

T.C. KAFKAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

2-,3-,4-AMİNOFENİLBORONİK VE 4-AMİNO-2-,3-X-FENİLBORONİK ASİT (X= F, Cl) MOLEKÜLLERİNİN YAPISAL PARAMETRELERİ, TİTREŞİM SPEKTRUMLARI, ELEKTRONİK VE LİNEER OLMAYAN OPTİK ÖZELLİKLERİN DENEYSEL VE TEORİK OLARAK İNCELENMESİ

Yusuf TAZEGÜL

YÜKSEK LİSANS TEZİ

DANIŞMAN

Dr. Öğr. Üyesi Güventürk UĞURLU

HAZİRAN-2019

KARS

T.C. KAFKAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

2-,3-,4-AMİNOFENİLBORONİK VE 4-AMİNO-2-,3-X-FENİLBORONİK ASİT (X= F, Cl) MOLEKÜLLERİNİN YAPISAL PARAMETRELERİ, TİTREŞİM SPEKTRUMLARI, ELEKTRONİK VE LİNEER OLMAYAN OPTİK ÖZELLİKLERİN DENEYSEL VE TEORİK OLARAK İNCELENMESİ

Yusuf TAZEGÜL YÜKSEK LİSANS TEZİ

DANIŞMAN

Dr. Öğr. Üyesi Güventürk UĞURLU

Bu tez çalışması 2015-FM-21 nolu proje ile Bilimsel Araştırma Projeleri Koordinasyonu birim tarafından desteklenmiştir.

HAZİRAN-2019

KARS

T.C Kafkas Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı Yüksek Lisans öğrencisi Yusuf TAZEGÜL'ün Dr. Öğr. Üyesi Güventürk UĞURLU'nun danışmanlığında yüksek lisans tezi olarak hazırladığı "2-,3-,4-aminofenilboronik asit ve 4-amino-2-,3-X-fenilboronik asit (X= F, CI) moleküllerinin yapısal parametreleri, titreşim spektrumları, elektronik ve lineer olmayan optik özelliklerin deneysel ve teorik olarak incelenmesi" adlı bu çalışma, yapılan tez savunması sınavı sonunda jüri tarafından Lisansüstü Eğitim Yönetmeliği uyarınca değerlendirilerek oy birliği ile kabul edilmiştir.

26,06/2019

Adı ve Soyadı

Başkan	:	Dr. Öğr. Üyesi Güventürk UĞURLU
Üye	:	Doç. Dr. Engin ATEŞER
Üye	:	Dr. Öğr. Üyesi Gülçin CENGİZ

Amulul Squarker Pul

Bu tezin kabulü, Fen Bilimleri Enstitüsü Yönetim Kurulunun/2019 gün ve/....sayılı kararı ile onaylanmıştır.

Doç. Dr. Fikret AKDENİZ

Enstitü Müdürü

ETİK BEYAN

Kafkas Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,
- Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,
- Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,
- Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- > Bu tezde sunduğum çalışmanın özgün olduğunu,

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

Yusuf TAZEGÜL

.../.../2019

ÖZET

(Yüksek Lisans Tezi)

2-,3-,4-AMİNOFENİLBORONİK VE 4-AMİNO-2-,3-X-FENİLBORONİK ASİT (X= F, CI) MOLEKÜLLERİNİN YAPISAL PARAMETRELERİ, TİTREŞİM SPEKTRUMLARI, ELEKTRONİK VE LİNEER OLMAYAN OPTİK ÖZELLİKLERİN DENEYSEL VE TEORİK OLARAK İNCELENMESİ

Yusuf TAZEGÜL

Kafkas Üniversitesi

Fen Bilimleri Enstitüsü

Fizik Anabilim Dalı

Danışman: Dr. Öğr. Üyesi Güventürk UĞURLU

Bu tez çalışmasında fenilboronik asit türevlerinden oluşan; 2-aminofenilboronik asit (I), 3-aminofenilboronik asit(II), 4-aminofenilboronik asit (III), 4-amino-2florofenilboronik asit (IV), 4-amino-3-florofenilboronik asit (V), 4-amino-2klorofenilboronik asit (VI) ve 4-amino-3-klorofenilboronik asit moleküllerinin (VII) serisi çalışılmıştır. İncelenen moleküllerin potansiyel enerji yüzeyleri DFT-B3LYP / 6-31G yöntemi ile hesaplanmıştır. Her bir molekül için, elde edilen en düşük enerji konformasyonlar hem Yoğunluk Fonksiyonel Teorisi (DFT/ BFTLYP) hem de *ab initio* Hartree-Fock (HF) metotlarında 6-311 ++ G (d, p) temel seti kullanılarak optimize edilmiştir. Çalışılan moleküllerin elektronik enerji, titreşim frekansı, dipol momenti (μ), polarizebilite (α), hiperpolarizebilite (β), en yüksek dolu moleküler orbital (HOMO) ve en düşük boş moleküler orbital (LUMO) değerleri her iki yöntemde hesaplanmıştır. 3aminofenilboronik asit molekülünün FT-IR ve FT-Raman spektrumları deneysel olarak da kaydedildi. I, II, III, IV V, VI ve VII moleküllerinin dipol moment değerleri DFT-B3LYP / 6-311 ++ G (d, p) yönteminde sırasıyla 0.37, 1.48, 2.84, 3,46, 3.14, 3.45 ve 3.28 Debye ve HF / 6-311 ++ G (d, p)de ise 0.35, 1.39, 2.57, 3.09, 3.11, 3.01 ve 3.38 Debye olarak hesaplandı. 2-aminofenilboronik asit (I), 3-aminofenilboronik asit(II), 4aminofenilboronik asit (III) moleküllerinin toplam enerji dağılımları (TED) VEDA4f programı kullanılarak yapıldı. Teorik olarak hesaplanan yapı parametreleri değerleri literatürdeki deneysel verilerle kararlaştırılmıştır. Tüm hesaplama çalışmaları Gaussian 09W programı ile yapılmıştır.

Anahtar Kelimeler: 3-aminofenilboronik, Hiperpolarizebilite, DFT, HOMO-LUMO. 2019, 157 Sayfa

ABSTRACT

(M. Sc. Thesis)

THE STRUCTURAL PARAMETERS, VIBRATION SPECTRA, ELECTRONIC and NONLINEAR OPTICAL PROPERTIES of 2-, 3-, 4- AMINOPHENYL BORONIC ACID and 4- AMINO-2-,3-X-PHENYL BORONIC ACID INVESTIGATE EXPERIMENTALLY and THEORETICALLY

Yusuf TAZEGÜL

Kafkas University

Graduate School of Applied and Natural Sciences

Department of Physics

Supervisor: Assistant Professor Güventürk UĞURLU

In this thesis study, a series of phenylboronic acid derivatives; 2-aminophenylboronic (I), 3-aminophenylboronic (II) 4-aminophenylboronic (III), 4-amino-2-fluorophenylboronic acid (IV), 4-amino-3-fluorophenylboronic acid (V), 4-amino-2-chlorophenylboronic acid (VI) and 4-amino-3-chlorophenylboronic acid molecule (VII), were studied. The potential energy surfaces of studied molecules have been calculated using DFT-B3LYP/6-31G level of theory. For each molecule, the lowest energy conformation obtained was optimized both Density Functional Theory (DFTwith B3LYP) and ab initio Hartree-Fock (HF) methods using the 6-311++G (d,p) basis set.

The electronic energy, vibrational frequency, the dipole moment (μ), polarizability (α), the hyperpolarizability (β), highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) values of studied molecules have been computed in the both methods. The FT-IR and FT-Raman spectra of 3-aminophenylboronic acid molecule was recorded experimentally. The dipole moment of I, II, III, IV V, VI and VII molecules have been calculated as 0.37, 1.48, 2.84, 3,46, 3.14, 3.45 and 3.28 Debye with DFT-B3LYP/6-311++ G (d,p), and 0.35, 1.39, 2.57, 3.09, 3.11, 3.01 and 3.38 Debye with HF/6-311++G (d,p)level of theory, respectively. Total energy distributions (TED) of 2-aminophenylboronic (I), 3-aminophenylboronic (II) 4-aminophenylboronic (III) were calculated to find the vibration modes by using VEDA4f program. The values of structure parameters calculated theoretically are agreed with the Gaussian 09W program.

Key Words: 3-aminophenylboronic, Hyperpolarizability, DFT, HOMO-LUMO.2019, 157 pages

ÖNSÖZ

Bu çalışmada Kafkas Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim dalında yüksek lisans tezi olarak hazırlanmıştır.

Çalışmada, 2-aminofenilboronik asit, 3-aminofenilboronik asit, 4-aminofenilboronik asit, 4-amino-2-florofenilboronik asit, 4-amino-3-florofenilboronik asit, 4-amino-2-klorofenilboronik asit ve 4-amino-3-klorofenilboronik asit moleküllerini, GAUSSİAN 09W paket programı ve Hartree Fock (HF) ve Yoğunluk Fonksiyonel Teorisi (DFT/B3LYP) metotlarında 6-311++G(d,p) temel seti kullanılarak yapılan hesaplamalarda moleküllerin sahip olduğu denge durumu molekül yapıları, denge enerjileri, yapısal parametreleri, titreşim spektrumları, elektronik ve lineer olmayan optik özelliklerin deneysel ve teorik olarak incelenmesi amaçlanmıştır.

Tez çalışmamda emeği geçen, bilgi birikimi ve tecrübesiyle bana her zaman destek olan danışmanım ve değerli hocam Sayın Dr. Öğr. Üyesi Güventürk UĞURLU 'ya ve bölümümdeki tüm hocalarıma teşekkürlerimi sunarım.

Ayrıca, okul dönemim boyunca maddi ve manevi desteklerini esirgemeyen aileme de sonsuz teşekkürlerimi sunarım.

Yusuf TAZEGÜL

İÇİNDEKİLER

ÖZET	Sayfa
ABSTRACT	
ÖNSÖZ	vii
İÇİNDEKİLER	viii
ŞEKİLLER DİZİNİ	xi
TABLOLAR DİZİNİ	xiv
ÇİZELGELER DİZİNİ	xvi
SİMGELER VE KISALTMALAR DİZİNİ	xvii
1. GİRİŞ	1
1.1 Moleküler Titreşim Spektroskopisi	5
2.1 Moleküler Titreşimler	6
1.1.2 İnfrared (Titreşim) Spektroskopisi	10
1.1.2.1 Klasik Kuram	
1.1.2.2 Kuantum Kuramı	12
1.1.3 Raman Spektroskopisi	
1.1.4 Çok Atomlu Moleküllerin Titreşimleri	15
1.1.4.1 Moleküllerde Titreşim Türleri	17
1.1.4.1.1 Gerilme Titreșimi (stretching)	17
1.1.4.1.2 Açı Bükülme Titreşimleri (bending)	17
1.1.4.1.3 Düzlem Dışı Açı Bükülme Titreşimi (out of plane ber	nding)18
1.1.5 Grup Frekansları	19
1.1.5.1 Grup Frekanslarına Etkiyen Faktörler	21
1.1.5.1.1 Molekül İçi Etkiler	22
1.1.5.1.2 Molekül Dışı Etkiler	23
1.2. Kimyasal Hesaplamalar	25
1.2.1 Moleküler Mekanik Yöntemler	

	1.2.2 Elektronik Yapı Yöntemleri	27
	1.2.2.1 Yarı-Deneysel Yöntemler	27
	1.2.2.2 Ab-İnitio Yöntemler	28
	1.2.3 Çok Parçacık Problemi	29
	1.2.3.1 Born-Oppenheimer Yaklaşımı	30
	1.2.4 Hartree-Fock Yaklaşımı	32
	1.2.4.1 Varyasyon Metodu	36
	1.2.5 Yoğunluk Fonksiyoneli Teorisi (DFT)	36
	1.2.5.1 Hohenberg-Kohn Teoremleri	37
	1.2.5.2 Kohn-Sham Transformassyonu	41
	1.2.6 B3LYP Karma Yoğunluk Fonksiyonu Teorisi	44
	1.2.7 Temel Setler	45
	1.2.8 Molekül Geometrisi ve Optimizasyonu	47
	1.2.8.1 Potansiyel Enerji Yüzeyi (PEY)	48
	1.2.8.2 Doğrusal ve Doğrusal Olmayan Optik Özellikler (NLO)	50
	1.2.8.3 Polarizebilite ve Hiperpolarizebilite	52
	1.2.8.4 İndüklenmiş Dipol Moment	52
	1.2.8.5 Bağıl Enerji ve Torsiyon Potansiyeli	52
	1.2.8.6 Moleküler Elektrostatik Potansiyel (MEP)	53
	1.2.8.7 Homo Lumo Enerji Farkı	54
2	MATERYAL VE METOT	55
	2.1 Metot	55
	2.2 Materyal	56
3	. HESAPLAMA SONUÇLARI	62
	3.1 Potansiyel Enerji Yüzeyleri (PEY)	62
	3.2 Yapısal Parametreler	72

3.3 Titreşim Frekansları	77
3.4 Molekülün Titreşim Dalga Sayıları ve İşaretlemeleri	
3.5 Homo-Lumo Enerji Farkları	
3.6 Moleküller Elektrostatik Potansiyel (MEP)	
4. SONUÇ VE TARTIŞMA	
5. KAYNAKLAR	
6. EKLER	
ÖZGEÇMİŞ	

ŞEKİLLER DİZİNİ

Sayfa
Şekil 1.1 İki atomlu bir molekül için elektronik, titreşim ve dönme geçişleri7
Şekil 1.2 Rayleigh, Stokes, Anti-Stokes saçılması şiddet pikleri15
Şekil 1.3 (a) Simetrik gerilme ve (b) Asimetrik gerilme17
Şekil 1.4 Moleküllerde Titreşim Türleri19
Şekil 1.5 Grup frekansları bölgesi ve parmak izi bölgesi
Şekil 1.6 İki Boyutta Potansiyel Enerji Yüzeyi (PEY)
Şekil 1.7 Potansiyel enerji eğrisindeki maksimum ve minimum noktaların karakteristiği
(Burada g gradyant, k kuvvet sabitidir.)
Şelil 2.1 Aminofenilboronik asit molekülü ve türevlerinin (C2=H2N / C3=H2N /
C4=H2N) kimyasal gösterimi
Şekil 2.2 2-aminofenilboronik asit molekülünün konfigürasyonu
Şekil 2.3 2-aminofenilboronik asit molekülünün SCAN konfigürasyonu57
Şekil 2.4 3-aminofenilboronik asit molekülünün konfigürasyonu
Şekil 2.5 3-aminofenilboronik asit molekülünün SCAN konfigürasyonu
Şekil 2.6 4-aminofenilboronik asit molekülünün konfigürasyonu
Şekil 2.7 4-aminofenilboronik asit molekülünün SCAN konfigürasyonu
Şelil 2.8 4-amino-X-fenilboronik asit molekülü ve türevlerinin kimyasal gösterimi59
Şekil 2.9 4-amino-2-florofenilboronik asit molekülünün konfigürasyonu60
Şekil 2.10 4-amino-3-florofenilboronik asit molekülünün konfigürasyonu60
Şekil 2.11 4-amino-2-klorofenilboronik asit molekülünün konfigürasyonu
Şekil 2.12 4-amino-3-klorofenilboronik asit molekülünün konfigürasyonu
Şekil 3.1 2-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY)63
Şekil 3.2 3-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY)63
Şekil 3.3 4-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY)64
Şekil 3.4 4-Amino-2-florofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi
(PEY)64
Şekil 3.6 4-Amino-2-klorofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi
(PEY)
Şekil 3.7 4-Amino-3-klorofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi
(PEY)

Şekil 3.8 2-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri
Şekil 3.9 3-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri69
Şekil 3.10 4-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri
Şekil 3.11 4-Amino-2-florofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri. 70
Şekil 3.12 4-Amino-3-florofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri. 70
Şekil 3.13 4-Amino-2-klorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri.71
Şekil 3.14 4-Amino-3-klorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri.71
Şekil 3.15 3-aminofenilboronik asit molekülüne ait deneysel RAMAN spektrumu79
Şekil 3.16 3-aminofenilboronik asit molekülüne ait deneysel IR spektrumu80
Şekil 3.17 2-aminofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle
hesaplanan teorik IR spektrumu80
Şekil 3.18 2-aminofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle
hesaplanan teorik RAMAN spektrumu81
Şekil 3.19 2-aminofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle
hesaplanan teorik IR spektrumu81
Şekil 3.20 2-aminofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle
hesaplanan teorik RAMAN spektrumu82
Şekil 3.23 3-aminofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle
hesaplanan teorik RAMAN spektrumu83
Şekil 3.24 4-aminofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle
hesaplanan teorik IR spektrumu84
Şekil 3.25 4-aminofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle
hesaplanan teorik IR spektrumu84
Şekil 3.26 4-aminofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle
hesaplanan teorik RAMAN spektrumu85
Şekil 3.27 4-amino-2-florofenilboronik asit molekülüne ait DFT/6-311++g(d,p)
yöntemiyle hesaplanan teorik IR spektrumu85
Şekil 3.28 4-amino-2-florofenilboronik asit molekülüne ait DFT/6-311++g(d,p)
yöntemiyle hesaplanan teorik RAMAN spektrumu86
Şekil 3.29 4-amino-2-florofenilboronik asit molekülüne ait HF/6-311++g(d,p)
yöntemiyle hesaplanan teorik IR spektrumu

Şekil 3.34 4-amino-2-klorofenilboronik asit molekülüne ait DFT/6-311++g(d,p)	
yöntemiyle hesaplanan teorik IR spektrumu	89
Şekil 3.42 2-Aminofenilboronik asit molekülünün B3LYP-HF/6-311++g(d,p)	
metodunda HOMO-LUMO yüzey şekli ve enerji farkı (ΔE_g)10	00
Şekil 3.43 3-Aminofenilboronik asit molekülünün B3LYP-HF/6-311++g(d,p)	
metodunda HOMO-LUMO yüzey şekli ve enerji farkı (ΔE_g)10	00
Şekil 3.44 4-Aminofenilboronik asit molekülünün B3LYP-HF/6-311++g(d,p)	
metodunda HOMO-LUMO yüzey şekli ve enerji farkı (ΔE_g)10	01
Şekil 3.45 4-Amino-2-Florofenilboronik asit molekülünün B3LYP-HF/6-311++g(d,p)	
metodunda HOMO-LUMO yüzey şekli ve enerji farkı (ΔE_g)10	01
Şekil 3.46 4-Amino-3-Florofenilboronik asit molekülünün B3LYP-HF/6-311++g(d,p)	
metodunda HOMO-LUMO yüzey şekli ve enerji farkı (ΔE_g)10	02
Şekil 3.47 4-Amino-2-Klorofenilboronik asit molekülünün B3LYP-HF/6-311++g(d,p))
metodunda HOMO-LUMO yüzey şekli ve enerji farkı (ΔE_g)10	02
Şekil 3.48 4-Amino-3-Klorofenilboronik asit molekülünün B3LYP-HF/6-311++g(d,p))
metodunda HOMO-LUMO yüzey şekli ve enerji farkı (ΔE_g)10	03
Şekil 3.49 2-Aminofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP	
haritaları	03
Şekil 3.50 3-Aminofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP	
haritaları10	04
Şekil 3.51 4-Aminofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP	
haritaları	04
Şekil 3.52 4-Amino-2-florofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP	I
haritaları	04
Şekil 3.53 4-Amino-3-florofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP	I.
haritaları	05
Şekil 3.54 4-Amino-2-klorofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP)
haritaları	05
Şekil 3.55 4-Amino-3-klorofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP)
haritaları	05

TABLOLAR DİZİNİ

Tablo 3.1 2-3-4-Aminofenilboronik asit ve 4-Amino-(2-3)(Floro-kloro)-fenilboronik				
asit moleküllerinin B3LYP/6-311++G(d,p) setinde denge durum enerji modları				
				parametreler76
				Tablo 3.3 2-,3-,4-Aminofenilboronik asit ve 4-Amino-2-,3-Floro-kloro-fenilboronik
asit moleküllerinin HF/6-311++g(d,p) setinde optimize edilmiş geometrik parametreler.				
Tablo 3.13 2-aminofenilboronik asit molekülünün DFT/6-311++G(d,p) setinde FT-IR				
Toplam Enerji Dağılımı(TED)96				
Tablo 3.14 3-aminofenilboronik asit molekülünün DFT/6-311++G(d,p) setinde FT-IR				
Toplam Enerji Dağılımı(TED)95				
Tablo 3.15 3-aminofenilboronik asit molekülünün DFT/6-311++G(d,p) setinde FT-IR				
Toplam Enerji Dağılımı(TED)97				
Ek Tablo 3.4 . 2-,3-,4-Aminofenilboronik asit ve 4-Amino-2-,3-Floro-klorofenilboronik				
asit moleküllerinin B3LYP/6-311++g(d,p) setinde optimize edilmiş geometrik				
parametreler120				
Ek Tablo 3.52-3-4-Aminofenilboronik asit ve 4-Amino-2-,-3-floro-klorofenilboronik				
asit moleküllerinin HF/6-311++g(d,p) setinde optimize edilmiş geometrik parametreler.				
Ek Tablo 3.62-Aminofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans				
değerleri (cm ⁻¹)(Skala Edilmiştir (SE))129				
Ek Tablo 3.73-Aminofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans				
değerleri (cm ⁻¹) (Skala Edilmiştir (SE))130				
Ek Tablo 3.84-Aminofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans				
değerleri (cm-1) (Skala Edilmiştir (SE))131				
Ek Tablo 3.9 4-Amino-2-florofenilboronik asit molekülünün 6-311++G(d,p) setinde				
Ek Tablo 3.9 4-Amino-2-florofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans değerleri (cm ⁻¹) (Skala Edilmiştir (SE))				
Ek Tablo 3.9 4-Amino-2-florofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans değerleri (cm ⁻¹) (Skala Edilmiştir (SE))				

Ek Tablo 3.11 4-Amino-2-klorofenilboronik asit molekülünün 6-311++G(d,p) setine	le
frekans değerleri (cm ⁻¹) (Skala Edilmiştir (SE))	34
Ek Tablo 3.12 4-Amino-3-klorofenilboronik asit molekülünün 6-311++G(d,p) setind	le
frekans değerleri (cm ⁻¹) (Skala Edilmiştir (SE))	35

ÇİZELGELER DİZİNİ

	Sayfa
Çizelge 2.1 İnfrared Spektral Bölgeler	10
Çizelge 2.2 Grup Frekansları	20
Çizelge 5.1 Moleküllerin denge durumu elektronik enerji (a.u) değerleri	72
Çizelge 5.2 Molekülerin denge durumu dipol moment ($\mu(D)$) değerleri	72
Çizelge 5.3 Moleküllerin denge durumu HOMO-LUMO enerji farkı	
$(\Delta Eg \ eV)$ değerleri	98
Çizelge 5.4 Moleküllerin 6-311++G(d,p) temel setinde denge durumundaki	
polarizebilite (α (a.u)) ve hiperpolarizebilite (β (a.u)) değerleri	99

SİMGELER VE KISALTMALAR DİZİNİ

1. Simgeler

Ε	Hamiltonyen işlemcisi özdeğeri
β_{ijk}	Hiperpolarizebilite tensörü
α_{ij}	Polarizebilite tensörü
$C_{\mu i}$	Moleküler orbitali katsayıları
E _{elek}	Toplam elektronik enerjisi
E _{HK} fonksiyonu	Hohenberg-Kohn enerji
E _{XC}	Değiş-tokuş ve kolerasyon enerjisi
F _{ij}	Kuvvet sabiti
\widehat{H}	Hamiltonyen işlemcisi
$\widehat{H_e}$	Elektronik hamiltonyen işlemcisi
J	Kulomp terimi
k	Kuvvet sabiti
Т	Kinetik enerji fonksiyonu
V ^{et}	Etkin potansiyel
ρ	Elektron yoğunluğu
μ	Dipol moment
ϕ_{μ}	Atomik orbital
Φ	Slater determinatı dalga fonksiyonu
Ψ	Dalga fonksiyonu

Ψ_{e}	Elektronik dalga fonksiyonu
λ	Dalga boyu (nm)
ν	Dalga sayısı (cm ⁻¹)
Å	Angstron

2. Kısaltmalar

IR	Infrared
NMR	Nükleer Manyetik Rezonans
AO	Atomik orbital
a.u	Atomik birim
B3LYP	LYP korelasyon enerjili 3
	parametreli Becke karma metodu
DFT	Yoğunluk fonksiyon teoremi
HF	Hartree-fock teoremi
НОМО	En yüksek dolu moleküler orbital
LUMO	En düşük boş moleküler orbital
PES	Potansiyel Enerji Yüzeyi
MEP	Moleküler Elektrostatik Potansiyel
LCAO	Atomik Orbitallerin Lineer
	Kombinasyonu
LDA	Yerel Yoğunluk Fonksiyonu
	Yaklaşımı

МО	Moleküler Orbital
KS	Kohn-Sham Transformasyonu
TED	Toplam Enerji Dağılımı

1. GİRİŞ

Atomun keşfiyle birlikte bilim insanları; atomun yapısını ve molekülleri meydana getiren atomların birbirleriyle olan ilişkisini, bağlanma enerjilerini ve moleküllerin hareketlerini ve yapılarını incelemiş ve bu hareketlerin nasıl gerçekleştiğini belirlemiştir. Atomik seviyede maddenin en küçük yapı taşına "atom", aynı ya da farklı cins atomların aralarında kimyasal bir bağ kurarak oluşturdukları yapıya "molekül" denir. Oluşturulan molekülün kararlı olabilmesi için, atomların birbirini çeken ve iten kuvvetlerin denge durumunda olması gerekir. Moleküller, içerdikleri atom sayılarına göre "iki atomlu", "üç atomlu" ya da "çok atomlu" moleküller şeklinde adlandırılırlar. Molekülü oluşturan atomların cinsine göre de moleküllere "aynı atomlu" veya "farklı atomlu" moleküller de denir[1].

