıştır. Alifatik organik gruplarda deneysel olarak, 3280 cm⁻¹ bölgesinde C-H germe titreşimlerinin varlığını göstermektedir. Bu tür titreşimler, yer değiştirmenin etkisi ile fazla abartılmayacaktır. Buna göre, bu bileşikte, bantlar 3289 cm⁻¹ gözlendi. Alifatik grup olarak yapıda mevcut C28 e bağlı olarak H50 teorik değeri 3289 cm⁻¹ C-H gerilmeleri tespit edilmiştir. Monomere ait gerilme titreşimleri Tablo 10 da verilmiştir.

Sıra No.	Deneysel frekans	Teorik dalga frekansı (cm ⁻¹)	TED
	(cm ⁻¹)	DET Skolo	
1	3740	37 <i>1</i> /	rO42-H56(10)
2	3740	3731	rO(41-H55(10))
- 3	3600	3606	N2-H58(10)
4	3280	3289	rC21-H47(76) $rC28-H50(21)$
5	3245	3243	pC23-H48(99)
6	3150	3228	vC12-H46(96)
7	3100	3225	vC19-H51(37), vC33-H52(55)
8	3050	3218	vC26-H49(96)
9	2990	3212	vC34-H53(19), vC35-H57(45), vC36-H54(20)
10	2950	3209	vC11-H45(96)
11	2800	3207	vC9-H43(72), vC10-H44(27)
12	1760	1738	vC5-C7(64)
13	1730	1604	vO17-C1(32), vO18-C3(25)
14			vO19-C16(13), vO20-C14(13), vC11-C4(16), vC12-
	1600	1629	C13(12)
15	1580	1601	vC28-C29(35)
16	1570	1602	vC6-C10(12)
17	1540	1571	vC36-C35(15), vC34-C33(10), vC33-C30(16)
18	1535	1555	vC21-C26(22), vC25-C24(19), vC35-C34(10)
19	1520	1553	vC31-C36(10)
20	1490	1540	vC22-C23(11)
21	1420	1519	vC9-C8(23), vC10-C9(36)
22	1000	1000	vS27-O37(27), vS32-O39(13), vS27-O38(26) vS32-O39(13), vS27-O38(26) vS32-O39(13), vS27-O38(26) vS32-O39(13), vS27-O38(26) vS32-O39(13), vS27-O38(26) vS32-O39(13), vS27-O38(26) vS32-O39(13), vS32-O
22	1380	1392	O40(13)
23	1310	1371	vC24-C23(11)
24	1280	1344	vC/-C8(10)
25	1240	1301	vC26-C25(12)
20	1200	1288	vC13-C7(17)
21	1170	1193	vC29-C25(10)
20	1130	11/5	$vC_{20} = C_{20} = C_{10} = $
29	1120	114/	$v = C_1(13)$
31	1030	1109	$v_{N2} = C_{3}(10)$
31	880	1025	rC4 C5(21)
33	800	084	mN2 C1(22)
34	750	90 4 003	rN15 C16(20)
35	740	880	nN15-C14(10)
36	710	819	nS32-O41(55)
37	690	817	nS27-042(12)
38	680	391	rS27-C24(10)
	000		

Tablo 10. Poliimid (NTDA - DASDA) Monomerine Ait Gerilme Titreşimleri

Deneysel olarak düzlem-içi bükülme titreşimindeki karbon-hidrojen titreşimleri sırasıyla, 3280, 3245,3150, 3100, 3050, 2990, 2950, 2800 cm⁻¹ 'de belirlenmiştir. DFT olarak 3289, 3243, 3228, 3225, 3218, 3212, 3209, 3207 cm⁻¹' olarak belirlenmiştir. Deneysel veriler ile DFT sonuçlarının yakın gözlenmiştir. Tüm titreşimler, fonksiyonel grup titreşimlerinden etkilenen beklenen aralıklar içerisinde gözlendi. C-H düzlemi eğme titreşimlerini, normal olarak bölgede 1434-1261 cm⁻¹ aralığında bulundu. Bu durumda, C-H düzlem dışı bükülme titreşimleri 976-914 cm⁻¹ aralığında bulundu. Tüm bantlar öngörülebilir bölgede bulunur ve bantların çoğu FT-IR'de kuvvetli yoğunlukta gözlenmiştir. Yukarıdaki gözlemlerin bir sonucu olarak, güçlü absorpsiyon enerjisi nedeniyle, C-H bağının moleküler özelliğe aktif olarak katıldığı sonucuna varıldı. DFT deneysel veriler skalalı olarak biraz daha yüksek çıkmıştır. Ve monomere ait eğilme titreşimleri Tablo 11 de sıralanmıştır.

Sira No.	Deneysel frekans(cm ⁻¹)	TED	
	FT-IR	DFT Skala	
1	1490	1473	δH47-C21-C26(18), δH48-C23-C24(24), δH49-C26-C25(23)
2	1420	1450	δH52-C33-C34(33), δH54-C36-C35(20)
3	1380	1434	δH53-C34-C35, δH57-C35-C36(29)
4	1310	1349	δH51-C29-C28(46), δH43-C9-C10(15), δH50-C28-C29(29), δH44-C10-C9(39)
5	1240	1288	δH46-C12-C13(50)
6	1200	1261	δH45-C11-C12(47), δC11-C4-C3(18), δH58-N2-C3(81), δC13- C7-C8(16)
7	1130	1103	δC22-C23-C24(11)
8	1050	1070	$\begin{array}{llllllllllllllllllllllllllllllllllll$
9	1010	1009	δH55-O41-S32(51), δH56-O42-S27(11)
10	880	857	δC30-C28-C29(12)
11	800	783	δC3-N2-C1(13)
12	710	684	δC35-C34-C33(16), δO17-C1-N2(21), δO18-C3-N2(23), δC36- C35-C34(20)
13	690	593	δC5-C7-C8(17)

Tablo 11. Poliimid (NTDA - DASDA) Monomerine Ait Eğilme Titreşimleri

n

14	383	δO40-S32-O39(11), δS32-C31-C36(10), δO38-S27-O37(10), δS27-C24-C23(10), δC7-C8-C16(17)
15	266	δO37-S27-O42(10), δC1-C6-C10(11), δO42-S27-O38(12), δO39- S32-O41(13), δO41-S32-O40(17), δC16-N15-C22(10)
16	53	δC28-C29-C25(8), δC29-C25-C26(19), δN15-C22-C23(10)

3.2.2.3.2. C-O ve O-H grup titreşimleri

O17-C1, O18-C3 gruplarına ait titreşim değerleri verilmiştir. Hidroksil grubuna bağlı olan C-O titreşimi deneysel olarak 1730 cm⁻¹ bölgede gözlemlenmiştir. DFT hesaplamasında ise 1604-1610 cm⁻¹ frekanslarında tespit edilmiştir. Elde edilen değerler birbiriyle uyumludur.

Hidroksil grubu germe, düzlem içi bükülme ve düzlem dışı bükülme titreşimlerinden oluşur. Genellikle, hidroksil titreşimlerine sahip olacağı 3500-3200 cm⁻¹ aralığında gözlenir. O42-H56, O41-H55 gruplarında, 3740-3730 cm⁻¹ gözlenen OH gerilmesine, IR spektrumunda kuvvetli bir yoğunluğa yayvan özelliğe sahiptir. DFT hesaplamamızda 3744 3731 cm⁻¹ değerlerinde uyumlu olarak hesaplanmıştır. Monomere ait burulma titreşimleri Tablo 12 de listelenmiştir.

Tablo 12. Poliimid (NTDA - DASDA) Monomerine Ait Burulma Titreşiml	eri
--	-----

Sıra No.	Deneysel frekans (cm ⁻¹)	TED	
	FT-IR	DFT Skala	
1	950	976	тH47-C21-C26-C25(47), тH49-C26-C25-C24, тC21-C26-C25- C24(12), тH52-C33-C34-C35(10), тH53-C34-C35-C36(39), тH57-C35-C36-C31(25), тH43-C9-C10-C6(44), тH44-C10-C9- C8(33)
2	910	949	тН48-С23-С24-S27(69)
3	905	924	тН50-С28-С30-С31(23), тН54-С36-С35-С34(20)
4	900	914	тН45-С11-С4-С5(20), тН46-С12-С13-С7(30)
5	875	880	тН51-С29-С28-С30(24)
6	560	569	тС5-С7-С8-С9(11), тС6-С10-С9-С8(12), тС10-С9-С8-С7(12)
7	550	548	тН56-О42-S27-C24(97), тН55-О41-S32-C31(97)
8		528	тС36-С35-С34-С33(11), тС34-С33-С30-С28(16)

9	512	тН58-N2-C3-C4(95)
10	315	тС31-С36-С35-С34(11)
11	277	тО41-S32-C31-C30(46), тО42-S27-C24-C23(52)
12	159	тСЗ-N2-С1-С6(13)
13	112	тС16-N15-C22-C21(39)
14	97	тС26-С25-С24-С23(10), тN2-С1-С6-С5(40)
15	72	тС7-С8-С16-N15(189), тС8-С16-N15-С22(12)
16	34	тС28-С29-С25-С24(14), тС33-С30-С28-С29(12), тС30-С28- С29-С25(23)

3.2.2.3.3. C-C titreşimleri

Karbon-karbon germe titreşimleri incelendiğinde aromatik yapı içerisinde C5-C7, C28-C29, C6-C10 1760, 1580 ve 1570 cm⁻¹ deneysel değerler gözlenmiştir. DFT teorik sonuçları 1738, 1602 ve 1601 cm⁻¹ değerlerinde uyumlu olarak hesaplanmıştır. İskelet germe titreşimler, tahmin edilen aralık içinde ortaya ve tüm vibrasyonlar bantlar güçlü ise FT-IR orta yoğunlukta görülmektedir. C-C'nin düzlem içi bükülme titreşimi δC22-C23-C24(11) 1103 cm⁻¹, δC6-C10-C9 (11) 1070 cm⁻¹ 'in altında gözlenir. Mevcut molekülde, düzlem içi titreşimler TC5-C7-C8-C9 (11) 569 cm⁻¹ ve TC36-C35-C34-33 (11) 528 cm⁻¹ 'de bulunur. Gözlenen titreşimler beklenen bölgededir ve diğer titreşim modlarından etkilenmez. Düzlem dışı bükülme titreşimleri genellikle 700 cm⁻¹ 'in altında gözlenir. C,C düzlemde ve düzlem dışı eğilme titreşimlerinde teorik olarak hesaplanmış ve deneysel ve teorik sonuçlar arasında iyi korelasyon gözlenmiştir. Ayrıntılı olarak atom gruplarına ait deneysel FT-IR sonuçları ve teorik sonuçlar karşılaştırmalı olarak Tablo 13 de vermiştir.

Tablo 13. Poliimid (NTDA - DASDA) Monomerine Ait Düzlem Dışı Eğilme Titreşimleri

Sıra No.	Deneysel frekans (cm ⁻¹)	TED	
	FT-IR	DFT Skala	
1	880	914	оС12-C7-C14-C13(14) оС11-C5-C3-C4(12)
2	800	880	₀ C29-C24-C26-C25(11)

3	720	737	ωO20-N15-C13-C14(12) ωO19-N15-C8-C16(10)
4	680	682	0018-N2-C4-C3(14) 0017-N2-C6-C1(13)
5	540	587	ωN15-C21-C23-C22(10) ωC9-C7-C16-C8(10)
6		470	∞S32-C30-C36-C31(11) ∞C13-C5-C8-C7(19) ∞C4-C6- C7-C5(18)
7		295	0037-C24-O42-S27(10)
8		244	0039-C31-O41-S32(27) 0S27-C23-C25-C24(12)
9		199	0C1-C5-C10-C6(11) 0O38-C24-O37-S27(23) 0O40- C31-O39-S32(26) 0C14-C16-C22-N15()

3.2.2.3.4. N-H ve N-C titreşimler

Amino grubunu içeren bileşikler, N-H bağlarının gerilmesi, bükülmesi ve burulma temel modları gösterir. Diaminodifenil bileşiğimize ait N-H yapılarından bir simetrik bir asimetrik bir germe beklenir. Normal olarak, amin grubu titreşimlerindeki ikame edilmiş moleküldeki N-H bağları, FT-IR spektrumunun tüm titreşim düzeninde her zaman güvenilir bir yere yerleştirilir. vb. Sıklıkla, aromatik yapıya bağlı primer aminlerde, N-H germe frekansı, 3500-3100 cm⁻¹ bölgesinde meydana gelir vv. Molekülümüze ait, N-H bağları ve germe titreşim 3600 cm⁻¹ de FT-IR spektrumu orta şiddette bulunmuştur. Molekülde bulunan frekans düşürücü, moleküller arası etkileşimlerdir. DFT hesaplamamızda 3606 cm⁻¹ birbirilerine yakın değerler uyumlu olarak görülmektedir.

N-H makaslama (düzlem içi bükülme) titreşimlerinin karakteristik frekansı 1274-1218 cm⁻¹ aralığında gözlenir. DFT hesaplamamızda 1261 cm⁻¹ birbirilerine yakın değerler uyumlu olarak görülmektedir.

C3-N2 ve C22-N15 atom grubuna sahip C-N germe titreşimleri, 1050-1010 cm⁻¹ aralığında deneysel olarak gözlenmiştir. Bu araştırmada, C3-N2 ve C22-C15 atom grubuna sahip C-N germe bantları 1109 cm⁻¹ ve 1103 cm⁻¹ aralığında uyumlu olarak DFT hesaplanmasında bulunmuştur.

Şekil 22. Poliimid (NTDA - DASDA) Monomerin Teorik Olarak Elde Edilen FT-IR Spektrumu

3.2.2.4. NMR Analizleri

NMR spektrumları bir organik moleküllerin NMR kimyasal kaymaları (δ), ilgilenilen moleküllerdeki protonların nükleer manyetik koruyucu tensörlerini tetrametil silandakilerden çıkartarak hesaplanır[75].

¹³C ve ¹H NMR spektrumlarının analizi, başlıklı moleküllerin kimyasal kaymasına ilişkin DFT hesaplamaları, DFT / B3LYP / 6-311 / G (d, p) seviyelerinde bağımsız bir atomik orbital (GIAO) yöntemiyle ölçüldü. Dimetilsülfoksit (DMSO) açısından kimyasal kaymaların hesaplanmasında izotropik koruma değerleri kullanılmıştır. Poliimid (NTDA-DASDA) monomer ¹H-NMR spektrumları için deneysel ve hesaplanan kimyasal kaymalar, Tablo 15'te verilmiştir. Hesaplanan ¹³C-NMR spektrumunda karbonil grubundaki karbonlar C=O 164-170 ppm, Aromatik halkadaki karbonlar ise 110-130 ppm C=C yapısındaki karbonlar ise 114-118 ppm civarında hesaplanmıştır.

¹H atomları için deneysel olarak gözlemlenen ve teorik olarak hesaplanan kimyasal kaymalar, Poliimid (NTDA-DASDA) monomer molekülü için oldukça düşük aralıktadır. Sülfon grubu içerisinde oksijene bağlı hidrojenler için 3.2-3.16 ppm, aromatik halkaya bağlı hidrojenler 6.30-7.78 ppm ve C=C çifte bağlı hidrojenler ise 8.26 ppm aralığında gözlenir. ¹H-NMR için DFT yöntemiyle elde edilen deneysel ve teorik kimyasal kaymalar arasındaki lineer korelasyon grafiği Şekil 25 'de gösterilmiştir. Proton kimyasal kaymaların korelasyon katsayısı 0,9279 olduğu görülmektedir. Teorik

kimyasal kayma değerlerinin, başlık bileşikleri için deneysel değerlerle iyi bir uyum içinde olduğu görülebilir.

Şekil 23. Poliimid (NTDA - DASDA) Monomerin Teorik Olarak Elde Edilen ¹H-NMR Spektrumu

Şekil 24. Poliimid (NTDA - DASDA) Monomerin Teorik Olarak Elde Edilen ¹³C-NMR Spektrumu

Tablo 14. Poliimid (NTDA - DASDA) Monomerin ¹³C-NMR DFT/TD-DFT (referans=TMS B3LYP/6-311+G(2d,p) GIAO) Kayma Değerleri

Atoms	Shift (ppm)	Atoms	Shift (ppm)

16	170.78	8	118.34
14	170.59	29,13	117.95
1	164.27	11	116.66
3	163.71	21	114.83
22	132.81	7	114.70
6	128.91	28	114.54
4	127.05	36	114.25
31	125.99	23	111.78
12	124.23	9	111.18
24	123.92	35	110.27
30	122.71	33	109.25
25	121.68	26	107.54
5	119.54	10	104.67
34	118.45		

Tablo 15. Poliimid (NTDA - DASDA) Monomerin ¹H-NMR DFT/TD-DFT (referans= TMS B3LYP/6-311+G(2d,p) GIAO) Kayma Değerleri

Atomlar	Shift (ppm)	Deneysel
48	9.32	8.6
47	8.25	8.3
50	7.78	8.1
46	7.46	7.9
51,43	7.36	7.4
52	7.27	7.3
49,45	6.91	7.8
44	6.58	7.2
54,53	6.30	7
57	5.11	6.6
58	3.15	4
55	3.09	3.5

Şekil 25. Poliimid (NTDA - DASDA) Monomerin H-NMR Deneysel ve DFT Çalışması Korelasyon Grafiği

3.2.2.5. HOMO ve LUMO analizi

Bir moleküldeki orbitallerle ilgili temel elektronik parametreler en yüksek işgal edilen moleküler orbital (HOMO) ve en düşük boş moleküler orbitaldir (LUMO) ve bunların enerji açığıdır. HOMO, bir elektron donörü olarak işlev görebilecek en dıştaki (en yüksek enerji) yörünge içeren elektronlardır. LUMO, elektronları kabul etmek için yeterli alana sahip olan ve elektron alıcısı olarak hareket edebilen en içteki (en düşük enerji) yörüngedir. Şekil 26 ve 27 sırasıyla DFT/TD-DFT nin HOMO ve LUMO yoğunluk çizimleridir.

Şekil 26. Poliimid (NTDA - DASDA) Monomerinin DFT HOMO ve LUMO'nun Yoğunluk Gösterimi

Şekil 27. Poliimid (NTDA - DASDA) Monomerinin TD-DFT HOMO ve LUMO'nun Yoğunluk Gösterimi

Şekillerden, moleküldeki LUMO' ların tüm moleküller üzerinde eşit bir şekilde dağılmadığı görülebilir. HOMO ve LUMO orbitalleri, yalnızca molekülün diğer türlerle etkileşime girme şeklini belirlemekle kalmaz, aynı zamanda enerji boşlukları (sınır

orbital boşluk) molekülün kimyasal reaktivitesini ve kinetik stabilitesini karakterize etmeye yardımcı olur. Küçük bir sınır yörünge boşluğu olan bir molekül daha polarize edilebilir ve genellikle yüksek bir kimyasal reaktivite, düşük kinetik stabilite ile ilişkilendirilir ve ayrıca yumuşak molekül olarak da adlandırılır. Tablo 16 kimyasal reaktivite endekslerini gösterir.

Poliimid (NTDA - DASDA)monomerine stabil ve sert olduğunu ve stabilite sahiptir. LUMO / HOMO aralığı olarak $\Delta E = E_{HOMO} - E_{LUMO}$ (eV) DFT ile -5.5483 eV ve TD-DFT ile -0,1102 eV olarak hesaplanmıştır. Mevcut çalışmada, iyonizasyon potansiyeli(I), Poliimid (NTDA - DASDA) monomerin DFT/TD-DFT için sırasıyla 7.3913 ve 3.1138 au, olarak bulunmuştur. Elektronik kimyasal potansiyel (mutlak değerler) ne kadar yüksek olursa, bileşik o kadar az stabil veya daha reaktif olur. Tablo 16 da elektronik kimyasal potansiyeldeki eğilim μ Elektronegatiflik (χ) ve küresel elektrofil (w) değerleri, sırasıyla sunulmuştur HOMO ve LUMO orbital enerjileri kullanılarak hesaplamalar da bu eşitlikler kullanılmıştır; iyonlaşma potansiyeli (I) ve elektron ilgisi (A) șu șekilde ifade edilebilir: $I = -E_{HOMO}$ ve $A = -E_{LUMO}$. Bu değerleri kullanarak elektronegatiflik gibi diğer kimyasal tanımlayıcıları hesaplayabiliriz. $\chi = I + A / 2$, kimyasal potansiyel $\mu = -\chi$, sertlik, $\eta = I - A / 2$, yumuşaklık s = $1/2 \eta$ ve küresel, elektriksel göstergesi $\omega = \mu 2 / 2 \eta$ şeklindedir.