Madde ve madde çeşitliliğinin hayatımızda da önemli yer tuttuğundan dolayı bunlarla ilgili biçok çalışmalar yapılmakta ve yeni hesaplama yöntemleri geliştirilmektedir. Maddenin yapısını ve özelliklerini inceleyen ve yeni malzeme türlerini araştıran, canlı ya da cansız kökenli doğal ya da yapay hammaddelerden, seramik, polimer benzeri ve metal mühendislik malzemelerinin üretimini, bu malzemelerin yapı, özellik ve işlene bilirliğini inceleyen ve çeşitli sanayi dallarında kullanımları birçok araştırmaya konu olmuştur. Son yıllarda, araştırmacılar yeni maddeleri sentezlemelerinin yansıra teorik olarakta yeni moleküller modelledikleri görülmektedir. Molekülerin modellenmesi ve üç boyutlu yapısının anlaşılması özellikle organik kimya olmak üzere bilimsel çalışmaların ayrılmaz bir parçasını oluşturmaktadır. Teorik çalışmalarda, modelleme programlarının kullanımı, işlemci hızlarındaki artış ve maliyetlerdeki düşüş nedeniyle büyük bir artış göstermiştir. Bu programlar, konu ve kavramlarının öğretiminde önemli bir avantaj sağlamakta ve gelecek vaat etmektedir.

Günümüzde aktif bir şekilde kullanılan bor elementi ve borlu bileşenlerin kullanımıyla çeşitli metal veya ametal elementlerle yaptığı bileşiklerin gösterdiği farklı özellikler, bor bileşiklerinin birçok endüstride kullanılmasına olanak sağlamaktadır. Bor, bileşiklerinde metal dışı bileşikler gibi davranır, fakat saf bor, karbon gibi elektrik iletkenidir. Kristalize bor görünüm ve optik özellikleri açısından elmasa benzer ve neredeyse elmas kadar serttir. Bor yüksek sıcaklıkta su molekülüyle reaksiyona girerek borik asit ve bazı

diğer ürünleri oluşturur[2,3]. Bor mineralleri, sanayide sayısız denecek kadar çok çeşitli ürünün; sabun, deterjan, lehim, fotoğrafçılık, tekstil boyaları, cam elyafı ve genellikle kâğıt sanayisi vs. ana bileşen maddesinde yer alır[4]. Bunun yanında porselen, seramik, tekstil, tarım, refrakter malzeme, metalürji, yanmayı geciktirici malzeme, nükleer yakıt teknolojisi gibi çok farklı sektörlerde ve çok sayıda uç ürünleri ile sanayiinin pek çok alanında da çeşitli bor bileşikleri kullanılmaktadır[5].

Genellikle boronik asitler yapısal olarak R-B (OH)₂, (R = alkil-, alkenil-, alkinil- ve aril) formunda temsil edilirler. Bor tabiatta doğal olarak bulunmamasına rağmen onunla ilgili çalışmalar 1860 yılından beri aralıksız olarak devam etmektedir[6]. Bor periyodik tabloda B simgesi ile gösterilen, atom numarası 5, atom ağırlığı 10,81 g/mol olan, metalle ametal arası yarı iletken özelliğe sahip bir elementtir. Periyodik cetvelin 3A grubunun ilk ve en hafif üyesidir. Temel hal elektron konformasyonu 1s² 2s² 2p¹'dir. Bor elementi ⁸B, ¹⁰B, ¹¹B, ¹²B, ¹³B izotoplarından oluşmaktadır. En kararlı ¹⁰B ve ¹¹B izotoplarına sahiptir. Bu izotopların tabiatta bulunma oranları ise % 19,1-20,3 ve % 79,7-80,9'dur. B izotopu, çok yüksek termal nötron tutma özelliğine sahiptir. Bu özelliğinden dolayı nükleer malzemelerde ve nükleer enerji santrallerinde kullanılabilmektedir. Bor minerallerinden elde edilen boraks ve borik asit; yukarıda ifade ettiğimiz gibi nükleer alanın dışında analitik kimya, supramoleküler kimya, kataliz, organik sentezinde de kullanılır. Elemente bor doğada saf olarak bulunmaz. Dünya rezervlerinin de yaklaşık üçte ikisinin ülkemizde bulunduğu bor elementi, ¹⁰B izotopu olarak yüksek oranında cevher yataklarına sahiptir[2].

Bundan dolayıdır ki, bor ve bor içerikli bileşiklerle ilgili çalışmalar uzun yıllardan beri yapılmaktadır. Fakat son zamanlarda bor minerallerinin ve bileşiklerinin ticari ve endüstriyel kullanım alanları giderek çeşitlenmekte ve gelişmekte olduğundan bu konular birçok araştırmacının çalışma konuları olmuştur. Bundan dolayı ülkemizde de borlu bileşiklerin sentezlenmesi ve zenginleştirilmesiyle ilgili çalışmalar hız kazanmıştır[7]. Yapılan araştırmalar ışığında insanlar ve hayvanlar için gerekli besin elementleri arasında yer alması tavsiye edilen bor, ayrıca tıpta alerjik hastalıkların, osteoporozun, artritin, kemik erimesinin tedavisinde, bakteriyel enfeksiyonların ve mantar enfeksiyonlarının iyileştirilmesinde kullanılmaktadır. Ayrıca henüz kesinleşmiş

bir yöntem olmamasına rağmen "bor nötron yakalama tedavisi", özellikle beyin kanserinin tedavisinde uygulanmaktadır[8,9]. Son zamanlarda farklı boronik asit türevlerinin sentezlenmesine devam eden çalışmalar yapılmaktadır[10]. Bu çalışmaların önemi ise biyolojik aktif bilesiklerin sentezlenmelerinde boronik asitlerinin öneminden kaynaklanmaktadır. Boronik asitler, sentetik kimya alanında, Suzuki reeksiyonlarında[11], reaksiyonlarında[12], aminoasitlerin Petasis asimetrik reaksiyonlarında[14], sentezlerinde[13], Diels-Alder karboksilik asit aktivasyonunda[15,16], organik sentezlerde başlangıç maddeleri olarak[17], savunma sanavisinde, jet ve roket vakıtında, kristal mühendisliğinde[18], malzeme bilimi[19], tıbbi bilimler[20,21], biyoorganik[22,23] ve kimyasal biyoloji[24,25] gibi birçok alanda kullanılmaktadır.

Borla ilgili yapılan diğer çalışmalar ise, Hydrogen on Demand sisteminin bir yakıt hücresinde kullanıldığı gibi, doğrudan içten yanmalı motorlarda da kullanılabileceği belirtilmiştir[26]. ABD'de sodyum bor hidrür yakıt hücresi ile çalışan prototip araçların olduğu bildirilmektedir[27]. Bor bazlı pillerin çekiciliğini artıran diğer bir faktör de mevcut ticari pillerden 2 kat daha uzun ömürlü olmasıdır. Ayrıca, bu pillerin şu anda çeşitli prototip el ve ev aletlerinde kullanıldığı belirtilmektedir[26,27]. Yakıt hücreleri ve sodyum bor hidrürden (NaBH4) hidrojen elde edilmesi ilkesine dayanan bir yakıt hücresi sistemi daha eklenmiştir. Amerikan Millenium Cell firmasınca Hydrogen on Demand adı verilen bu sistemde, sodyum borohidrür yakıt hücrelerine temiz hidrojen sağlama işlevi görür[26,28,29].

Yine, Millennium Cell firması, belirli bor bileşiklerinden doğrudan elektrik üreten proseslerin patentini almıştır. Bu prosesler, hidrojen gazı çıkışı olmadan hidrojenin doğrudan yükseltgenmesi temeli üzerine kurulmuştur[26,30]. Prototip piller, bor sınıfı bileşikler ailesinden olan ve borür olarak isimlendirilen bileşiklerden geliştirilmiştir. Bu pillerin hemen hemen tüm metallerinde borür bileşikleri kullanılsa da, en yüksek verimin bor katkılı titanyum, vanadyum ve alüminyum bileşiklerinden elde edildiği belirtiliyor[15,31].

Başka bir çalışmada, elemental bor ile oksijenin reaksiyonu sonucunda ortaya çıkan enerjinin kullanılabileceği yakıt hücresi geliştirilebilir. Bu reaksiyonun bir sonucu olarak, yüksek sıcaklıktan önce gaz, sonra sıvı ve en sonunda katılaşmış boroksit bileşiği oluşur ve bu katı bir atık deposunda toplanır[32].

Bu çalışmanın amacı, borik asit ve türevlerinin aydınlatılmamış olan moleküler özellikleri ve yapısını araştırarak bor bileşiklerinin önemini vurgulamaktır. Günümüzde kullanılan teorik hesaplama yöntemleri ile moleküllerin birçok özellikleri deney yapmaya gerek kalmadan hesaplamalar yapılabilmiştir. Hatta bazı çalışmalarda deneysel yöntemden daha az maliyet, hassas ve güvenilir sonuçlar elde edilebilmektedir[33]. Bu çalışmada 2-aminofenilboronik asit (I), 3-aminofenilboronik asit(II), 4-aminofenilboronik asit (III), 4-amino-2-florofenilboronik asit (IV), 4-amino-3-florofenilboronik asit (V), 4-amino-2- klorofenilboronik asit (VI) ve 4-amino-3klorofenilboronik asit (VII) moleküllerinin üç boyutta yaklaşık geometrisi GAUSSVIEW 5.0 moleküler görüntüleme programında çizilerek, GAUSSIAN 09W paket programında giriş verisi olarak verildi ve moleküllerin en düşük enerjili konformasyon yapıları elde etmek için, moleküllerin C1-B-O1-H6 ve C1-B-O2-H7 dihedral açıları,0°'den 360°' ye kadar 45°'lik aralıklarla 9 adım da değiştirilerek potansiyel enerji yüzeyleri (PEY) incelendi. Her bir molekülün, potansiyel enerji yüzeyinde toplam $9^2 = 81$ noktada potansiyel enerji hesaplatılarak, konformasyon yapıları elde edildi. Her bir molekül için, elde edilen en düşük enerjili konformerin Hartree-Fock (HF) ve yoğunluk fonksiyonu teorisi (DFT) ile 6-311++G(d,p) temel seti kullanılarak geometrik optimizasyonu yapıldı ve yapılan optimizasyonlar sonucunda moleküllerin yapısal parametreleri "bağ uzunlukları, bağ ve dihedral açıları", elektronik enerji, dipol moment değerleri elde edildi. Çalışılan moleküllerin heriki yöntemde hesaplatılan geometrik optimizasyon yapıları kullanılarak, moleküllerin denge durumu polarizebilite, hiperpolarizebilite, titreșim frekansları, HOMO-LUMO değerleri hesaplatıldı.

Ayrıca, 3-aminofenilboronik asit molekülünün deneysel FT-IR spektrumu Kafkas üniversitesi kimya bölümünde ve FT-Raman spektrumu ise Atatürk üniversitesi bünyesindeki Doğu Anadolu İleri Teknoloji Uygulama ve Araştırma Merkezi

4

(DAYTAM)'da kaydedildi. Bu sonuçlar ile literatürde yer alan deneysel ve teorik sonuçlar ile karşılaştırılarak ve yorumladı.

1.1 Moleküler Titreşim Spektroskopisi

Spektroskopi, atom, molekül, elektron veya iyonların[34,35] iki enerji seviyesi arası geçişlerinde soğurduğu ya da yayımladığı fotonları inceleyerek madde hakkında bilgi edinmemizi sağlayan elektromanyetik ölçülmesi ve ışımanın ve yorumlanmasıdır[36,37]. Moleküllerin dönme, titreşim ve elektronik enerjilerindeki değişimler spektroskopinin temelini oluşturur. Moleküllerin titreşim hareketinde bir değişikliğe neden olan, madde ve elektromanyetik radyasyon arasındaki etkileşim, moleküler titreşim spektroskopisi konusunu oluşturmaktadır. Moleküler titreşimler infrared ve Raman spektroskopi yöntemleri ile incelenir ve sonucunda molekülün yapısı, simetrisi, bağ uzunluğu, bağlar açıları gibi molekül özellikleri ile ilgili bilgi verir. Moleküllerin kimyasal ve fiziksel özellikleri; bağ kuvvetleri, molekül içi kuvvetler, moleküller arası kuvvetler ve molekülün elektronik dağılımı gibi bilgilere de ulaşılabilir[38,39].

Moleküllerde, moleküler spektroskopi atomik spektroskopiye göre daha karmaşıktır. Molekül atomlarının yaptıkları ortak titreşim ve dönme hareketlerinin yanında, elektronik uyarılmalar da mevcuttur. Bu nedenle, bir molekülün hareketini tanımlarken, molekülün dönme, ötelenme, titreşim ve elektronik hareketlerini tanımlamak gerekir. Dönme hareketi, molekülün ağırlık merkezi etrafında dönmesi olup, dönme enerjisi ise molekülün bütünüyle kendi kütle merkezi etrafında dönmesinden kaynaklanır. Ötelenme hareketi, molekülün ağırlık merkezinin bütünüyle yer değiştirmesi hareketidir. Ancak, molekülün ötelenme enerjisi kuantumlu olmadığı için spektroskopide gözlenemez. Bir molekülün toplam enerjisi Born - Oppenheimer yaklaşımına göre dönme, titreşim ve elektronik enerjilerinin toplamı,

$$E_{toplam} = E_d + E_t + E_e \tag{1.1}$$

şeklinde elde edilir[40,39].

Titreşim hareketi, molekülün kararlı haldeyken gerilmesi veya iç bağları etrafında dönme hareketinin sonucudur. Titreşim enerjisi de molekülü oluşturan atomların denge konumlarından ayrılarak periyodik olarak yer değiştirmesidir. Bir molekülde toplam enerji değişimi ise;

$$\Delta E_{toplam} = \Delta E_d + \Delta E_t + \Delta E_e \tag{1.2}$$

olarak yazılır. Toplam enerjiyi oluşturan dönme, titreşim ve elektronik enerjilerinin birbirlerine göre oranları ise;

$$\Delta E_e = 10^3 x \,\Delta E_t = 10^6 x \,\Delta E_d \tag{1.3}$$

şeklindedir[40]. Bir molekülün, titreşim ve dönme enerji seviyeleri arasındaki geçişler infrared bölgesinde incelenir ve bu bölgede molekülün titreşim frekansları spektrum verir. Titreşim enerji seviyeleri arasındaki geçişler iki teknikte incelenir. Birincisi, (4000–10) cm⁻¹ bölgesinde kullanılan infrared soğurma spektroskopisi, ikincisi ise görünür bölgede kullanılan (4000-2) cm⁻¹ bölgesine düşen titreşimleri inceleyen Raman saçılmasıdır.

2.1 Moleküler Titreşimler

Atomların ve moleküllerin belirli bir enerji düzeyleri vardır. Bu enerji düzeyleri, moleküllerdeki atomların birbirine göre yaptıkları dönme ve titreşim hareketlerine karşılık gelen enerji düzeyleri ve elektronların bağıl hareketlerinden kaynaklanan elektronik enerji düzeyleri de oluşmaktadır. Şekil 1.1 incelendiğinde molekülün dönme enerji seviyeleri birbirine yakın olduğundan, bu seviyeler arasındaki geçişler düşük frekanslarda (uzun dalga boylarında) gerçekleşirken, bu molekül yeteri kadar uyarıldığında titreşim hareketi de yapabilmektedir. Bu durumda bağ açıları ve bağ uzunlukları değiştiğinden titreşim kuantum düzeyleri arasında büyük enerji farkları oluşur ve geçişler daha yüksek frekanslarda (kısa dalga boylarında) meydana gelir. Gaz haldeki moleküllerin titreşim enerjisi değiştiğinde, molekülün dönme enerjisi de değişeceğinden titreşim bantları dönme bantları ile modüle olur. Sıvı veya katı haldeki moleküllerin hareketleri kısmen veya tamamen engellendiğinden infrared spektrumunda dönme bantları gözlenmez. Molekülün, elektronik enerji düzeyleri ise moleküler orbitallerin yapısına, orbitallerin dolu veya boş olmalarına bağlıdır. İki atomlu bir molekül için dönme, titreşim ve elektronik geçişler Şekil 1.1'de gösterilmiştir;

Şekil 1.1 İki atomlu bir molekül için elektronik, titreşim ve dönme geçişleri[41-39].

N atomlu bir molekülün, atomlarının denge konumundan uzaklıkları için en basit koordinat sistemi birbirlerine dik eksende bulunan, merkezi herhangi bir atomun kütle merkezi olan p. atomu " $x_1(p)$, $x_2(p)$ ve $x_3(p)$ " sistemidir. 3N boyutlu konfigürasyon uzayında bir atomun koordinatları ise;

$$x_1(1), x_1(2), \dots, x_2(1), x_2(2), \dots, x_3(1), x_3(2), \dots, x_3(N)$$
 (1.4)

şeklinde gösterilir. p. atom için sistemdeki dik eksenler ise;

$$x_1^{(p)} = x_{3p-2}, \ x_2^{(p)} = x_{3p-1}, \ x_3^{(p)} = x_{3p}$$
 (1.5)

şeklinde ifade edilir. Her x_k koordinatındaki m_k kütlesini yazacak olursak;

$$m_{3p-2} = m_{3p-1} = m_{3p} = m^{(p)} \tag{1.6}$$

olur. Burada $m^{(p)}$, p. atomun kütlesidir. Bu koordinat sisteminde molekülün kinetik enerjisi;

$$T = -\frac{h^2}{8\pi^2} \sum_{k=1}^{3N} \frac{1}{m_k} \frac{\partial^2}{\partial x_k^2}$$
(1.7)

şeklinde ifade edilir. Bu eşitlik kütle ağırlıklı koordinatlar olarak basitleştirilirse $y_k = x_k \sqrt{m_k}$ eşitliği yazılırsa;

$$T = -\frac{h^2}{8\pi^2} \sum_{k=1}^{3N} \frac{1}{m_k} \frac{\partial^2}{\partial y_k^2}$$
(1.8)

eşitliği elde edilir. Bir molekülün potansiyel enerjisi, molekül denge durumundaki bütün x_k koordinatları sıfır olduğunda minimum değerini alır. Molekülde, sıfır koordinatından herhangi bir sapma, yani bir titreşim esnasında potansiyelin negatif değerlere sahip olmadığı bir konfigürasyon oluşur. Bu konfigürasyona sahip molekülün bağ uzunlukları ve bağ açıları denge konumundakilerden çok farklıdır. Bundan dolayı bu büyüklükler ile molekülü denge konumuna getirebilecek kuvvetler doğru orantılıdır. Bu orantılarda kullanılan orantı sabitlerine kuvvet sabitleri de denir. Buna göre potansiyel enerjiyi;

$$V = \frac{1}{2} \sum_{i,j}^{3N} V_{ij} x_i x_j$$
(1.9)

şeklinde verilir. Burada, V_{ij} katsayıları kuvvet sabitlerine bağlıdır. Benzer şekilde, kütle ağırlıklı koordinatlarda potansiyel enerji;

$$V = \frac{1}{2} \sum_{i,j=1}^{3N} V_{ij} y_i y_j$$
(1.10)

şeklinde verilir. Burada $y_1, y_2, ..., y_{3N}$ koordinatları belli bir orto-normal baza göre molekülün kütle ağırlıklı konfigürasyon uzayında bir noktanın koordinatlarıdır. Bu ortonormal baz $Q_1, Q_2, ..., Q_{3N}$ gibi değiştirilerek yeni bir bazda 3N koordinat tanımlanabilir. Bu son değişiklikler ile kinetik ve potansiyel enerjiler tekrar yazılacak olursa;

$$T = -\frac{h^2}{8\pi^2} \sum_{k=1}^{3N} \frac{\partial^2}{\partial Q_k^2}; \quad V = \frac{1}{2} \sum_{r,s=1}^{3N} V_{rs} Q_r Q_s$$
(1.11)

eşitliği elde edilir. Potansiyel enerji ifadesinde $r \neq s$ ise $V_{rs}=0$ 'dır. Bu durumda potansiyel enerji;

$$V = \frac{1}{2} \sum_{r=1}^{3N} \lambda_r Q_r^2$$
(1.12)

olur. Burada, $V_{rr} = \lambda_r$ 'dir.

Işte, kinetik ve potansiyel enerjideki bu Q_k koordinatları normal koordinatlar adını alır. Normal koordinatların önemi, moleküler titreşimler için Schrödinger denklemini çözebilmesidir. N atomlu bir molekülde her atomun konumu için bir x, y, z yer değiştirme koordinatları verilir. Çok atomlu moleküllerin titreşim hareketi oldukça karmaşıktır. Bir molekülün temel titreşim kipleri bütün atomların aynı fazda ve aynı frekansta yaptıkları titreşim hareketleridir. N atomlu bir molekül 3N tane serbestlik derecesine sahiptir. Molekülün toplam hareket serbestliğinden üç tanesi x, y, z eksenleri boyunca ötelenme hareketini belirlerken, diğer üç tanesi ise molekülün x, y, z eksenleri etrafındaki dönme hareketini belirler. Lineer moleküllerde, molekülün kendi ekseni etrafındaki dönmesi molekülün tümünün yer değiştirmesi açısından bir anlam taşımayacağından, sadece diğer iki eksen etrafındaki dönmeler ele alınır. Sonuçta, lineer bir molekül (3N-5) tane açılı bir moleküle, (3N-6) tane temel titreşim hareketine sahiptir. Titreşim spektroskopisi infrared (IR) soğurma ve Raman (R) saçılma spektroskopileri olmak üzere iki kısımda incelenmektedir.

1.1.2 İnfrared (Titreşim) Spektroskopisi

İnfrared (IR) spektroskopisi, infrared bölgede tüm frekansları içeren elektromanyetik dalga ışınımının, madde ile etkileşerek geçen veya soğurulan ışığı inceler[42,35]. Moleküller veya moleküller arası gruplar tarafından, görünür alan ve mikrodalga alanı arasında kalan enerjinin ölçülmesine dayanan bir yöntemdir. Elektromanyetik ışının dalga boyu, 0,78 µm ile 1000 µm ve dalga sayısı 10 cm⁻¹ ile 13000 cm⁻¹ arasında olan kısmı kapsayan bölgeye, infrared bölge denir. Molekül v frekanslı bir ışın soğurduğunda, $\vec{\mu}$ elektriksel dipol momentinin bileşenlerinden en az biri bu frekansta titreşecektir. İşte bu titreşim spektrumu infrared bölgede gözlenir. İnfrared spektroskopisi dalga boyuna, frekansa veya dalga sayısına göre, yakın, orta ve uzak bölge olmak üzere üç kısma ayrılır.

Çizelge 1.1 İnfrared Spektral Bölgeler

Bölge	Dalga Boyu λ(μm)	Dalga Sayısı $\vec{\nu}$ (cm ⁻¹)	Frekans v (Hz)
Yakın IR	0,78 - 2,5	12800 - 4000	3,8x10 ¹⁴ -1,2x10 ¹⁴
Orta IR	2,5-50	4000 - 200	$1,2x10^{14}-6,0x10^{12}$
Uzak IR	50 - 1000	200 - 10	$6,0x10^{12}-3,0x10^{11}$

Yakın İnfrared Bölge:

Molekül titreşimlerinin üst ton ve harmoniklerin incelendiği bölgedir. Dalga sayısı olarak 12800 cm⁻¹ ile 4000 cm⁻¹ arasındadır. Bir organik molekül tarafından absorplanan yakın infrared alandaki ışınlar o molekülün vibrasyonal (titreşimsel) ve

rotasyonal (dönmeye ait) enerjilerini etkiler. Yakın IR spektroskopisinde, az hata yapan ve örnek karşılaştırma yapmayan cihazlar kullanılır. Uzaktan analizler için fiber optik ve UV spektrometre aletleri ile çalışılır.

Orta İnfrared Bölge:

Moleküllerin hemen hemen bütün titreşimlerin belirlendiği ve yapı analizlerinin yapıldığı en önemli bölgedir. Dalga sayısı cinsinden 4000 cm⁻¹ ile 200cm⁻¹ arasıdır.

Uzak İnfrared Bölge:

Ağır atomların titreşimleri ile örgü titreşimlerinin incelendiği bölgedir. Mikrodalga bölgesine yakın olduğu için moleküllerin dönü hareketleri de incelenebilir. Kimyasal spektroskopide nadiren kullanılır[43,3]. Dalga sayısı ise 200 cm⁻¹ -10 cm⁻¹ arasındadır. Uzak infrared alandaki ışınlar sadece rotasyonal (dönme) enerjilerini etkiler.

Bir molekülün infrared ışımasını absorblayabilmesi için dipol momentinde bir değişim olması gerekmektedir. Bu tür maddelere IR aktif maddeler de denilir. Molekülün dipol momentindeki değişiklik ne kadar fazla ise infrared soğurma bandı da o kadar şiddetlidir[39]. Aynı cins atomlardan oluşan moleküller (homonükleer) ve en üst seviyedeki simetrik moleküller dışındaki diğer tüm moleküller gelen infrared ışınını soğurabilir. Sözü edilen titreşimlerle ilgili olan soğurmalar klasik ve kuantum mekaniksel olarak aşağıda gibi incelenmektedir.

1.1.2.1 Klasik Kuram

Klasik elektrodinamiğe göre, bir sistemin elektriksel dipol momentinde bir değişlik varsa, sistemin ışın yaydığı anlamına gelir. Yayınlanan ışının frekansı, değişen dipol momentin frekansına eşittir. Soğurma (emilim) ise yayınlamanın tam tersi olarak düşünülebilir. Başka bir deyişle, bir sistem yayabileceği frekansa eşit bir frekansa sahip bir ışını soğurabilir. Molekülün elektrik dipol momenti ($\vec{\mu}$), Kartezyen kordinant

sisteminde $(\mu_x, \mu_y, \nu, \mu_y)$ üç bileşenli bir vektördür. Bir molekül v frekanslı bir ışığı soğurduğunda, molekülün elektriksel dipol momenti $(\vec{\mu})$ bu frekansta titreşir ve bu titreşimin spektrumu infrared bölgesine düşer[35]. Basit harmonik yaklaşımda, moleküler dipol momentinin titreşim genliği tüm Q titreşim kordinantlarının bir fonksiyonudur. Molekülün denge durumuna yakın dipol momentinin $(\vec{\mu})$ Taylor serisinin açılımı;

$$\vec{\mu} = \vec{\mu}_0 + \sum \left\{ \left(\frac{\partial \vec{\mu}_i}{\partial Q_k} \right)_0 Q_k \right\} + \frac{1}{2} \sum_k \left\{ \frac{\partial^2 \vec{\mu}}{\partial Q_k^2} Q_k^2 \right\}$$
(1.13)

olur. Eşitlikte, dipol momentin sıfır indislisi $(\vec{\mu}_0)$ molekülün denge durumuna gösterir. k ise bütün titreşim koordinatlarını göstermektedir. Küçük genlikli salınımlar için birinci ve ikinci derece terimleri alınıp, daha yüksek mertebeden terimler ihmal edilirse; molekülün elektriksel dipol momenti vektörü;

$$\vec{\mu} = \vec{\mu}_0 + \sum \left\{ \left(\frac{\partial \vec{\mu}_i}{\partial Q_k} \right)_0 \right\} Q_k \tag{1.14}$$

şeklinde yazılabilir.

Klasik teoriye göre, bir infrared titreşimin aktif olabilmesi için o molekülün elektriksel dipol momentindeki veya en az bir bileşenindeki değişimin sıfırdan farklı olması gerekir[44,45,35].

$$\left(\frac{\partial \vec{\mu}_i}{\partial Q_k}\right)_0 \neq 0 \qquad (\dot{I} = x, y, z)$$
(1.15)

Bu duruma bir dipolün infrared soğurması için klasik seçicilik kuralı denir[44,39].

1.1.2.2 Kuantum Kuramı

Kuantum mekaniğine göre, $\Psi^{(n)}$ ve $\Psi^{(m)}$ dalga fonksiyonları ile belirtilen n. ve m. iki titreşim enerji seviyesi arasında geçiş yapabilmesi için, ışınım soğurulma şiddetinin bir

ölçüsü olan, geçiş dipol momentleri (μ_{nm}) veya bileşenlerden en az biri sıfırdan farklı olmalıdır[40,39].

$$\vec{\mu}_{nm} = \int \Psi^{(n)} \vec{\mu} \ \Psi^{(m)} \ \partial \tau \neq 0 \tag{1.16}$$

Burada, $\Psi^{(n)}$; n. uyarılmış enerji seviyesindeki molekülün titreşim dalga fonksiyonu, $\Psi^{(m)}$; m. taban enerji seviyesindeki molekülün titreşim dalga fonksiyonu, $\partial \tau$ hacim elemanı, μ ise elektriksel dipol moment operatörüdür. Eşitlik (1.13), eşitlik (1.14) te yerine konulursa;

$$\vec{\mu}_{nm} = \vec{\mu}_0 \int \Psi^{(n)} \vec{\mu} \ \Psi^{(m)} \ \partial \tau \ + \sum_k \left\{ \left(\frac{\partial \vec{\mu}}{\partial Q_k} \right)_0 \int \Psi^{(n)} Q_k \ \Psi^{(m)} \ \partial \tau \right\}$$
(1.17)

elde edilir. Burada $\Psi^{(n)}$ ve $\Psi^{(m)}$ dalga fonksiyonları ortogonal olduklarından ($n \neq m$) ilk terim sıfır olur. Taban enerji düzeyinden, uyarılmış enerji düzeyine geçiş olasılığı $|\mu_{nm}|^2$ ile orantılıdır[38,39]. Bu nedenle, infrared spektroskopisinde bir molekülün herhangi bir titreşimini gözlemleyebilmek için, molekülün titreşim sırasında, elektriksel dipol momentindeki değişiklik sıfırdan farklı olmalıdır[46,45,35].

1.1.3 Raman Spektroskopisi

Moleküllerin şiddetli bir monokromatik ışın demeti ile etkileşmesi sırasında ışık absorpsiyonu olayı gerçekleşmiyor ve gelen ışık demeti çeşitli yönlere doğru saçılıyorsa, ışık saçılması sırasında saçılan ışığın büyük bir kısmının enerjisi veya frekansı madde ile etkileşen ışığın enerjisine veya frekansına eşit olur ve bu tür elastik saçılmaya Rayleigh saçılması denir. Fakat 1928 yılında bu yaklaşımdan farklı olarak Hintli bilim adamı C.V. Raman tarafından, belirli moleküller tarafından saçılan ışının küçük bir kısmının frekansı gelen ışığın frekansından farklı olduğu ve bu elastik olmayan saçılmaya Raman saçılması denir. Ayrıca bu frekanstaki kaymaların saçılmadan sorumlu moleküllerin kimyasal yapısına bağlıdır.

Rayleigh saçılması olayı, Raman saçılması olayına göre 10⁴ - 10⁵ kez daha şiddetli ışın saçılması ile oluşur. Rayleigh saçılması tek bir pik verir ve titreşim geçişleri hakkında bilgi vermezken, Raman saçılması sırasında saçılan ışının enerjisi, molekül ile etkileşen ışının enerjisine göre oluşan fazlalık veya azlık, ışıkla etkileşen molekülün titreşim enerji düzeyleri arasındaki enerji farkı kadardır. Bu nedenle Raman saçılmasının spektroskopik incelenmesi ile moleküllerin titreşim enerji düzeyleri hakkında bilgi elde edilir. Bu spektroskopik yönteme de Raman spektroskopisi denir. Raman olayında, görünür bölge veya yakın-IR monokromatik ışından oluşan güçlü bir lazer kaynağıyla ışınlanmasıyla saçılan ışının belirli bir açıdan ölçümüne dayanır. Bunun sonucunda elde edilen Raman spektrumlarında, dikey eksen dalga boyundan bağımsız olarak Raman kaymalarının şiddetini gösterirken, yatay eksen ise dalgasayısını gösterir.

Raman spektrumlarında gözlenen bandlar üç gruba ayrılır. Bunlar, Rayleigh çizgisi, Stokes çizgileri ve Antistokes çizgileri olarak adlandırılırlar. Kuantum mekaniğine göre, E=hv₀ enerjili fotondan oluşan ışığın fotonlarının çarpışması sonucunda esnek olan ve esnek olmayan saçınımlar gerçekleşir. Esnek olmayan ışın saçınımları, Stokes ve Antistokes saçınımıdır, esnek olan ışınım saçınımı ise Rayleigh saçınımı olarak gözlemlenir[47,3]. Bu saçınım bandlarının arasında en şiddetli olarak gözlemlediğimiz Rayleigh çizgisi, gelen ışınım ile aynı frekansa sahip olan saçılan ışınlar tarafından oluşturulur. Rayleigh çizgisinden daha küçük dalga sayısına sahip, stokes çizgileri, gelen ışınımın enerjisinden daha küçük enerjili ışınlar tarafından oluşturulurken, Rayleigh çizgisinden daha büyük dalga sayısına sahip, Antistokes çizgileri ise gelen ışınımın enerjisinden daha büyük enerjili ışınlar tarafından oluşturulurlar. Saçılan ışınımların frekansları aşağıdaki bağıntı ile tanımlanır;

$$vg$$
özlenen = vg elen ışınım \pm vm olekül (1.18)

bu bağıntıda verilen $v_{gelen \ işinim}$ terimi saçılma olayında kullanılacak monokromatik ışınımın frekansını temsil ederken, $v_{molekül}$ terimi ise molekülün titreşim veya dönü enerjilerinden herhangi birisini veya ikisini birlikte temsil eder[48,3].

Şekil 1.2 Rayleigh, Stokes, Anti-Stokes saçılması şiddet pikleri[47,3].

1.1.4 Çok Atomlu Moleküllerin Titreşimleri

Basit atomlu moleküllerdeki titreşimlerin sayısını, türünü ve bu titreşimlerin absorpsiyona neden olup olmayacağı önceden belirlemek mümkündür. Fakat atom sayısı fazla olan karmaşık moleküllerde, çeşitli tipte bağlar ve atomlar bulunabilir ve bu moleküllerde çok sayıda karmaşık titreşimler meydana gelir. Bir molekülün bütün atomlarının aynı frekansta ve aynı fazda basit harmonik hareket yaptıkları titreşimlere temel titreşimler veya normal kipler denir.

Moleküldeki olası titreşimlerin sayısını hesaplayabilmek için, uzayda herhangi bir noktanın, üç koordinatı belirlenmelidir. Yani, N adet noktayı belirleyebilmek için 3N tane bir koordinat sistemine ihtiyaç vardır. Moleküldeki atomların herbiri için bir serbestlik derecesine bir koordinat karşılık gelir. Bu yüzden N atomlu bir molekülün serbestlik derecesi 3N olur. Bir molekülün hareketini tanımlarken; kütle merkezinin yer değiştirmesi, molekülün kütle merkezi etrafında dönüşü, moleküldeki her atomun diğer atomlara göre bağıl hareketi veya başka bir deyişle moleküldeki atomların bireysel titreşimleri dikkate alınır.
Molekülün bir bütün olarak üç boyutlu uzayda serbest hareketinden dolayı, öteleme hareketini tanımlaya bilmemiz için üç koordinat ifadesi gerekir. Serbestlik derecesi 3N olan molekülün, üç koordinatlı öteleme hareketi kullanılırsa 3N-3 serbestlik derecesi kalır. Molekülün bir bütün olarak dönmesi için, üç dik eksen etrafında üç serbestlik derecesi daha kullanılırsa geriye 3N – 6 serbestlik derecesi kalır. Bu ise molekül içindeki temel titreşim sayısını gösterir[49,35]. Molekül doğrusal ise bağ ekseni etrafında atomun dönmesi mümkün değildir. Dönme hareketini tanımlamak için iki serbestlik derecesi kullanılırsa, geriye 3N – 5 serbestlik derecesi kalır.

Boltzmann olasılık dağılımına göre moleküller, oda sıcaklığında genellikle taban titreşim enerji düzeyinde, çok az bir kısmı ise birinci uyarılmış titreşim enerji düzeyinde bulunabilir. Bundan dolayı, bir molekülün infrared spektrumunda en kuvvetli bantlar, taban titreşim düzeyinden birinci uyarılmış titreşim düzeyine olan geçişlerde ($\nu = 0 \rightarrow \nu = 1$) görülür. Bu geçişlerde gözlenen titreşim frekanslarına "temel titreşim frekansları" denir. Bu titreşimler sırasında molekülün kütle merkezinde bir değişme meydana gelmez. Temel titreşim bantlarının dışında üst-ton, birleşim ve fark bantları ile sıcak bantlar da gözlenmektedir. Temel titreşim frekanslarının iki, üç veya daha fazla katlarında oluşan geçişlere (2ν , 3ν , 4ν ...) üst-ton bantları ve gözlenen titreşim frekansının toplamı veya temel titreşimin farkı olarak ortaya çıkan bantlara ise birleşim ya da fark bantları denir. Burada üst-ton ve kombinasyon (birleşim ya da fark) bantlarının şiddeti, temel titreşim bantlarından daha zayıf olur. Ayrıca, üst uyarılmış titreşim düzeylerinden başlayan geçişlerde ($\nu = 1 \rightarrow 2$, $\nu = 1 \rightarrow 3$, $\nu = 2 \rightarrow 3$, ...) ortaya çıkan bantlar da sıcak bantlarılır[50].

Simetri türü aynı olan bir temel titreşim ile bir üst-ton ya da birleşimin titreşim frekansı birbirine çok yakın ise aralarında bir etkileşme (rezonans) olur. Bu durumda, spektrumda şiddetli bir temel titreşim bandı ile zayıf bir üst-ton ya da birleşim bandı yerine, temel titreşim bandı yakınlarında gerçek değerinden sapmış iki şiddetli titreşim bandı gözlenir. Bu durum ilk defa Fermi'nin CO₂ molekülünün frekanslarının incelenmesinde gözlemlendiği için bu olaya Fermi Rezonansı denir[40,39].

1.1.4.1 Moleküllerde Titreşim Türleri

N atomlu bir molekül kapalı bir halka oluşturuyorsa, N-1 bağı oluşacağından 3N-6 tane titreşimden, 2N-5 tanesi açı bükülme titreşimi geri kalan N-1 tanesi de bağ gerilme titreşimidir. 3N-5 tane titreşime sahip olan lineer moleküllerde ise 2N-4 tanesi açı bükülme geri kalan N-1 tanesi de bağ gerilme titreşimidir[51,39]. Çok atomlu moleküllerin titreşimi üçe ayrılır[51,45,35].

1.1.4.1.1 Gerilme Titreşimi (stretching)

Bağ ekseni doğrultusundaki atom, molekül veya molekül guruplarının bağ doğrultusunda periyodik olarak yer değiştirmesidir. Bu yer değiştirme vektörleri bağ uzunluğundaki değişmeyi verir ve titreşim hareketi bağ açısını değiştirmez. Bağ gerilme titreşimleri v ile gösterilir. Bir molekülde bulunan bütün bağların aynı anda uzaması veya kısalması Şekil 1.3 (a)'da simetrik gerilme (v_s) titreşimini, bağların bir kısmı uzarken diğer kısımları kısalıyorsa Şekil 1.3 (b)'de asimetrik gerilme (v_{as}) titreşimini verir. Asimetrik titreşim frekansı, simetrik titreşim frekansından daha büyük olduğundan enerjisi de büyük olur.

Şekil 1.3 (a) Simetrik gerilme ve (b) Asimetrik gerilme

1.1.4.1.2 Açı Bükülme Titreşimleri (bending)

Molekül, atom veya molekül gruplarının iki bağı arasında kalan açının periyodik olarak değişmesine neden olan titreşimlerdir. Yer değiştirme vektörleri bağ doğrultusuna diktir. Şekil 1.4 (c)'de atomların hareketi ile bir simetri düzleminin yok edilmesi hareketi olarak tanımlanır ve açı bükülme titreşimi δ ile temsil edilir. Molekül grupları için açı bükülmesinin makaslama, sallanma gibi düzlem içi titreşimleri ve dalgalanma, kıvırma, burulma gibi düzlem dışı özel durumları vardır.

- a. Makaslama (scissoring): İki bağ arasındaki açının bağlar tarafından kesilmesi ile periyodik olarak oluşan değişim hareketidir ve δ_s ile gösterilir. Şekil 1.4(d)'de yer değiştirme vektörleri bağa dik doğrultuda, aynı noktaya doğru ve düzlem içi titreşimlerdir.
- b. Sallanma (rocking): Atomlar arasındaki bağ açısı veya bağ uzunluğu değişmeden iki bağ arasındaki veya bir grup atomla bir bağ arasındaki açının bükülmesine neden olan düzlem içi titreşim hareketidir. Şekil 1.4 (e)'de yer değiştirme vektörleri birbirini takip edecek yöndedir ve ρ_r ile gösterilir.
- c. Dalgalanma (wagging): Bir bağ atomu ile iki bağ atomu arasındaki düzlem dışı açının değişimine neden olan titreşim hareketidir ve w ile gösterilir. Şekil 1.4 (f)'de molekülün tüm atomları denge konumunda düzlemsel iken bir atomun bu düzleme dik hareket etmesidir.
- d. Kıvırma (twisting): İki bağ ile bir düzlem arasındaki açının değişimine neden olan düzlem dışı titreşim hareketidir ve t ile gösterilir. Doğrusal ve düzlemsel olmayan moleküllerde bağların atomlar tarafından bükülmesine neden olur. Şekil 1.4 (g)'de yer değiştirme vektörü bağ doğrultusuna dik ve zıt yönlüdür.
- e. Burulma Titreşimi (torsion): İki düzlem arasındaki açının bir bağ veya açıyı deforme ederek periyodik şekilde değişimine neden olan düzlem dışı titreşimlerdir ve τ ile gösterilir. Şekil 1.4 (h)'da burulma titreşimi gösterilmiştir.

1.1.4.1.3 Düzlem Dışı Açı Bükülme Titreşimi (out of plane bending)

Bir düzlemede, dik doğrultuda açı değişimine neden olan düzlem dışı titreşimlerdir. Atomların bu hareketi ile bir düzlem yok edilmiş olur. Bu titreşim hareketi γ ile gösterilir. Şekil 1.4 (1)'da genelde kapalı bir halka oluşturan moleküllerde görülür ve hareketin biçiminden dolayı "şemsiye titreşimi" adını alır. Bu titreşimde (+) ve (–) durumlar, kâğıt düzleminin altına ve üstüne doğru olan hareketleri göstermektedir[51].