Moleküler parametreler	DF [*] I(B3LYP / 6-31G (d, s)	DFT/TD-DFT
$E_{\rm HOMO}~(\rm eV)$	-7.3913	-3.1138
$E_{\rm LUMO}~({\rm eV})$	-1.8430	-3.0036
$\Delta E_{\text{HOMO-LUMO}} (eV)$	-5.5483	-0,1102
İyonlaşma potansiyeli, IP (eV)	7.3913	3.1138
Elektron ilgisi, EA (eV)	1.8430	3.0036
Elektronegatiflik, χ (eV)	4.6171	3.0587
Kimyasal potansiyel, μ (eV)	-4.6171	-3.0587
Kimyasal sertlik, η (eV)	2.7741	0.0551
Kimyasal yumuşaklık, s (eV $^{-1}$)	0.1802	9.0744
Global elektrofiliklik indeksi, ω (eV)	3.8422	84.89

Tablo 16. Poliimid (NTDA - DASDA) Monomerine Ait Elektronegatiflik (χ) ve Küresel Elektrofil (ω) vb. Değerlerin Karşılaştırması

Küresel elektrofilite indeksi[76]. Ve sistem çevreden ek bir elektronik şarj aldığında, enerjideki dengelemeyi ölçer. Elektrofiliklik, bir elektrofilin ek elektronik şarj alma kabiliyetini ve sistemin elektronik şarjı çevre ile değiştirme alışkanlığını içerir. Hem elektron transferi (kimyasal potansiyel) hem de stabilite (sertlik) hakkında bilgi içerir ve küresel kimyasal reaktivitenin daha iyi tanımlayıcısıdır.

3.2.2.6.Lineer Olmayan Optik Özellikler (NLO)

Dipol moment, bir molekül içinde uygulanan bir elektrik alanı ile ilgili enerji ilk türevi olarak tanımlandığı bir önemli özelliği, temel olarak vb. Van der Waals tipi dipol-dipol kuvvetler olarak moleküller arası etkileşimler üzerinde çalışmak için kullanılan, dipol momenti büyüdükçe, güçlü moleküller arası çekim olacaktır.[75-77]

Tablo 17'te, hesaplanan parametreler, yukarıda tarif edilen elektronik dipol momenti (μ i (i = x, y, z)) ve toplam dipol momenti verilmiştir.

Bipor momente	m(Deeye); (ae	i) i olalisaolini, p	Bileşemen
Parametreler	DFT	Parametreler	DFT
μ _x	0.1962	β_{XXX}	-422.3667
μ _y	0.2051	β_{XXY}	192.8550
μ _z	0.1451	β_{XYY}	-59.3710
μ _(D)	0.3188	β_{YYY}	23.1395
α_{xx}	-236.7402	β_{XXZ}	-67.6338
α_{yy}	-252.9574	β_{XYZ}	-87.9635
α _{zz}	-268.0411	β_{YYZ}	13.5490
α_{XY}	-20.2675	β_{XZZ}	34.4375
α_{XZ}	6.7086	β_{YZZ}	-0.3079
α_{YZ}	14.8068	β_{ZZZ}	-1.1016
α (au)	-252.5795	β (esu)	4.9 x 10 ⁻³⁰

Tablo 17. DFT B3LYP / 6-31G (d, s) Temel Set Kullanılarak Elektrik Hesaplanan Dipol Momentleri(Debye), (au) Polarisability, β Bileşenleri

Daha yüksek dipol momenti, moleküler polarizasyon ve hiperpolarize edilebilirlik değerlerinin daha aktif Doğrusal Olmayan Optik (NLO) özellikleri için önemli olduğu bilinmektedir.

Molekül için hesaplanan dipol momenti Tablo 17'de verilmiştir. Tablo 17, hesaplanan dipol moment değerinin (μ (Debye)) durumunda oldukça yüksek olduğunu göstermektedir.

Ortalama polarizasyon kabiliyeti (α (au)), polarizasyon kabiliyetinin anizotropisi (β (esu)) ve birinci dereceden hiperpolarizasyon kabiliyeti (μ _(D)) olan bazı kuantum kimyasal tanımlayıcıları, birçok hesaplama çalışmasında NLO özelliklerini açıklamak için kullanılmıştır. NLO özellikleri, ortalama polarizasyon kabiliyetini, polarizasyon kabiliyetinin anizotropisini ve birinci dereceden hiperpolarizasyon kabiliyetini artırarak artar. Bu teorik araştırmalar, incelenen moleküllerin doğrusal olmayan davranışlarının mikroskobik kökenini anlamak için yapılmıştır. Bu çalışmada, mevcut bileşiklerin moleküler polarlığı, polarlığın anizotropisi ve moleküler birinci hiperpolarizasyonu araştırılmıştır.

3.2.2.7. Moleküler Elektrostatik Potansiyel Yüzey (MESP)

Moleküler elektrostatik potansiyel yüzeyi MESP, molekülerin şekil, boyut ve elektrostatik potansiyel değerlerini gösterir ve Poliimid (NTDA - DASDA) monomer molekülü için çizilmiştir. Moleküler elektrostatik potansiyel (MESP) haritalaması, moleküler yapının fizikokimyasal özelliklerini araştırmada çok faydalıdır.[78] Molekülün negatif elektrostatik potansiyele sahip bir kısmı elektrofilik atağa hassastır. MESP haritasındaki kırmızı ve mavi bölgeler, negatif ve pozitif potansiyel bölgelere karşılık gelir ve sırasıyla elektron bakımından zengin ve elektron eksikliği olan bölgeleri ifade eder. Yeşil renk bölgesi ise nötr elektrostatik potansiyeli gösterir. Bu çalışmada, moleküler elektrostatik potansiyel (MESP) haritaları, Şekil 28'te gösterildiği gibi Poliimid (NTDA - DASDA) monomer için haritalandırılmıştır.

Şekil 28. Poliimid (NTDA-DASDA) Monomerin DFT Metodu ile Moleküler Elektrostatik Potansiyeli

Poliimid (NTDA-DASDA) monomer durumunda MESP haritası, azot atomlarının etrafında kırmızı renkle karakterize edilen negatif potansiyel bölgelerinin bulunduğunu göstermektedir. Poliimid (NTDA-DASDA) monomer molekülünün azot atomları etrafında nispeten daha büyük bir bölge en negatif potansiyel bölgeyi (koyu kırmızı) temsil eder ve elektrofilik etkileşim için müsaittir. Hidrojen atomu pozitif yükün maksimum kuvvetini taşır (koyu mavi). Aromatik halka bölgesinin çoğunun yeşil renkle temsil edildiği gibi neredeyse nötr bir potansiyel göstermektedir.

3.2.2.8. NBO Analizi

NBO analizi ile molekülün olası en doğru Lewis yapısı, tüm yörüngelere ait ayrıntılı elektron yoğunluğu hakkında araştırma sunar. NBO yöntemi hem molekül içi hem de moleküller arası etkileşme hakkında bilgi veren dolu ve boş orbital etkileşimlerin değerlendirilmesidir. [77, 79]

Bileşiğimize ait NBO analizinde donör-alıcı etkileşimlerini değerlendirmek için ikinci dereceden Fock matrisi yapıldı. Etkileşim sonucu, idealize Lewis yapısının lokalize NBO'sundan boş bir Lewis olmayan yörüngeye doluluk kaybıdır. Her donör (i) ve alıcı (j) için, $i \rightarrow j$ 'nin yer değiştirmesi ile bağlantılı stabilizasyon enerjisi E (2) olarak tahmin edilmektedir.

NBO analizi, bağlar arasındaki molekül içi etkileşime bağlı olarak yük transferini veya yükün yerinden ayrılmasını açıklamak için yapılmıştır ve ayrıca moleküler sistemlerde yük aktarımı veya konjugatif etkileşimi araştırmak için uygun bir temel sağlar. Bazı elektron donörlerinin yörüngesini, alıcı yörüngesini ve ikinci dereceden mikro bozulma teorisinden kaynaklanan etkileşimli stabilizasyon enerjisini bildirmiştir. Stabilizasyon enerji değeri ne kadar büyükse, elektron vericileri ve elektron alıcıları arasındaki etkileşim o kadar yoğundur, yani elektron donörlerinden elektron alıcılarına daha fazla bağış verme eğilimi ve tüm sistemin konjugasyon derecesi o kadar fazladır.

Elektron yoğunluğunun işgal edilmiş Lewis tipi (bağ ya da yalnız çift) NBO orbitalleri ve resmi olarak kullanılmayan (bağlanma önleyici ya da Rydberg) Lewis NBO olmayan orbitaller arasında yer değiştirmesi, dengeleyici bir donör-alıcı etkileşimi anlamına gelir. NBO hesaplaması, bir alt sistemin doldurulmuş yörüngeleri ile başka bir alt

sistemin boş yörüngeleri arasındaki bir ikinci sıradaki etkileşimleri anlamak için teorik hesaplama kullanılmıştır. Bu sonuçlar delokalizasyon ve hiperkonjugasyon ölçümleridir. Analiz edilen sonuçlar Tablo 18 de verilmiştir. C22-C23 π bağının C21-C26grubunda oluşturduğu π *anti bağ enerjisi 18.96 kcal/mol, C22-C23 π bağının C24-C25 grubunda π * anti bağ enerjisi 20.42 kcal/mol olarak hesaplanmıştır. Bu değerler aromatik halkadaki güçlü konjugasyonu göstermektedir. C31-S32 σ bağının S32-O39 grubundaki σ * anti bağ enerjisi 5.09 kcal/mol, S32-O40 σ * anti bağ enerjisi 4.20 kcal/mol şeklindedir.

Tablo 18. Poliimid (NTDA - DASDA) Monomerin Seçilmiş NBO Sonuçları, (TD-DFT B3LYP / 6-31G++ (d, p) Temel Set)

NBO(i)	Tip	ED/e	NBO(j)	Tip	ED//e	E(2) ^a (Kcal/ mol)	E(j)-E(i) ^b (a.u.)	F(i,j) ^c (a.u)
C13-C14	σ	1.97917	C5-C7	σ*	0.03135	2.15	1.25	0.046
			C7-C13	σ*	1.98798	4.01	1.28	0.064
			C11-C12	σ*	0.03167	1.47	1.33	0.040
			C12-C13	σ*	0.01433	2.96	1.26	0.055
			C14-O20	σ*	0.02294	1.02	1.22	0.032
			N15-C22	σ*	0.00945	1.52	1.14	0.037
C14-N15	σ	1.98479	C12-C13	σ*	0.02294	1.94	1.29	0.045
			N15-C22	σ*	0.02532	1.64	1.16	0.039
			C16-O19	σ*	0.00955	1.65	1.25	0.040
			C21-C22	σ*	0.02317	1.91	1.31	0.045
C14-O20	σ	1.99512	C7-C13	σ*	1.98798	1.12	1.62	0.038
			C13-C14	σ*	0.05254	1.60	1.57	0.045
			N15-C16	σ*	0.11679	0.75	1.36	0.029
	π	1.96379	C12-C13	π*	0.32293	5.65	0.37	0.044
			C14-O20	π*	0.29068	0.65	0.35	0.014
			C23-H48	σ*	0.02798	1.14	0.87	0.028
N15-C16	σ	1.98467	C8-C9	σ*	0.02290	1.92	1.28	0.044
			C14-O20	σ*	0.00945	1.61	1.24	0.040
			N15-C22	σ*	0.02532	1.65	1.16	0.039
			C22-C23	σ*	0.38815	1.91	1.29	0.044
N15-C22	σ	1.98711	C8-C16	σ*	0.05280	0.79	1.30	0.029

			C13-C14	σ*	0.05254	0.83	1.31	0.030
			C14-N15	σ*	0.11678	1.07	1.10	0.031
			N15-C16	σ*	0.11679	1.04	1.09	0.031
			C21-C22	σ*	0.02317	1.11	1.36	0.035
			C21-C26	σ*	0.01533	0.83	1.44	0.031
			C22-C23	σ*	0.02590	0.96	1.34	0.032
			C23-C24	σ*	0.02126	0.87	1.44	0.032
C22-C23	σ	1.96706	N15-C16	σ*	0.11679	2.02	0.96	0.040
			N15-C22	σ*	0.02532	0.76	1.08	0.026
			C21-C22	σ*	0.02317	3.18	1.23	0.056
			C21-H47	σ*	0.01967	1.62	1.20	0.039
			C23-C24	σ*	0.02126	3.91	1.30	0.064
			C23-H48	σ*	0.02798	1.48	1.19	0.037
			C24-S27	σ*	0.24124	3.84	0.76	0.051
	π	1.60469	C14-N15	σ*	0.11678	0.73	0.51	0.019
			N15-C16	σ*	0.11679	0.87	0.51	0.020
			C21-C26	π*	0.27469	18.96	0.29	0.068
			C24-C25	π*	0.47981	20.42	0.26	0.066
C31-S32	σ	1.96394	C30-C33	σ*	0.02512	1.70	1.24	0.041
			C31-S32	σ*	0.23752	0.62	0.76	0.021
			S32-O39	σ*	0.19552	5.09	0.77	0.058
			S32-O40	σ*	0.18169	4.20	0.78	0.053
			S32-O41	σ*	0.44982	2.95	0.64	0.043
			C35-C36	σ*	0.01840	2.44	1.26	0.050
			O41-H55	σ*	0.00785	1.08	0.98	0.029
C31-C36	σ	1.97537	C28-C30	σ*	0.02286	2.20	1.27	0.047
			C30-C31	σ*	0.03096	5.50	1.28	0.075
			S32-O39	σ*	0.19552	0.69	0.82	0.022
			C35-C36	σ*	0.01840	2.86	1.31	0.055
			C35-H57	σ*	0.01062	1.70	1.23	0.041
			C36-H54	σ*	0.02046	1.69	1.23	0.041
S32-O39	σ	1.96040	C31-S32	σ*	0.23752	2.18	0.86	0.041
			S32-O39	σ*	0.19552	1.38	0.87	0.032
			S32-O40	σ*	0.18169	5.61	0.88	0.065

			S32-O41	σ^*	0.44982	5.53	0.74	0.064
S32-O40	σ	1.96431	C30-C31	σ^*	0.03096	0.88	1.34	0.031
			C31-S32	σ*	0.23752	1.74	0.87	0.037
			S32-O39	σ^*	0.19552	5.37	0.88	0.064
			S32-O40	σ^*	0.18169	1.16	0.89	0.030
			S32-O41	σ^*	0.44982	5.38	0.75	0.063
S32-O41	σ	1.96812	C30-C31	π^*	0.45789	1.18	0.71	0.029
			C31-S32	σ^*	0.23752	1.52	0.77	0.032
			S32-O39	σ^*	0.19552	4.76	0.77	0.056
			S32-O40	σ*	19552	4.50	0.78	0.055
			S32-O41	σ^*	0.18169	3.39	0.64	0.047
C36-H54	σ	1.97881	C30-C31	σ*	0.03096	3.99	1.06	0.058
			C31-C36	σ*	0.02126	1.73	1.11	0.039
			C34-C35	σ*	0.01655	2.58	1.10	0.048
			C35-C36	σ*	0.01840	1.47	1.09	0.036
O41-H55	σ	1.98798	C31-S32	σ*	0.23752	1.06	0.78	0.027

3.2.3. Poliimid (NTDA - DASDA) DFT Dimer Çalışması

Poliimid (NTDA - DASDA) dimere ait optimize edilmiş temel durum yapısı ve total enerji dönüşümü Şekil 29 ve Şekil 30 da verilmiştir.

Şekil 29. Poliimid (NTDA - DASDA) Dimere Ait Total Enerji Dönüşümü

DFT metodunun B3LPY / 6-31G (d, p) temel seti ile hesaplanan monomer molekülünün optimize edilmiş bağ uzunluğu parametreleri Tablo 19 da listelenmiştir. Poliimid

(NTDA - DASDA) monomer bileşiğinin optimize edilmiş geometriden hesaplanan tüm değerler verilmiştir. Fenil halkalarındaki bütün bağ uzunlukları ve bağ açıları normal aralıktadır. DFT için C- C bağ mesafeleri C58-C63 1.536 Å ve C63-C67 1.400 Å aralığında, C-N için ise bu değerler N59-C58 1.471, C71-N72 1.472 Å anhidrit ve sülfonik asit arasındaki azot atomuna aittir. Bu bağ polimer iskeletini oluşturmaktadır. Molekülün genel yapısı Şekil 30 da verilmiştir.

Şekil 30. Poliimid (NTDA - DASDA) Dimer Molekülünün Optimize Yapı Resmi

Anhidrit gruplarındaki C=O grupları DFT için O74-C58 1.258 Å, C16-O19 1.258 Å aralığında bulunmuştur, çift bağ karakteristiği olarak literatür ile uyumlu olarak çıkmıştır. Kükürt atomlarının oksijen (S-O) ile oluşturduğu bağ mesafeleri optimizasyon sonucu DFT için S84-O94 1.669, S84-O95 1.670, S84-O99 1.874 Å olarak bulunmuştur. Ve molekülün bağ uzunluk gösterimi Şekil 31 de verilmiştir.

Şekil 31. Poliimid (NTDA - DASDA) Dimerin Bağ Uzunlukları

Kükürt atomlarının karbon (S-C) ile oluşturduğu bağ mesafeleri optimizasyon sonucu DFT için C81-S84 1.778 Å, C31-S32 1.779 Å olarak bulunmuştur. Sülfon gruplarındaki O-H bağ uzunlukları DFT için O99-H113 0.959 Å ve O41-H55 0.959 Å aralığında uzanır.

Tablo 19. Poliimid (NTDA - DASDA) Dimer Molekülün Teorik Olarak Elde Edilen Bağ Uzunlukları (Å)

Ato	m grupları	Bağ Uzunlukları DFT	Ator	n grupları	Bağ Uzunlukları DFT
1	O74-C58	1.25822	35	N59-C58	1.47152
2	C58-C63	1.53628	36	C60-O75	1.25833
3	C63-C67	1.40064	37	C60-C61	1.54014
4	H114-N59	0.99917	38	C61-C62	1.39807
5	N59-C60	1.47317	39	C62-C64	1.40111
6	C71-O77	1.25885	40	C71-N72	1.47237
7	N72-C73	1.47234	41	C73-O76	1.25760
8	N72-C79	1.46622	42	C80-H105	1.07045
9	C81-S84	1.77801	43	S84-O95	1.67069
10	S84-O94	1.66915	44	S84-O99	1.87446
11	O99-H113	0.95982	45	C88-S89	1.78074
12	C88-C87	1.40115	46	C88-C93	1.39928
13	S89-O97	1.66927	47	S89-O98	1.68083
14	S89-O96	1.67001	48	O98-H112	0.95982
15	C93-H111	1.07011	49	C91-H110	1.06896
16	C92-N2	1.47112	50	N2-C3	1.47365
17	C3-O18	1.25925	51	N2-C1	1.47264
18	C1-O17	1.25737	52	C1-C6	1.53822
19	C3-C4	1.53948	53	C4-C11	1.40195
20	C11-H45	1.07066	54	C10-H44	1.06970
21	N15-C14	1.47295	55	N15-C16	1.47299
22	N15-C22	1.47182	56	C14-O20	1.25690
23	C16-O19	1.25821	57	C24-S27	1.77990
24	S27-O37	1.66976	58	S27-O38	1.66997
25	S27-O42	1.86431	59	O42-H56	0.95982
26	C30-C31	1.40292	60	C36-C31	1.40341

27	C31-S32	1.77948	61	S32-O39	1.66967
28	S32-O40	1.66967	62	S32-O41	1.91856
29	O41-H55	0.95982	63	C36-H54	1.07002
30	C30-C33	1.40258	64	С33-Н52	1.06994
31	C34-H53	1.06983	65	C33-C34	1.40272
32	C34-C35	1.40046	66	C35-C36	1.40142
33	C35-H57	1.07092	67	C7-C8	1.39975
34	С9-Н43	1.07121	68	C12-H46	1.06992

Tüm C-C-C açıları 119° - 121° arasındadır. DFT için C29-C28-C30 119.337 ve C34-C33-C30 120.121 arasındadır. Bileşikteki N-C-C açısı 112°-121° arasındadır. Molekülün elde edilen bağ açıları Tablo 20 de listelenmiştir.