Şekil 1.4 Moleküllerde Titreşim Türleri[52,35].

1.1.5 Grup Frekansları

Grup frekansı yönteminde, moleküllerin geri kalanına bakılmaksızın, bazı molekül grupları, IR ve Raman spektrumlarını incelemek için yaklaşık olarak aynı frekansta soğurma verirler[53,54]. Yani molekülün titreşim spektrumunun yorumlanmasında kullanılan yönteme grup frekansı yöntemi denir. Molekülün tüm atomlarının aynı faz ve aynı frekansta hareket ettiği anlamına gelen temel titreşim genliği, titreşim frekanslarının kütlesi ile ters orantılı olduğundan genlikler birbirinden farklıdır. Bu genlik farkı bazı atom gruplarının molekülde bağımsız hareket etmesine sebep olur ve dar bir frekansı alanında soğurma yapar. Bu frekansa grup frekansı denir[41,39].

Molekül içerisindeki bir grup, moleküldeki diğer atom gruplarına oranla daha hafif (NH, OH, CN₂, NH₂) veya daha ağır atomlar (F, Br, Cl) içeriyor ise, bu tip grupların, molekülün geri kalan kısmından bağımsız hareket ettiği kabul edilir. Bunun nedeni, bu grupların harmonik titreşim genliğinin, molekülün diğer atomların genliğine oranla daha büyük ya da daha küçük olmasıdır. Yani bir moleküldeki bir grup titreşirken, grup titreşimin potansiyele katkısı ile molekülün geri kalan kısmının titreşim potansiyeline olan katkısı oldukça farklıdır. Bu yüzden molekülde titreşen grup, molekülün geri kalan kısmından bağımsız titreşiyormuş gibi düşünülebilir. Harmonik titreşicinin frekansı;

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$
(1.19)

ifadesi ile verilir. Burada, kuvvet sabiti (k), indirgenmiş kütle (μ)'dir. Kuvvet sabitinin büyük olması atomlarının denge pozisyonunda hareketini zorlaştıracağından ikili ve üçlü bağların (C=C, C=O, C=N, C=C, C =N) gerilme frekansları, tekli bağların gerilme frekanslarından daha yüksek olacaktır. Grup frekanslarının bazıları Çizelge 1.2' de verildiği gibi birçok organik ve inorganik grupların frekansları belirli olup bunlar yapı analizinde kullanılır[55,45].

Grup	Gösterim	Dalga sayısı aralığı (cm ⁻¹)
– O – H gerilme	ν(OH)	3650-3400
– N – H gerilme	ν (NH)	3500-3300
– C – H gerilme (aromatik)	ν (CH)	3100-3000
– C – H gerilme (alifatik)	ν (CH)	3000-2900
– CH ₃ gerilme	ν (CH ₃)	$2962 \pm 10 - 2972 \pm 5$
– CH ₂ gerilme	ν (CH ₂)	$2926 \pm\!\! 10 - 2853 \pm\!\! 10$
– S – H gerilme	ν (SH)	2600-2450
$-C \equiv N$ gerilme	ν (CN)	2300-2200
$-C \equiv C$ gerilme	ν (CC)	2260-2100
-C = O gerilme	ν (CO)	1900-1600
-C = N gerilme	ν (CN)	1700-1600
-C = C gerilme	ν (CC)	1650-1550
– NH ₂ bükülme	$\delta(\rm NH_2)$	1600-1540
– CH ₂ bükülme	δ (CH ₂)	1465-1450
– CH ₃ bükülme	δ (CH ₃)	1450-1375
C – CH ₃ bükülme	$\Box r(CH_3)$	1150-850
-S = O gerilme	ν (SO)	1080-1000
-C = S gerilme	ν (CS)	1200-1050
– C – F gerilme	ν (CF)	1300-1100
– C – Cl gerilme	ν (CCl)	800-700
– C – Br gerilme	ν (CBr)	600-500

Çizelge 1.2 Grup Frekansları[56].

IR bölgesinin 1200 cm⁻¹ -700 cm⁻¹ dalga sayısı aralığında tamamen moleküle özgü, molekül yapısından etkilendiği için bu aralığa parmak izi bölgesi de denir. Bu bölgedeki gözlenen bantlar fonksiyonel grup bölgesindeki bantların aksine, molekülün yapısından çok etkilenir. Grup frekanslarında ise spektrum çizgilerinin bir bölümünün incelenmesinde yeterli bilgi veremediğinden, spektrumun bir bütün olarak incelenir ve spektrumdaki piklerin kaynağını ve moleküldeki fonksiyonlu grupların belirlenmesinde kullanılır. Grup frekans bölgesi, 3600 cm–1 – 1200 cm⁻¹ dalga sayısı aralığında gözlenen bölgeyi kapsamaktadır.

Şekil 1.5 Grup frekansları bölgesi ve parmak izi bölgesi[47].

1.1.5.1 Grup Frekanslarına Etkiyen Faktörler

Molekül grupları, farklı moleküller içinde olsa da hemen hemen aynı yerde titreşim piki verdiği görülür. Eğer grup ciddi çevre değişiklikleri altındaysa bu grubun izole haldeki frekans değerinde kaymalar meydana gelir. Grup frekanslarını etkileyen faktörler, molekül içi ve molekül dışı etkiler olmak üzere iki kısımda incelenir[53,45].

1.1.5.1.1 Molekül İçi Etkiler

Bir molekülde, frekansı birbirine yakın olan iki titreşim arasında görülen titreşimsel çiftle nimler, komşu bağın kuvvet sabiti etkileri ve bir bağın elektron yoğunluğunda değişiklik oluşturan elektronik etkileri molekül içi etkilerdir.

a) Titreşimsel Çiftlenim: Bir molekülde frekansı birbirine yakın iki titreşim veya bir atoma bağlı iki titreşim arasında görülür[41]. Bağ yapısı C=O şeklinde olduğu düşünülen bir molekülün gerilme titreşimi için v_1 temel titreşim frekansı bulunsun. Bu iki atomlu molekülden türetilen O=C=O şeklinde bağ yapısına sahip bir molekülün soğurma bandı incelendiğinde v_1 frekansında herhangi bir soğurma olayı gözlenmez. Ancak, titreşim frekansları $v_a < v_1$ ve $v_b > v_1$ şeklinde değişirse, bağ yapısında gerilme titreşim soğurma bantları görülür. CO₂ molekülündeki titreşimlerin birbirini etkileyerek oluşan faklı frekanslı iki titreşim olayına çiftlenim denir.

Titreşimsel çiftlenime bakıldığında, çizgisel moleküllerde bağ uzunluğu, açılı moleküllerde ise bağ açısındaki artışa bağlı olarak azalmaktadır. Çiftlenim dik açılı moleküllerde ise sıfır olur. Örnek olarak; doğrusal(hipotetik) iki atomlu C=O molekülünde gerilme titreşimi 1871 cm⁻¹ olarak hesaplanmış, CO₂'nin spektrumu bu bölgede bir titreşim bandı oluşturmamıştır. Ancak, CO₂ spektrumda 1350 cm⁻¹ de simetrik ve 2350 cm⁻¹ de asimetrik olan iki titreşim bandı gözlemlenmiştir[57,39]. Bunun nedeni, 1871 cm⁻¹ titreşimi yerine CO₂'deki titreşim merkezleri arasındaki çiftlenim sonucu iki farklı titreşim meydana gelmesidir. Açılı olan SO₂ molekülünde ise çiftlenim etkisi daha azdır ve hipotetik S=O molekülü için yapılan hesaplama titreşim bandının 1260 cm⁻¹ de simetrik titreşim bandı, 1360 cm⁻¹'de ise asimetrik titreşim bantları gözlenir[57,39]. Bu iki örneğe bakılırsa CO₂ kaymaları, SO₂ kaymalarından çok daha fazla olduğu görülür. Titreşim yapan iki bağ merkezi arasındaki uzunluk yakın ise titreşim çiftlenimi gözlenirken, titreşim merkezleri arasındaki uzunluk yakın ise titreşim çiftlenimi gözlenirken, titreşim merkezleri arasındaki uzunluk yakın se titreşim çiftlenimi gözlenirken, titreşim merkezleri arasındaki uzunluk yakın se

b) Komşu Bağ Etkisi: Komşu bağlar arasındaki kuvvet sabitinin küçülmesi veya büyümesi, titreşim frekanslarının düşmesine ya da yükselmesine neden olur. Bu şekilde

komşu bağın etkisiyle frekans değişimine komşu bağ etkisi denir. Örneğin, nitril (R— C=N, R: alkali radikal) bileşiklerinde R yerine halojenli atom grupları geldiği zaman titreşim frekansında kaymalar gözleniyor. Bu kaymaları daha önceden bahsettiğimiz titreşim çiftlenimi ile açıklamak mümkün değil. Çünkü X halojen atom grupları olmak üzere X-C frekansı üçlü bağ frekansından çok farklı ve çok küçüktür. Bu sebeple, farklı frekanslar arasında çiftlenim gerçekleşmez. Titreşim frekansındaki kaymalar, elektronik etki veya kütle etkisi ile açıklanamaz. Eğer, kaymalar elektronik etkiye bağlı olsaydı, halojen atom grupları benzer elektronik özellikler gösterir ve kaymalar aynı yönde olurdu.

c) Elektronik Etki: Elektronik etki, bağın elektron yoğunluğunda değişiklikler meydana getirmesine denir. Elektronik etki, indüktif ve rezonans etkiler olmak üzere iki kısımda incelenir. İndüktif etki, bağ elektronlarının atomlar arasında ortaklaşa kullanılması ile elektron yoğunluğunu artıran pozitif ve azaltan negatif etki olarak tanımlanır. Böylece bağın karakteristiği artar veya azalmış olur. Rezonans etkisi ise, sadece elektronların yerlerinin birbirinden farklılık gösterdiği yapılar olarak tanımlanabilir. Bu yapılarda yalnızca elektronlar hareket etmekte, çekirdek ise sabit kalmaktadır[59,45]. Bu nedenle, rezonans etki söz konusu olan bağın zayıflamasına ve titreşimin düşük frekansa doğru kaymasına sebep olur.

1.1.5.1.2 Molekül Dışı Etkiler

Bir maddenin spektrumu, gaz fazında olduğunda en iyi sonucu verir. Bunun sebebi, madde gaz halindeyken moleküller arası uzaklığın fazla olduğu ve molekülün normal titreşime sahip olduğudur. Fakat madde sıvı haldeyken molekülün yakınında bulunan başka molekülden etkilenebilir. Bu molekül dışı etkilenme, dipolar etkilenme ve hidrojen bağı ile etkilenme olmak üzere ikiye ayrılır.

a. Dipolar (çift kutupsal) etkilenme: Polar molekülün pozitif ucu ile başka bir molekülün negatif ucunun birbirini çekmesi durumuna dipolar etkileşme denir. Örneğin, aseton molekülünün ($(CH_3)_2$ -C=O) gaz halindeki titreşim frekansı 1738 cm⁻¹ iken, sıvı haldeki aseton molekülünün aynı titresimdeki frekansı 1715 cm⁻¹ olarak

gözlenmiştir[58,39]. Bunun nedeni, sıvı haldeyken iki dipol - dipol kuvveti olan C=O karbonil grubunun birbirlerini çekmesidir. Sıvı fazda dipol – dipol etkileşimi fazla, gaz fazda az olduğundan, dipolar etkilenme sonucu sıvı halde düşük frekans bölgesine kaymalar gözlenir. Bu şekilde, bağların polaritesi artar ve karbonil grubunun bağ derecesi azalır. Bu durumda meydana gelen kaymalar en çok 25 cm⁻¹ civarındadır. Polar çözücülerde, çözünen ve çözücü arasında etkileşim vardır. Dolayısıyla, farklı çözücülerde farklı dalga boylarında bantlar oluşabilmektedir[60,45]

b. Hidrojen bağı ile etkilenme: Hidrojen bağı ile meydana gelen kaymalar, dipolar etkilenme sonucu meydana gelen kaymalardan daha büyüktür. Bir molekülün hidrojen bağı basitçe X-H ile gösterilir ve molekülün diğer donor atomu üzerinde ortaklanmamış elektron çifti bulunan Y atomu arasındaki etkileşme olarak tanımlanır(X-H...Y). X atomu hidrojenden daha elektronegatif bir atom ihtiva eder. Bu etkileşme molekül içinde gerçekleşiyorsa molekül içi hidrojen bağı, moleküller arasında gerçekleşiyorsa molekül arası hidrojen bağı denir. Burada, H...Y bağı, normal kovalent bağa göre çok zayıf olduğundan infrared bölgede 300 cm⁻¹ dalga sayısı altında gözlenir ve örnek olarak karboksilli asitler verilebilir.

X-H...Y bağının oluşumu sonucunda, hidrojen atomu etrafındaki kuvvet alanı ve X-H titreşim bantları da değişebilir. Ayrıca, hidrojen bağı X-H bağını da zayıflattığı için gerilme titreşim frekansı da düşer. Buna karşılık ise H...Y bağının bükülme titreşim frekansı yükselir. Böylece düşük frekans bölgesinden yüksek frekans bölgesine kaymalar olur[57,39]. Örneğin; primer amidlerde (R-NH₂ C=0) C=O gerilme titreşimleri ve NH bükülme titreşimlerinin frekansları, hidrojen bağının oluşmasını sağlayan bir ortamda çalışıldığında yaklaşık 40 cm⁻¹ düşer. C=0 gerilme titreşimleri çok seyreltik çözeltilerde 1690 cm⁻¹ de, parafin KBr içinde ise 1650 cm⁻¹ gözlenmektedir. Çünkü bu ortamda amid molekülleri arasında hidrojen bağı meydana gelir. Buna karşılık seyreltik çözeltilerde 1620-1590 cm⁻¹ de gözlenen N-H gerilme titreşimleri 1650-1620 cm⁻¹ e yükselebilmektedir[53,45]. (Bkz. Çizelge 1.2).

1.2. Kimyasal Hesaplamalar

Kuantum kimyasal hesaplama, kimyasal problemleri çözmek için matematiksel, fiziksel ve teorik prensiplerin uygulaması olarak tanımlanabilir. Kimyasal hesaplama yöntemleri karmaşık yapıya sahip çok parçacıklı moleküllerin çözümünde yetersiz olduğu için, analitik ve teorik prensiplere dayalı çözümler üretmek için bilgisayar destekli yazılımlar geliştirilmiştir. Teorik kimyada kullanılan bu yöntemler, Gaussian, Cache, Mopac, Ampac, Hyperchem, Quanta, Alchemy ve benzer birçok yazılımla yapılabilen kimyasal hesaplamalar olup sonucunda moleküllerin veya reaksiyonların birçok özellikleri teorik olarak belirlenebilmektedir. Bu özelliklerden bazıları; moleküler enerjiler ve yapıları, geçiş durumlarının enerjileri ve bunların yapıları, bağ ve reaksiyon enerjileri, moleküler orbitaller, dipol momentler, atomik yükler, elektrostatik potansiyeller, elektronik geçişler (UV-spektrumu), titreşim frekansları (IR/Raman-spektrumları), nükleer magnetik rezonans (NMR-spektrumu ve NMR özellikler), kutuplanabilme yatkınlıkları ve termokimyasal özellikler (entropi, entalpi gibi) teorik olarak incelene bilmektedir [61,62,39].

Kimyasal hesaplamalar için iki ana yöntem vardır. Bu yöntemlerden biri moleküler mekanik yöntemler, diğeri ise elektronik yapı yöntemleridir. Bu yöntemler bazı moleküllere uygulanması başarılı sonuçlar vermiştir [63,45]. Moleküler Mekanik hesaplamaları yapan programlar bir kimyasal sistemdeki atomlar arasındaki etkileşmeleri klasik mekanik kuralları ile tanımlar. Bu programlar oldukça hızlıdırlar ve temel haldeki bir sistemin enerjisini kolaylıkla hesaplayabiliriz. Ancak doğru değerden sapma ihtimali de vardır. Moleküler mekanik metotlarının en önemli dezavantajlarından birisi moleküler sistemin elektronik yapıya bağlı olan özellikleri ya da diğer bir ifadeyle elektronik yapı hakkında bilgi verememesidir. Elektronik yapı metotlarında kuantum mekaniksel yasalar kullanılır. Kuantum mekaniğine göre bir molekülün enerjisi Schrödinger denklemi ile verilir. Çok küçük sistemler hariç Schrödinger denkleminin tam çözümü mümkün değildir. Bu nedenle simülasyonla yaklaşık çözümler yapılır.

Moleküler mekanik yöntem veya elektronik yapı yöntemi benzer temel işlemler üzerine kurulmuştur. Bu temel işlemlerden biri moleküler yapının taban durumuna karşılık

gelen en düşük enerjiye sahip yani en kararlı olduğu yeri bulmak için yapılan geometri optimizasyonudur. Geometri optimizasyonları atomik konumlar ile ilgili olarak enerjinin birinci türevine yani gradyentine bağlı olarak hesaplanır. Bir diğer işlem molekül içindeki atomların hareketlerini göz önünde tutarak moleküllerin titreşim frekanslarının hesaplanmasıdır. Titreşim frekansları ise atomik yapı ile ilgili olarak enerjinin ikinci türevine bağlıdır ve tüm bu yöntemlerde frekans hesaplamasını yapmak mümkün değildir [61,62,39].

1.2.1 Moleküler Mekanik Yöntemler

Moleküler mekanik yöntemler, molekül yapılarını ve molekül özelliklerini belirlemek için klasik fizik yasalarını (Newton mekaniğini) kullanmaktadırlar. Birçok farklı moleküler mekanik yöntem vardır. Bu yöntemler MMX (MM; moleküler mekanik, X; 1, 2, +, FF), Hyperchem, Quanta, Sybyl ve Alchemy gibi programlarla kullanılabilir. Moleküler mekanik yöntemlerde molekülü oluşturan atomların hareketlerinin potansiyel enerjisi,

$$\mathbf{V} = \mathbf{V}_{\text{gerilme}} + \mathbf{V}_{\theta} + \mathbf{V}_{\text{vdw}} + \mathbf{V}_{\text{es}} + \mathbf{V}_{\text{w}}$$
(1.20)

Şeklinde hesaplanır. Burada, $V_{gerilme}$: bağların esneyip gerilmesinden, V_{θ} : bağların bükülmesiden, V_{vdw} : Van der Waals etkileşimlerinden, $V_{eş}$: elektrostatik etkileşimden ve V_w : molekül içindeki tekli bağların dönmesinden kaynaklanan terimlerdir.

Mekanik yöntemler bir moleküler sistemde elektronları göz önüne almazlar. Bunun yerine, çekirdekler arasındaki etkileşimlere dayanan hesaplamaları yapılır. Elektronik etkiler dolaylı olarak hesaba katılır. Bu yaklaşım mekanik hesaplamaları hız, zaman ve maliyet olarak daha ucuz hale getirir. Binlerce atom içeren protein, enzim, polimer gibi çok büyük sistemlerin incelenmesini sağlar. Moleküler mekanik yöntemlerde elektronik etkiler hesaba katılmadığı için, elektronların baskın olduğu kimyasal problemler de bu yöntemlerle inceleneme yapılamaz [61,39]. Örneğin, bu yöntemler bağ oluşum veya bozulmalarını içeren sistemleri ve ince elektronik detaylara bağlı olan moleküler özellikleri tanımlayamazlar.

1.2.2 Elektronik Yapı Yöntemleri

Elektronik yapı yöntemleri hesaplamalarında, klasik fizik yasaları yerine, kuantum mekanik yasalarını kullanılmaktadır. Kuantum mekaniği bir molekülün enerjisinin ve diğer birçok elektronik yapı özelliklerinin Schrödinger denklemiyle çözülerek elde edilebileceği düşüncesi üzerine kurulduğundan, bu yöntemlerle sistemin ilgili Schrödinger denkleminin çözülmesi üzerinde durulmuştur. Fakat Schrödinger denkleminin büyük moleküller için günümüzde kesin ve tam bir çözümü henüz mümkün olmadığından, bu yöntemler bazı yaklaşımlar yapılarak bu denklemin yaklaşık çözümünü hesaplanabilir. Elektronik yapı yöntemleri, yarı deneysel (semi-empirical) ve ab-initio yöntemler olarak iki gruba ayrılmıştır. Ancak, son zamanlarda yoğunluk fonksiyonel yöntemler (Density functional theory/DFT) elektronik yapı yöntemlerinin üçüncü bir grubu olarak yaygın bir şekilde kullanılmaktadır. Günümüzde en çok tercih edilen yöntemler ise Ab-initio ve DFT yöntemlerinin birleştirilmesiyle oluşan hibrit yöntemleridir [61,62,39,64].

1.2.2.1 Yarı-Deneysel Yöntemler

Bu yöntemde hesaplamalar kuantum mekaniksel yönteme göre yapılır. Bu yöntemler, Mopac, Gaussian, Cache gibi benzer birçok programa yerleştirilmiş MNDO (Modified Neglect of Differential Overlap), AM1 (Austin Model 1), PM3 (Parametric Model 3), PM5 (Parametric Model 5) ve benzeri yöntemlerdir. Yarı-deneysel yöntemler, HF (Hartree-Fock) teorisinin basit versiyonlarıdır. HF teorisi, Born-Oppenheimer yaklaşımını kullanır, yarı—deneysel yöntemde ise hesaplama yapılırken HF teorisindeki Coulomb ve değiş-tokuş etkileşim integrallerini ihmal eder ve bunların deneysel parametreleri kullanılarak hesaplamalar yapar. Deneysel çalışmalardan elde edilen bazı parametrelerin kullanılmasıyla hesaplamalar basitleştirilmektedir. Yarı-deneysel yöntemle yapılan hesaplama algoritmasında moleküler parametrelerin deneysel değerlerine yakın sonuçları verecek parametreler mevcuttur[64]. Hesaplamalarda kullanılan parametreler incelenen sistem için uygun olduğunda, bu yöntemler ile yapılan hesaplamalarda Schrödinger denkleminin yaklaşık çözümü ile iyi sonuçlar elde etmek mümkün olacaktır. Bununla birlikte, yarı-deneysel hesaplamalar çoğu yönteminde tüm orbitalleri küresel simetrik olarak ele alır ve sadece valans elektronlarını göz önünde tutar. Yarı-deneysel yöntemler, organik kimyada yüzlerce atom içeren büyük moleküllerin optimizasyonları ve incelemeleri için yaygın olarak kullanılmaktadır.

1.2.2.2 Ab-İnitio Yöntemler

Ab-initio, temel ilkelerden türetilen ve hazır parametreler kullanılmadan yapılan hesaplama uygulamaları anlamına gelir. Ab-*i*nitio yönteminde genellikle karmaşık bir fonksiyonun daha basit fonksiyonlara indirgenmesine yönelik matematiksel yaklaşımlar kullanılır[65,64].