Tablo 20. Poliimid (NTDA - DASDA) Dimer Molekülün Teorik Olarak Elde Edilen Bağ Açıları (°)

Ato	m grupları Bağ	Açıları DFT	Atom	ı grupları Bağ	Açıları DFT
1	H114-N59-C60	109.22949	37	H114-N59-C58	109.08674
2	N59-C60-O75	119.26329	38	N59-C58-O74	119.48081
3	C58-N59-C60	111.98042	39	O74-C58-C63	119.34923
4	O75-C60-C61	119.52081	40	N59-C60-C61	121.21285
5	C60-C61-C62	120.23781	41	C63-C67-H101	120.01268
6	C70-C71-O77	119.33227	42	O77-C71-N72	119.35364
7	C71-N72-C73	112.02526	43	N72-C73-O76	119.40187
8	C71-N72-C79	109.07117	44	C73-N72-C79	108.94651
9	C80-C81-S84	120.23652	45	C82-C81-S84	119.47229
10	C81-S84-O94	109.33696	46	C81-S84-O95	109.47264
11	C81-S84-O99	67.99990	47	O95-S84-O94	109.46945
12	O94-S84-S99	115.96512	48	O95-S84-O99	132.51433
13	C87-C88-S89	120.09736	49	C93-C88-S89	119.93077
14	C88-S89-O97	109.37153	50	C88-S89-O96	109.58749
15	C88-S89-O98	71.59829	51	O97-S89-O96	109.39502
16	O97-S89-O96	129.81200	52	C88-C93-H111	120.02522
17	C93-C92-N2	119.34876	53	C91-92-93	119.97113
18	C91-C92-N2	120.67996	54	C1-N2-C3	111.67210

19	O17-C1-N2	119.32879	55	O18-C3-N2	119.53338
20	O17-C1-C6	119.48272	56	O18-C3-C4	119.43035
21	O20-C14-C13	119.49513	57	C8-C16-O19	119.52295
22	C8-C16-N15	120.92594	58	C13-C14-N15	121.12831
23	O20-C14-N15	119.37093	59	O19-C16-N15	119.37093
24	C16-N15-C22	109.77033	60	C14-N15-C22	109.44034
25	C23-C24-S27	120.24840	61	C25-C24-S27	119.53912
26	C24-S27-O37	109.54455	62	C24-S27-O38	109.46655
27	O37-S27-O38	109.37606	63	C30-C31-S32	120.03146
28	C36-C31-S32	120.00186	64	C31-S32-O40	109.42480
29	C31-S32-O39	109.41735	65	O40-S32-O39	109.51073
30	C30-C31-C36	119.96665	66	С31-С36-Н54	120.01850
31	H54-C36-C35	119.90356	67	C36-C35-C34	119.99320
32	C36-C35-H57	120.04085	68	H57-C35-C34	119.96588
33	С35-С35-Н53	120.05060	69	C35-C34-C33	119.98672
34	H53-C34-C33	119.96267	70	C34-C33-C30	120.12135
35	H52-C33-C30	120.07287	71	C29-C28-C30	119.33773
36	H50-C28-C29	120.27173	72	С30-С28-Н50	120.39052

DFT için C71-N72-C73 112.025 ve N59-C60-C61 121.212 hesaplanmıştır. DFT poliimid (NTDA-DASDA) DFT için H-C-C açıları H53-C34-C33 119.962- H52-C33-C30 120.072 şeklindedir.

3.2.3.1. Poliimid (NTDA - DASDA) Dimer Molekülün Mulliken Atomik Yükleri

Mulliken atomu DFT metodunun B3LYP / 6-311G (d,p) temel setinde hesaplanmıştır. Elde edilen veriler Şekil 32 ve Tablo 21'de sunulmaktadır. Mulliken yükü dağılımı, DFT metodu için azot atomu N'nin, N59(-0.720), N15(-0.790) olduğunu gösterir.

Şekil 32. Poliimid (NTDA - DASDA) Dimerin Mulliken Atom Yükleri

Bazı C atomlarının pozitif, bazılarının negatif olduğu da gözlenmiştir. Bunlar C58(0.492) ve C66(-0.153) şeklinde hesaplanmıştır. O atomları ise negatiftir. O75 (-0.398), O74-0.398) ve O77 DFT(-0.393) olarak hesaplanmıştır. S atomları da pozitiftir. S84 (1.298) ve S89 (1.298) şeklindedir. H atomları ise H114 (0.356) ve H107 (0.209) olarak hesaplanmıştır.

Ato	m grupları	DFT Atom grupları		n grupları	DFT	
1	O74	-0.398	58	H114	0.356	
2	C58	0.492	59	O75	-0.398	
3	N59	-0.720	60	C64	0.050	
4	C60	0.492	61	C65	0.033	
5	C61	0.030	62	C66	-0.153	
6	C62	0.054	63	C67	-0.156	
7	C63	0.029	64	C68	-0.156	
8	H100	0.196	65	C69	-0.152	
9	H101	0.195	66	C70	0.033	
10	H102	0.196	67	C71	0.495	
11	H103	0.197	68	N72	-0.790	
12	C73	0.496	69	O76	-0.396	
13	O77	-0.393	70	C78	-0.039	
14	C79	0.257	71	H104	0.166	

Tablo 21. Poliimid (NTDA - DASDA) Dimerin Optimize Mulliken Atom Yükleri

15	C80	-0.029	72	H105	0.223
16	C81	-0.411	73	H106	0.175
17	C82	0.151	74	S84	1.298
18	C83	-0.168	75	O94	-0.546
19	H113	0.401	76	O95	-0.544
20	C86	-0.155	77	O99	0.616
21	C85	-0.157	78	H107	0.209
22	C87	0.150	79	H108	0.209
23	C88	-0.418	80	H109	0.175
24	C90	-0.167	81	H110	0.167
25	C91	-0.039	82	H111	0.223
26	C92	0.257	83	S89	1.298
27	C93	-0.029	84	C1	0.496
28	O96	-0.546	85	N2	0.790
29	O97	-0.546	86	C3	0.496
30	O98	-0.615	87	C4	0.035
31	H112	0.401	88	C5	0.051
32	017	-0.392	89	C6	0.035
33	018	-0.394	90	H43	0.197
34	C7	0.050	91	H44	0.198
35	C8	0.036	92	H45	0.197
36	C9	-0.155	93	H46	0.198
37	C10	-0.154	94	C14	0.496
38	C11	-0.154	95	N15	-0.790
39	C12	-0.154	96	C16	0.496
40	C13	0.037	97	O19	-0.393
41	O20	-0.391	98	H47	0.165
42	C21	-0.040	99	H48	0.177
43	C22	0.256	100	H49	0.221
44	C23	-0.030	101	S27	1.298
45	C24	-0.412	102	O37	-0.542
46	C25	0.152	103	O38	-0.544
47	C26	-0.169	104	O42	-0.616
48	H56	0.401	105	C29	0.155

49	C28	0.157	106	H50	0.211
50	H51	0.206	107	C35	-0.113
51	C30	0.126	108	C36	0.102
52	C31	-0.372	109	H52	0.169
53	C33	-0.135	110	H53	0.155
54	C34	-0.113	111	H54	0.212
55	H55	0.400	112	H57	0.156
56	S32	1.292	113	O39	-0.551
57	O40	-0.548	114	O41	-0.616

3.2.3.2. Poliimid (NTDA - DASDA) Dimer Molekülün HOMO ve LUMO Analizi

HOMO, bir elektron donörü olarak işlev görebilecek en dıştaki (en yüksek enerji) orbitaldaki elektronlardır. LUMO, elektronları kabul etmek için yeterli alana sahip olan ve elektron akseptör olarak hareket edebilen en içteki (en düşük enerji) orbitaldir. Şekil 33 DFT metodu ile Poliimid (NTDA - DASDA) dimer için HOMO ve LUMO'nun yoğunluk orbital gösterimidir.

Şekil 33. Poliimid (NTDA - DASDA) Dimer Molekülün DFT İçin HOMO, LUMO Haritaları

Bileşiğin E_{LUMO+1} ve E_{HOMO-1} grafikleride alınmıştır. Şekilden moleküle ait DFT metodu için $E_{HOMO} = -6.7926$ eV $E_{LUMO} = -4.0379$ eV değeri hesaplanmıştır. Diğer orbitalleri için; $E_{HOMO-1} = -6.8130$ eV $E_{LUMO+1} = -3.9479$ eV değeri hesaplanmıştır. HOMO ve LUMO orbitalleri, molekülün diğer türlerle etkileşime girme şeklini belirler. Aynı zamanda band boşluğu, kimyasal reaktivitesini ve kinetik stabilitesini karakterize etmeye yardımcı olur. Küçük bir sınır orbital boşluğu olan bir molekülün polarizasyon, sertlik, elektronegatiflik ve diğer reaktive endekslerinide gösterir. Tablo 22 kimyasal reaktivite endekslerini gösterir.

Moleküler parametreler	$DF^{T}(B3LYP / 6-31G (d, s))$
E _{HOMO} (eV)	-6.7926
$E_{\rm LUMO}~(\rm eV)$	-4.0379
$\Delta E_{\rm HOMO-LUMO}$ (eV)	-2.7547
İyonlaşma potansiyeli, IP (eV)	6.7926
Elektron ilgisi, EA (eV)	4.0379
Elektronegatiflik, χ (eV)	5.4152
Kimyasal potansiyel, μ (eV)	-5.4152
Kimyasal sertlik, η (eV)	1.3773
Kimyasal yumuşaklık, s (eV $^{-1}$)	0.3630
Global elektrofiliklik indeksi, ω (eV)	10.6456

Tablo 22. Poliimid (NTDA - DASDA) Dimer Molekülüne Ait Elektronegatiflik (χ) ve Küresel Elektrofil (ω) vb. Değerleri

3.2.3.3. Lineer Olmayan Optik Özellikler (NLO)

Dipol momenti, bir molekül içinde uygulanan bir elektrik alanı ile ilgili enerji ilk türevi olarak tanımlandığı bir önemli özelliği, temel olarak vb. Van der Waals tipi dipol-dipol kuvvetler olarak moleküller arası etkileşimler üzerinde çalışmak için kullanılan, dipol momenti büyüdükçe, güçlü moleküller arası çekim olacaktır[80].

Tablo 23'te, hesaplanan parametreler, yukarıda tarif edilen elektronik dipol momenti (μ i (i = x, y, z) ve toplam dipol momenti verilmiştir.

Parametreler	DFT	Parametreler	DFT
μ _x	-0.7541	β_{XXX}	1720.0172
μ _v	0.2216	β_{XXY}	477.8660
μ _z	-0.4354	β_{XYY}	-243.0786
μ _(D)	0.8985	β_{YYY}	4.2690
α_{xx}	-465.1810	β_{XXZ}	-202.7597
$\alpha_{\rm vv}$	-556.8280	β_{XYZ}	-39.8139
α _{zz}	-516.5841	β_{YYZ}	-9.4070
α_{XY}	47.3078	β_{XZZ}	159.6239
α_{XZ}	-11.4855	β_{YZZ}	-60.3079
α_{YZ}	-43.4837	β_{ZZZ}	-2.1016
α (au)	-512.8817	β (esu)	1.7 x 10 ⁻³²

Tablo 23. DFT B3LYP / 6-31G (d, s) Temel Set Kullanılarak Elektrik Hesaplanan Dipol Momentleri(Debye), (au) Polarisability, β Bileşenleri

Şekil 34. Poliimid (NTDA - DASDA) Dimerin Teorik Olarak Elde Edilen FT-IR Spektrumu

Şekil 35. Poliimid (NTDA - DASDA) Monomerin Teorik Olarak Elde Edilen TD-DFT UV-VİS Spektrumu

3.2.4. Poliimid (BPDA - DASDA) Semi Empirical(SM) Çalışmalar

3.2.4.1. Poliimid (BPDA - DASDA) Monomerin Geometri Optimizasyonu

Poliimid (BPDA - DASDA) monomerine ait optimize edilmiş temel durum yapısı ve total enerji dönüşümü Şekil 36 da verilmiştir.

Şekil 36. Poliimid (BPDA - DASDA) Monomerin Ve Total Enerji Dönüşümü

SM metodunun PM6 (d, p) temel seti ile hesaplanan monomer molekülünün optimize edilmiş bağ uzunluğu parametreleri Tablo 24 de listelenmiştir. Poliimid (BPDA - DASDA) monomer bileşiğinin optimize edilmiş geometriden hesaplanan tüm değerler verilerek karşılaştırma yapılmıştır. Bu yapının minimum potansiyel enerjiye sahip olduğu anlamına gelir. Fenil halkalarındaki bütün bağ uzunlukları ve bağ açıları normal aralıktadır. C- C bağ mesafeleri 1.328 Å ve 1.534 Å aralığında, C-N için ise bu değerler C2-N39 1.470 ve N39-C38 1.485 Å anhidrit ve sülfonik asit arasındaki azot atomuna aittir. Bu bağ polimer iskeletini oluşturmaktadır. Molekülün genel yapısı Şekil 37 de verilmektedir.

Şekil 37. Poliimid (BPDA - DASDA) Monomerinin Optimize Edilmiş Yapı Resmi

Anhidrit gruplarındaki C=O grupları SM metodu için C38-O44 1.25848 Å, C37-C40 1.53419 Å aralığında bulunmuştur, çift bağ karakteristiği olarak literatür ile uyumlu olarak çıkmıştır. Kükürt atomlarının oksijen (S-O) ile oluşturduğu bağ mesafeleri optimizasyon sonucu SM metodu için S12-O20 1.469, S12-O21 1.669 ve S12-O19 1.469 Å olarak bulunmuştur. Kükürt atomlarının karbon (S-C) ile oluşturduğu bağ mesafeleri optimizasyon sonucu SM metodu için C11-S12 1.780 Å ve C4-S7 1.780 Å olarak bulunmuştur. Sülfon gruplarındaki O-H bağ uzunlukları SM metodu için O21-H54 0.960 Å ve O22-H55 0.959 Å aralığında uzanır.

Tablo 24. Poliimid (BPDA - DASDA) Monomer Molekülün Teorik Olarak Elde Edilen Bağ Uzunlukları (Å)

Atom grupları		Bağ Uzunlukları SM	Ato	m grupları	Bağ Uzunlukları SM	
1	H52-C15	1.07019	35	C4-C5	1.40197	
2	C15-C16	1.40144	36	C2-N39	1.47023	
3	C16-H53	1.06999	37	N39-C38	1.48543	
4	C16-C11	1.40127	38	C38-O44	1.25848	
5	C11-S12	1.78013	39	C38-C36	1.53353	
6	S12-O20	1.46950	40	C36-C37	1.32357	
7	S12-O21	1.66973	41	C37-C40	1.53419	
8	S12-O19	1.46952	42	C40-O43	1.25845	
9	O21-H54	0.96005	43	C40-N39	1.48559	
10	C11-C10	1.40114	44	C36-C35	1.34894	
11	C15-C14	1.40161	45	C35-H62	1.06974	
12	C14-H51	1.06993	46	C35-C34	1.40706	
13	C14-C13	1.40150	47	C34-H61	1.06997	
14	C13-H50	1.07000	48	C34-C33	1.41321	
15	C13-C10	1.40122	49	C33-C32	1.40728	
16	C10-C8	1.54010	50	C32-H60	1.07007	
17	C8-H48	1.07030	51	C32-C37	1.34886	
18	C8-C9	1.35539	52	C33-C30	1.54023	
19	C9-H49	1.07001	53	C30-C31	1.40751	
20	C9-C5	1.53988	54	C31-H59	1.07005	
21	C5-C6	1.40112	55	C31-C26	1.34936	

22	C6-H47	1.07027	56	C26-C25	1.32858
23	C6-C1	1.40045	57	C25-C28	1.34858
24	C1-H45	1.06990	58	C28-H57	1.06998
25	C1-C2	1.40101	59	C28-C29	1.40714
26	C2-C3	1.40230	60	C29-H58	1.06997
27	C3-H46	1.06998	61	C29-C30	1.06997
28	C3-C4	1.40262	62	C26-C27	1.53543
29	C4-S7	1.78035	63	C27-O41	1.25821
30	S7-O17	1.46983	64	C27-N23	1.48159
31	S7-O18	1.46983	65	N23-H56	0.99990
32	S7-O22	1.67008	66	N23-C24	1.48142
33	O22-H55	0.95984	67	C24-O42	1.25838
34	C24-C25	1.53526	68	C25-C26	1.32858

Aromatik halkadaki C-H uzunlukları SM metodu için C3-H46 1.069 Â ve C1-H45 1.069 Â aralığındadır.

Tüm C-C-C açıları 107° - 129° arasındadır. SM metodu için C24-C25-C26 107.860 ve C24-C25-C28 129.617 arasındadır. Bileşikteki N-C-C açıları 102°-117°'de arasındadır. SM metodu için C38-N39-C40 102.797 ve N39-C2-C3 117.546 şeklinde hesaplanmıştır. Ve moleküle ait bağ açıları parametreleri Tablo 25 de listelenmiştir.

Tablo 25. Poliimid (BPDA - DASDA) Monomer Molekülünün Teorik Olarak EldeEdilen Bağ Açıları (°)

Atom grupları		Bağ Açıları SM	Atom	ı grupları	Bağ Açıları SM
1	H56-N23-C24	110.52812	52	O43-C40-C37	125.48449
2	H56-N23-C27	110.40841	53	C40-C37-C36	108.04697
3	N23-C24-O42	125.14942	54	C40-N39-C2	114.43005
4	N23-C27-O41	125.39773	55	N39-C2-C3	117.54615
5	C23-C24-C25	109.37398	56	N39-C2-C1	122.25203
6	C24-C25-C26	107.86009	57	C2-C3-H46	119.68866
7	C25-C26-C27	108.21973	58	C2-C3-C4	120.19763
8	C26-C27-O41	125.18639	59	H46-C3-C4	120.11220

9	O42-C24-C25	125.47642	60	C3-C4-C5	120.30642
10	C25-C26-C31	122.57777	61	C3-C4-S7	120.14973
11	C26-C25-C28	122.51238	62	C4-S7-O17	109.64595
12	C25-C28-H57	121.40711	63	C4-S7-O22	108.99148
13	H57-C28-C29	120.97718	64	C4-S7-O18	109.55836
14	C28-C29-H58	120.33577	65	S7-O22-H55	109.58235
15	H58-C29-C30	120.14355	66	O17-S7-O22	109.41164
16	C25-C28-C29	117.61520	67	O17-S7-O18	109.48437
17	C28-C29-C30	119.52018	68	O18-S7-O22	109.73491
18	C29-C30-C31	120.01050	69	S7-C4-C5	119.54310
19	C30-C31-H59	121.08977	70	C4-C5-C6	120.11895
20	C30-C31-C26	117.74955	71	С5-С6-Н47	120.17616
21	C26-C31-H59	121.16057	72	C47-C6-C1	120.18307
22	C27-C26-C31	129.19648	73	С6-С1-Н45	120.22949
23	C24-C25-C28	129.61775	74	H45-C1-C2	120.29957
24	C30-C33-C34	118.43429	75	C6-C1-C2	119.47044
25	C30-C33-C32	121.31520	76	C1-C2-C3	120.20147
26	С33-С32-Н60	121.60964	77	C6-C5-C9	121.89352
27	C33-C32-C37	117.02951	78	C4-C5-C9	117.98735
28	H60-C32-C37	121.36083	79	С5-С9-Н49	119.02084
29	C32-C36-C37	122.21860	80	C5-C9-C8	121.51567
30	C32-C37-C40	129.72811	81	H49-C9-C8	119.46347
31	C37-C36-C35	123.38490	82	C9-C8-H48	120.69812
32	C37-C36-C38	108.18638	83	H48-C8-C10	120.83274
33	С36-С35-Н62	121.32793	84	C9-C8-C10	118.46891
34	H62-C35-C34	121.38979	85	C8-C10-C13	119.19364
35	C35-C34-H61	119.96105	86	C8-C10-C11	120.79584
36	H61-C34-C33	120.20847	87	C10-C13-H50	120.01670
37	C33-C34-C35	119.83048	88	C10-C13-C14	120.11113
38	C35-C36-C38	128.41954	89	H50-C13-C14	119.87212
39	C36-C38-O44	125.09453	90	C13-C14-H51	120.02324
40	C36-C38-N39	109.83024	91	C13-C14-C15	119.89163

41	O44-C38-N39	125.07386	92	H51-C14-C15	120.08513
42	C38-N39-C2	111.28423	93	C14-C15-H52	120.00999
43	C38-N39-C40	102.79721	94	C14-C25-C16	119.97954
44	N39-C40-O43	125.80927	95	H52-C15-C16	120.01048
45	C15-C16-H53	119.90144	96	H53-C16-C11	119.98529
46	C15-C16-C11	120.11269	97	C16-C11-C10	119.87166
47	C11-C10-C13	120.01048	98	C16-C11-S12	119.60270
48	C10-C11-S12	120.52549	99	C11-S12-O19	109.66978
49	C11-S12-O20	109.64665	100	C11-S12-O21	108.99761
50	O20-S12-O19	109.46893	101	C22-S12-O21	109.49057
51	C21-S12-O19	109.55308	102	S12-O21-H54	109.57920

3.2.4.2. Mulliken Atomik Yükleri (SM PM6)

Mulliken atomu, SM metodunun PM6 seti ile hesaplanan Poliimid (BPDA - DASDA) bileşiği için şarj eder. Mulliken yükü dağılımı elde edilen veriler Şekil 38 ve Tablo 26'da sunulmaktadır. Mulliken yükü dağılımı, SM metodu için amin grubu azot atomu N'nin N23(-0.608), N39(-0.514) olduğunu gösterir.

Şekil 38. Poliimid (BPDA - DASDA) Monomerin Mulliken Atomik Yükleri (PM6)

Bazı C atomlarının pozitif, bazılarının negatif olduğu da gözlenmiştir. Bunlar C4 (-0.550) ve C27 (0.614) şeklinde hesaplanmıştır. Oksijen (O) atomları ise negatiftir. O41 (-0.437), O17 (-0.905) ve O43 (-0.437) hesaplanmıştır. S atomları ise S12 (2.518) ve S7 (2.482) şeklindedir.

Tablo 26. Poliimid (BPDA - DASDA) Monomer Molekülün Mulliken Atomik Yükleri,SM Abinitio PM6 ile Hesaplanmıştır.

Atom grupları		SM	Ato	m grupları	SM
1	O41	-0.437	32	C4	-0.550
2	C27	0.614	33	C5	0.163
3	C26	-0.132	34	C6	-0.202
4	C25	-0.153	35	H45	0.183
5	C24	0.617	36	H46	0.196
6	O42	-0.436	37	H47	0.171
7	N23	-0.608	38	S 7	2.482
8	H56	0.308	39	017	-0.905
9	C28	-0.057	40	018	-0.906
10	C29	-0.151	41	O22	-0.846
11	C30	0.009	42	Н55	0.394
12	C31	-0.093	43	C9	-0.171
13	H57	0.174	44	C8	-0.213
14	H59	0.179	45	H49	0.192
15	H58	0.170	46	H48	0.205
16	C32	-0.092	47	C10	0.239
17	C33	0.017	48	C11	-0.634
18	C34	-0.152	49	S12	2.518
19	C35	-0.050	50	019	-0.888
20	C36	-0.157	51	O20	-0.932
21	C37	-0.133	52	O21	-0.821
22	H60	0.180	53	H54	0.350
23	H61	0.172	54	C13	-0.274
24	H62	0.176	55	C14	0.001
25	C38	0.616	56	C15	-0.257
26	N39	-0.514	57	C16	0.068
27	C40	0.616	58	H50	0.173
28	O43	-0.437	59	H51	0.146
----	-----	--------	----	-----	--------
29	O44	-0.419	60	H52	0.168
30	C1	-0.116	61	H53	0.160
31	C2	0.140	62	C3	-0.059

3.2.4.3. Poliimid (BPDA - DASDA) Monomerin HOMO ve LUMO(SM)

Bir moleküldeki orbitallerle ilgili temel elektronik parametreler en yüksek dolu moleküler orbital (HOMO) ve en düşük boş moleküler orbitaldir (LUMO) ve bunların enerji açığından oluşmaktadır. HOMO, bir elektron donörü olarak işlev görebilecek en dıştaki (en yüksek enerji) orbitaldaki elektronlardır. LUMO, elektronları kabul etmek için yeterli alana sahip olan ve elektron akseptör olarak hareket edebilen en içteki (en düşük enerji) orbitaldir. Şekil 39 SM metodu ile Poliimid (BPDA - DASDA) Monomerin için HOMO ve LUMO'nun yoğunluk orbital gösterimidir.

Şekil 39. Poliimid (BPDA - DASDA) Monomer İçin Ön Molekülün Atomik Orbital Bileşimi

Bunların yanı sıra E_{LUMO+1} ve E_{HOMO-1} grafikleride alınmıştır. Şekilden moleküle ait SM metodu için $E_{HOMO} = -9.5764$ eV, $E_{LUMO} = -2.1059$ eV değeri, hesaplanmıştır. Diğer orbitaller için; SM metodu için $E_{HOMO-1} = -10.1650$ eV $E_{LUMO+1} = -1.7851$ eV değeri hesaplanmıştır. HOMO ve LUMO orbitalleri, molekülün diğer türlerle etkileşime girme şeklini belirler. Tablo 27 kimyasal reaktivite endekslerini gösterir.

Moleküler parametreler	SM
$E_{\rm HOMO}~(\rm eV)$	-9.5764
E_{LUMO} (eV)	-2.1059
$\Delta E_{\text{HOMO-LUMO}}$ (eV)	-7.4705
İyonlaşma potansiyeli, IP (eV)	9.5764
Elektron ilgisi, EA (eV)	2.1059
Elektronegatiflik, χ (eV)	5.8412
Kimyasal potansiyel, μ (eV)	-5.8412
Kimyasal sertlik, η (eV)	7.4705
Kimyasal yumuşaklık, s (eV $^{-1}$)	0.0667
Global elektrofiliklik indeksi, ω (eV)	2.2836

Tablo 27. HOMO ve LUMO, enerji boşlukları ve ilgili (au) Moleküler Özellikleri

Şekil 40. Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen FT-IR Spektrumu

3.2.5. Poliimid (BPDA - DASDA) DFT Çalışmalar

3.2.5.1. Geometri Optimizasyonu

Poliimid (BPDA - DASDA) monomerine ait optimize edilmiş temel durum yapısı ve total enerji dönüşümü Şekil 41' de verilmiştir.

Şekil 41. Poliimid (BPDA - DASDA) Monomerin Total Enerji Grafiği

DFT/ TD-DFT metodunun B3LPY / 6-31G (d, p) temel seti ile hesaplanan monomer molekülünün optimize edilmiş bağ uzunluğu parametreleri Tablo 28 de listelenmiştir. Poliimid (BPDA - DASDA) monomer bileşiğinin optimize edilmiş geometriden hesaplanan tüm değerler verilerek karşılaştırma yapılmıştır. Bu yapının minimum potansiyel enerjiye sahip olduğu anlamına gelir. Fenil halkalarındaki bütün bağ uzunlukları ve bağ açıları normal aralıktadır. DFT ve TD-DFT için sırasıyla C- C bağ mesafeleri 1,366-1,543 Å ve 1,355-1,420 Å aralığında, C-N için ise bu değerler C23-N17 1.469, N17-C18 1.483 Å anhidrit ve sülfonik asit arasındaki azot atomuna aittir. Bu bağ polimer iskeletini oluşturmaktadır. Molekülün genel yapısı DFT VE TD-DFT için sırasıyla Şekil 42 ve Şekil 43 de verilmiştir.

Şekil 42. Poliimid (BPDA - DASDA) Monomerinin DFT Metodu ile Optimize Edilmiş Yapı Resmi

Şekil 43.Poliimid (BPDA - DASDA) Monomerin TD-DFT Metodu ile Optimize Yapı Resmi

Anhidrit gruplarındaki C=O grupları DFT ve TD-DFT için sırasıyla C16-O21 1.260,1.258 Å, C18-O22 1.257,1.258 Å aralığında bulunmuştur, çift bağ karakteristiği olarak literatür ile uyumlu olarak çıkmıştır. Kükürt atomlarının oksijen (S-O) ile oluşturduğu bağ mesafeleri optimizasyon sonucu DFT ve TD-DFT için sırasıyla S37-O38 1.670-1.669, S37-O39 1.670-1.669 S37-O40 1.670-1.670 Å olarak bulunmuştur. Şekil 44 molekülün bağ uzunlukları parametreleri gösterimidir.

Şekil 44. Poliimid (BPDA - DASDA) Monomer Molekülünün Bağ Uzunlukları Kükürt atomlarının karbon (S-C) ile oluşturduğu bağ mesafeleri optimizasyon sonucu DFT ve TD-DFT için sırasıyla C36-S37 1.779-1.780 Å, C27-S41 1.780-1.780 Å olarak bulunmuştur. Sülfon gruplarındaki O-H bağ uzunlukları DFT ve TD-DFT için sırasıyla O40-H60 0.960-0.960 Å ve O44-H61 0.959-0.960 Å aralığında uzanır. Diğer parametreler Tablo 28 de listelenmiştir.

Ato	m Grupları	Bağ Uzunlukları DFT	TD-DFT	Aton	n Grupları	Bağ Uzunlukları DFT	TD-DFT
1	H59-C35	1.06976	1.07005	35	C23-N17	1.46933	1.33692
2	C35-C34	1.40160	1.40358	36	N17-C18	1.48365	1.46631
3	C34-H58	1.07061	1.07054	37	C18-O22	1.25780	1.25880
4	C34-C33	1.40357	1.40076	38	C18-C3	1.53389	1.40237
5	C33-H57	1.07145	1.07015	39	C3-C2	1.36663	1.38678
6	C33-C32	1.40544	1.39930	40	C2-C16	1.53262	1.40297
7	C32-H56	1.07050	1.07107	41	C16-O21	1.26026	1.25835
8	C32-C31	1.40191	1.40112	42	C16-N17	1.48369	1.46564
9	C31-C36	1.40067	1.40145	43	C3-C4	1.34519	1.39261
10	C36-C35	1.40096	1.35727	44	C4-H46	1.06914	1.07042
11	C36-S37	1.77944	1.78083	45	C4-C5	1.41021	1.36727
12	\$37-038	1.67011	1.66999	46	С5-Н47	1.06867	1.06967
13	\$37-039	1.67041	1.66994	47	C5-C6	1.41711	1.42079
14	S37-O40	1.67059	1.67020	48	C6-C1	1.40942	1.40988
15	O40-H60	0.96021	0.96031	49	C1-H45	1.07058	1.06959
16	C31-C30	1.54340	1.39953	50	C1-C2	1.34569	1.38863
17	C30-H55	1.07156	1.06842	51	C6-C7	1.54284	1.54082
18	C30-C29	1.35713	1.35552	52	C7-C8	1.41812	1.41738
19	C29-H54	1.07032	1.06981	53	C8-H48	1.06904	1.06908
20	C29-C26	1.54204	1.40056	54	C8-C9	1.40966	1.40949
21	C26-C25	1.39991	1.40040	55	C9-H49	1.07023	1.07059
22	C25-H52	1.07138	1.06966	56	C9-C10	1.34773	1.34670
23	C25-C24	1.39772	1.35343	57	C10-C11	1.36674	1.36586
24	C24-H51	1.06938	1.06970	58	C11-C12	1.34834	1.34673
25	C24-C23	1.39915	1.40046	59	C12-H50	1.06910	1.07020
26	C23-C28	1.40258	1.40236	60	C12-C7	1.41046	1.40900
27	C28-H53	1.06938	1.06989	61	C10-C13	1.53478	1.53405
28	C28-C27	1.36050	1.35607	62	C13-O20	1.25825	1.25748

Tablo 28. Poliimid (BPDA - DASDA) Monomerine Ait Teorik Olarak Elde Edilen Bağ Uzunlukları (Å)

29	C27-C26	1.40344	1.40024	63	C13-N14	1.48433	1.48441
30	C27-S41	1.78087	1.78037	64	N14-H62	1.00110	1.00039
31	S41-O42	1.67183	1.66994	65	N14-C15	1.48520	1.48489
32	S41-O43	1.67183	1.66910	66	C15-O19	1.25962	1.25829
33	S41-O44	1.66852	1.67086	67	C15-C11	1.53681	1.53359
34	O44-H61	0.95932	0.96035				

Aromatik halkadaki C-H uzunlukları DFT ve TD-DFT için sırasıyla C25-H52 1.071-1.069 Â, C4-H46 1.069-1.070 Â aralığındadır. Poliimid (BPDA - DASDA) DFT ve TD-DFT bağ uzunlukları korelasyon grafiği Şekil 45 de verilmiştir. Regrasyon değeri R=0,96822 bulunmuştur. Bu değer iki metod için uyumlu bir sonucu ifade etmektedir.

Şekil 45. Poliimid (BPDA - DASDA) DFT ve TD-DFT Bağ Uzunlukları Korelasyon Grafiği

Tüm C-C-C açıları 108° - 129° arasındadır. DFT ve TD-DFT için sırasıyla C16-C2-C3 108.002-110.110 ve C18-C3-C4 129.503-128.414 arasındadır. Bileşikteki N-C-C açısı 113°-120°'de arasındadır. Diğer parametreler Tablo 29 da listelenmiştir.

Tablo 29. Poliimid (BPDA - DASDA) Monomer Molekülün Teorik Olarak Elde Edilen Bağ Açıları (°)

Ato	m Grupları	Bağ Açıları DFT	TD-DFT	Atom	ı Grupları	Bağ Açıları DFT	TD-DFT
1	H59-C35-C34	120.07697	119.84377	52	C28-C23-N17	120.13375	120.24484
2	C35-C34-H58	119.98729	119.98763	53	C23-N17-C16	113.78884	126.94675
3	H58-C34-C33	120.03340	120.01796	54	C23-N17-C18	113.39572	126.67388
4	C35-C34-C33	119.97920	119.99439	55	N17-C16-O21	125.31552	126.65583
5	С34-С33-Н57	120.00544	120.15070	56	N17-C18-O22	125.31006	126.63316
6	Н57-С33-С32	119.98319	120.29167	57	C18-N17-C16	102.59240	106.37906
7	C34-C33-C32	120.01135	119.55763	58	O22-C18-C3	125.56007	126.52892
8	C33-C32-H56	120.04682	120.25138	59	O21-C16-C2	125.58562	126.61823
9	C33-C32-C31	119.88162	119.43756	60	N17-C16-C2	109.09885	106.72585
10	H56-C32-C31	120.07149	120.31099	61	N17-C18-C3	109.12972	106.83778
11	C32-C31-C36	119.94655	120.09743	62	C18-C3-C2	108.04747	109.93751
12	C31-C35-C36	120.27968	120.46853	63	C16-C2-C3	108.00299	110.11055
13	H59-C35-C36	120.02199	119.72065	64	C3-C2-C1	122.84538	121.18998
14	C35-C36-S37	120.26375	119.88174	65	C18-C3-C4	129.50313	128.41463
15	C31-C36-S37	119.45638	119.64973	66	C16-C2-C1	129.14853	128.69940
16	O38-S37-O39	107.67121	110.27379	67	C2-C1-H45	121.13245	121.20109
17	O38-S37-O40	110.63415	110.37879	68	C2-C1-C6	117.49644	117.49479
18	O39-S37-O40	110.26555	107.72165	69	H45-C1-C6	121.36967	121.30399
19	C36-S37-O39	109.52666	109.55194	70	C1-C6-C5	119.67811	120.39937
20	C36-S37-O40	109.15686	109.65968	71	C6-C5-H47	120.04002	119.51935
21	C36-S37-O39	109.56548	109.23516	72	H47-C5-C4	120.05324	119.58561
22	S37-O40-H60	109.52150	109.53779	73	C6-C5-C4	119.90655	120.89500
23	C36-C31-C30	119.09294	119.55295	74	C5-C4-H46	121.33311	120.80666
24	C32-C31-C30	120.96030	120.34929	75	H46-C4-C3	121.09687	120.82619
25	C31-C30-C29	118.87357	119.68798	76	C5-C4-C3	117.56988	118.36714

С31-С30-Н55	120.60312	120.14677	77	C4-C3-C2	122.44412	121.64784
H55-C30-C29	120.52320	120.16474	78	C1-C6-C7	120.35502	119.94286
C30-C29-H54	119.53013	119.87775	79	C5-C6-C7	119.96559	119.65777
H54-C29-C26	119.41886	120.00825	80	C7-C12-H50	121.20337	121.20314
C29-C26-C27	120.55926	119.83741	81	H50-C12-C11	121.21100	121.21418
C29-C26-C25	119.54849	120.04276	82	C7-C12-C11	117.58520	117.58268
C26-C27-S41	120.13811	119.61155	83	C12-C11-C10	122.61569	122.65130
C27-S41-O42	110.18175	109.65491	84	C11-C10-C9	122.61216	122.61039
C27-S41-O43	108.96018	109.75317	85	C10-C9-H49	121.25032	121.19760
C27-S41-O44	109.32456	108.98426	86	H49-C9-C8	121.19332	121.25356
O43-S41-O44	110.56638	110.43499	87	C10-C9-C8	117.55636	117.54883
O43-S41-O42	110.19737	107.56176	88	С9-С8-Н48	120.13155	120.07254
S41-O44-H61	109.65312	109.55506	89	H48-C8-C7	119.98201	120.08751
C26-C27-C28	120.27951	119.96493	90	C9-C8-C7	119.88633	119.83994
C27-C28-H53	119.77305	120.08304	91	C11-C10-C13	108.06581	107.98573
C27-C28-C23	120.55656	119.83781	92	C10-C11-C15	107.93796	108.06089
H53-C28-C23	119.66987	120.07909	93	C12-C11-C15	129.44105	129.28129
C28-C23-C24	119.90016	120.06772	94	C9-C10-C13	129.31665	129.39705
C23-C24-H51	120.14262	119.93577	95	C10-C13-O20	125.32762	125.31903
H51-C24-C25	120.32023	120.04049	96	C10-C13-N14	109.43655	109.42809
C23-C24-C25	119.53681	120.02357	97	O20-C13-N14	125.23481	125.25231
C24-C25-H52	120.14261	120.03059	98	C13-N14-H62	113.10252	113.11434
H52-C25-C26	120.15043	120.02445	99	C13-N14-C15	102.51121	102.45630
C24-C25-C26	119.70611	119.94480	100	H62-N14-C15	113.04236	113.11420
C25-C26-C27	119.89132	120.11927	101	C11-C15-O19	125.49594	125.34146
C24-C23-N17	119.96314	119.68664	102	O19-C15-N14	125.17923	125.24974
	C31-C30-H55 H55-C30-C29 C30-C29-H54 H54-C29-C26 C29-C26-C27 C29-C26-C27 C26-C27-S41 C27-S41-O42 C43-S41-O44 O43-S41-O44 C27-C28-C23 C41-O44-H61 C26-C27-C28 C27-C28-C23 C43-S41-O44 C43-S41-O44 C43-S41-O44 C26-C27-C28 C27-C28-C23 C27-C28-C23 C28-C23-C24 C23-C24-H51 H51-C24-C25 C23-C24-C25 C24-C25-H52 C24-C25-C26 C24-C25-C26 C24-C25-C26 C25-C26-C27	C31-C30-H55120.60312H55-C30-C29120.52320C30-C29-H54119.53013H54-C29-C26119.41886C29-C26-C27120.55926C29-C26-C25119.54849C26-C27-S41120.13811C27-S41-O42110.18175C27-S41-O43108.96018C27-S41-O44109.32456O43-S41-O44110.56638O43-S41-O44109.65312C26-C27-C28120.27951S41-O44-H61109.65312C27-C28-H53119.77305C27-C28-C23120.55656H53-C28-C23119.66987C23-C24-H51120.14262H51-C24-C25120.32023C23-C24-C25119.53681C24-C25-C26119.70611C25-C26-C27119.89132C24-C23-N17119.96314	C31-C30-H55120.60312120.14677H55-C30-C29120.52320120.16474C30-C29-H54119.53013119.87775H54-C29-C26119.41886120.00825C29-C26-C27120.55926119.83741C29-C26-C25119.54849120.04276C26-C27-S41120.13811119.61155C27-S41-O42108.96018109.75317C27-S41-O43108.96018109.75317C27-S41-O44109.32456108.98426O43-S41-O44110.56638110.43499O43-S41-O42110.19737107.56176S41-O44-H61109.65312109.55506C26-C27-C28120.27951119.96493C27-C28-H53119.77305120.08304C27-C28-C23120.55656119.83781H53-C28-C23119.66987120.07909C28-C23-C24119.90016120.06772C23-C24-H51120.32023120.04049C23-C24-C25119.53681120.02357H51-C24-C25120.14261120.03059H52-C25-C26119.70611119.94480C24-C25-H52120.15043120.11927C24-C25-C26119.70611119.68664	C31-C30-H55120.60312120.1467777H55-C30-C29120.52320120.1647478C30-C29-H54119.53013119.8777579H54-C29-C26119.41886120.0082580C29-C26-C27120.55926119.8374181C29-C26-C25119.54849120.0427682C26-C27-S41120.13811119.6115583C27-S41-O42110.18175109.6549184C27-S41-O43108.96018109.7531785C27-S41-O44109.32456108.9842686O43-S41-O44110.19737107.5617688S41-O44-H61109.65312109.5550689C26-C27-C28120.27951119.9649390C27-C28-C23120.55656119.8378192H53-C28-C23119.66987120.0790993C28-C23-C24119.90016120.0677294C23-C24-C25119.53681120.0235795H51-C24-C25119.53681120.0235797C24-C25-H52120.14261120.0305998H52-C25-C26119.70611119.94480100C24-C25-H52119.89132120.11927101C24-C23-N17119.96314119.68664102	C31-C30-H55120.60312120.1467777C4-C3-C2H55-C30-C29120.52320120.1647478C1-C6-C7C30-C29-H54119.53013119.8777579C5-C6-C7H54-C29-C26119.41886120.0082580C7-C12-H50C29-C26-C27120.55926119.8374181H50-C12-C11C29-C26-C25119.54849120.0427682C7-C12-C11C26-C27-S41120.13811119.6115583C12-C11-C10C27-S41-O42100.18175109.6549184C11-C10-C9C27-S41-O43108.96018109.7531785C10-C9-H49C27-S41-O44109.32456108.9842686H49-C9-C8O43-S41-O42110.19737107.5617688C9-C8-H48S41-O44-H61109.65312109.5550689H48-C8-C7C26-C27-C28120.27951119.9649390C9-C8-C7C27-C28-H53119.77305120.0830491C11-C10-C13C23-C24-C25119.90016120.0790993C12-C11-C15C33-C24-H51120.14261120.0305998C13-N14-H62H51-C24-C25120.32023120.0404996C10-C13-N14C23-C24-C25120.14261120.0305998C13-N14-H62H51-C24-C25120.14261120.0305998C13-N14-H62H51-C24-C25120.14261120.0305998C13-N14-H62H51-C25-C26119.70611119.94480100H62-N14-C15C24-C25-C26119.70611<	C31-C30-H55120.60312120.1467777C4-C3-C2122.44412H55-C30-C29120.52320120.1647478C1-C6-C7120.35502C30-C29-H54119.53013119.8777579C5-C6-C7119.96559H54-C29-C26119.41886120.0082580C7-C12-H50121.20337C29-C26-C27120.55926119.8374181H50-C12-C11121.21010C29-C26-C25119.54849120.0427682C7-C12-C11117.58520C26-C27-S41120.13811119.6115583C12-C11-C10122.61261C27-S41-O42108.96018109.7531785C10-C9-H49121.25032C27-S41-O44109.32456108.9842686H49-C9-C8117.55636O43-S41-O44109.65312109.5550689H48-C8-C7119.88031C27-C28-H53119.77305120.0830491C11-C10-C13108.05818C27-C28-C23120.55565119.8378192C10-C11-C15109.3166C23-C24-C25120.3202120.0790993C12-C11-C15129.44105C23-C24-C25120.3203120.0790994C9-C10-C13129.31665C23-C24-C25120.3203120.0235797C20-C13-N14125.23481C23-C24-C25120.51661120.035798C13-N14-H62113.04256C23-C24-C25120.51041120.0235797C20-C13-N14125.23481C24-C25-C26120.51041120.0235797C20-C13-N14125.23481