Moleküler mekanik yöntemlerin ve yarı-deneysel yöntemlerin aksine, bu yöntemlerle yapılan hesaplamalarda herhangi bir hazır deneysel parametre kullanılmadığından hesaplamalar sadece kuantum mekanik yasalarına ve bazı fiziksel sabitlerin değerlerine göre yapılır. Bu fiziksel sabitler ışık hızı, Planck sabiti, elektron ve çekirdeklerin kütleleri ve yükleridir. HF teorisini kullanan ab-initio yöntemlerinde elektron korelasyonları ihmal edilmez, sadece ortalama bir değer olarak dikkate alınır. Yani, her elektron için ortalama bir elektron yoğunluğu ele alınır. Bu yaklaşım sebebiyle HF hesaplamalarında bazı sistemler için daha az doğrululuk sonuçlar elde edilmiş olur.

Yarı-deneysel ve ab-initio yöntemleri hesaplama maliyetleri (hız ve zaman) ve sonuçlarının doğruluğu açısından büyük önem taşımaktadır. Yarı-deneysel yöntemler, ab-initio yöntemlerinden daha hızlıdır ve daha iyi parametrelere sahip sistemlerde kabul edilebilir düzeyde yaklaşımlar sağlar. Ab-initio yöntemleri, yarı-deneysel yöntemlere kıyasla hesaplama maliyetleri açısından dezavantajlı olmalarına rağmen, incelenen birçok sisteme yüksek kaliteli yaklaşımlar sunar. Günümüzde kullanılan ab-initio yöntemleri, donanımlı bilgisayarlarla kısa sürede yüzlerce atomdan oluşan birçok karmaşık yapının çeşitli özelliklerini hesaplanmak için kullanılabilir.

1.2.3 Çok Parçacık Problemi

Birçok parçacık problemi, çok sayıda birbiriyle etkileşen parçacıkların mikroskobik sistem özelliklerine ilişkin fiziksel problemleri içine alan geniş bir alandır. Geçtiğimiz yüzyılın en önemli problemlerinden biri olan atomlar ve moleküller gibi çok-parçacıklı sistemlerin özelliklerinin kesin ve tam olarak tanımlanabilmesi olmuştur. Bu noktadaki çalışmalar günümüzde de yoğun olarak sürdürülmektedir.

Çok parçacıklı sistemlerin fiziksel ve kimyasal özelliklerini tam olarak tanımlanabilmesi için sistemin sahip olduğu elektronik özelliklerinin belirlenebilmesi ile mümkündür. Elektronik özellikler malzemenin atomik boyutlardaki (Å) etkileşimleri ile ilgili olduğundan, malzemeleri oluşturan atomların özellikleri incelenirken kuantum mekaniği yasaları kullanılır[66,64].

Çok parçacık problemini çözmek için kullanılan en yaygın üç yöntem;

a. Dalga fonksiyonları metodu, çeşitli yaklaşımlar ile çok-elektron dalga fonksiyonunu bulmaya dayanır.

b. Green fonksiyonları yöntemi.

c. Elektron yoğunluğu metodu, Bu yöntemde başlangıç noktası olarak elektron yoğunluğu kullanılır.

Zamandan bağımsız bir kuantum sisteminin özellikleri (1.21) eşitsizliği ile verilen zamandan bağımsız Schrödinger[67,64] denklemi çözülerek hesaplanabilir;

$$\hat{H}\Psi(\overrightarrow{r_1},\sigma_1;\overrightarrow{r_2},\sigma_2;\ldots,\overrightarrow{r_N},\sigma_N) = E\Psi(\overrightarrow{r_1},\sigma_1;\overrightarrow{r_2},\sigma_2;\ldots,\overrightarrow{r_N},\sigma_N)$$
(1.21)

Burada, \hat{H} incelenecek olan kuantum mekaniksel sistemin Hamiltoniyeni, $\Psi(\overrightarrow{r_1}, \sigma_1; \overrightarrow{r_2}, \sigma_2; \dots, \overrightarrow{r_N}, \sigma_N)$ çok parçacıklı sistemin dalga fonksiyonu, *E* ise sistemin toplam enerjisidir.

1.2.3.1 Born-Oppenheimer Yaklaşımı

Çok parçacıklı sistemlerin analitik çözümü olmayan karmaşık problemlerin çözümüne ulaşmak için ilk katkı 1927 yılında Born ve Oppenheimer tarafından yapılmıştır. Born-Oppenheimer yaklaşımında elektron ve iyonların (p,n) hareketleri ayrı ayrı incelenir[68,64].

Çok parçacık etkileşimli e^{-} elektron ve *n* iyondan oluşan fiziksel bir sistem için toplam Hamiltonyen;

$$\widehat{H} = \widehat{H}_e + \,\widehat{H}_n \tag{1.22}$$

$$\widehat{H} = \widehat{T}_e + \widehat{T}_n + \widehat{U}_{ne} + \widehat{U}_{ee} + \widehat{U}_{nn} = \widehat{H}_e + \widehat{U}_{nn}$$
(1.23)

$$\hat{H}_{e} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i} \sum_{I} \frac{Z_{I}}{|r_{i} - R_{I}|} + \frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{1}{|r_{i} - r_{j}|}$$
(1.24)

$$\widehat{H}_{n} = -\frac{1}{2} \sum_{I} \nabla_{I}^{2} + \frac{1}{2} \sum_{I} \sum_{J \neq I} \frac{Z_{I} Z_{J}}{|R_{I} - R_{J}|}$$
(1.25)

Burada elektronik Hamiltonyen ' \hat{H}_{e} ' ve iyonik Hamiltonyen ' \hat{H}_{n} 'nin toplamı olarak yazılabilir(m = \hbar = e = 1). Denklem 1.24'de ki birinci terim, tekli elektronların kinetik enerji toplamını, ikinci terim elektron-iyon etkileşimini ve üçüncü terim ise elektronelektron etkileşimini vermektedir. Denklem 1.25'daki birinci terim iyonların kinetik enerjisini temsil ederken, ikinci terim iyon-iyon etkileşimini temsil etmektedir. Burada ' Z_{I} ' iyon yükünü, ' r_{i} ' elektronların ve ' R_{I} 'de iyonların konum vektörleridir (i, j = 1...N; I, J = 1...M).

Elektronların kütleleri iyonlara yani atomik çekirdeklere kıyasla oldukça hafiftir. Bu sebeple, elektron ve iyon etkileşimli çok parçacıklı sistemde iyonlar, harici bir kuvvet alanı etkisinde elektronlara nazaran daha geç tepki verebilirler. Bu yüzden iyonik ve elektronik hareketler birbirinden ayrılarak dalga denklemi aşağıdaki gibi yazılır;

$$\psi\left(\tilde{R},\tilde{r}\right) = \chi\left(\tilde{R}\right)\varphi\left(\tilde{r},\tilde{R}\right) \tag{1.26}$$

Burada ' $\tilde{R} = \{R_I | I = 1, ..., M\}$ ' iyonların toplam konum vektörü ve ' $\tilde{r} = \{(r_i, \sigma_i) | i = 1, ..., N_e\}$ ' elektronların toplam konum vektörleridir. Denklem (1.26)'deki $\chi(\tilde{R})$ dalga fonksiyonu iyonları temsil ederken, $\varphi(\tilde{r}, \tilde{R})$ dalga fonksiyonu elektronları temsil etmektedir. Denklem (1.26)'da Born ve Oppenheimer'ın (BO) adiyabatik yaklaşımı olarak bilinir[68,69].

Born ve Oppenheimer yaklaşımında iyonların duruyor kabul edilmesi sebebiyle çok parçacıklı sistemler için yazılan 1.22'teki denklemde çekirdeklerin kinetik enerjisi ' \hat{T}_n ' sıfır olacaktır. Buna göre yeni Hamiltonyeni;

$$\widehat{H}^{BO} = \widehat{T}_e + \widehat{U}_{ne} + \widehat{U}_{ee} + \widehat{U}_{nn} = \widehat{H}_e + \widehat{U}_{nn}$$
(1.27)

denklemi ile yazılır. Burada \hat{H}_e denklem 1.24'te ki elektronik Hamiltonyeni ifade eder. Ayrıca uzayda sabit atomik çekirdekler için ' \hat{U}_{nn} ' iyon-iyon etkileşim terimi sabit bir değer alır. Böylelikle elektronik enerji;

$$\hat{H}^{BO} \,\varphi_B^0 \left(\hat{r} \right) = E^{BO} \,\varphi_B^0(\hat{r}) \tag{1.28}$$

yukarıdaki özdeğer denklemi ile hesaplanır. Bu ifadedeki dalga fonksiyonun üstel sıfır işareti sistemin temel durumda olduğunu göstermektedir. Temel durum enerjisinin beklenen değeri ise;

$$E^{BO} = \left\langle \varphi_B^0 | \hat{H} | \varphi_B^0 \right\rangle = \min \left\langle \varphi_B | \hat{H} | \varphi_B \right\rangle \tag{1.29}$$

eşitliği ile hesaplanır. Sistemin toplam enerjisi, ancak iyonların hareketlerinden doğan enerjiyi de hesaba kattığımızda bulabiliriz. Buna göre sistemin toplam enerjisi;

$$\widehat{H}^{BO} = \widehat{T}_n + E^{BO}(\widetilde{R}) \tag{1.30}$$

$$\widehat{H}^{BO}\chi\left(\widetilde{R}\right) = E\,\chi\left(\widetilde{R}\right) \tag{1.31}$$

denklemi ile bulunur. Böylece elektronik ve iyonik serbestlik dereceleri birbirinden tamamiyle ayrılmış olur. Elektronların enerji hesaplaması zor olduğu için kuantum mekaniksel olarak ele alınması gerekir. İyonlar ise genellikle klasik yaklaşımla hesaplanabilir.

1.2.4 Hartree-Fock Yaklaşımı

Hartree-Fock (HF) yaklaşımında karmaşık yapılı parçacıkların dalga fonksiyonu çözümlerini tam yapamamaktadır. HF sadeece tek parçacıklı sistemlerde Schrödinger denklemini kullanarak belirli potansiyellerde çözümleyebilmektedir. Hartree-Fock (HF) teorisine göre, çok elektronlu bir sistemdeki her elektronun ortalama bir potansiyelde bağımsız hareket etmesi ilkesine dayanır. Bu şekilde tek parçacık dalga fonksiyonlarını (ϕ_i) çözülebilen ve varyasyonel olarakta çok parçacıklı dalga fonksiyonlarını (Φ) oluşturulabilir. Burda ϕ_i dalga fonksiyon katsayıları değiştirilerek Φ 'nin optimizasyonu hesaplanabilir.

Denklem 1.24'deki \hat{H}_e Hamiltoniyen'in de birinci terim ile ikinci terim tek parçacık operatörünü temsil etmekte, üçüncü terimse elektron-elektron operatörünü yani iki parçacık operatörünü temsil etmektedir. Buna göre denklem 1.24'i aşağıdaki gibi iki kısımda ele alabiliriz;

$$\widehat{H}_{e} = \underbrace{\sum_{i=1}^{N} [\widehat{t}_{i} + u(x_{i})]}_{\substack{i \neq j \\ operat \ddot{o} r\ddot{u}}} + \underbrace{\frac{1}{2} \sum_{i \neq j}^{N} \widehat{v}(x_{i} - x_{j})}_{\substack{i \neq j \\ \zeta ift \ parçacık \\ operat \ddot{o} r\ddot{u}}}$$
(1.32)

Denklem, tek parçacık operatörü, kinetik enerjisi ($\hat{t}_i = -\frac{1}{2}\nabla_i^2$) ve $u(x_i)$ iyon-elektron etkileşimi operatörleriyle ve elektron-elektron etkileşimli çift parçacık operatöründen oluşmaktadır. Çift parçacık operatörü, HF metodunda tek parçacık potansiyeli ile ifade

edilir. Birbiriyle etkileşmeyen her bir parçacık için efektif bir potansiyel denklemi yazılabilir. Oluşan sistem için yeni Hamiltonyen denklemi,

$$\hat{h}_{HF} = \hat{t}_i + \hat{v}_{HF}^i \tag{1.33}$$

eşitliği ile yazılır. Denklemde \hat{t}_i , tek parçacığın sahip olduğu kinetik enerji operatörünü ve \hat{v}_{HF}^i ise tek parçacığı etkileyen efektif potansiyel operatörünü verir. N tane parçacık için HF sisteminin toplam Hamiltonyeni ise;

$$\widehat{H}_{HF} = \sum_{i}^{N} \widehat{h}_{HF}^{i} = \sum_{i}^{N} (\widehat{t}_{i} + \widehat{v}_{HF}^{i})$$
(1.34)

eşitliği ile verilir. Uygun şartlarda,

$$\widehat{H}_{HF}\Phi = E\Phi \tag{1.35}$$

Burada özdeğer denkleminin çözümü, varyasyonel dalga fonksiyonu (Φ) ve tek parçacık dalga fonksiyonu ($\phi_i(x_i)$) ile oluşturulur. Varyasyonel çok parçacık dalga fonksiyonu Slater determinantı;

$$\Phi = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(x_1)\phi_2(x_1) \dots \phi_N(x_1) \\ \phi_1(x_2)\phi_2(x_2) \dots \phi_N(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(x_N)\phi_2(x_N) \dots \phi_N(x_N) \end{vmatrix}$$
(1.36)

şeklinde yazılır. Burada $1/\sqrt{N!}$ normalizasyon katsayısı olarak verilir. Slater determinantında varyasyonel Φ dalga fonksiyonu, fermiyonlar için anti-simetrik özellik gösterir. Bu özellik Pauli dışarlama ilkesinin bir gereği olup her bir $\phi_i(x_i)$ tek parçacık dalga fonksiyonu için denklem 1.33'de ayrı ayrı verilen Hamiltonyen;

$$\hat{h}_{HF}\phi_i = \tilde{\epsilon}\phi_i \tag{1.37}$$

özdeğer denkleminin çözümüdür. Bu denklemin çözülebilmesi için v_{HF} efektif potansiyelin elde edilmesine bağlı olup, elektronik enerjinin Φ temel durum dalga fonksiyonu için beklenen değeri denklem 1.38'da verilir.

$$\langle \Phi | \hat{H}_{e} | \Phi \rangle = \sum_{i}^{N} \langle \phi_{i} \left| \left[-\frac{1}{2} \nabla^{2} + u(x) \right] \right| \phi_{i} \rangle$$

$$+ \frac{1}{2} \sum_{i,j}^{N} \left[\langle \phi_{i} \phi_{j} | \hat{v} | \phi_{i} \phi_{j} \rangle - \langle \phi_{i} \phi_{j} | \hat{v} | \phi_{i} \phi_{j} \rangle \right]$$

$$(1.38)$$

Hiçbir elektron kendisiyle etkileşmediğinden denklemin ikinci toplamı i=j için yok olmaktadır. Sistemdeki paçacıkların toplam etkileşimi, ikili Coulomb etkileşimlerinin toplamı kadardır. Hilbert uzayında, iki özdeş fermiyon ayırt edilemediğinden soyut kompleks etkileşimin iki farklı olasılığı vardır. Bunlaradan biri geleneksel olarak doğrudan etkileşim olarak bilinirken, diğer etkileşim ise özdeş iki parçacık yer değiştirdiğinde elde edilen değiş-tokuş etkileşimi olarak bilinir. Toplam enerjinin mümkün olan en düşük değeri, varyasyon prensibi ile hesaplanabilir. Tek elektronlu dalga fonksiyonlarına göre beklenen varyasyonal minimizasyonu eşitlik 1.38'de;

$$\frac{\delta}{\delta\phi_{\alpha}^{*}} \left[\left\langle \Phi \left| \widehat{H}_{e} \right| \Phi \right\rangle - \sum_{i}^{N} \epsilon_{i} \int dy \, \phi_{i}(y) \, \phi_{i}^{*}(y) \right] = 0 \tag{1.39}$$

denklemi ile gösterilir. (ϵ_i Lagrange çarpanıdır.) Burada, α sistemdeki herhangi bir paçacığı temsil etmekte üzere,

$$\left[-\frac{1}{2}\nabla^{2} + u(x)\right]\phi_{\alpha}(x) + \sum_{i}^{N}\int dy \frac{|\phi_{i}(y)|^{2}}{|x-y|}\phi_{\alpha}(x) - \sum_{i}^{N}\int \frac{\phi_{i}^{*}(y)\phi_{i}(x)}{|x-y|}\phi_{\alpha}(y)dy = \epsilon_{\alpha}\phi_{\alpha}(x)$$
(1.40)

Denklem 1.40 elde edilir ve Hartree-Fock eşitliği olarak bilinir. Denklemdeki birinci öperatör kinetik enerjiyi, ikinci operatör elektron-iyon potansiyelini ve üçüncü operatör ise doğrudan etkileşimi ya da Hartree potansiyelini gösterir. Bu operatörler her parçacığın kendisi de dahil olmak üzere tüm özdeşleri ile Coulomb etkileşimine sahiptir. Dördüncü operatör lokal olmayan değiş-tokuş potansiyelini temsil eder.

Hartree de değiş-tokuş terimi bir parçacığın kendisiyle etkileşme hatasını ortadan kaldırır. Değiş-tokuş potansiyelinin etkisiyle aynı spine sahip elektronlar birbirinden uzaklaşır ve her elektronun etrafi küçük hacimli değiş-tokuş boşluğu ile çevrelenir.

HF eşitliği için denklem 1.40'taki optimal \hat{v}_{HF} , efektif tek parçacık potansiyeli kurulabilir ve HF enerji değerinin elde edilebilmesi için tek parçacık orbitallerinin bulunması gerekir. Dolayısıyla, denklem 1.40 normal bir özdeğer problemi değildir. Bunun için problem çözümünde kendisi ile tutarlı bir prosedür uygulanmak gerekir. Bu prosedüre göre her bir elektron için başlangıçta yaklaşık tek parçacık dalga fonksiyonları oluşturulur. İkinci aşamada ise HF potansiyeli (\hat{v}_{HF}) için,

$$\rho(x,y) = \sum_{i=1}^{N} \phi_i^*(y) \phi_i(x)$$
(1.41)

yoğunluk matrisi ile türetilir. Üçüncü aşamada,

$$(\hat{t} + \hat{v}_{HF})\phi_{\alpha} = \epsilon_{\alpha}\phi_{\alpha} \tag{1.42}$$

eşitliği çözülür. Dördüncü aşamada ise N tane elektron için ayrı ayrı en düşük enerjili ϕ_{α}^{yeni} orbitaller belirlenir ve ikinci aşamadaki efektif potansiyeli yeniden hesaplanır. Bu döngü kendisi ile tutarlılık sağlayana kadar devam eder. Tutarlılık sağlandığında elde edilen tek parçacık dalga fonksiyonları için eşitlik 1.36'daki Slater determinant oluşturulur. Toplam elektronik enerjinin beklenen değeri, Φ varyasyonel dalga fonksiyonuna göre denklem 1.38'de verildiği gibi bulunur.

HF yaklaşımının en önemli eksiği Slater determinantı kullanarak çok parçacık dalga fonksiyonunu, tek dalga fonksiyonları cinsinden hesaplamasıdır. Bu sebeple, HF efektif potansiyeli gerçek eletkron-elektron itmesini temsil etmekte yetersiz kalmakta. Bu eksiklik genellikle elektronlar arasındaki korelasyona bağlanmaktadır. Özellikle yüksek korelasyonlu fiziksel sistemlerin elektronik yapısı doğru şekilde verilememektedir. HF yaklaşımı genellikle bant aralıklarını olması gerekenden daha büyük hesaplamaktadır. Buda büyük molekül sistemleri için hatalı sonuçlar verebilirken, küçük molekül sistemleri için doğru sonuç verebiliyor.

1.2.4.1 Varyasyon Metodu

Varyasyon metodu, Hartree-Fock denkleminin temel özelliklerinden biridir. Bundan dolayı, varyasyon yöntemi ile dalga fonksiyonlarını geliştirmek ve sistemin sahip olabileceği minimum enerji düzeyinin belirlenmesinde kullanılan hesaplanma yöntemidir. Bu yöntem hesaplamaları eşitlik 1.43'de verilen ifade ile tanımlanır;

$$E_{0} = \frac{\int \psi_{0}^{*} H \psi_{0} d_{r}}{\int \psi_{0}^{*} \psi_{0} d_{r}}$$
(1.43)

Burada, E_0 minimum enerjiyi, ψ_0 temel durumdaki molekülün dalga fonksiyonunu temsil etmektedir. Bu eşitlikte, ψ_0 yerine herhangi bir başka ψ moleküler dalga fonksiyonunu koyularak enerjisi hesaplanırsa, ψ dalga fonksiyonundan elde edilen enerji, ψ_0 'a karşılık gelen E_0 ' temel durum enerjisinden daha büyük olacaktır. Yani;

$$E_{\psi} = \frac{\int \psi^* H \psi d_r}{\int |\psi|^2 d_r} \ge E_0 \tag{1.44}$$

eşitlik 1.44'den $E_{\psi} \ge E_0$ olur.

Denediğimiz ψ moleküler dalga fonksiyonu, ψ_0 'a ne kadar yakın ise elde edilen E_{ψ} enerjisi o kadar E_0 'a yakındır[70].

1.2.5 Yoğunluk Fonksiyoneli Teorisi (DFT)

Moleküler sistemin düşük enerjili optimizasyonunu hesaplamada kullandığımız HF metodu karmaşık yapılı parçacıkların herbiri için ayrı ayrı çözüm hesaplamada ve dalga fonksiyonu çözümleri için kurulacak olan Slater determinant üzerinden beklenen değerleri bulmada hesap yükünü oldukça artırmaktadır. Buna alternatif bir yaklaşım

sergileyen ve 1927 yılında Thomas-Fermi (TF) modeli ile[71,72,69] çok parçacıklı bir iyon-elektron sistemine ait moleküllerin toplam enerjisini daha kolay hesaplamak için, elektron yoğunluğuna bağlı hesaplamalar yapılabileceğini ileri sürmüştür. Böylelikle sistemin sahip olduğu elektronların dalga fonksiyonu hesaplamaları yerine, toplam yük yoğunluğu hesaplamaları ile çalışmak oldukça kolaylaşmıştır. Çünkü HF metodunda N tane elektron için N tane dalga fonksiyonu üzerinden hesaplamalar yapılırken, Thomas–Fermi (TF) yaklaşımında yalnızca elektron yoğunluğu üzerinden hesap yapılabilmektedir. TF yönteminde, elektronların faz uzayında homojen olarak dağıldığı tezine dayanır. Bu nedenle, sistemin kinetik enerjisi konum uzayında birim hacime bağlı Fermi küresini dolduran elektron yoğunluğu tanımlaması yapılmış, korelasyon ve değiştokuş etkilerinin eksikliği nedeniyle modelin basit atomik sistemler için anlamlı sonuçlar vermesini sağlamıştır. Yoğunluk fonksiyoneli teorisi (DFT) ,teorik olarak TF modelinden esinlenmiş ve 1964 tarihli Hohenberg ve Kohn[73,69] teoremlerini baz almıştır. 1965 yılında ise Kohn ve Sham[74,69] DFT metdu için çok parçacık problemini ileri sürmüş, HF yaklaşımına benzer, birbirleriyle etkileşmeyen parçacık sistemine dönüşebilen bir çözüm geliştirmişlerdir. DFT metodu birçok metal, yariiletken ve yalitkanin temel durumunu korelasyon ve değiş-tokuş etkilerini uygun formülasyon yöntemlerle açıklayabilmektedir. Böylece çok parçacıklı sistemlerin vazgeçilmez hesaplama teorisi haline gelmiştir.

1.2.5.1 Hohenberg-Kohn Teoremleri

Yoğunluk fonksiyon teorisinin (DFT) temeli, 1964 yılında ileri sürülen ve V(r) harici potansiyelinin etkisi altında etkileşebilen elektron gazının temel durumu için yapılan çalışma Hohenberg ve Kohn'un (HK) teoremine dayanır. Bu çalışmada toplam enerjinin elektron yoğunluğuk fonksiyoneli ile hesaplanabileceği kanıtlanmış ve toplam enerji fonksiyonellerinin minimum değerinin, aslında sistemin temel durum enerjisinde olduğunu ispatlamışlardır.

Kuantum mekaniksel problemin çözümü için bir dalga fonksiyonuna (ψ) ihtiyaç vardır. Dalga fonksiyonu ile moleküler sistemler hakkında önemli bilgiler verilebilirken büyük sistemlerin açıklanması için dalga fonksiyonu yetesiz kalıyor. Örnek verecek olursak bir elektronun dalga fonksiyonu için üç uzaysal ve bir spin değişkeni gerekirken, N tane elektronlu çok parçacıklı sistemin dalga fonksiyonu için 4N tane değişkene ihtiyaçvardır. Böyle çok paçacıklı sistemlerin daha kolay hesaplana bilmesi için elektron yoğunluğunun hesaba katılmasının önemi ortaya çıkmaktadır. Yoğunluk fonksiyonu $\rho(r)$ üç uzaysal koordinatta temsil edilir. Varyasyon prensibini, sistemin elektron yoğunluğuyla $\rho(r)$ uygulaya biliriz.

Denklem 1.21'de tanımlanmış çok parçacıklı sistemin toplam elektron sayısı (*N*), iyon konumları (*R*), çekirdek yükleri (*Z*) ve elektron yoğunlukları ρ (*r*) cinsinden dört temel parametre tanımlanır. Buradaki elektron yoğunluğu ρ (*r*), sistem toplam elektron sayısı için normalize edilir,

$$N = \int \rho (r) dr \tag{1.45}$$

İyonların güçlü potansiyellerinden dolayı elektron yoğunluğu genellikle iyon merkezlerinde toplanır. Böylelikle elektron yoğunluğunun fazla olduğu yerler için iyonların konum vektörleri (\mathbf{R}) belirlenebilir. İyonun etrafında toplanan elektronların yoğunlukları da çekirdek yükü (Z) ile orantılıdır olarak değişir. Dolayısıyla elektron yoğunluğu ρ (r) çekirdek yükü hakkında da bize bilgi verir.

Elektron yoğunluğu ρ (r), sistem hakkında bilgi edinmek için önemli bir fonksiyondur. Temel durumda elektron yoğunluğu;

$$\rho(r) = N \int |\Psi(r_1, r_2, \dots r_N)|^2 dr_1 dr_2 \dots dr_N$$
(1.46)

Hohenberg-Kohn (HK)'nun birinci teoremine göre, elektron gazına etki eden bir v(r) harici potansiyelin ve temel durumdaki elektron yoğunluğu toplam enerjisinin bir fonksiyoneli olarak ifadeedilmiştir[73,69]. Böylece sistemin Hamiltonyeni;

$$\widehat{H} = \widehat{T} + \widehat{V} + \widehat{U} \tag{1.47}$$

eşitliği ile yazılabilir.

$$\widehat{T} = \frac{1}{2} \int \nabla \psi^*(r) \nabla \psi(r) dr$$
(1.48)

$$\hat{V} = \int v(r)\psi^*(r)\psi(r)dr$$
(1.49)

$$\widehat{U} = \frac{1}{2} \int \frac{dr dr'}{|r - r'|} \psi^*(r) \psi^*(r') \psi(r') \psi(r)$$
(1.50)

HK teoreminde temel durum yoğunluğu $\rho(r)$ 'yi veren birbirinden farklı iki harici potansiyeli elealırsak. Farklı iki harici potansiyeller v(r) ve v'(r) ile tanımlanır ve sırasıyla iki farklı H ve H' Hamiltonyeni ve sırasıyla Ψ ve Ψ' dalga fonksiyonları oluşur. Varyasyon prensibine göre temel durumdaki dalga fonsiyonu dışındaki tüm dalga fonksiyonları temel durum enerjisine göre yüksek enerji değerleri verir. Tabiki temel durum enerjisinde kayıplar yoksa eşitisizlik doğruluk sağlar. Böylece,

$$E = \langle \Psi | \widehat{H} | \Psi \rangle < \langle \Psi' | \widehat{H}' | \Psi' \rangle = \langle \Psi' | H + H' - H' | \Psi' \rangle$$
(1.51)

eşitliği yazabilir. Denklem 1.34'ü yeniden düzenlersek,

$$\left\langle \Psi | \widehat{H} | \Psi \right\rangle < \left\langle \Psi' | \widehat{H}' | \Psi' \right\rangle + \int dr [v(r) - v'(r)] \rho(r)$$
(1.52)

eşitsliği elde edilir. Benzer yöntemlelerle üslü ifadeler ve üstsüz ifadeler yer değiştirilirse;

$$\left\langle \Psi' \left| \widehat{H}' \left| \Psi' \right\rangle < \left\langle \Psi \left| \widehat{H} \right| \Psi \right\rangle + \int dr [v'(r) - v(r)] \rho(r)$$
(1.53)

eşitliği elde edilir. Bu denklemleri topladığımızda;

$$E + E' < E' + E \tag{1.54}$$

eşitliği elde edelir. Yukarıdaki ifadeye göre farklı iki harici potansiyel için aynı yoğunluk elde edilemediği görülüyor. Sistemin enerji yoğunlu, sistemdeki diğer harici potansiyeli, Hamiltonyeni ve dalga fonksiyonunuda etkilemektedir. Böylece bu ifadeler toplam enerji yoğunluğunun bir fonksiyoneli olarak yazılır. İkinci teoreme göre varyasyonel yöntemin, toplam enerjiyi yoğunluğunu minimize eden temel durum yoğunluğu olduğunu göstermektedir.

$$\min E[\rho(r)] = \min\left(F[\rho(r)] + \int \rho(r)V(r)dr\right)$$
(1.55)

$$\langle \Psi | \hat{H} | \Psi \rangle = E_{\rho} < E_{\rho}' = \langle \Psi' | \hat{H} | \Psi' \rangle$$
(1.56)

Enerji fonksiyonellerini, elektron sayısının korunum şartına göre minimize edebiliriz.

$$\int \rho(r)d^3r = N \tag{1.57}$$

$$\delta\left[E[\rho] - \mu\left(\int\rho(r)\,d^3r - N\right)\right] = 0\tag{1.58}$$

Buna göre teoride, toplam temel durum enerjisi tam olarak belirlenebilmektedir.

Denklem 1.55'daki $F[\rho(r)]$, Hohenberg-Kohn (HK) fonksiyoneli olarak ifade edilir. HK teoremi elektron sayısından, iyonik koordinattan ve iyon yüklerinden bağımsızdır. Diğer bir ifadeyle $F[\rho(r)]$ fonksiyonu herhangi bir parçacık veya herhangi dış potansiyelden bağımsız bir evrensel fonksiyoneldir. Ancak, $F[\rho(r)]$ fonksiyonelinin yapısı ile ilgili kesin bilgi bulunmamaktadır. Bu teoremler yeterince güçlü olmasına rağmen, pratikte bir sistemin temel durum yoğunluğunun nasıl bulanacağı hakkında bir yol gösterememektedir.

1.2.5.2 Kohn-Sham Transformassyonu

Hohenberg ve Kohn (HK)teoremlerine göre elektron ve iyondan oluşan bir sistemin elektronik temel durum enerjisi;

$$E_0 = \min_{\rho \to N} \left(F[\rho(r)] + \int \rho(r) V(r) dr \right)$$
(1.59)

 $F[\rho(r)]$ fonksiyeneli teknik olarak;

$$F[\rho(r)] = T[\rho(r)] + E_H[\rho(r)] + E_{k.o}[\rho(r)]$$
(1.60)

Denkleminden oluşur. Burada ' $T[\rho(r)]$ ' kinetik enerji, ' $E_H[\rho(r)]$ ' klasik Coulomb etkileşmesi ve ' $E_{k,o}[\rho(r)]$ ' klasik olmayan kısmı oluşturur. Bu terimlerden yalnızca $E_H[\rho(r)]$ 'nin matematiksel ifadesi bilinmekte. Bu problemin nasıl aşılacağını Kohn ve Sham'ın (KS) 1965'te yaptıkları çalışmada gösterdiler[74,69]. Kohn ve Sham, gerçek $F[\rho(r)]$ fonksiyonelini tanımlayabilmek için temel durumdaki yük yoğunluğu çok parçacık sistemi ile aynı olan ve tam çözülebilen etkileşimsiz yardımcı bir sistemde ele aldılar. Bu KS transformasyonunda yardımcı sistem,

$$F[\rho(r)] = T_s[\rho(r)] + E_H[\rho(r)] + E_{xc}[\rho(r)]$$
(1.61)

formundadır. Burada

$$T_{s}[\rho(r)] = -\frac{1}{2} \sum_{i}^{N} \langle \psi_{i} | \nabla^{2} | \psi_{i} \rangle$$
(1.62)

KS sisteminde parçacıkların kinetik enerjilerinin toplamıdır. ψ_i ise yardımcı sistemdeki Kohn-Sham orbitalleridir. Yoğunluğu,

$$\rho(r) = \sum_{i=1}^{N} |\psi_i(r)|^2 \tag{1.63}$$

toplamı ile tanımlanır. Bu yoğunluk gerçek sistemin yoğunluğu ile aynıdır. $E_H[\rho(r)]$ terimi elektronik yük yoğunluğunda elektrostatik (Hartree) enerjisi ve,

$$E_H[\rho(r)] = \frac{1}{2} \iint \frac{\rho(r)\rho r'}{|r-r'|} d^3 r d^3 r'$$
(1.64)

Şeklinde yazılır. $E_{xc}[\rho(r)]$ fonksiyoneli değiş-tokuş ve kolerasyon enerjisi (XC)'dir ve enerjisi,

$$E_{xc}[\rho(r)] = (T[\rho(r)] - T_s[\rho(r)]) + (E_{ee}[\rho(r)] - E_H[\rho(r)])$$
(1.65)

ile ifade edilir. Burada ' $T_s[\rho(r)]$ ' gerçek sistem enerjisi ve ' $E_{ee}[\rho(r)]$ ' elektronelektron etkileşim enerjisidir. KS yardımcı sisteminde kinetik enerji, efektif potansiyel etkisinde hareket eden bağımsız yapay parçacıkların kinetik enerjilerinin toplamıdır. Gerçek sistemde durum böyle olmadığından kinetik enerjide ' $T[\rho(r)] - T_s[\rho(r)]$ ' kadar bir hata oluşur. Aynı şekilde gerçek sistemdeki elektron-elektron etkileşimi yardımcı sistemde elektronun diğer elektronların oluşturduğu efektif bir potansiyel ile etkileşimi olarak hesaplandığından ' $E_{ee}[\rho(r)] - E_H[\rho(r)]$ ' kadar bir fark daha oluşacaktır. Bu farkların toplamı XC enerjisi kadardır ve enerjisi DFT için bir bilinmezdir ve oldukça önemlidir. KS sisteminin toplam elektronik enerjisi, burada ' $E_{ne}[\rho(r)]$ ' iyon-elektron etkileşimidir.

$$E[\rho(r)] = T_s[\rho(r)] + E_H[\rho(r)] + E_{XC}[\rho(r)] + E_{ne}[\rho(r)]$$
(1.66)

$$E_{KS}[\rho(r)] = T_{S} + \frac{1}{2} \iint \frac{\rho(r)\rho(r')}{|r-r'|} dr dr' + E_{XC}[\rho] + \int V(r)\rho(r) dr$$

$$E_{KS}[\rho(r)] = -\frac{1}{2} \sum_{i}^{N} \langle \psi_{i} | \nabla^{2} | \psi_{i} \rangle + \frac{1}{2} \sum_{i}^{N} \sum_{j}^{N} \iint |\psi_{i}(r)|^{2} \frac{1}{|r-r'|} |\psi_{i}(r')|^{2} dr dr'$$

$$+ E_{XC}[\rho(r)] - \sum_{i}^{N} \int \sum_{A}^{M} \frac{Z_{A}}{|r-r_{A}|} |\psi_{i}(r)|^{2}$$
(1.67)

KS sisteminin temel durum için çözümü ya $\rho(r)$ yoğunluğuna göre ya da $V_{KS}(r)$ efektif potansiyeline göre minimizasyon problemidir. Elektronik enerji fonksiyonelinin Kohn-Sham tek parçacık dalga fonksiyonlarına göre minimizasyonu,

$$\frac{\delta E_{KS}}{\delta \psi_i^*(r)} = \frac{\delta T_S}{\delta \psi_i^*} + \left[\frac{\delta E_{ne}}{\delta \rho(r)} + \frac{\delta E_H}{\delta \rho(r)} + \frac{\delta E_{XC}}{\delta \rho(r)}\right] \frac{\delta \rho(r)}{\delta \psi_i^*(r)} = 0$$
(1.68)

Minimizasyon KS orbitallerinin ortonormalizasyon şartına bağlı kalınarak yapılır.

$$\langle \psi_i | \psi_j \rangle = \delta_{ij} \tag{1.69}$$

Bu yöntem Rayleigh-Ritz prensibi olarak bilinir[75,76,69].

$$\frac{\delta T_s}{\delta \psi_i^*(r)} = -\frac{1}{2} \nabla^2 \psi_i(r); \quad \frac{\delta \rho(r)}{\delta \psi_i^*(r)} = \psi_i(r) \tag{1.70}$$

Fonksiyonel türev ve denklem 1.68 için,

$$\left(-\frac{1}{2}\nabla^{2} + \left[\int \frac{\rho(r)'}{|r-r'|} dr' + V_{XC}(r) - \sum_{i}^{M} \frac{Z_{I}}{|r-R_{I}|}\right]\right)\psi_{i}(r) = \left(-\frac{1}{2}\nabla^{2} + V_{KS}\right)\psi_{i}(r) = \epsilon_{i}\psi_{i}(r)$$
(1.71)

Schrödinger denklemine benzer denklem elde edilir. Burada V_{KS} Khon-Sham efektif potansiyeli,

$$V_{KS} = \int \frac{\rho(r)'}{|r-r'|} dr' + V_{XC}(r) - \sum_{i}^{M} \frac{Z_{I}}{|r-R_{I}|}$$
(1.72)

böylece KS Hamiltonyeni,

$$H_{KS} = -\frac{1}{2}\nabla^2 + V_{KS}$$
(1.73)

denklemi ile yazılır. Genel gösterimle Schrödinger benzeri KS özdeğer denklemleri de,

$$(H_{KS} - \epsilon_i)\psi_i = 0 \tag{1.74}$$

olur. Denklem 1.74'deki KS denklemi Şekil 1.6'de gösterildiği gibi kendisi ile tutarlı olma yöntemi ile çözülebilir. Buna göre her bir parçacık için başlangıçta KS denkleminden tek parçacık orbitalleri bulunur ve HK teorisinin sınırlamalarıyla belirlenen tahmini başlangıç elektron yoğunluğu türetilir. KS denklemleri yenilenen bu potansiyelle yeniden çözümlenir. Girdi ve çıktı elektron yoğunlukları kabul edilebilir bir tolerans değerine ulaşana kadar bu döngü devam eder. Dolayısıyla kendi ile tutarlı çözümler elde edilir.

1.2.6 B3LYP Karma Yoğunluk Fonksiyonu Teorisi

Dalga mekaniğine yasasına dayanan HF teoremi, kinetik enerji hesaplamaları için uygun sonuçlar verirken, değiş tokuş enerjisi ve bu metotla hesaplanan korelasyon enerji hesaplamaları için yetersiz kalıyor. DFT modeli ise değiş tokuş ve korelasyon enerjilerini daha iyi hesaplayabilmektedir. Bundan dolayı tam enerji değeri hesabında HF veya DFT modelleri yerine, her iki metodun enerji ifadeleri ortak kullanılarak toplam elektronik enerji hesaplamaları için karma modeller üretilmiştir. Bu yeni modellerle karmaşık yapılara sahip moleküllerin toplam enerji, bağ uzunlukları, iyonizasyon enerjileri gibi birçok büyüklükleri HF modeli ve DFT modelinde daha iyi hesaplayabilmekteyiz.

Hesaplamalarda en çok kullanılan enerji fonksiyonelleri; "Kinetik enerji fonksiyonelleri (H28, TF27), Değiş-tokuş enerji fonksiyonelleri (F30, D30), Korelasyon enerji fonksiyonelleri (LYP, VWN)"dir. Bu karma modellerle enerji ifadeleri birleştirilerek yeni bir enerji ifadesi elde edilebilir. Becke, değiş-tokuş ve korelasyon enerjisi (XC) için aşağıdaki karma modeli geliştirmiştir.

$$E_{karma} = C_{HF} E_{HF}^X + C_{DFT} E_{DFT}^{XC}$$
(1.75)

burada C'ler deneysel sabitlerdir. Becke'nin önerdiği karma modeller BLYP ve B3LYP' dir. Bu karma modellerden en çok kabul gören ve deneylerle uyum sağlayan Lee, Young, Parr (B3LYP) korelasyon enerjili üç parametreli Becke karma metodudur[77,3]. Bu karma modellerin en iyi sonuç verenlerinden biri; LYP korelasyon enerjili üç parametreli Becke karma metodu B3LYP'dir. Bu modelde değiş-tokuş ve korelasyon enerjisi;

$$E_{B3LYP}^{XC} = E_{LDA}^X + c_0 (E_{HF}^X - E_{LDA}^X) + c_1 \Delta E_{B88}^X + \Delta E_{VWN3}^C + c_2 (E_{LYP}^C - E_{VWN3}^C)$$
(1.76)

eşitliği ile verilmektedir. Burada c_0 , $c_1 ve c_2$ katsayıları deneysel değerlerden türetilmiş sabitler olup, değerleri sırası ile 0,2, 0,7 ve 0,8'dir. Dolayısıyla B3LYP modelinde bir molekülün toplam elektronik enerji ifadesi aşağıdaki gibi elde edilir[77,78,3].

$$E_{B3LYP} = E_V + E_I + E_{B3LYP}^{XC} \tag{1.77}$$

1.2.7 Temel Setler

AB initio yöntemlerinde asıl yaklaşımlardan biri de temel setlerin girişidir[79,80]. Temel setler, atomik orbitallerin (AO) matematiksel ifadesidir. Bilinmeyen bir moleküler orbital (MO); atomik orbitallerin doğrusal toplamları olarak yazılabilir, çünkü moleküller atomlardan oluşur ve aynı türden atomlar farklı molekül tiplerinde benzer özelliklere sahiptir[81,82].

$$\psi_i = \sum_{\mu=1}^n c_{\mu i} \phi_\mu \tag{1.78}$$

burada, ' ψ_i ' moleküler orbitali, ' ϕ_μ ' atomik orbitalleri ve ' $c_{\mu i}$ ' moleküler orbital açılım katsayılarını ifade eder. Molekülleri oluşturan atomların, atomik orbitallerinde boyut, şekil ve yük cinsinden önemli değişiklikleri vardır. Bu amaçla, temel sette bazı tanımlamalar yapmak gerekir. Bunun için, temel sete polarize ve difüz fonksiyonlar ekleyerek tanımlanır. Genişletilmiş temel setler, molekülün yüksek sıralı orbitallerini dikkate alarak moleküler yük dağılımındaki, komşu atomların etkileşmesinden kaynaklanan şekil ve boyut değişikliklerini tanımlar.

Atomlar birbirine yaklaştırıldığında, diğer çekirdeklerin etkisiyle elektronik yoğunlukları bozulur. Yük dağılımının yeniden yapılanması, polarizasyan etkisine neden olur. Bunu çözmek için eklenen temel set fonksiyonlarına polarize fonksiyonlar denir.

Uyarılmış veya iyonik haldeki moleküllerin elektron yoğunluğu, molekülün temel durumuna göre daha dağınıktır. Bu durumu matematiksel olarak modellemek için dağınık fonksiyonlar (difüze) kullanılır. Temel setlere eklenen bu fonksiyonlara difüze fonksiyonlar denir. Literatürde veya program verilerinde farklı şekillerde gösterilen bir dizi temel setler vardır. Bunlar;

Minimal baz setleri (STO-nG) = STO-3G, STO-4G

Split – Valence Basis set (4-21G,6-31G gibi bölünmüş valans baz seti)

Polarization Basis Set = $6-31G^*$, $6-31G^{**}$

Difüzyon Fonksiyonları= 6-31+G^{*}, 6-31+G^{***} [83].

setleridir. Temel set gösteriminde, G'den önce difüze fonksiyonlar için + veya ++ gösterimi kullanılır. + ağır atomlar için p-fonksiyonunu, ++ ise Hidrojen atomu için sfonksiyonunu tanımlar. Polarize fonksiyonları belirtmek için G'den sonra parantez içinde ağır atomlar için d, df kullanılırken, Hidrojen atomu için p, pd harfleri kullanılır.

Genel olarak, atomik orbitalleri tam olarak ifade edebilmek için çok sayıda temel fonksiyona ihtiyaç vardır. Kullanılan temel fonksiyon sayısı arttıkça, orbital daha iyi tanımlanır. Bunun için moleküller sisteminin elektriksel özellikleri (enerji, dipol moment, polarizebilite, vb.) hesaplanırken, temel setlere difüze ve polarize fonksiyonlar eklenerek doğruluğu arttırılır. Örneğin hesaplamalarda kullanılan temel setlerde 6 – 311+ +G(2d, p) de '6'nın anlamı, dolu orbitaller için altı tane Gaussian tipi orbital kullanıldığını; '311' valans orbitallerinin üçe yarıldığını, (2*d*, *p*) sembolü hidrojen atomu için 'p' orbitallerinin diğer atomlar için '2d' orbitallerinin göz önüne alınması gerektiğini; ++ ise hidrojen ve diğer atomlar için orbitallere diffüz etkisinin göz önününe alınması gerektiğini belirtir[84,80].