DFT ve TD-DFT için sırasıyla C28-C23-N17 120.133-120.244 ve C23-N17-C18 113.395-126.673 hesaplanmıştır. DFT ve TD-DFT değerleri arasında çok küçük farklar vardır. Poliimid (BPDA - DASDA) DFT ve TD-DFT bağ açıları korelasyon grafiği Şekil 46 da verilmiştir Regrasyon değeri R=0,88242 bulunmuştur. Regrasyon değeri 0.9

dan küçük çıkmıştır ancak yine de bu değer iki metod için uyumlu bir sonucu ifade etmektedir.

Şekil 46. Poliimid (BPDA - DASDA) DFT ve TD-DFT Bağ Açıları Korelasyon Grafiği

3.2.5.2. Mulliken Atomik Yükleri

Mulliken atomu DFT ve TD-DFT metotlarının B3LYP / 6-311G (d,p) temel setinde hesaplanmıştır. Elde edilen veriler sırasıyla Şekil 47,48 ve Tablo 30'da sunulmaktadır. Mulliken yükü dağılımı, DFT/TD-DFT metodu için sırasıyla amin grubu azot atomu N'nin, N17 DFT(-0.902) TD-DFT(-0.876), N14 DFT(-0.771) TD-DFT(-0.772) olduğunu gösterir.

Şekil 47. Poliimid (BPDA - DASDA) Monomerinin DFT Metodu İçin Mulliken Atom Yükleri

Bazı C atomlarının pozitif, bazılarının negatif olduğu da gözlenmiştir. Bunlar C34 DFT(-0.178) TD-DFT(-0.164) ve C18 DFT(0.715) TD-DFT(0.589) şeklinde hesaplanmıştır. O atomları ise negatiftir. O44 DFT(-0.580) TD-DFT(-0.582), O38 DFT(-0.559) TD-DFT(-0.543) ve O43 DFT(-0.547) TD-DFT(-0.526) hesaplanmıştır.

Şekil 48. Poliimid (BPDA - DASDA) Monomerin TD-DFT Metodu İçin Mulliken Atom Yükleri

S atomları ise S37 DFT(1.528) TD-DFT(1.535) ve S37 DFT(1.528) TD-DFT(1.535) şeklindedir. DFT ve TD-DFT değerleri uyumlu çıkmıştır. Molekülün mulliken yük parametreleri Tablo 30 da listelenmiştir. Poliimid (BPDA - DASDA)monomerinin DFT/TD-DFT mulliken korelasyon grafiği Şekil 49 da verilmiştir. R=0,99522

bulunmuştur. Regrasyon değeri 0,9 dan büyük çıkmıştır ancak yine de bu değer iki metod için uyumlu bir sonucu ifade etmektedir.

Ato	m grupları	DFT	TD-DFT	Ator	n grupları	DFT	TD-DFT
1	C31	0.004	0.004	32	O44	-0.580	-0.582
2	C32	-0.169	-0.150	33	H61	0.378	0.386
3	C33	-0.177	-0.176	34	N17	-0.902	-0.876
4	C34	-0.178	-0.164	35	C16	0.716	0.614
5	C35	-0.150	-0.145	36	C18	0.715	0.589
6	C36	-0.496	-0.476	37	C2	-0.031	-0.044
7	H56	0.227	0.242	38	C3	-0.037	-0.046
8	H57	0.206	0.226	39	O21	-0.454	-0.508
9	H58	0.206	0.229	40	O22	-0.467	-0.518
10	H59	0.251	0.267	41	C1	-0.195	-0.191
11	S 37	1.528	1.535	42	C4	-0.191	-0.181
12	O38	-0.559	-0.543	43	C5	-0.172	-0.190
13	O39	-0.542	-0.527	44	C6	0.003	0.006
14	O40	-0.581	-0.581	45	H45	0.228	0.207
15	H60	0.377	0.389	46	H46	0.225	0.200
16	H54	0.252	0.278	47	H47	0.212	0.187
17	H55	0.243	0.290	48	C7	0.001	0.005
18	C29	-0.224	-0.217	49	C8	-0.175	-0.102
19	C30	-0.196	-0.203	50	C9	-0.194	-0.198
20	C23	0.342	0.444	51	C10	-0.043	-0.049
21	C24	-0.197	-0.196	52	C11	-0.038	-0.040
22	C25	-0.168	-0.154	53	C12	-0.199	-0.207
23	C26	0.010	0.007	54	H48	0.207	0.197
24	C27	-0.487	-0.465	55	H49	0.223	0.210
25	C28	-0.172	-0.163	56	H50	0.223	0.213
26	H51	0.249	0.284	57	C15	0.679	0.671

Tablo 30. Poliimid (BPDA - DASDA) Monomerinin Optimize Mulliken Atom Yükleri

27	H52	0.219	0.238	58	C13	0.677	0.663
28	H53	0.291	0.323	59	O20	-0.461	-0.475
29	S41	1.522	1.521	60	O19	-0.460	-0.473
30	O42	-0.546	-0.534	61	N14	-0.771	-0.772
31	O43	-0.547	-0.526	62	H62	0.346	0.337

Şekil 49. Poliimid (BPDA - DASDA) Monomer DFT/TD-DFT Mulliken Korelasyon Grafiği

3.2.5.3.Titreşim Analizleri

3.2.5.3.1. C-H titreşimler

Aromatik yapıdaki C-H germe titreşimleri deneysel olarak 3200 cm⁻¹ seviyelerinde gözlenmiştir. Teorik olarak bakıldığında aromatik halkadaki C24-H51, C28-H53 ve C34-H58 gruplarına ait 3157, 3121 ve 3104 frekanslarında DFT çalışmasında hesaplanmıştır. Monomere ait gerilme titreşimleri Tablo 31 de listelenmiştir.

Sıra No.	Deneysel frekans (cm ⁻¹)	Teorik Dalga frekansı (cm ⁻¹)	TED
	FT-IR	DFT Skala	
1	3250	3274	vO40-H60(100), vO44-H61(100)
2	3200	3157	vC24-H51(99)
3	3150	3121	vC28-H53(100)
4	3100	3104	vC34-H58(28), vC35-H59(65), vC4-H46(67), vC5- H47(28)
5	3000	3096	vC8-H48(25), vC9-H49(70), vC33-H57(34), vC1- H45(88), vC12-H50(10)
6	2960	3083	vC30-H55(14), vC32-H56(36), vC25-H52(97), vC29- H54(90)
7	1710	1744	vO19-C15(42), vO20-C13(39), vO21-C16(44), vO22-C18(34)
8	1610	1633	vC30-C29(59)
9	1570	1584	vC1-C2(18), vC12-C11(25)
10			vC10-C9(10), vC25-C24(20), vC4-C3(32), vC32-
	1560	1577	C33(30), vC11-C10(11), vC8-C7(11)
11	1490	1526	vC34-C35(24), vC36-C31(16), vC33-C34(12)
12	1450	1495	vC26-C27(17), vC23-C28(22), vC2-C3(12)
13	1400	1403	vC28-C27(19)
14	1290	1305	vC6-C5(18)
15	1280	1292	vC35-C36(12), vN17-C23(18), vC7-C6(13)
16	1215	1222	vN14-C15(14), vC29-C26(15)
17	1125	1185	vC5-C4(13), vC3-C18(14), vC31-C30(12)
18	1070	1147	vC9-C8(24)
19	1010	1091	vC24-C23(10), vS37-O38(31), vS37-O39(20)
20	920	1056	vS41-O43(30), vS41-O42(15)
21	900	1005	vN17-C16(15), vN17-C18(11), vN14-C13(30)
22	760	743	vC13-C10(19)
23	650	694	vS37-O40(23), vS41-O44(11)
24		277	vS37-C36(13)

Tablo 31. Poliimid (BPDA - DASDA) Monomerine Ait Gerilme Titreşimleri

Deneysel olarak düzlem-içi bükülme titreşimindeki karbon-hidrojen titreşimleri sırasıyla 3200, 3150, 3100, 3000, 2960 cm⁻¹'de belirlenmiştir. DFT olarak 3157, 3121, 3104, 3096, 3083 cm⁻¹' olarak belirlenmiştir. Deneysel veriler ile DFT sonuçlarının yakın gözlenmiştir. Tüm titreşimler, fonksiyonel grup titreşimlerinden etkilenen beklenen aralıklar içerisinde gözlendi. C-H düzlemi eğme titreşimlerini, normal olarak bölgede 1633-1479 cm⁻¹ aralığında bulundu. Bu durumda, C-H düzlem dışı bükülme titreşimleri 1046-946 cm⁻¹'de bulunur. Tüm bantlar öngörülebilir bölgede bulunur ve bantların çoğu FT-IR'de kuvvetli yoğunlukta gözlenmiştir. Yukarıdaki gözlemlerin bir sonucu olarak, güçlü absorpsiyon enerjisi nedeniyle, C-H bağının moleküler özelliğe aktif olarak katıldığı sonucuna varıldı. DFT deneysel veriler skalalı olarak biraz yüksek çıkmıştır. Ve monomere ait eğilme titreşimleri Tablo 32 de listelenmiştir

Sıra No.	Deneysel frekans (cm ⁻¹)	TED	
	FT-IR	DFT Skala	
1	1710	1726	δC16-N17-C18(10)
2	1610	1633	δН54-С29-С30(11), δН55-С30-С31(15)
3	1510	1526	δH58-C34-C35(13), δC32-C33-C34(10)
4	1495	1495	δC25-C24-C23(14)
5	1450	1479	δH51-C24-C25(15),δH52-C25-C26(24),δH53-C28-C27(17),δH56-C32-C33(28),δH57-C33-C34(10),δH59-C35-C36(18),δH45-C1-C2(12), δH46-C4-C5(10), δH47-C5-C4(13)
6	1400	1453	δН48-С8-С9(14), δН49-С9-С10(13), δН50-С12-С11(13)
7	1310	1315	δH62-N14-C15(77)
8	1200	1222	δC15-N14-C13(15), δC26-C27-C28(10)
9	1070	1171	δC35-C36-C31(10), δH61-O44-S41(50), δH60-O40-S37(63)
10	1060	1099	δC1-C2-C3(11), δC12-C11-C10(18), δC10-C9-C8(11)
11	1010	1037	δC34-C35-C36(15), δC23-C28-C27(11)
12	800	823	δN14-C13-C10(13), δC33-C34-C35(12)
13	690	731	δΟ21-C16-C2(13), δΟ22-C18-C3(11), δC2-C3-C4(15)
14	600	655	δΟ19-C15-N14(12), δΟ20-C13-N14(13)
15		564	δC7-C6-C5(13), δC8-C7-C6(10), δC36-C31-C30(16), δC29-C26- C27(17)
16		471	δO39-S37-O38(16), δO43-S41-O42(30)

Tablo 32. Poliimid (BPDA - DASDA) Monomerine Ait	Eğilme	Titreşimleri
--	--------	--------------

17	371	δΟ38-S37-O40(15), δΟ44-S41-O43(12), δΟ42-S41-O44(29)
18	295	δS37-C36-C35(18), δO40-S37-O39(13), δC18-N17-C23(10), δC4-C3-C18(21)
19	216	δC13-C10-C11(10)
20	76	δN17-C23-C28(17)
21	59	δS41-C27-C28(11), δC30-C29-C26(10)
22	45	δC31-C30-C29(10)

3.2.5.3.2. C-O ve O-H grup titreşimleri

Hidroksil grubuna bağlı olan C-O titreşimi deneysel olarak 1710 cm⁻¹ bölgede gözlemlenmiştir. DFT hesaplamalarında ise 1744 cm⁻¹ olarak tespit edilmiştir. Elde edilen değerler birbiriyle uyumludur.

Hidroksil grubu germe, düzlem içi bükülme ve düzlem dışı bükülme titreşimlerinden oluşur. Genellikle, hidroksil titreşimlerine sahip olacağı 3500-3200 cm⁻¹ aralığında gözlenir. Bu molekülde, 3250 cm⁻¹ gözlenen OH gerilmesine, IR spektrumunda kuvvetli bir yoğunluğa yayvan özelliğe sahiptir. HF ve DFT hesaplarımızda 3724 cm⁻¹ değerlerinde uyumlu olarak hesaplanmıştır. Monomere ait burulma titreşimleri Tablo 33 de sıralanmıştır.

Sıra No.	Deneysel frekans (cm ⁻¹)	Teorik Dalga frekansı (cm ⁻¹)	TED
	FT-IR	DFT Skala	
1	1050	1046	тH51-C24-C25-C26(48), тH53-C28-C27-S41(54), тH52-C25-C26- C27(15), тC25-C24-C23-C28(18), тC24-C23-C28-C27(10)
2	1010	1028	тH56-C32-C33-C34(15), тH57-C33-C34-C35(18), тH58-C34-C35-C36(14), тH59-C35-C36-S37(18), тC32-C33-C34-C35(12)
3	960	987	тH54-C29-C30-C31(45), тH55-C30-C31-C32(36), тH46-C4-C3-C2(25), тH47-C5-C4-C3(20), тH48-C8-C9-C10(14), тH49-C9-C10-C11(19)
4	920	935	тН50-С12-С11-С10(39), тН45-С1-С2-С16(33), тС12-С11-С10- С9(10)
5	700	790	тС6-С5-С4-С3(10), тС15-N14-С13-С10(11), тС33-С3-С35- С36(11), тС34-С35-С36-С31(15)
6	600	696	тС10-С9-С8-С7(24), тН62-N14-С15-С11(92)

Tablo 33. Poliimid (BPDA - DASDA) Monomerine Ait Burulma Titreşimleri

7	436	тС1-С2-С3-С18(30), тС4-С3-С18-N17(12), тС11-С10-С9-С8(20)
8	295	тН60-О40-S37-C36(12)
9	166	тN14-C13-C10-C9(20), тH61-O44-S41-C27(20)
10	111	тО40-S37-C36-C31(10), тС35-C36-C31-C30(13)
11	69	тО44-S41-C27-C26(22)
12	59	тС3-С18-N17-С23(10), тС30-С29-С26-С25(13)
13	38	тС18-N17-C23-C24(12), тС8-C7-C6-C5(19), тС36-C31-C30- C29(12), тС9-C8-C7-C6(10)
14	24	тС7-С6-С5-С4(10), тС31-С30-С29-С26(17)

3.2.5.3.3. C-C titreşimleri

Karbon-karbon germe titreşimleri incelendiğinde aromatik yapı içerisinde C30-C29, C1-C2, 1610 ve 1570 cm⁻¹ deneysel değerler gözlenmiştir. DFT teorik sonuçları 1633-1584 cm⁻¹ değerlerinde uyumlu olarak hesaplanmıştır. İskelet germe titreşimler, tahmin edilen aralık içinde ortaya ve tüm vibrasyonlar bantlar güçlü ise FT-IR orta yoğunlukta görülmektedir. C-C'nin düzlem içi bükülme titreşimi δ C25-C24-C23 (14) 1495 cm⁻¹, δ C1-C2-C3 (11) 1099 cm⁻¹ 'in altında gözlenir.

Mevcut molekülde, düzlem içi titreşimler TC6-C5-C4-C3 (10) 790 cm⁻¹ ve TC10-C9-C8-C7 (24) 696 cm⁻¹ 'de bulunur. Gözlenen titreşimler beklenen bölgededir ve diğer titreşim modlarından etkilenmez. Düzlem dışı bükülme titreşimleri genellikle 700 cm⁻¹ 'in altında gözlenir. C,C düzlemde ve düzlem dışı eğilme titreşimlerinde teorik olarak hesaplanmış ve deneysel ve teorik sonuçlar arasında iyi korelasyon gözlenmiştir. Ayrıntılı olarak atom gruplarına ait düzlem dışı eğilme titreşimleri deneysel FT-IR sonuçları ve teorik sonuçlar karşılaştırmalı olarak Tablo 34 de verilmiştir.

Tablo 34. Poliimid (BPDA - DASDA) Monomerine Ait Düzlem Dışı Eğilme Titreşimleri

Sıra No.	Deneysel frekans (cm ⁻¹)	Teorik Dalga frekansı (cm ⁻¹)	TED
	FT-IR	DFT Skala	
1	800	805	ωO20-N14-C10-C13(13), ωO19-N14-C11-C15(21), ωC13-C9- C11-C10(12)
2	790	790	ωO22-N17-C3-C18(20), ωO21-N17-C2-C16(23), ωC2-C18-C4-

			C3(15)
3	600	624	ωN17-C24-C28-C23(18)
4		497	ωS37-C31-C35-C36(13)
5		382	∞O39-C36-O38-S37(14), ∞O42-C27-O44-S41(11), ∞O38-C36- O40-S37(14)
6		158	ωC16-C18-C23-N17(15) ωC29-C25-C27-C26(), ωO43-C27-O42- S41(), ωS41-C26-C28-C27()

3.2.5.3.4. N-H ve N-C titreşimler

Amino grubunu içeren bileşikler, N-H bağlarının gerilmesi, bükülmesi ve burulma temel modları gösterir. Diaminodifenil bileşiğimize ait N-H yapılarından bir simetrik bir asimetrik bir germe beklenir. Normal olarak, amin grubu titreşimlerindeki ikame edilmiş moleküldeki N-H bağları, FT-IR spektrumunun tüm titreşim düzeninde her zaman güvenilir bir yere yerleştirilir. vb. Sıklıkla, aromatik yapıya bağlı primer aminlerde, N-H germe frekansı, 3500-3100 cm⁻¹ bölgesinde meydana gelir.

N-H makaslama (düzlem içi bükülme) titreşimlerinin karakteristik frekansı 1274-1218 cm⁻¹ aralığında gözlenir.

C23-N17 atom grubuna sahip C-N germe titreşimleri, 1280 cm⁻¹ bölgesinde deneysel olarak gözlenmiştir. Bu araştırmada, N17-C23, N17-C16, atom grubuna sahip C-N germe bantları 1292 cm⁻¹ ve 1005 cm⁻¹ aralığında uyumlu olarak DFT hesaplanmasında bulunmuştur.

Şekil 50. Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen FT-IR Spektrumu

3.2.5.4. NMR Analizleri

NMR spektrumları bir organik moleküllerin NMR kimyasal kaymaları (δ), ilgilenilen moleküllerdeki protonların nükleer manyetik koruyucu tensörlerini tetrametil silandakilerden çıkartarak hesaplanır.

¹³C ve ¹H NMR spektrumlarının analizi, başlıklı moleküllerin kimyasal kaymasına ilişkin DFT hesaplamaları, DFT / B3LYP / 6-311 / G (d, p) seviyelerinde bağımsız bir atomik orbital (GIAO) yöntemiyle ölçüldü. Dimetilsülfoksit (DMSO) açısından kimyasal kaymaların hesaplanmasında izotropik koruma değerleri kullanılmıştır. Poliimid (BPDA -DASDA) monomer ¹H-NMR spektrumları için deneysel ve hesaplanan kimyasal kaymalar, Tablo 36'da verilmiştir. Hesaplanan ¹³C-NMR spektrumunda karbonil grubundaki karbonlar C=O 131.00-135.05 ppm, Aromatik halkadaki karbonlar ise 90-112.76 ppm C=C yapısındaki karbonlar ise 101.98 ppm civarında hesaplanmıştır.

¹H atomları için deneysel olarak gözlemlenen ve teorik olarak hesaplanan kimyasal kaymalar, Poliimid (BPDA - DASDA) monomer molekülü için oldukça düşük aralıktadır. Sülfon grubu içerisinde oksijene bağlı hidrojenler için 4.46-4.47 ppm, aromatik halkaya bağlı hidrojenler 6.12-8.13 ppm ve C=C çifte bağlı hidrojenler ise 7.56-7.64 ppm aralığında gözlenir. ¹H-NMR için DFT yöntemiyle elde edilen deneysel ve teorik kimyasal kaymalar arasındaki lineer korelasyon grafiği Şekil 53 'de gösterilmiştir. Proton kimyasal kaymaların korelasyon katsayısı 0,9382 olduğu görülmektedir. Teorik kimyasal kayma değerlerinin, başlık bileşikleri için deneysel değerlerle iyi bir uyum içinde olduğu görülebilir.

Şekil 51. Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen ¹H-NMR Spektrumu

Şekil 52. Poliimid (BPDA - DASDA) Monomerin Teorik Olarak Elde Edilen ¹³C-NMR Spektrumu

Tablo 35. Poliimid (BPDA - DASDA) Monomerin ¹³C-NMR DFT/TD-DFT (referans= TMS B3LYP/6-311+G(2d,p) GIAO) Kayma Değerleri

Atoms	Shift (ppm)	Atoms	Shift(ppm)
18	135.05	33	98.38
16	134.57	11	97.67
13	131.10	25	97.42
15	131.00	2	96.73
27	112.97	10	96.61
6	112.76	3	95.35

7,36	110.56	35	92.82
30	104.07	34	92.31
31	103.50	4	90.89
23	103.36	1	90.72
26	102.18	9	90.58
29	101.98	12	89.94
32	99.63	24	89.14
5	99.36	28	84.88
8	98.45		

Tablo 36. Poliimid (BPDA - DASDA) Monomerin ¹H-NMR DFT/TD-DFT (referans= TMS B3LYP/6-311+G(2d,p) GIAO) Kayma Değerleri

Atoms	Shift (ppm)	Deneysel	
53	8.91	8,8	
51	8.13	8,4	
54	7.64	7,9	
55	7.56	7,8	
59	6.98	7,4	
56,45	6.84	7,1	
46,50	6.69	7	
49	6.57	6,7	
47	6.49	6,5	
48	6.42	6,4	
52,57	6.27	5,6	
58	6.11	5,4	
61,60	4.46	3,3(yayvan)	
62	4.32	3	_

Şekil 53. Poliimid (BPDA - DASDA) Monomerin Teorik ve Deneysel H-NMR Korelasyon Grafiği

3.2.5.5. HOMO ve LUMO Analizi

Bir moleküldeki orbitallerle ilgili temel elektronik parametreler en yüksek dolu moleküler orbital (HOMO) ve en düşük boş moleküler orbitaldir (LUMO) ve bunların enerji açığıdan oluşmaktadır. HOMO, bir elektron donörü olarak işlev görebilecek en dıştaki (en yüksek enerji) orbitaldaki elektronlardır. LUMO, elektronları kabul etmek için yeterli alana sahip olan ve elektron akseptör olarak hareket edebilen en içteki (en düşük enerji) orbitaldir. Şekil 54 ve 55 DFT ve TD-DFT metodu ile Poliimid (BPDA - DASDA) monomer için HOMO ve LUMO'nun yoğunluk orbital gösterimidir.

Şekil 54. Poliimid (BPDA - DASDA) Monomer Molekülün DFT İçin HOMO, LUMO Haritaları

Ayrıca bileşiğin E_{LUMO+1} ve E_{HOMO-1} grafikleride alınmıştır. Şekilden moleküle ait DFT metodu için $E_{HOMO} = -6.3493$ eV- $E_{LUMO} = -3.0308$ eV değeri, TD-DFT metodu için $E_{HOMO} = -5.5860$ eV- $E_{LUMO} = -3.6589$ eV değeri hesaplanmıştır. Diğer orbitallerin DFT metodu için $E_{HOMO-1} = -7.2106$ eV- $E_{LUMO+1} = -2.5315$ eV değeri, TD-DFT metodu için $E_{HOMO-1} = -7.0340$ eV- $E_{LUMO+1} = -2.7516$ eV değeri hesaplanmıştır. HOMO ve LUMO orbitalleri, molekülün diğer türlerle etkileşime girme şeklini belirler.

Şekil 55. Poliimid (BPDA - DASDA) Monomer Molekülün TD-DFT İçin HOMO, LUMO Haritaları

Aynı zamanda band boşluğu, kimyasal reaktivitesini ve kinetik stabilitesini karakterize etmeye yardımcı olur[81]. Küçük bir sınır orbital boşluğu olan bir molekülün polarizasyon, sertlik, elektronegatiflik ve diğer reaktive endekslerinide gösterir. Tablo 37 kimyasal reaktivite endekslerini gösterir.

Moleküler parametreler	DFT (B3LYP / 6-31G (d, s))	TD DFT
$E_{\rm HOMO}~(\rm eV)$	-6.3493	-5.5860
$E_{\rm LUMO} (eV)$	-3.0308	-3.6589
$\Delta E_{\text{HOMO-LUMO}}$ (eV)	-3.3185	-1.9271
İyonlaşma potansiyeli, IP (eV)	6.3493	5.5860
Elektron ilgisi, EA (eV)	3.0308	3.6589
Elektronegatiflik, χ (eV)	4.6901	4.6224
Kimyasal potansiyel, μ (eV)	-4.6901	-4.6224
Kimyasal sertlik, η (eV)	1.6592	0.9635
Kimyasal yumuşaklık, s (eV $^{-1}$)	0.3013	0.5189
Global elektrofiliklik indeksi, ω (eV)	6.6288	11.0880

Tablo 37. Poliimid (BPDA - DASDA) Monomer Molekülün HOMO, LUMO, enerji Boşlukları (HOMO – LUMO) ve İlgili Moleküler Özelliklerinin Karşılaştırılması

3.2.5.6. Lineer Olmayan Optik Özellikler (NLO)

Dipol moment, bir molekül içinde uygulanan bir elektrik alanı ile ilgili enerji ilk türevi olarak tanımlandığı bir önemli özelliği, temel olarak vb. Van der Waals tipi dipol-dipol kuvvetler olarak moleküller arası etkileşimler üzerinde çalışmak için kullanılan, dipol momenti büyüdükçe, güçlü moleküller arası çekim olacaktır.[78]

Tablo 5'te, hesaplanan parametreler, yukarıda tarif edilen elektronik dipol momenti (μ i (i = x, y, z) ve toplam dipol momenti verilmiştir.

Parametreler	DFT	Parametreler	DFT
μ _x	-3.0994	β_{XXX}	209.9921
μ _v	-2.1855	β _{XXY}	244.6021
μ _z	-0.9141	β _{XYY}	32.4578
μ _(D)	3.9010	β _{YYY}	-5.8212
α_{xx}	-259.9945	β_{XXZ}	-14.4331
α νν	-255.8617	β_{XYZ}	58.2275
α _{zz}	-273.1904	β_{YYZ}	-16.1532
α _{XY}	42.2720	β_{XZZ}	11.4582
α_{XZ}	-5.6870	β_{YZZ}	-3.3079
α _{YZ}	10.9289	β_{ZZZ}	-0.1016
α (au)	-263,0155	β (esu)	3,4 x 10 ⁻³¹

Tablo 38. Poliimid (BPDA - DASDA) Monomer DFT B3LYP / 6-31G (d, s) Temel Set Kullanılarak Elektrik Hesaplanan Dipol Momentleri(Debye), (au) Polarisability, β Bileşenleri

Daha yüksek dipol momenti, moleküler polarizasyon ve hiperpolarize edilebilirlik değerlerinin daha aktif Doğrusal Olmayan Optik (NLO) özellikleri için önemli olduğu bilinmektedir.

Molekül için hesaplanan dipol momenti Tablo 38'de verilmiştir. Tablo 38, hesaplanan dipol moment değerinin (μ (Debye)) durumunda oldukça yüksek olduğunu göstermektedir.

Ortalama polarizasyon kabiliyeti ($\mu_{(D)}$), polarizasyon kabiliyetinin anizotropisi (β (esu)) ve birinci dereceden hiperpolarizasyon kabiliyeti (α (au)) olan bazı kuantum kimyasal tanımlayıcıları, birçok hesaplama çalışmasında NLO özelliklerini açıklamak için kullanılmıştır. NLO özellikleri, ortalama polarizasyon kabiliyetini, polarizasyon kabiliyetini anizotropisini ve birinci dereceden hiperpolarizasyon kabiliyetini artırarak artar. Bu teorik araştırmalar, incelenen moleküllerin doğrusal olmayan davranışlarının

mikroskobik kökenini anlamak için yapılmıştır. Bu çalışmada, mevcut bileşiklerin moleküler polarlığı, polarlığın anizotropisi ve moleküler birinci hiperpolarizasyonu araştırılmıştır.

3.2.5.7. Moleküler Elektrostatik Potansiyel Yüzey (MESP)

Moleküler elektrostatik potansiyel yüzeyi MESP, molekülerin şekil, boyut ve elektrostatik potansiyel değerlerini gösterir ve Poliimid (BPDA - DASDA) monomer molekülü için çizilmiştir. Moleküler elektrostatik potansiyel (MESP) haritalaması, moleküler yapının fizikokimyasal özelliklerini araştırmada çok faydalıdır.[78, 82] Molekülün negatif elektrostatik potansiyele sahip bir kısmı elektrofilik atağa hassastır. MESP haritasındaki kırmızı ve mavi bölgeler, negatif ve pozitif potansiyel bölgelere karşılık gelir ve sırasıyla elektron bakımından zengin ve elektron eksikliği olan bölgeleri ifade eder. Yeşil renk bölgesi ise nötr elektrostatik potansiyeli gösterir. Bu çalışmada, moleküler elektrostatik potansiyel (MESP) haritaları, Şekil 56 da gösterildiği gibi Poliimid (BPDA - DASDA) monomer için haritalandırılmıştır. Poliimid (BPDA -DASDA) monomer durumunda MESP haritası, azot atomlarının etrafında kırmızı renkle karakterize edilen negatif potansiyel bölgelerinin bulunduğunu göstermektedir. Poliimid (BPDA - DASDA) monomer molekülünün azot atomları etrafında nispeten daha büyük bir bölge en negatif potansiyel bölgeyi (koyu kırmızı) temsil eder ve elektrofilik etkileşim için müsaittir. Hidrojen atomu pozitif yükün maksimum kuvvetini taşır (koyu mavi). Aromatik halka bölgesinin çoğunun yeşil renkle temsil edildiği gibi neredeyse nötr bir potansiyel göstermektedir.

Şekil 56. Poliimid (BPDA - DASDA) Monomerin DFT Metodu İle Moleküler Elektrostatik Potansiyeli

3.2.5.8. NBO analizi

NBO analizi ile molekülün olası en doğru Lewis yapısı, tüm yörüngelere ait ayrıntılı elektron yoğunluğu hakkında araştırma sunar. NBO yöntemi hem molekül içi hem de moleküller arası etkileşme hakkında bilgi veren dolu ve boş orbital etkileşimlerin değerlendirilmesidir.

Bileşiğimize ait NBO analizinde donör-alıcı etkileşimlerini değerlendirmek için ikinci dereceden Fock matrisi yapıldı. Etkileşim sonucu, idealize Lewis yapısının lokalize NBO'sundan boş bir Lewis olmayan yörüngeye doluluk kaybıdır. Her donör (i) ve alıcı (j) için, $i \rightarrow j$ 'nin yer değiştirmesi ile bağlantılı stabilizasyon enerjisi E (2) olarak tahmin edilmektedir.

NBO analizi, bağlar arasındaki molekül içi etkileşime bağlı olarak yük transferini veya yükün yerinden ayrılmasını açıklamak için yapılmıştır ve ayrıca moleküler sistemlerde yük aktarımı veya konjugatif etkileşimi araştırmak için uygun bir temel sağlar. Bazı elektron donörlerinin yörüngesini, alıcı yörüngesini ve ikinci dereceden mikro bozulma teorisinden kaynaklanan etkileşimli stabilizasyon enerjisini bildirmiştir. Stabilizasyon enerji değeri ne kadar büyükse, elektron vericileri ve elektron alıcıları arasındaki etkileşim o kadar yoğundur, yani elektron donörlerinden elektron alıcılarına daha fazla bağış verme eğilimi ve tüm sistemin konjugasyon derecesi o kadar fazladır.

Elektron yoğunluğunun işgal edilmiş Lewis tipi (bağ ya da yalnız çift) NBO orbitalleri ve resmi olarak kullanılmayan (bağlanma önleyici ya da Rydberg) Lewis NBO olmayan orbitaller arasında yer değiştirmesi, dengeleyici bir donör-alıcı etkileşimi anlamına gelir[75,80]. NBO hesaplaması, bir alt sistemin doldurulmuş yörüngeleri ile başka bir alt sistemin boş yörüngeleri arasındaki bir ikinci sıradaki etkileşimleri anlamak için teorik hesaplama kullanılmıştır. Bu sonuçlar delokalizasyon ve hiperkonjugasyon ölçümleridir. Analiz edilen sonuçlar Tablo 39 da verilmiştir. C23-C24 π bağının C27-C28 grubunda oluşturduğu π *anti bağ enerjisi 20.08 kcal/mol, C23-C24 π bağının C25-C26 grubunda av anti bağ enerjisi 23.01 kcal/mol olarak hesaplanmıştır. Bu değerler aromatik halkadaki güçlü konjugasyonu göstermektedir. S37-O39 σ bağının S37-O39 grubundaki σ * anti bağ enerjisi 1.45 kcal/mol ve S37-O40 grubundaki σ * anti bağ enerjisi 5.61 kcal/mol şeklindedir.

NBO(i)	Tip	ED/e	NBO(j)	Tip	ED//e	E(2) ^a (Kcal/ mol)	E(j)- E(i) ^b (a.u.)	F(i,j) ^c (a.u)
C10-C11	σ	1.96393	C9-C10	σ*	0.33523	4.59	1.30	0.069
			C9-H49	σ*	0.01274	2.07	1.18	0.044
			C10-C13	σ*	0.07435	1.30	1.14	0.035
			C11-C12	σ*	0.02281	5.00	1.31	0.072
			C11-C15	σ*	0.07622	1.22	1.13	0.033
			C12-H50	σ*	0.01373	2.06	1.18	0.044
			C13-N14	σ*	0.09802	0.76	1.08	0.026
			C13-O20	σ*	0.01012	3.09	1.23	0.055
			N14-C15	σ*	0.09611	0.72	1.08	0.025
			C15-O19	σ*	0.01010	2.97	1.23	0.054
C10-C13	σ	1.97801	C8-C9	σ*	0.01387	1.28	1.25	0.036
			C9-C10	σ*	0.02384	3.25	1.27	0.057
			C10-C11	σ*	0.02944	2.30	1.25	0.048
			C11-C12	σ*	0.02281	3.02	1.28	0.056
			C13-O20	σ*	0.01012	0.69	1.20	0.026
			N14-H62	σ*	0.01412	2.56	1.08	0.047
N14-C15	σ	1.98983	C11-C12	σ*	0.02281	2.38	1.40	0.052
			C13-N14	σ*	0.09802	0.66	1.17	0.025
			C13-O20	σ*	0.01012	2.87	1.32	0.055
			N14-H62	σ*	0.01412	0.68	1.21	0.026
N14-H62	σ	1.99033	C10-C13	σ*	0.07435	1.21	1.10	0.033
			C11-C15	σ*	0.07622	1.26	1.09	0.034
C16-N17	σ	1.98373	C1-C2	σ*	0.02354	3.48	1.29	0.060
			N17-C23	σ*	0.02308	2.01	1.20	0.044
			C18-O22	σ*	0.01206	2.02	1.20	0.044
			C23-C24	σ*	0.02346	2.58	1.28	0.051
C16-O21	σ	1.99599	C2-C3	σ*	0.03167	0.57	1.60	0.027
			C2-C16	σ*	0.05526	1.86	1.59	0.049
C16-O21	π	1.96172	C2-C3	π*	0.44377	6.28	0.37	0.048
C23-C24	σ	1.97354	C16-N17	σ*	0.12352	3.14	0.94	0.050

Tablo 39. Poliimid (BPDA - DASDA) Monomerin Seçilmiş NBO Sonuçları, (TD-DFT B3LYP / 6-31G++ (d, p) Temel Set)

			N17-C23	σ*	0.02308	1.74	1.15	0.040
			C23-C28	σ*	0.02628	3.08	1.20	0.054
			C24-C25	σ*	0.01550	2.89	1.32	0.055
			C24-H51	σ*	0.02778	1.12	1.20	0.033
			C25-H52	σ*	0.01151	1.97	1.17	0.043
			C28-H53	σ*	0.04148	1.36	1.18	0.036
C23-C24	π	1.59966	C25-C26	π*	0.39241	23.01	0.27	0.071
			C27-C28	π*	0.34826	20.08	0.27	0.066
C23-C28	σ	1.96403	N17-C18	σ*	0.13515	3.18	0.90	0.049
			N17-C23	σ*	0.02308	1.36	1.14	0.035
			C23-C24	σ*	0.02346	2.97	1.21	0.054
			C24-H51	σ*	0.02778	1.52	1.19	0.038
			C27-C28	σ*	0.02042	3.71	1.30	0.062
			C27-S41	σ*	0.25660	3.68	0.74	0.049
			C28-H53	σ*	0.04148	1.33	1.18	0.035
S37-O38	σ	1.96551	C31-C36	σ*	0.03473	0.96	1.34	0.032
			C36-S37	σ*	0.24482	1.62	0.87	0.035
			S37-O38	σ*	0.17616	1.18	0.88	0.030
			S37-O39	σ*	0.19702	5.16	0.88	0.063
			S37-O40	σ*	0.44230	5.34	0.74	0.063
\$37-039	σ	1.96019	C36-S37	σ*	0.24482	2.19	0.85	0.041
			S37-O38	σ*	0.17616	5.62	0.87	0.065
			S37-O39	σ*	0.19702	1.45	0.87	0.033
			S37-O40	σ*	0.44230	5.61	0.73	0.064
S37-O40	σ	1.96890	C35-C36	π^*	0.37384	0.98	0.71	0.026
			C36-S37	σ*	0.24482	1.46	0.76	0.032
			S37-O38	σ*	0.17616	4.28	0.78	0.054
			S37-O39	σ*	0.19702	4.78	0.77	0.057
			S37-O40	σ*	0.44230	3.31	0.64	0.046
O40-H60	σ	1.98836	C36-S37	σ*	0.24482	1.02	0.77	0.027
S41-O43	σ	1.96529	C26-C27	σ*	0.03580	0.85	1.33	0.030
			C27-S41	σ*	0.25660	1.60	0.86	0.035
			S41-O42	σ*	0.19945	5.07	0.88	0.062
			S41-O43	σ*	0.16968	1.13	0.89	0.029

3.2.6. Poliimid (BPDA - DASDA)Dimer DFT Çalışması

3.2.6.1. Poliimid (BPDA - DASDA)Dimer Geometri Optimizasyonu

Poliimid (BPDA - DASDA) dimere ait optimize edilmiş temel durum yapısı ve total enerji dönüşümü Şekil 57 ve Şekil 58 de verilmiştir.