Kullanılan temel fonksiyon sayısı arttıkça, daha fazla hesaplama süresi ve daha fazla bilgisayar hafizası gerekir. Bu nedenle, yapılması gereken bir hesaplamada amaçlanan sonuç için uygun temel set seçilmelidir.

1.2.8 Molekül Geometrisi ve Optimizasyonu

Optimizasyona başlamadan önce Gauss View kullanılarak oluşturulan molekül geometrisi dengede olmayan bir yapıya sahiptir. Moleküldeki atomların konfirmasyon yapısı, molekülün geometrisini oluşturur. Geometri optimizasyonu, bu yapının geometrik parametrelerini (bağ uzunluğu, bağ açıları ve dihedral vb...) değiştirerek moleküler sisteminin taban durumuna karşılık gelen en düşük enerjiye sahip olduğu geometrisinin belirlendiği optimizasyon adımıdır. Geometrik optimizasyonun amacı potansiyel enerji yüzeyindeki (PES) kararlı noktaları belirlemektir[79,80]. Molekülün minimum enerjisine karşılık gelen, moleküldeki atomların uzay yerleşimlerini bulmak için genel program algoritması[85,82];

- Moleküldeki atomların başlangıç koordinatlarının verilmesi.
- Molekülün enerjisi ve moleküldeki her bir atom üzerine etki eden net kuvvet hesaplanır.
- Eğer moleküldeki her bir atom üzerine etki eden net kuvvet sıfır ($\sim 10^{-6}$) ise geometrik optimizasyon tamamlanır.
- Moleküldeki her atom üzerine etki eden net kuvvet sıfır değilse, moleküldeki atomların koordinatları, atomlar üzerine etki eden kuvveti azaltacak şekilde değiştirilir.

Bu algoritmada geçerli grid olarak (75,302) kullanılır[61,82]. Grid ifadesindeki birinci sayı; atomdan itibaren radyal kabuk sayısını, ikincisi ise; her bir kabuktaki grid nokta sayısını gösterir. Burada, moleküler sistemin toplam enerjisinin birinci türevi 'gradyant' ve ikinci türevi 'Hessian Matrisi' hesaplanarak, sistemin minimum enerjideki yapısı tespit edilir[86,82].

Bunun için ilk olarak potansiyel enerji, x_1^m, x_2^m, \dots minimum enerjili noktalara karşılık gelen konumlar olmak üzere gradyan vektörü g;

$$g = \left\{ \frac{\partial E}{\partial x_1^m}, \frac{\partial E}{\partial x_2^M} \right\}$$
(1.79)

Sonraki adımda ise gradyan vektörü sıfır yapan noktalar hesaplanır;

$$g = (0,0,...) \tag{1.80}$$

Amaç, gradyent vektörünün sıfır olduğu noktalar için moleküler yapının minimum enerjili durumunu belirlemek.

1.2.8.1 Potansiyel Enerji Yüzeyi (PEY)

Geometrik optimizasyon sırasında molekülün yapısındaki küçük değişiklikler (molekülün konformasyonu) ve mevcut geometriye karşılık gelen molekülün toplam enerjisi, o molekülün potansiyel enerji yüzeyini (PEY) oluşturur. Bir molekül için potansiyel enerji yüzeyi bilinirse, denge durumundaki geometriye karşılık gelen minimum enerjili nokta bulunabilir. Potansiyel enerji yüzeyi, kavranamayacak büyüklükte yüzeyi olduğu için iki boyuta indirgenmiş enerji diyagramı kullanılır. Bir molekül için potansiyel enerji yüzeyinde şekil 1.6'de görüldüğü gibi birden fazla maksimum ve minimum (eyer) noktaları da olabilir.

Şekil 1.6 İki Boyutta Potansiyel Enerji Yüzeyi (PEY) [21].

Bu noktalar, moleküler yapıların kararlı olduğu durumlardır. Bu noktalarda enerjinin gradyeti sıfırdır. Kuvvet, gradyentin negatifi olduğundan bu noktada kuvvette sıfır olur. Enerjinin, Hessian Matrisi ise kuvvet sabitini verir. Kuvvet sabitleri bu noktalardaki yüzeyin eğriliğini tanımlar ve sonraki aşama hakkında bilgi verir[87,88,82]. İkinci türevlerin (Hessian Matrisi) tamamı pozitif ise, o noktaya yerel minimum, tamamı negatif ise, yerel maksimum sadece bir tanesi negatif ise eyer noktası denir.

Şekil 1.7 Potansiyel enerji eğrisindeki maksimum ve minimum noktaların karakteristiği (Burada g gradyant, k kuvvet sabitidir.)

Potansiyel enerji yüzeylerin şekli kimyasal hesaplamalarda büyük önem taşır. N sayıda atomdan oluşan bir molekülün potansiyel enerji yüzeyi 3N-6 tane koordinat boyutuna sahip olacaktır. Bu boyut sayısı kartezyen uzayının üç boyutlu olmasının sonucudur. Potansiyel enerji yüzeyi, bağ açıları, bağ uzunlukları ve dihedral açıları cinsinden iç koordinatlar ile tanımlanır.

1.2.8.2 Doğrusal ve Doğrusal Olmayan Optik Özellikler (NLO)

Maddenin optik özellikleri, medde yapısındaki elektronların elektrik alana gösterdiği tepki olarak ifade edilebilir. Bilindiği gibi madde üzerine gönderilen ışığın elektrik alan vektörü o maddeyi kutuplar. Bir atom veya molekülün kutuplanabilirliği, çekirdek ve elektronların denge durumunda ne kadar yer değiştirdiğinin bir ölçüsüdür. Molekülün doğrusal olmayan optik (NLO) özelliklerini görmek için doğrusal polarizasyonu ve doğrusal olmayan hiperpolarizasyonu, moleküler polarizasyonundan hesaplanır. Molekülün doğrusal olmayan optik özellikleri, modern iletişim teknolojisi, sinyal işleme, optik bağlantı materyallerinin tasarımlarında önemli role sahiptir[89]. Özellikle organik moleküler hızlı NLO yanıt süreleri, yüksek lazer hasar eşikleri, düşük dielktrik sabitleri ve büyük NLO duyarlılığı doğuran akseptör ile donör arası π -elektron bulut hareketi sebebiyle yaygın olarak incelenir[90].

Bir atom veya molekülde kolaylıkla yer değiştirebilen elektronlar, çekirdeğin en uzağında bulunan valans elektronlarıdır. Bu nedenle valans elektronlarının polarizebiliteye katkısı çok büyüktür. Bir molekül, dış bir E elektrik alana konulduğunda, molekülde yeni bir yük düzenlenmesi meydana gelir ki bu molekülün dipol momenti $\mu(t)$ nin;

$$\mu(t) = \mu_0 + \alpha E(t) + \left(\frac{1}{2}\right) \beta E^2(t) + \left(\frac{1}{6}\right) \gamma E^3(t) + \dots$$
(1.81)

denklemine göre değişmesine neden olur[91,92,82]. Burada, μ_0 elektrik alan bulunmadığı durumdaki molekülün kalıcı dipol momentini, *E* elektrik alanı etkisi altında α (polarizebilite) moleküler kutuplanabilirlik, β (hiperpolarizebilite) ikinci dereceden hiper-kutuplanabilirlik, γ ise üçüncü dereceden hiper-kutuplanabilirlik olarak adlandırılır. Hiper-kutuplanabilirlik maddenin çizgisel olmayan optik performansı etkileyen bir niceliktir[93].

Sistemin toplam enerjisinin Taylor seri açılımı;

$$E = E(0) + \sum_{i} \left(\frac{\partial U}{\partial E_{i}}\right)_{0} E_{i} + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^{2} U}{\partial E_{i} \partial E_{j}}\right)_{0} E_{i} E_{j} + \frac{1}{6} \sum_{i} \sum_{j} \sum_{k} \left(\frac{\partial^{3} U}{\partial E_{i} \partial E_{j} \partial E_{k}}\right)_{0} E_{i} E_{j} E_{k} + \cdots$$
(1.82)

$$E = E(0) - \mu_i E_j - \left(\frac{1}{2}\right) \alpha_{ij} E_i E_j - \left(\frac{1}{6}\right) \beta_{ijk} E_i E_j E_k + \cdots$$
(1.83)

$$\mu_{i} = -\left(\frac{\partial U}{\partial E_{i}}\right)_{0, \alpha_{ij}} = -\left(\frac{\partial^{2} U}{\partial E_{i} \partial E_{j}}\right)_{0, \alpha_{ij}} = -\left(\frac{\partial^{3} U}{\partial E_{i} \partial E_{j} \partial E_{k}}\right)_{0}$$
(1.84)

şeklinde elde edilir. Burada, birinci türevin dipol moment, ikinci türevin polarizebilite, üçüncü türevin hiperpolarizebilite ve E(0) sistemde elektrik alanının olmadığı durumdaki toplam enerjiyi ifade ediyor. Alt indisler ise kartezyen koordinatlarını belirtir ve çarpımları bu kartezyen koordinatlarının (x,y,z) üzerinden hesaplanır. Zayıf elektrik alanları için doğrusal α polarizebilite özelliği moleküler materyalleri temsil ederken, büyük elektrik alanları için doğrusal olmayan optik özelikler önemlidir ve moleküler materyalleri doğrusal olmayan optik özellikleri β ile temsil edilirler. Çizgisel olmayan optik özellikler hesaplanırken;

Polarizebilite hesaplaması için;

$$\alpha_{ort} = \frac{1}{3} \left(\alpha_{ii} + \alpha_{jj} + \alpha_{kk} \right) \tag{1.85}$$

Hiperpolarizebilite hesaplaması için;

$$\beta_{top} = \left[\left(\beta_{iii} + \beta_{ijj} + \beta_{ikk} \right)^2 + \left(\beta_{jjj} + \beta_{jkk} + \beta_{jii} \right)^2 + \left(\beta_{kkk} + \beta_{kii} + \beta_{kjj} \right) \right]^{1/2}$$
(1.86)
ifadeleri kullanıldı[94].

1.2.8.3 Polarizebilite ve Hiperpolarizebilite

Polarizebilite ve hiperpolarizebilite, lineer olmayan optik özelliklerdir. Liner olmayan optik etkiler elektromanyetik alanların ilişkisinden ortaya çıkar. Molekülün doğrusal olmayan (liner olmayan) optik özellikleri, modern iletişim teknolojisi, sinyal işleme, optik bağlantı materyallerinin tasarımlarında kullanılır. Bir molekülün aktif olarak doğrusal olmayan optik özellik gösterebilmesi için polarizebilite, hiperpolarizebilite ve dipol moment değerlerinin yüksek olması gerekir[95].

Bir sisteme elektrik alan uygulandığında molekülün dipol momentinin, bu elektrik alana gösterdiği doğrusal tepkiye polarizebilite, doğrusal olmayan tepkiye hiperpolarizebilite denir. Buda gösteriyor ki dipol moment ile polarlanabilirlik arasında doğru orantı olduğu görülüyor.

1.2.8.4 İndüklenmiş Dipol Moment

Uygulanan bir dış elektrik alan, molekülün yük dağılımını bozduğu gibi, kalıcı elektrik dipol momentlerini de elektrik alanın etkisiyle yönlendirir[96]. Elektronegatiflikleri farklı olan atom gruplarının belirli bir elektrik alan etkisi altında elektron ortaklaşması eğilimi içine girer. Amaç sahip olunan moleküller yapının denge durumunu sağlamak istemesidir. Bundan dolayı farklı elektronegatiflikli atomlar, aralarında kovalent bağ yaparak elektronları ortaklaşa kullanırlar. Yapılan bu bağ da elektronegatifliği büyük olan atom, elektronları kendine daha fazla çeker. Bundan dolayı, elektronegatifliği büyük olan atom bölgesi kısmî negatif yüklü (δ -), elektronegatifliği küçük olan atom bölgesi kısmî pozitif yüklü (δ +) oluşarak bağda polarlaşma meydana gelir. Hidrojen ve karbon atomlarının yaptıkları kovalent bağlar daha az polardır, bu nedenle, klor ve flor atomlarının moleküllerin dipol momentleri üzerindeki etkisi daha baskındır[97,82].

1.2.8.5 Bağıl Enerji ve Torsiyon Potansiyeli

Moleküllerin enerjisi, molekülün yapısını karakterize eden farklı parametrelerin karışık bir fonksiyonu olarak ifade edilebilir. Moleküller denge halindeyken, molekülün enerji fonksiyonunun minimum değerleri bu parametrelerle ifade edilmelidir. Moleküllerin denge durumu yapıları için sahip olduğu minimum enerjiye bağıl enerji, molekül yapısının farklı parametrelere karşılık gelen etkileşim enerjisine ise torsiyon enerjisi denir. Moleküllerin denge durumundayken molekül içi etkileşmeler ve moleküller arası etkileşmeler oldukça aktiftir.

Bugün, bu istenen çözümlere belirli yaklaşımlar kullanılarak bilgisayar sistemleri üzerinden ulaşılabiliyor. Moleküler sistemlerde, gruplar belirli bir δ -bağı etrafında döndüklerinde ortaya çıkan geçici moleküler şekle konformasyon, grupların δ -bağı etrafında döndüklerinde molekülün uğradığı enerji değişimine konformasyon analizi denir[98,82].

1.2.8.6 Moleküler Elektrostatik Potansiyel (MEP)

Moleküler elektrostatik potansiyeli birim yük ile moleküler sistemin yük dağılımı arasındaki etkileşim enerjisi olarak tanımlanır. Moleküler elektrostatik potansiyeli tanımlamada renk kodlama sistemi kullanılır[99]. Elektrostatik potansiyel enerji haritaları ya da moleküler elektrostatik potansiyel yüzeyler olarak bilinen üç boyutlu şekillerdir. Bu haritalar, moleküllerin elektrostatik yük dağılımlarını gösterir ve değişken yük bölgesini görmemize imkân sağlar. Yük dağılım bilgileri, yük ile ilgili özellikleri ve moleküllerin birbirleriyle etkileşimlerini belirlemek için kullanılır. Ayrıca moleküllerin büyüklük ve şekillerini görmemizi sağlar. Organik kimyada, MEP'ler kompleks moleküllerin davranışlarını belirlemede kullanılır[100].

Bir molekülün elektron yoğunluk yüzeyi, moleküldeki elektron yoğunluğunun ulaşabileceği maksimum mesafeyi temsil eden yüzeydir. Moleküller birbirine yaklaştığında her grubun MEP'i üzerinde anahtar rol oynar. Bir molekülün, moleküler elektrostatik potansiyelin en negatif olduğu bölgeler elektrofilik atağın en fazla olduğu bölgeyi temsil etmiş olur[101]. Molekül içi hidrojen bağı oluşumu hakkında önemli bilgiler vermektedir. Elektrostatik potansiyel haritasında üzerinde en negatif potansiyel

(molekülün tamamı üzerinden çekirdeğe göre elektron yoğunluğunun en fazla olduğu bölgeyi) kırmızıyla gösterilirken; en pozitif potansiyelli (kısmi pozitif yüklerin bulunduğu bölgeyi) göstermek için mavi renk kullanılır[102].

1.2.8.7 Homo Lumo Enerji Farkı

Moleküler orbital teorisi, moleküller meydana gelirken atomlar gerekli bağ mesafesinde birbirlerine yaklaşırlar ve molekülün oluşmasını sağlayan atomik orbitaller karışarak moleküler oritalleri oluşturur. Bu orbitaller moleküldeki elektronların bulunma olasılığının en yüksek olduğu yeri gösterir[103]. En yüksek dolu moleküler orbital enerji "E_{HOMO}" ve en düşük boş moleküler orbital enerji "E_{LUMO}" kimyasal reaksiyona katılan temel orbitallerdir. HOMO enerjisi, molekülünün elektron verme ($\pi_{donör}$) eğiliminde olduğunu; LUMO enerjisi, molekülünün elektron alma ($\pi_{akseptör}$) eğiliminde olduğunu gösterir[33]. Bir molekül, en uzun dalga boyundaki ışığı soğurduğunda, bir elektron, en yüksek dolu moleküler orbitalden en düşük boş moleküler orbitale doğru uyarılır. Maksimum soğurmanın dalga boyu, bu iki enerji seviyesi arasındaki enerji farkı tarafından belirlenir[104]. HOMO-LUMO enerji farkı molekülün kimyasal kararlılığını göstermektedir[105].

2. MATERYAL VE METOT

2.1 Metot

Yapılan çalışmalarımızda, 2-aminofenilboronik asit, 3-aminofenilboronik asit, 4aminofenilboronik asit, 4-amino-2-florofenilboronik asit, 4-amino-3-florofenilboronik asit, 4-amino-2-klorofenilboronik asit, 4-amino-3-klorofenilboronik asit molekülleri Gauss View5.0[106], görüntüleme paket programında çizilerek Gaussian09 Rev B.01 [107], paket programında giriş verisi olarak kullanılan moleküller DFT[108] ve HF[109] metotlarında, 6-311++G(d,p) temel seti[110] kullanılarak hesaplamalar yapıldı. Molekülün geometrik optimizasyonda, her iki hesaplama modelinde de sınırlama yapılmadan hesaplamalar yapıldı. Çalışılan bütün moleküllerin en düşük enerjili konformasyonlarını elde etmek için, moleküler potansiyel enerji yüzeyleri(PES), DFT/6-31 g yöntemiyle hesaplatıldı. Her bir molekül için elde edilen potansiyel enerji yüzeyleri üzerindeki minimum enerjili konformasyon yapıları üzerinden tekrar optimize edilerek hem DFT/6-311++g(d,p) hem de HF/6-311++g(d,p) yöntemiyle moleküllerin en düşük enerjili geometri yapıları, denge durumu yapısal parametreleri, bağ uzunlukları (Å), dihedral açıları (°), elektronik enerjileri (a.u.) ve dipol momentleri (Debye) elde edildi. Optimizasyon sonrası her iki hesaplama modelinde de moleküllerin elektronik enerjileri, en yüksek dolu molekül orbital enerjileri (HOMO), en düşük boş molekül orbital enerjileri (LUMO), moleküler elektrostatik potansiyelleri (MEP), polarizebilite, hiperpolarizebilite ve titreşim frekansları gaz fazında hesaplatıldı.

3-aminofenilboronik asit molekülünün deneysel FT-IR spektrumu Kafkas üniversitesi kimya bölümünde ve FT-Raman spektrumu ise Atatürk üniversitesi bünyesindeki Doğu Anadolu İleri Teknoloji Uygulama ve Araştırma Merkezi (DAYTAM)'da kaydedildi. Moleküler özelliklerin dihedral açının fonksiyonu olarak hesaplanmasında moleküllerin denge durumu optimizasyonları kullanıldı. Yani Gaussian 09W paket programında oluşturulan moleküller optimizasyonu yapılmadan önce dehidral açının fonksiyonlarına bağlı olarak scan hesaplamaları yapıldı. Scan hesaplamaları sonucu elde edilen minimum enerjili molekül konfigürasyon yapısı üzerinden gerekli hesaplamaları yapıldı.

2.2 Materyal

Bu çalışmada incelenen 2-aminofenilboronik asit, 3-aminofenilboronik asit, 4aminofenilboronik asit moleküllerinin kimyasal yapısı şekil 2.1'de ve moleküllerin ilk durumdaki optimizasyonlarının geometrik yapıları şekil 2.2, şekil 2.4, şekil 2.6 ile scan sonrası molekül optimizasyonlarının geometrik yapıları şekil 2.3, şekil 2.5, ve şekil 2.7 'de verilmiştir.

Şelil 2.1 Aminofenilboronik asit molekülü ve türevlerinin (C2=H2N / C3=H2N / C4=H2N) kimyasal gösterimi.

Şekil 2.2 2-aminofenilboronik asit molekülünün konfigürasyonu.

Şekil 2.3 2-aminofenilboronik asit molekülünün SCAN konfigürasyonu.

Şekil 2.4 3-aminofenilboronik asit molekülünün konfigürasyonu.

Şekil 2.5 3-aminofenilboronik asit molekülünün SCAN konfigürasyonu.

Şekil 2.6 4-aminofenilboronik asit molekülünün konfigürasyonu.

Şekil 2.7 4-aminofenilboronik asit molekülünün SCAN konfigürasyonu.

4-aminofenilboronik asit molekülünün türevleri olan, 4-amino-2-florofenilboronik asit, 4-amino-3-florofenilboronik asit, 4-amino-2-klorofenilboronik asit ve 4-amino-3klorofenilboronik asit moleküllerinin kimyasal yapısı şekil 2.8'de ve moleküler optimizasyonlarının geometrik yapıları şekil 2.9, şekil 2.10, şekil 2.11 ve şekil 2.12'de verilmiştir.

Şelil 2.8 4-amino-X-fenilboronik asit molekülü ve türevlerinin kimyasal gösterimi.

Şekil 2.9 4-amino-2-florofenilboronik asit molekülünün konfigürasyonu.

Şekil 2.10 4-amino-3-florofenilboronik asit molekülünün konfigürasyonu.

Şekil 2.11 4-amino-2-klorofenilboronik asit molekülünün konfigürasyonu.

Şekil 2.12 4-amino-3-klorofenilboronik asit molekülünün konfigürasyonu.

3. HESAPLAMA SONUÇLARI

Bu bölümde, bahsettiğimiz metot yötemlerini ve materyal verilerini kullanılarak çalışmak istediğimiz moleküllerin denge durum geometrisini, yapısal parametreleri (bağ uzunlukları, bağ açı ve dihedral açı), potansiyel enerji yüzeyleri (PEY), dipol momentleri, elektronik enerji seviyeleri, HOMO-LUMO enerji farkı, titreşim frekansı, polarizebilite ve hiperpolarizebilite değerleri ve moleküler elektrostatik potansiyelleri (MEP) hesaplamaları yapıldı.

3.1 Potansiyel Enerji Yüzeyleri (PEY)

Bu çalışmada, 2-aminofenilboronik asit (I), 3-aminofenilboronik asit (II), 4aminofenilboronik asit (III), 4-amino-2-florofenilboronik asit (IV), 4-amino-3florofenilboronik asit (V), 4-amino-2-klorofenilboronik asit (VI) ve 4-amino-3klorofenilboronik asit (VII) molekülleri Gauss View5.0 görüntüleme paket programında çizilerek, Gaussian09W paket programında giriş verisi olarak kullanılan moleküller DFT/6-31g temel seti kullanılarak hesaplamalar yapıldı.

Çalışılan bütün moleküllerin en düşük enerjili konformasyon yapıları elde etmek için moleküllerin C1-B-O1-H6 ve C1-B-O2-H7 dihedral açıları, 0^0 'den 360^0 ' ye kadar 45^0 'lik aralıklarla 9 adım da değiştirilerek potansiyel enerji yüzeyleri (PEY) incelendi. Her bir molekülün, potansiyel enerji yüzeyinde toplam $9^2 = 81$ noktada potansiyel enerji hesaplatıldı ve konformasyon yapıları elde edildi. Hesaplama sonucu elde edilen PEY 'de yerel minimumlar, en düşük enerjiye karşılık gelen genel minimumlar, eğer noktaları, genel ve yerel maksimumlar elde edildi. Moleküllerin, potansiyel enerji yüzeyleri (PEY) şekil 3.1, şekil 3.2, şekil 3.3, şekil 3.4, şekil 3.5, şekil 3.6 ve şekil 3.7 verilmiştir.