Şekil 57. Poliimid (BPDA - DASDA) Dimerin Total Enerji Dönüşümü

DFT metodunun B3LPY / 6-31G (d, p) temel seti ile hesaplanan dimer molekülünün optimize edilmiş bağ uzunluğu parametreleri Tablo 40 da listelenmiştir. Fenil halkalarındaki bütün bağ uzunlukları ve bağ açıları normal aralıktadır. DFT metodu için C- C bağ mesafeleri 1.358-1.543 Å aralığında, C-N için ise bu değerler C23-N17 1.471 ve N17-C16 1.489 Å değerleri anhidrit ve sülfonik asit arasındaki azot atomuna aittir. Bu bağ polimer iskeletini oluşturmaktadır.

Şekil 58. Poliimid (BPDA - DASDA) Dimerin Optimize Edilmiş Yapı Resmi

Anhidrit gruplarındaki C=O grupları DFT metodu için C18-O22 1.258 Å ve C16-O21 1.257 Å aralığında bulunmuştur, çift bağ karakteristiği olarak literatür ile uyumlu olarak çıkmıştır. Kükürt atomlarının oksijen (S-O) ile oluşturduğu bağ mesafeleri optimizasyon sonucu DFT metodu için S37-O38 1.671 Å, S37-O39 1.668 Å ve S37-O40 1.669 Å olarak bulunmuştur. Kükürt atomlarının karbon (S-C) ile oluşturduğu bağ mesafeleri optimizasyon sonucu DFT metodu için S37-C36 1.779 Å ve C72-S86 1.778 Å olarak bulunmuştur. Sülfon gruplarındaki O-H bağ uzunlukları DFT metodu için O40-H106 1.511 Å ve O89-H125 0.733 Å aralığında uzanır.

Atom grupları		Bağ Uzunlukları DFT	Ator	n grupları	Bağ Uzunlukları DFT	
1	S37-O38	1.67111	35	C16-O21	1.25757	
2	S37-O39	1.66820	36	C16-C2	1.54103	
3	S37-O40	1.66975	37	C2-C3	1.36756	
4	S37-C36	1.77953	38	C3-C18	1.52689	
5	O40-H106	1.51123	39	O20-C13	1.25848	
6	C35-C36	1.36036	40	C13-N14	1.48184	
7	C35-H104	1.07132	41	N14-C15	1.48709	
8	C35-C34	1.40365	42	C15-O19	1.25929	
9	C35-H103	1.07021	43	N14-C79	1.47135	
10	C27-S41	1.78094	44	C80-C81	1.35817	
11	S41-O43	1.67106	45	C76-C81	1.40444	

Tablo 40. Poliimid (BPDA - DASDA) Monomerine Ait Teorik Olarak Elde Edilen Bağ Uzunlukları (Å)

12	S41-O44	1.67062	46	H124-C80	1.07033
13	S41-O42	1.66775	47	C81-S82	1.77957
14	O44-H105	0.81717	48	S82-O83	1.67053
15	C27-C28	1.36770	49	S82-O84	1.66921
16	C28-H98	1.07077	50	O84-H126	1.71254
17	C28-C23	1.40911	51	S82-O85	1.67027
18	C23-N17	1.47191	52	C71-C72	1.40985
19	C23-C24	1.39697	53	C72-C73	1.36471
20	N17-C16	1.48951	54	C73-H119	1.06937
21	N17-C18	1.48121	55	C72-S86	1.77880
22	C18-O22	1.25850	56	S86-O87	1.66829
23	S86-O88	1.67164	57	O89-H125	0.73316
24	S86-O89	1.66981	58	C68-N61	1.47169
25	N61-C50	1.48882	59	N61-C62	1.48067
26	C62-O66	1.25725	60	C60-O65	1.25869
27	C60-C46	1.53970	61	C46-C47	1.36608
28	C47-C62	1.52869	62	C47-C48	1.34389
29	C48-H108	1.07084	63	C46-C45	1.35107
30	C45-H107	1.07070	64	C48-C49	1.40729
31	C49-H109	1.07000	65	C55-C59	1.54178
32	C55-C54	1.38041	66	C54-C57	1.53670
33	C57-O64	1.25792	67	C59-O63	1.25891
34	C59-C58	1.54375	68	C58-C57	1.53941

Aromatik halkadaki C-H uzunlukları ise C49-H109 1.070 Â, C45-H107 1.070 Â aralığındadır.

DFT metodu için tüm C-C-C açıları 108° - 126° arasındadır. C46-C47-C62 108.307 ve C55-C59-O63 126.087 arasındadır. Bileşikteki N-C-C açısı 102°-122°'de arasındadır. Tablo 41 bağ uzunlukları parametrelerini vermektedir.

Tablo 41. Poliimid (BPDA - DASDA) Monomerine Ait Teorik Olarak Elde Edilen Bağ

 Açıları(°)

Atom grupları	Bağ Açıları DFT	Atom grupları	Bağ DFT	Açıları

-						
	1	O38-S37-O39	110.21461	37	C36-S37-O39	109.74547
	2	O38-S37-O40	110.47447	38	C35-C36-C31	120.40114
	3	O39-S37-O40	107.72282	39	H104-C35-C36	119.80966
	4	C36-S37-O40	109.44666	40	H104-C35-C34	119.78130
	5	C36-S37-O38	109.21738	41	C35-C34-C33	120.04563
	6	С31-С30-Н100	120.39622	42	H100-C30-C29	120.46199
	7	C26-C27-S41	119.42324	43	C28-C27S41	120.39570
	8	O43-S41-O44	107.67914	44	O43-S41-O42	110.42022
	9	O42-S41-O44	110.25226	45	C27-C28-H98	120.03758
	10	C23-N17-C16	116.08603	46	C23-N17-C18	112.05389
	11	N17-C18-O22	125.16467	47	N17-C16-O21	125.60115
	12	O21-C16-C2	125.59129	48	O22-C18-C3	125.32891
	13	C2-C3-C18	108.28246	49	H90-C1-C2	121.40921
	14	H91-C4-C3	121.21168	50	O19-C15-C11	125.44971
	15	O19-C15-N14	125.42982	51	O20-C13-N14	125.40692
	16	O20-C13-C10	125.34705	52	C13-C10-C11	108.20948
	17	C13-N14-C79	113.70102	53	C15-N14-C79	114.53126
	18	H123-C78-C79	120.27511	54	H124-C78-C80	119.89577
	19	C80-C81-S82	119.45681	55	C76-C81-S82	120.39174
	20	C81-S82-O83	109.23243	56	C81-S82-O84	109.56119
	21	C81-S82-O85	109.60472	57	O83-S82-O84	110.28448
	22	O84-S82-O85	107.85636	58	O83-S82-O85	110.28286
	23	H121-C75-C74	120.72625	59	C71-C72-S86	120.23638
	24	C73-C72-S86	119.59995	60	O88-S86-O87	110.53904
	25	O88-S86-O89	107.69908	61	O89-S86-O87	110.16187
	26	C71-C72-C73	120.16249	62	C69-C68-N61	118.08052
	27	C73-C69-N61	122.05207	63	N61-C62-O66	125.19385
	28	O65- C60-N61	125.55362	64	O65-C60-C46	125.62891
	29	O66-C62-C47	125.41900	65	C60-N61-C62	102.28542
	30	C46-C47-C62	108.30789	66	C45-C46-C47	122.35413
	31	H107-C45-C46	121.38314	67	O64-C57-C54	125.91973
	32	O64-C57-C58	126.07644	68	C55-C59-O63	126.08784

33	O63-C59-C58	125.99860	69	C54-C55-C56	121.67885
34	H113-C58-C57	109.95909	70	H113-C58-C67	108.38111
35	C78-C79-C80	119.95845	71	C76-C77-C78	119.70150
36	H123-C78-C79	120.27511	72	H123-C78-C77	120.42479

DFT metodu için C60-N61-C62 102.285 ve C73-C69-N61 122.052 hesaplanmıştır. Dimer deki O-S-O açıları 107° - 110° arasındadır. O39-S37-O40 107.722 ve O38-S37-O40 110.474 olarak hesaplanmıştır. C-S-O açıları C36-S37-O39 109.745 şeklinde hesaplanmıştır.

3.2.6.2. Mulliken Atomik Yükleri

Mulliken atomik yüklerin hesaplanması, Poliimid (BPDA - DASDA) dimer molekülü için; Mulliken atomu DFT metodunun B3LYP / 6-31G (d,p) temel setinde hesaplanmıştır. Elde edilen veriler Şekil 59 ve Tablo 42'de sunulmaktadır.

Sekil 59. Poliimid (BPDA - DASDA) Dimerin Mulliken Atom Yükleri Fotosu

Mulliken yükü dağılımı, azot atomu N'nin, N61 -0.904, N17 -0.904 olduğunu gösterir. Bazı C atomlarının pozitif, bazılarının negatif olduğu da gözlenmiştir. Bunlar C30 (-0.323) ve C31(0.015) şeklinde hesaplanmıştır. Oksijen (O) atomları ise negatiftir. O38 -0.538, O39 -0.595 olarak hesaplanmıştır. S atomları ise S37 (1.591) ve S41 (1.579) şeklindedir.

Atom grupları		DFT	Ator	n grupları	DFT
1	C30	-0.323	60	H101	0.213
2	C31	0.015	61	H102	0.210
3	C32	-0.155	62	H103	0.212
4	C33	-0.172	63	H104	0.252
5	C34	-0.175	64	C29	-0.137
6	C35	-0.154	65	H99	0.216
7	C36	-0.476	66	H100	0.275
8	S 37	1.591	67	H105	0.406
9	O38	-0.538	68	H96	0.250
10	O39	-0.595	69	H97	0.208
11	O40	-0.619	70	H98	0.292
12	C23	0.347	71	S41	1.579
13	C24	-0.196	72	O42	-0.545
14	C25	-0.166	73	O43	-0.540
15	C26	0.003	74	O44	-0.600
16	C27	-0.503	75	H106	0.415
17	C28	-0.109	76	O21	-0.450
18	C16	0.717	77	O22	-0.466
19	N17	-0.904	78	H90	0.229
20	C18	0.716	79	H91	0.228
21	C1	-0.194	80	H92	0.224
22	C2	-0.030	81	C7	0.004
23	C3	-0.036	82	C8	-0.172
24	C4	-0.189	83	C9	-0.188
25	C5	-0.172	84	C10	-0.034
26	C6	0.006	85	C11	-0.032
27	H93	0.213	86	C12	-0.106

Tablo 42. Poliimid (BPDA - DASDA) Dimer Optimize Mulliken Atom Yükleri

28	H94	0.231	87	C13	0.716
29	H95	0.227	88	N14	-0.902
30	C76	0.014	89	C15	0.719
31	C77	-0.162	90	H122	0.216
32	C78	-0.195	91	H123	0.252
33	C79	0.344	92	H124	0.267
34	C80	-0.175	93	C75	-0.323
35	C81	-0.492	94	C74	-0.136
36	S82	1.582	95	H120	0.215
37	O83	-0.533	96	H121	0.274
38	O84	-0.597	97	H117	0.250
39	O85	-0.620	98	H118	0.207
40	C68	0.347	99	H119	0.292
41	C69	-0.197	100	C60	0.716
42	C70	-0.166	101	N61	-0.904
43	C71	0.003	102	C62	0.715
44	C72	-0.504	103	O65	-0.451
45	C73	-0.170	104	O66	-0.467
46	C45	-0.193	105	H107	0.230
47	C46	-0.031	106	H108	0.225
48	C47	-0.037	107	H109	0.212
49	C48	-0.190	108	C54	-0.025
50	C49	-0.172	109	C55	-0.022
51	C50	0.003	110	C56	-0.191
52	C51	0.002	111	H110	0.207
53	C52	-0.174	112	H111	0.222
54	C53	-0.184	113	H112	0.222
55	C57	0.444	114	O63	-0.448
56	C58	-0.410	115	O64	-0.450
57	C59	0.445	116	H113	0.265
58	C67	-0.524	117	H114	0.218
59	H116	0.203	118	H115	0.217

3.2.6.3. HOMO ve LUMO Analizleri

Şekil 60 DFT metodu ile Poliimid (BPDA - DASDA) dimer için HOMO ve LUMO'nun yoğunluk orbital gösterimidir.

Şekil 60. Poliimid (BPDA - DASDA) Dimer Molekülün DFT İçin HOMO, LUMO Haritaları

Ayrıca bileşiğin E_{LUMO+1} ve E_{HOMO-1} grafikleride alınmıştır. Şekilden moleküle ait DFT metodu için $E_{HOMO} = -6.6604$ eV $E_{LUMO} = -3.3492$ eV değeri hesaplanmıştır. Diğer orbitaller için; DFT metodu için $E_{HOMO-1} = -6.8141$ eV $E_{LUMO+1} = -3.0594$ eV değeri hesaplanmıştır. Ve Tablo 43 kimyasal reaktivite endekslerini gösterir.

Moleküler parametreler	DFT(B3LYP / 6-31G (d, s))			
$E_{\rm HOMO}~({\rm eV})$	-6.6604			
$E_{\rm LUMO}~({\rm eV})$	-3.3492			
$\Delta E_{\text{HOMO-LUMO}}$ (eV)	-3.3112			
İyonlaşma potansiyeli, IP (eV)	6.6604			
Elektron ilgisi, EA (eV)	3.3492			
Elektronegatiflik, χ (eV)	5.0048			
Kimyasal potansiyel, μ (eV)	-5.0048			

Tablo 43. BPDA - DASDA) Dimer Molekülüne Ait Elektronegatiflik (χ) ve Küresel Elektrofil (ω) vb. Değerleri
Kimyasal sertlik, η (eV)	1.6556
Kimyasal yumuşaklık, s (eV $^{-1}$)	0.3020
Global elektrofiliklik indeksi, ω (eV)	7.5646

3.2.6.4. Lineer Olmayan Optik Özellikler (NLO)

Dipol moment, bir molekül içinde uygulanan bir elektrik alanı ile ilgili enerji ilk türevi olarak tanımlandığı bir önemli özelliği, temel olarak vb. Van der Waals tipi dipol-dipol kuvvetler olarak moleküller arası etkileşimler üzerinde çalışmak için kullanılan, dipol momenti büyüdükçe, güçlü moleküller arası çekim olacaktır.

Tablo 44'te hesaplanan parametreler, yukarıda tarif edilen elektronik dipol momenti (μ i (i = x, y, z) ve toplam dipol momenti verilmiştir.

Tablo 44. DFT B3LYP / 6-31G (d, s) Temel Set Kullanılarak Elektrik Hesaplanan Dipol Momentleri(Debye), (au) Polarisability, β Bileşenleri

Parametreler	DFT	Parametreler	DFT
μ _x	6.8345	β_{XXX}	3373.0817
μ _y	0.3157	β_{XXY}	-246.8421
μ _z	4.4565	β_{XYY}	-124.0118
$\mu_{(D)}$	8.1652	β _{YYY}	94.6027
α_{xx}	-394.6594	β_{XXZ}	1061.9546
α_{yy}	-557.5822	β_{XYZ}	-16.5239
α _{zz}	-562.7621	β_{YYZ}	61.9923
α_{XY}	197.0794	β_{XZZ}	-66.9466
α_{XZ}	0.2198	β_{YZZ}	-5.3079
α_{YZ}	-5.3258	β_{ZZZ}	-3.1016
α (au)	-505.0012	β (esu)	3.3×10^{-31}

Şekil 62. Poliimid (BPDA - DASDA) Monomerin TD-DFT UV Spektrumu

4. SONUÇ

Yapılan çalışmada poli kondenzasyon kullanılarak sentezlenen poliimidlerin teorik analizi gerçekleştirilmiştir. Yüksek performanslı polimer elektrolit membran yakıt hücresi için yüksek iletkenliğe ve iyi stabiliteye sahip olan proton değişim membranı olarak kullanılmaya uygundur. Yakıt hücresi membranları üzerinde etkili olan poliimid, SPI, kopoliimid membranlarının tasarımını içermektedir. Poliimid bazlı yakıt hücre membranları ticari Nafion membranına göre çeşitli avantajlara sahip olsa da, hala bazı dezavantajlar vardır. Modifiye edilmiş poliimid yakıt hücre membranlarının pratik kullanımını engelleyen en önemli problem, su dengesinin olmamasıdır.

Çalışma konusu olan poliimidler son zamanlardaki literatür raporları, silika, titanya, seramik ve karbon nanofiller içeren poliimid kompozit membranlarına uygunluğa sahiptir. Bu membranlar yakıt hücresi operasyonu için iyi sonuçlar göstermektedir. Katkı maddeleri yakıt hücresi performansını sadece optimum su alımında değil, aynı zamanda gözenek yapısını ayarlayarak ek proton taşıma yolu sunar. Bununla birlikte, poliimid kompozit membranlarının geleceği sadece yeni yapısal tasarımlara dayanmakla kalmaz, aynı zamanda kompozit membran çalışmaları gerektirmektedir. Sentezlenen SPDI lar PEMFC nin Nafion gibi güçlü membranlara rakip olabilir. Bu araştırma teorik analizi ve deneyselin karşılaştırması içermektedir.

Sonuç olarak elde edilmiş poliimidlerin başlangıç maddeleri kolay ve ucuz temin edilebileceği, proton iletme kapasitesinin bulunabileceği veya artırılabileceği gibi özellikleri dikkate alındığında membran olarak kullanılabilme potansiyelleri mevcuttur. Aromatik poliimidler termal, mekanik ve elektriksel özelliklerinin ve kimyasal dirençlerinin çok iyi olmasından dolayı yüksek performans polimerleri sınıfına dahil edilmektedirler. Bu polimerlerin en önemli dezavantajı çözünürlüklerinin az olmasıdır. Geleceğin enerji kaynağı olacak olan yakıt pilleri için elde edilmesi planlanan polimer membranların ülkemiz ekonomisine önemli katkı sağlayacağı tahmin edilmektedir.

Sentezlenen poliimidler oligomerik yapıdadır. Teorik çalışmalar monomer-dimer üzerinde çalışılarak polimer zinciri hakkında bilgi alınmıştır. Polimer zincirlerinde tekrarlanan monomer sayısı çok fazla olduğundan gerek bilgisayar kapasitesi gerek bilgisayar kullanım zamanı bakımından uygun değildir. Monomer birimleri 58 ve 62 atomdan oluşmaktadır. Dimer olarak bakıldığında ise 120 civarında her iki molekülü kapsar. Mevcut olan program ve bilgisayar gücü daha fazlasını çalıştırmakta ama çok zaman gerektirmektedir. Daha önce polimer üzerinde yapılan DFT çalışmaları tekrarlanan birimlerin çok az bir miktarda HOMO ve LUMO enerjilerine etki etmektedir. 0.10-0.20 eV civarındaki bu değişiklik göz önüne alınarak polimer zinciri için oluşumu ve geçerli sonuçlar öngörülebilir.

Polimer ağırlıklı DFT çalışmalarının tamamında bu çalışma düzeni öngörülmektedir. DFT çalışmaları ile deneysel çalışmaları iyi bir uyum sergilemektedir. Monomer-dimer polimerin modeli olarak değerlendirilir. Yapıda tekrarlanan bağ çeşitleri incelenerek uzun zincirdeki bağ karakterizasyonu tespit edilir. Kondenzasyon tipi bir polimerizasyonla elde edilen poliimitlere ait geometrik optimizasyonların monomerik ve oligomerik ortibal enerji seviyeleri, HOMO, LUMO, naturel bağ analizleri (NBO) harmonik hareket sonucu oluşan titreşim frekans değerleri incelenmiştir. Elde edilen sonuçlar deneysel sonuçlar ile karşılaştırılmıştır.

Polimer modelleme hızlı büyüyen bir alandır. Öncelikli olarak uzmanlık alanı olmaya devam etmektedir, çünkü tercih edilen yöntemler ve mevcut yöntemlerin kısıtlamaları hala değişmektedir, bu nedenle araştırmacının sürekli olarak yeni gelişmelerden haberdar kalması gerekmektedir. Alternatif yöntemlerin zorluğundan dolayı grup katkısı ve QSPR yöntemleri alanın temelini oluşturmuştur. Bununla birlikte, mezoskala ve diğer yığın simülasyonları daha yaygın hale gelmektedir. Araştırmacılara önce hangi özelliklerin hesaplanması gerektiğini düşünmeleri ve daha sonra bu özellikler için mevcut olan yöntemleri ve yazılım paketlerini keşfetmeleri önerilir.

5. KAYNAKLAR

- 1. Daud, W.R.W., et al., *PEM fuel cell system control: A review*. Renewable Energy, 2017. **113**: p. 620-638.
- 2. Wu, H.-W., A review of recent development: Transport and performance modeling of PEM fuel cells. Applied Energy, 2016. **165**: p. 81-106.
- Park, S., J.-W. Lee, and B.N. Popov, A review of gas diffusion layer in PEM fuel cells: Materials and designs. International Journal of Hydrogen Energy, 2012. 37(7): p. 5850-5865.
- 4. Arshad, A., et al., *Energy and exergy analysis of fuel cells: A review*. Thermal Science and Engineering Progress, 2019. **9**: p. 308-321.
- 5. Araya, S.S., et al., *A comprehensive review of PBI-based high temperature PEM fuel cells.* International Journal of Hydrogen Energy, 2016. **41**(46): p. 21310-21344.
- 6. Chen, H., et al., *Mechanism analysis of starvation in PEMFC based on external characteristics*. International Journal of Hydrogen Energy, 2019. **44**(11): p. 5437-5446.
- 7. Guerrero Moreno, N., et al., *Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost.* Renewable and Sustainable Energy Reviews, 2015. **52**: p. 897-906.
- 8. Ramadhani, F., et al., *Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey.* Renewable and Sustainable Energy Reviews, 2017. **76**: p. 460-484.
- 9. Wu, J. and X. Liu, *Recent Development of SOFC Metallic Interconnect*. Journal of Materials Science & Technology, 2010. **26**(4): p. 293-305.
- 10. *AFC Energy to build Surrey fuel cell microgrid*. Fuel Cells Bulletin, 2017. **2017**(7): p. 1.
- 11. *AFC Energy making progress on fuel cell system at Southern Oil.* Fuel Cells Bulletin, 2018. **2018**(12): p. 6.
- 12. Zhang, Y., et al., *Coagulation performance and mechanism of polyaluminum ferric chloride (PAFC) coagulant synthesized using blast furnace dust.* Separation and Purification Technology, 2015. **154**: p. 345-350.
- 13. Zhang, Y., et al., *Synthesis, purification and characterization of polyaluminum ferric chloride (PAFC) with high (Al+Fe)b content.* Separation and Purification Technology, 2015. **146**: p. 311-316.
- 14. Antolini, E., *The stability of molten carbonate fuel cell electrodes: A review of recent improvements.* Applied Energy, 2011. **88**(12): p. 4274-4293.
- 15. Wee, J.-H., *Carbon dioxide emission reduction using molten carbonate fuel cell systems*. Renewable and Sustainable Energy Reviews, 2014. **32**: p. 178-191.
- 16. Kim, D.J., M.J. Jo, and S.Y. Nam, *A review of polymer–nanocomposite electrolyte membranes for fuel cell application*. Journal of Industrial and Engineering Chemistry, 2015. **21**: p. 36-52.
- 17. Neburchilov, V., et al., *A review of polymer electrolyte membranes for direct methanol fuel cells.* Journal of Power Sources, 2007. **169**(2): p. 221-238.
- 18. Damo, U.M., et al., Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy. Energy, 2019. **168**: p. 235-246.

- 19. Ashok, R.S., Y.B. Shtessel, and M. Ghanes, *Sliding Mode Control of Hydrogen Fuel Cell and Ultracapacitor Based Electric Power System: Electric Vehicle Application.* IFAC-PapersOnLine, 2017. **50**(1): p. 14794-14799.
- 20. Shen, Z., et al., *Efficient purification and chemical energy recovery from urine by using a denitrifying fuel cell.* Water Research, 2019. **152**: p. 117-125.
- 21. Yue, M., et al., *Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies.* International Journal of Hydrogen Energy, 2019. **44**(13): p. 6844-6861.
- 22. Cheng, X., et al., A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. Journal of Power Sources, 2007. 165(2): p. 739-756.
- 23. Goñi-Urtiaga, A., D. Presvytes, and K. Scott, *Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review.* International Journal of Hydrogen Energy, 2012. **37**(4): p. 3358-3372.
- 24. Zhang, L., et al., *Recent advances in proton exchange membranes for fuel cell applications*. Chemical Engineering Journal, 2012. **204-206**: p. 87-97.
- 25. Omrani, R. and B. Shabani, *Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells.* International Journal of Hydrogen Energy, 2019. **44**(7): p. 3834-3860.
- 26. Lipkowitz, K.B. and T.R. Cundari, *Reviews in Computational Chemistry* 25. 2007: p. 6-451.
- 27. Tsipis, A.C., *DFT flavor of coordination chemistry*. Coordination Chemistry Reviews, 2014. **272**: p. 1-29.
- 28. Albert, R. and W.M. Malone, *Semi-empirical calculation of reactivity ratios*. 1973. **42**(1): p. 245-255.
- 29. Williams, C.I., M.A. Whitehead, and B.J. Jean-Claude, *A semi-empirical and ab initio study of diazoazole cycloaddition reactions with ethyne, ynamine, and cyanoethyne*. Journal of Molecular Structure: THEOCHEM, 1999. **491**(1): p. 103-121.
- 30. Hobza, P., et al., Ability of empirical potentials (AMBER, CHARMM, CVFF, OPLS, Poltev) and semi-empirical quantum chemical methods (AM1, MNDO/M, PM3) to describe H-bonding in DNA base pairs; comparison with ab initio results. Chemical Physics Letters, 1996. **257**(1): p. 31-35.
- 31. Posada, F., P. Malfreyt, and J.L. Gardette, *Hydrogen abstraction from poly(propylene) and poly(propylene oxide) by hydroxyl radicals: a computational quantum semi-empirical study.* Computational and Theoretical Polymer Science, 2001. **11**(2): p. 95-104.
- 32. Meng, Z., A. Dölle, and W. Robert Carper, *Gas phase model of an ionic liquid: semi-empirical and ab initio bonding and molecular structure.* Journal of Molecular Structure: THEOCHEM, 2002. **585**(1): p. 119-128.
- 33. Figeys, H.P. and P. Dedieu, An improved semi-empirical Hückel-method for the study of physico-chemical properties of aromatic systems. Theoretica chimica acta, 1967. **9**(1): p. 82-91.
- Kupka, T., β-Lactam antibiotics. Spectroscopy and molecular orbital (MO) calculations: Part I: IR studies of complexation in penicillin-transition metal ion systems and semi-empirical PM3 calculations on simple model compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1997. 53(14): p. 2649-2658.

- 35. Wu, W., S.-j. Zhong, and S. Shaik, *VBDFT(s): a Hückel-type semi-empirical* valence bond method scaled to density functional energies. Application to linear polyenes. Chemical Physics Letters, 1998. **292**(1): p. 7-14.
- 36. Cundari, T.R., J. Deng, and W. Fu, *PM3(tm) parameterization using genetic algorithms*. International Journal of Quantum Chemistry, 2000. **77**(1): p. 421-432.
- 37. Young, D.C., Compftational Chemistry a Practical Guide for Applying Techniques to Real-World Problems. John Wiley & Sons, Inc., 2001: p. 307-318.
- 38. Petke, J.D., J.L. Whitten, and A.W. Douglas, *Gaussian Lobe Function Expansions of Hartree–Fock Solutions for the Second-Row Atoms*. The Journal of Chemical Physics, 1969. **51**(1): p. 256-262.
- 39. Tinland, B., An AB initio SCF LCAO MO study of the electronic structure of ammonia. Chemical Physics Letters, 1968. **2**(7): p. 433-434.
- 40. Kansız, S. and N. Dege, Synthesis, crystallographic structure, DFT calculations and Hirshfeld surface analysis of a fumarate bridged Co(II) coordination polymer. Journal of Molecular Structure, 2018. **1173**: p. 42-51.
- 41. Chumakov, Y., et al., *Quantum chemical studies of spin crossover polymers: Periodic DFT approach.* Polyhedron, 2009. **28**(9): p. 1955-1957.
- 42. Liu, Y. and H. Liu, Development of 3D polymer DFT and its application to molecular transport through a surfactant-covered interface. 2018. **64**(1): p. 238-249.
- 43. Kim, J., et al., *Kohn–Sham approach for fast hybrid density functional calculations in real-space numerical grid methods*. Computer Physics Communications, 2018. **230**: p. 21-26.
- 44. Nardo, V.M., et al., *SERS and DFT study of indigo adsorbed on silver nanostructured surface*. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018. **205**: p. 465-469.
- 45. Rezania, J., et al., *Synthesis and DFT calculations of some 2-aminothiazoles*. Journal of Molecular Structure, 2018. **1157**: p. 300-305.
- 46. Farag, A.M. and A.M. Fahim, *Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives.* Journal of Molecular Structure, 2019. **1179**: p. 304-314.
- 47. Möhle, K. and H.-J. Hofmann, Stability Order of Basic Peptide Conformations Reflected by Density Functional Theory. Molecular modeling annual, 1998.
 4(2): p. 53-60.
- 48. Wu, J., *Density functional theory for chemical engineering: From capillarity to soft materials.* AIChE Journal, 2006. **52**(3): p. 1169-1193.
- 49. Scharoch, P. and M. Winiarski, *An efficient method of DFT/LDA band-gap correction*. Computer Physics Communications, 2013. **184**(12): p. 2680-2683.
- 50. Rai, D.P., et al., *A comparative study of a Heusler alloy Co2FeGe using LSDA and LSDA+U*. Physica B: Condensed Matter, 2012. **407**(18): p. 3689-3693.
- 51. Touia, A., M. Ameri, and I. Ameri, *Synthesis, crystal structure and physical properties of the thulium filled skutterudite TmFe4P12 under the effect of the pressure: LDA and LSDA calculation.* Optik, 2015. **126**(21): p. 3253-3259.
- 52. Gallego-Planas, N. and M.A. Whitehead, *The molecular structure of pentasila* and pentagerma [I.I.I] propellanes from relativistic self-interaction corrected density functional theory with Vosko-Wilk and Nusair correlation: the LSD-SIC-

VWN-R theory. Journal of Molecular Structure: THEOCHEM, 1997. **391**(1): p. 51-60.

- 53. Gupta, V.P., Chapter 5 Density Functional Theory (DFT) and Time Dependent DFT (TDDFT), in Principles and Applications of Quantum Chemistry, V.P. Gupta, Editor. 2016, Academic Press: Boston. p. 155-194.
- 54. •, A.K.-K.T.P., M.G.P.H.R. •, and M.K. Shukla, *Handbook of Computational Chemistry*. 2012: p. 3-2565.
- 55. Cui, M., et al., *An ab initio study of C40, C40+, C40H4, Nb+@C40, Nb+C39 and Nb+@C40H4 clusters.* Chemical Physics Letters, 1999. **309**(5): p. 344-350.
- 56. Magalhães, A.L., *Gaussian-Type Orbitals versus Slater-Type Orbitals: A Comparison.* Journal of Chemical Education, 2014. **91**(12): p. 2124-2127.
- 57. Zhao, H., et al., *The binding of calcium ion with different groups of superplasticizers studied by three DFT methods, B3LYP, M06-2X and M06.* Computational Materials Science, 2018. **152**: p. 43-50.
- 58. El Ibrahimi, B., et al., Theoretical evaluation of some α-amino acids for corrosion inhibition of copper in acidic medium: DFT calculations, Monte Carlo simulations and QSPR studies. Journal of King Saud University - Science, 2018.
- 59. Van den Akker, H.E.A., *Lattice Boltzmann simulations for multi-scale chemical engineering*. Current Opinion in Chemical Engineering, 2018. **21**: p. 67-75.
- 60. Sasanuma, Y., Intramolecular Interactions of Polyethers and Polysulfides, Investigated by NMR, Ab Initio Molecular Orbital Calculations, and Rotational Isomeric State Scheme: An Advanced Analysis of NMR Data, in Annual Reports on NMR Spectroscopy. 2003, Academic Press. p. 213-280.
- 61. Pochylski, M., et al., *Molecular orientation in binary liquid mixtures from excess Cotton-Mouton constant*. Journal of Molecular Liquids, 2016. **224**: p. 146-150.
- 62. Woźniak, Z. and M.S. Kaczmarek, *Molecular parameters describing intermolecular interactions in the electrooptical Kerr effect.* Journal of Molecular Liquids, 2007. **130**(1): p. 108-111.
- 63. Boyle, L.L., *On the Cotton-Mouton effect of a liquid*. Chemical Physics Letters, 1967. **1**(9): p. 404-406.
- 64. Gómez, E.d.V., L.B. Avalle, and M.C. Gimenez, *Percolation of hydrogen atoms* adsorbed on Cu(100) surfaces: DFT, Monte Carlo and finite size scaling techniques. International Journal of Hydrogen Energy, 2019. **44**(14): p. 7083-7094.
- 65. Martin-Bragado, I., et al., *Kinetic Monte Carlo simulation for semiconductor processing: A review.* Progress in Materials Science, 2018. **92**: p. 1-32.
- 66. Duan, X., et al., *Monte Carlo study on a complex of cationic polymers and anionic lipid monolayer*. Polymer, 2016. **104**: p. 138-148.
- 67. Professor Jonathan Hirst, U.o.N., Nottingham, UK, *Simulating Enzyme Reactivity Computational Methods in Enzyme Catalysis.* 2017: p. 4-558.
- 68. Jensen, F., Introduction to Computational Chemistry. 2017: p. 5-661.
- 69. Qiao, J. and W. Zhao, *Efficient technique for ab-initio calculation of magnetocrystalline anisotropy energy*. Computer Physics Communications, 2019. **238**: p. 203-213.

- 70. Pokluda, J., et al., *Ab initio calculations of mechanical properties: Methods and applications.* Progress in Materials Science, 2015. **73**: p. 127-158.
- 71. Chen, Z., et al., *Multiscale modeling and simulations of responsive polymers*. Current Opinion in Chemical Engineering, 2019. **23**: p. 21-33.
- 72. Tashiro, K. and M. Gakhutishvili, *Crystal structure of cellulose-iodine complex*. Polymer, 2019.
- Tailer S., et al., Monitoring the glass transition temperature of polymeric composites with carbon nanotube buckypaper sensor. Polymer Testing, 2017. 57: p. 12-16.
- 74. Jorge, S., J.J. Freire, and A. Rey, On the use of the gaussian chain as a monte carlo simulation model for the equilibrium properties of polymer solutions. 1997. **6**(1): p. 271-286.
- 75. Bhuvaneswari, R., et al., Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), NBO, HOMO and LUMO analysis of morpholinium oxalate by density functional method. Journal of Molecular Structure, 2018. **1173**: p. 188-195.
- 76. Suvitha, A., S. Periandy, and P. Gayathri, *NBO*, *HOMO–LUMO*, *UV*, *NLO*, *NMR and vibrational analysis of veratrole using FT-IR*, *FT-Raman*, *FT-NMR spectra and HF–DFT computational methods*. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. **138**: p. 357-369.
- 77. Doust Mohammadi, M. and M. Hamzehloo, *The adsorption of bromomethane* onto the exterior surface of aluminum nitride, boron nitride, carbon, and silicon carbide nanotubes: A PBC-DFT, NBO, and QTAIM study. Computational and Theoretical Chemistry, 2018. **1144**: p. 26-37.
- 78. Binoy, J., M.K. Marchewka, and V.S. Jayakumar, *The 'partial resonance' of the ring in the NLO crystal melaminium formate: Study using vibrational spectra, DFT, HOMO–LUMO and MESP mapping.* Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. **104**: p. 97-109.
- 79. Safia, H., et al., Density functional theories study of the interactions between host β-Cyclodextrin and guest 8-Anilinonaphthalene-1-sulfonate: Molecular structure, HOMO, LUMO, NBO, QTAIM and NMR analyses. Journal of Molecular Liquids, 2019. 280: p. 218-229.
- 80. Sharma, K., et al., Spectroscopic behavior, FMO, NLO and NBO analysis of two novel aryl boronic acid derivatives: Experimental and theoretical insights. Journal of Molecular Structure, 2019. **1181**: p. 474-487.
- 81. Priya, M.K., et al., *Molecular Structure, Spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) Analysis, HOMO-LUMO Energies, Mulliken, MEP and Thermal Properties of New Chalcone Derivative by DFT Calculation.* Materials Today: Proceedings, 2019. **8**: p. 37-46.
- 82. Arivazhagan, M., et al., *The spectroscopic (FT-IR, FT-Raman), MESP, first* order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 1,5dimethyl napthalene by density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. **131**: p. 636-646.

6. EK ŞEKİLLER

Ek Şekil 4. 1,4,5,8-Naftalentetrakarboksilik Dianhidrit ile Poilimid SPI-1 FT-IR Spektrumu

Ek Şekil 6. 1,4,5,8-Naftalentetrakarboksilik Dianhidrit ile Poilimid SPI-1 ¹H-NMR Spektrumu

Ek Şekil 7. 3,3',4,4'-Bifeniltetrakarboksilik Dianhidrit ile Poilimid SPI-2 ¹H-NMR Spektrumu

Ek Şekil 9. 3,3',4,4'-Bifeniltetrakarboksilik Dianhidrit ile Poilimid SPI-2 UV-VIS Spektrumu

Şekil 10. Poliimid (NTDA – DASDA) in TGA Grafiği

Şekil 12. Poliimid (BPDA – DASDA) in TGA Grafiği

ÖZGEÇMİŞ

Ad-Soyad	: GÜNEŞ ULUÇAY NEMLİ	
Doğum Tarihi	: 14.02.1992	
Doğum Yeri	: KARS	
Medeni Hali	: Evli	
Yabancı Dili	: İngilizce	
Öğrenim Durumu	:	
Lise	: 2005-2010 Kars Cumhuriyet Lisesi	
Lisans	: 2010-2014 Fırat Üniversitesi Mühendislik Fakültesi	
Kimya Mühendisliği Bölümü		
Yüksek Lisan	s : 2015-2019 Kafkas Üniversitesi Fen Bilimleri	
	Enstitüsü Biyomühendislik Anabilim Dalı	

 Ümit YILDIKO, İsmail ÇAKMAK, Güneş ULUÇAY NEMLİ, "Synthesis And Characterization Polyimide (BPDA - DASDA) Via Condensation Polymerization Technique And Density Functional Theory (DFT) Analysis" International Turkic World Congress on Science and Engineering, 17-18 June 2019, Niğde - Turkey