Şekil 3.1 2-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY).

Şekil 3.2 3-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY).

Şekil 3.3 4-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY).

Şekil 3.4 4-Amino-2-florofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY).

Şekil 3.5 4-Amino-3-florofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY).

Şekil 3.6 4-Amino-2-klorofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY).

Şekil 3.7 4-Amino-3-klorofenilboronik Asit Molekülünün Potansiyel Enerji Yüzeyi (PEY).

Potansiyel enerji yüzeyleri incelenen moleküller için 81 potansiyel enerji noktası (modu) belirlenmiştir. 2-aminofenilboronik asit molekülünde 4 tane maksimum (mod_{max}21, mod_{max}25, mod_{max}57, mod_{max}61) enerjili durum ve 2 tane minimum (mod_{min}37, mod_{min}45) enerjili durum belirlendi. Bu molekül için denge durum enerjisinin en düşük olduğu mod ise mod_{min}37 olduğu görülmüştür. 3aminofenilboronik asit molekülünde 4 tane maksimum (mod_{max}21, mod_{max}25, enerjili durum ve 4 tane minimum (mod_{min}5, mod_{min}37, $mod_{max}57, mod_{max}61$) mod_{min}45, mod_{min}77) enerjili durum belirlendi. Bu molekül için denge durum enerjisinin en düşük olduğu mod ise mod_{min}37 olduğu görülmüştür. 4-aminofenilboronik asit molekülünde 4 tane maksimum (mod_{max}21, mod_{max}25, mod_{max}57, mod_{max}61) enerjili durum ve 4 tane minimum (mod_{min}5, mod_{min}37, mod_{min}45, mod_{min}77) enerjili durum belirlendi. Bu molekül için denge durum enerjisinin en düşük olduğu mod ise mod_{min}37 olduğu görülmüştür. 4-amino-2-florofenilboronik asit molekülünde 4 tane maksimum (mod_{max}21, mod_{max}25, mod_{max}57, mod_{max}61) enerjili durum ve 2 tane minimum (mod_{min}37, mod_{min}45) enerjili durum belirlendi. Bu molekül için denge durum enerjisinin en düşük olduğu mod ise mod_{min}37 olduğu görülmüştür. 4-amino-3florofenilboronik asit molekülünde 4 tane maksimum (mod_{max}21, mod_{max}25, mod_{max}57, enerjili durum ve 4 tane minimum (mod_{min}5, mod_{min}37, mod_{min}45, $mod_{max}61$) mod_{min}77) enerjili durum belirlendi. Bu molekül için denge durum enerjisinin en düşük

olduğu mod ise mod_{min}37 olduğu görülmüştür. 4-amino-2-klorofenilboronik asit molekülünde 4 tane maksimum (mod_{max}21, mod_{max}25, mod_{max}57, mod_{max}61) enerjili durum ve 2 tane minimum (mod_{min}5, mod_{min}77) enerjili durum belirlendi. Bu molekül için denge durum enerjisinin en düşük olduğu mod ise mod_{min}77 olduğu görülmüştür. 4amino-3-florofenilboronik asit molekülünde 4 tane maksimum (mod_{max}21, mod_{max}25, mod_{max}57, mod_{max}61) enerjili durum ve 4 tane minimum (mod_{min}5, mod_{min}37, mod_{min}45, mod_{min}77) enerjili durum belirlendi. Bu molekül için denge durum enerjisinin en düşük olduğu mod ise mod_{min}77 olduğu görülmüştür. Moleküllerin, denge durumu enerji modları tablo 3.1 de verilmiştir.

Tablo 3.1 2-3-4-Aminofenilboronik asit ve 4-Amino-(2-3)(Floro-kloro)-fenilboronik asit moleküllerininB3LYP/6-311++G(d,p) setinde denge durum enerji modları.

	mod _{min} 5	mod _{min} 37	mod _{min} 45	$\mathbf{mod}_{\min}77$
Ι	-	-463.50868498	-463.50868504	-
П	-463.69979565	-463.50099104	-463.50099105	-463.49979565
Ш	-463.50323046	-463.50322295	-463.50322296	-463.50323046
IV		-562.72623887	-562.72623888	-
V	-562.71755836	-562.71759357	-562.71759357	-562.71755835
VI	-923.08263606	-	-	-923.08263606
VII	-923.08110464	-923.08101503	-923.08101503	-923.08110465
	mod _{max} 21	mod _{max} 25	mod _{max} 57	mod _{max} 61
I	mod _{max} 21 -463.47870268	mod _{max} 25 -463.47578167	mod _{max} 57 -463.47577576	mod _{max} 61 -463.47869873
I II	mod _{max} 21 -463.47870268 -463.47145185	mod _{max} 25 -463.47578167 -463.46859261	mod _{max} 57 -463.47577576 -463.46858981	mod _{max} 61 -463.47869873 -463.47145141
I II III	mod _{max} 21 -463.47870268 -463.47145185 -463.47548352	mod _{max} 25 -463.47578167 -463.46859261 -463.47229759	mod _{max} 57 -463.47577576 -463.46858981 -463.47286541	mod _{max} 61 -463.47869873 -463.47145141 -463.47546292
I II III IV	mod _{max} 21 -463.47870268 -463.47145185 -463.47548352 -562.6891975	mod _{max} 25 -463.47578167 -463.46859261 -463.47229759 -562.68744876	mod _{max} 57 -463.47577576 -463.46858981 -463.47286541 -562.68744881	mod _{max} 61 -463.47869873 -463.47145141 -463.47546292 -562.68919075
I II III IV V	mod _{max} 21 -463.47870268 -463.47145185 -463.47548352 -562.6891975 -562.68989735	mod _{max} 25 -463.47578167 -463.46859261 -463.47229759 -562.68744876 -562.68708789	mod _{max} 57 -463.47577576 -463.46858981 -463.47286541 -562.68744881 -562.68704567	mod _{max} 61 -463.47869873 -463.47145141 -463.47546292 -562.68919075 -562.68990104
I II III IV V VI	mod _{max} 21 -463.47870268 -463.47145185 -463.47548352 -562.6891975 -562.68989735 -923.04740813	mod _{max} 25 -463.47578167 -463.46859261 -463.47229759 -562.68744876 -562.68708789 -923.04606535	mod _{max} 57 -463.47577576 -463.46858981 -463.47286541 -562.68744881 -562.68704567 -923.04606512	mod _{max} 61 -463.47869873 -463.47145141 -463.47546292 -562.68919075 -562.68990104 -923.04741183

2-aminofenilboronik asit, 3-aminofenilboronik asit, 4- aminofenilboronik asit, 4-amino-2-florofenilboronik asit, 4-amino-3-florofenilboronik asit, 4-amino-2-klorofenilboronik asit ve 4-amino-3-klorofenilboronik asit moleküllerin potansiyel enerji yüzeyindeki kırmızı bölgeler elektronegatifliğin yüksek olduğu yerleri, mavi bölgeler ise elektronegatifliğin düşük olduğu bölgeleri gösterir. Moleküllerde belirlenen denge durum enerji modlarının, potansiyel enerji eğrileri çiziminde kırmızı bölgeler maksimum enerjili bölgeleri, siyah bölgeler ise minimum enerjili bölgeleri göstermektedir. Moleküllerin potansiyel enerji eğrileri şekil 3.8, şekil 3.9, şekil 3.10, şekil 3.11, şekil 3.12, şekil 3.13 ve şekil 3.14 verilmiştir.

Böylelikle, moleküllerin denge durumu minimum enerjili modları alınarak molekülün, yapısal parametreleri (bağ uzunlukları, bağ açı ve dihedral açı), dipol momentleri, elektronik enerji seviyeleri, HOMO-LUMO enerji farkı, titreşim frekansı, polarizebilite ve hiperpolarizebilite değerleri ve moleküler elektrostatik potansiyelleri (MEP) hesaplamaları yapılır.

Şekil 3.8 2-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri.

Şekil 3.9 3-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri.

Şekil 3.10 4-Aminofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri.

Şekil 3.11 4-Amino-2-florofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri.

Şekil 3.12 4-Amino-3-florofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri.

Şekil 3.13 4-Amino-2-klorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri.

Şekil 3.14 4-Amino-3-klorofenilboronik Asit Molekülünün Potansiyel Enerji Eğrileri.

3.2 Yapısal Parametreler

2-aminofenilboronik asit (I), 3-aminofenilboronik Çalışılan, asit (II), 4aminofenilboronik asit (III), 4-amino-2-florofenilboronik asit (IV), 4-amino-3florofenilboronik asit (V), 4-amino-2-klorofenilboronik asit (VI) ve 4-amino-3klorofenilboronik asit (VII) molekülleri scan edilerek denge durum modları belirlenmişti. Her bir molekül için bulunan bu modlardan, minimum enerjili mod seçilerek molekülün yapısal parametreleri (bağ uzunlukları, bağ açıları ve dihedral açıları), denge durumu elektronik enerjileri, dipol moment değerleri DFT ve HF yöntemleri kullanılarak 6-311++g(d,p) temel setinde hesaplamalar yapılmıştır. Moleküllerin denge durumu elektronik enerjileri (a.u) çizelge 3.1'de ve denge durumu dipol momentleri ise çizelge 3.2'de gösterilmiştir.

Çizelge 3.1 Moleküllerin denge durumu elektronik enerji (a.u) değerleri.

MOLEKÜL ADI	B3LYP/6-311++G(d.p)	HF/6-311++G(d.p)
2-Aminofenilboronik Asit	-463.775800062	-460.984072347
3-Aminofenilboronik Asit	-463.745656745	-460.981864841
4-Aminofenilboronik Asit	-463.774122651	-460.984414442
4- Amino-2-florofenilboronik Asit	-563.048961640	-559.871838430
4- Amino-3-florofenilboronik Asit	-563.042625391	-559.864150461
4- Amino-2-klorofenilboronik	-923.398699471	-919.908163585
Asit		
4- Amino-3-klorofenilboronik	-923.397984111	-919.908197621
Asit		

Çizelge 3.2 Molekülerin denge durumu dipol moment ($\mu(D)$) değerleri.

MOLEKÜL ADI	B3LYP/6-311++G(d.p)	HF/6-311++G(d.p)
2-Aminofenilboronik Asit	0.3662	0.3495
3-Aminofenilboronik Asit	1.4783	1.3905
4-Aminofenilboronik Asit	2.8420	2.5694
4- Amino-2-florofenilboronik Asit	3.4608	3.0846
4- Amino-3-florofenilboronik Asit	3.1419	3.1108

4- Amino-2-klorofenilboronik Asit	3.4500	3.0070
4- Amino-3-klorofenilboronik Asit	3.2850	3.3796

Moleküllerin denge durumu, elektronik enerji değerleri ve dipol momet değerleri incelendiğinde, B3LYP metodun da elektronik enerji ve dipol moment değerinin daha yüksek olduğu görülmektedir. Bu da B3LYP metodunun HF metodundan farklı olarak elektronik kolerasyonunu hesaba kattığını göstermektedir. Ayrıca, moleküllere bağlı atom veya atom guruplarının yerlerinin değişmesi ve moleküle farklı bir atomun bağlanması sistemin enerjisinin ve buna bağlı olarak dipol momentlerinin değişmesine neden oluyor.

Çalışılan moleküllerin optimize olmadan ve optimizasyon hesaplamaları sonucunda moleküllerin durumlarının trans-cis konformerleride (izomer durumları) incelenmiştir. Molekül formülleri aynı fiziksel ve kimyasal özellikleri farklı olan maddelere izomer denir[111]. Yapılan çalışmada boronik asit "–B(OH)₂" grubuna bağlı hidrojen atomlarının piridin halkası ve onun üzerinde bulunan azot atomuna yönelimlerine göre dört konformasyon durumunda da olabilirler[112]. Molekülde, trans-cis konformeri durumunda azot atomu tarafında bulunan boronik asit grubundaki hidrojen atomu azot atomuna, diğeri ise piridin halkasından dışa doğru yönelmesidir. Bu durumun tersi cistrans konformerine karşılık gelmektedir. Fakat C1-B-O1-H6 ile C1-B-O2-H7 dihedral açılarının C1-B bağı etrafında dönmesi sonucu bu iki konformer birbirine dönüşe bilmektedir. Diğer iki konformer durumu, –B(OH)₂ grubundaki hidrojen atomlarının piridin halkasına doğru yönelimi cis-cis tersi durumda trans-trans konformer durumlarının belirlemektedir.

Şöyle ki, denge durumu hidrojen atomunun scan edilmeden önce ki izomer yapısı ile scan edildikten sonraki izomer yapısının; I. molekül için şekil 2.2'de cis-cis formunda iken, şekil 2.3'te cis-trans formunda olduğu, II. molekülü için şekil 2.4'te cis-cis formunda iken, şekil 2.5'te cis-trans formunda olduğu, III. molekül için şekil 2.6'da ciscis formunda iken, şekil 2.7'de cis-trans formunda olduğu görüldü. Ayrıca, 4aminofenilboronik asit molekülün scan edilmiş yapısı üzerinden florlu ve klorlu türevleri oluşturulup tekrar scan edildiğinde hidrojen atomunun molekül içindeki izomer yapısı, IV. molekül için şekil 2.9'da trans-cis formunda, V. molekül için şekil 2.10'da cis-trans formunda, VI. molekül için şekil 2.11'de trans-cis formunda ve VII. molekül için şekil 2.12'de cis-trans formunda olduğu görüldü.

Yapılan çalışmada bağ uzunlukları, II. molekülün deneysel C1-B, B-O1, B-O2, O1-H6 ve O2-H7 bağ uzunlukları sırasıyla 1.5745(18), 1.3707(17), 1.3623(17), 0.840(10) ve 0.840(13) Å olarak verildi. I, II, III, IV, V, VI ve VII moleküllerinin her biri için, C1-B, B-O1, B-O2, O1-H6 ve O2-H7 bağ uzunlukları; I. molekülün B3LYP/6-311++g(d,p)'de sırası ile 1.5577, 1.3797, 1.3753, 1.3792, 0.9602 ve 0.9636 Å, HF/6-311++g(d,p)'de sırası ile 1.5688, 1.3817, 1.3625, 1.3624, 0.9387 ve 0.9421 Å, II. molekülün B3LYP/6-311++g(d,p)'de sırası ile 1.5658, 1.3978, 1.3749, 1.3679, 0.9619 ve 0.9647 Å, HF/6-311++g(d,p)'de sırası ile 1.5768, 1.3967, 1.3606, 1.3547, 0.9388 ve 0.9418 Å, III. molekülün B3LYP/6-311++g(d,p)'de sırası ile 1.5567, 1.3904, 1.3711, 1.3784, 0.963 ve 0.96 Å, HF/6-311++g(d,p)'de sırası ile 1.5768, 1.0777, 1.3568, 1.3569, 0.9386 ve 0.9385 Å olarak elde edildi. IV., V., VI., VII. moleküller için de yapısal parametre değerleri Tablo 3.2 ve Tablo 3.3'de verilmiştir. Dikkat edilirse, hesaplanmış deneysel bağ uzunlukları ile teorik bağ uzunlukları arasında uyum olduğu gözlendi. Ayrıca hesaplama sonucunda HF modeli bağ uzunluğu değerlerinin, B3LYP modeli bağ uzunluğu değerlerine göre daha kısa olduğunu gördük. Bunun sebebi HF modeli elektron korelasyonu içermediğinden B3LYP modeline göre bağ uzunluklarını daha kısa olarak hesaplar. Örneğin VI ve VII molekülleri için C1-C2 bağ uzunluğu sırası ile B3LYP/6-311++g(d,p)'de 1.4011, 1.4044 Å, HF/6-311++g(d,p)'de 1.3925, 1.3931 Å olduğu ve bağ uzunluğu B3LYP modelinde daha uzun olduğu tespit edilmiştir. IV ve V moleküllerinin C2-F, C3-F bağ uzunluğu sırası ile B3LYP/6-311++g(d,p)'de 1.3756, 1.3662 Å, HF/6-311++g(d,p)'de 1.3383, 1.3372 Å olduğu ve bağ uzunluğu hem B3LYP modeli tarafında yüksek çıkmıştır, hem de IV. Molekül için bağ daha uzun olduğu tespit edilmiştir.

Yapılan çalışmada bağ açıları, , II. molekülün deneysel H3-N-H4, C1-B-O1, C1-B-O2, O1-B-O2, B-O1-H6 ve B-O2-H7 atom gruplarının bağ açıları sırasıyla 109.9(15), 118.0(11), 124.5(11), 117.6(11), 112.2(13) ve $119.1(12)^0$ olarak verildi. Aynı atom grupları için bağ açıları; I. molekülün B3LYP/6-311++g(d,p)'de sırası ile 116.2, 124.2, 120.4, 115.3, 114.7 ve 113.0^0 , HF/6-311++g(d,p)'de sırası ile 114.0, 123.4, 120.8,

115.8. 116.0 ve 112.9⁰ olduğu gözlemlenmiş, II. molekülün B3LYP/6-311++g(d,p)'de sırası ile 111.9, 124.2, 119.1, 116.7, 114.9 ve 112.2⁰, HF/6-311++g(d,p)'de sırası ile 111.3, 123.9, 118.9, 117.2, 115.9 ve 113.2⁰ olduğu gözlemlenmiş, III. molekülün B3LYP/6-311++g(d,p)'de sırası ile 113.1, 119.0, 124.6, 116.5, 112.0 ve 114.6⁰, HF/6-311++g(d,p)'de sırası ile 111.3, 123.9, 118.9, 117.2, 115.9 ve 113.2⁰ olduğu gözlemlenmiş ve IV. molekülün B3LYP/6-311++g(d,p)'de sırası ile 113.6, 124.6, 117.8, 117.6, 113.2 ve 111.9⁰, HF/6-311++g(d,p)'de sırası ile 112.9, 124.9, 117.6, 117.6, 115.2 ve 112.9⁰ olduğu gözlemlenmistir. V., VI., VII. moleküller için de yapısal parametre değerleri Tablo 3.2 ve Tablo 3.3'te verilmiştir. Elektronegatifliğin bulunduğu atom gurupları arasındaki etkileşimden dolayı atomlar birbirlerine ya yaklaşır ya da uzaklaşırlar. Bu yaklaşmalar ve uzaklaşmalar atom grupları arasında bağ açısının değişmesine neden olur. Şöyle ki, azot atomu bor atomunu çekme, oksijen ve hidrojen atomunu itme eğilimindedir. Buda azot gurubunun I, II, III moleküldeki konumuna göre C1-B-O1 bağ açısı sırası ile 124.3, 124.2, 119.0° olarak azaldığı tespit edildi. Aynı durum flor atomu IV. molekül yapısından, V. molekül yapısına giderken ve klor atomu VI. molekül yapısından, VII. molekül yapısına giderken C1-B-O1 bağ açı sırası ile 124.6, 118.7, 126,5, 118,7⁰ olarak azaldığı tespit edildi. Bu durumun tersi durum C1-B-O2 atom grubu içinde geçerlidir. Azot grubunun etkisiyle, O1-B-O2 bağ açısı I. molekülde küçük, II. ve III. moleküllerde açının büyüdüğü görülüyor.

Yapılan çalışmada dihedral açıları, II. molekülün deneysel C2-C1-B-O1, C2-C1-B-O2, C6-C1-B-O1 ve C6-C1-B-O2 dihedral açıları sırasıyla -0.2(17), -178.8(11), 177.9(11) ve -0.6(19)⁰ olarak verildi. Moleküllerin C2-C1-B-O1, C2-C1-B-O2, C6-C1-B-O1 ve C6-C1-B-O2 dihedral açıları; I. molekülün B3LYP/6-311++g(d,p)'de dihedral açısı sırası ile 168.7, -11.9, -12.0 ve 167.5⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile 161.6, -19.2, -19.2 ve 160.0⁰ değerleri elde edildi. Bu moleküldeki atom gurupları ortalama düzlemsel bir yapıya yaklaşmış fakat B3LYP'de yaklaşık 12⁰ sapma, HF'da yaklaşık 19⁰ sapma gözlenmiştir. II. molekülün B3LYP/6-311++g(d,p)'de dihedral açısı sırası ile 172.2, -7.6, -7.8 ve 172.4⁰ değerleri elde edildi ve bu moleküldeki atom gurupları B3LYP ve HF'da yaklaşık 8⁰ sapma gözlenmiştir. IV. molekülün B3LYP/6-311++g(d,p)'de dihedral açısı sırası ile 11++g(d,p)'de dihedral açısı sırası ile -0.2, 179.8, 179.9 ve -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası sırası ile -0.2, 179.8, 179.9 ve -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası sırası ile -0.2, 179.8, 179.9 ve -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2, 179.8, 179.9 ve -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2, 179.8, 179.9 ve -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile -0.2⁰,

311++g(d,p)'de dihedral açısı sırası ile -0.1, 179.8, 179.8 ve -0.2⁰ değerleri elde edildi ve bu moleküldeki atom gurupları B3LYP ve HF'da düzlemsel yapıda olduğunu göstermektedir. III, V, VI ve VII. molekülde düzlemsel yapıdan yaklaşık sırası ile 2.2, 4.8, 0.3 ve 3.3^0 sapmalar gözlenmiştir. Bu kadarlık bir sapmanın deneysel çalışmalarda yapı aydınlatmaları katı fazda yapılır iken, teorik çalışmalarda ise gaz fazında yapılmasından kaynaklandığı düşünülmektedir. Bu da flor ve klor atomların dihedral açılar üzerinde pekte fazla etkili olmadığı anlamına gelmektedir. Hesaplama sonucu elde edilen moleküllerin yapısal parametre değerleri ve deneysel verileri karşılaştırmalı olarak Tablo 3.2, Tablo 3.3 ve EK Tablo 3.4 ve EK Tablo 3.5'de verilmiştir.

	I	П	II _(deneysel)	ш	IV	V	VI	VII
Bağ uzunluğu	(Å)(İ;2, 3,	4)						
C1-B	1,5577	1,5658	1,5745(18)	1,5567	1,5615	1,559	1,5689	1,5592
Ci-N	1,3797	1,3978	1,4122(16)	1,3904	1,3863	1,3835	1,3864	1,379
Ci-Cl	-	-	-	-	-	-	1,7841	1,767
Ci-F	-	-	-	-	1,3753	1,3662	-	-
B-O1	1,3753	1,3749	1,3707(17)	1,3711	1,3701	1,3693	1,3677	1,3693
B-O2	1,3792	1,3679	1,3623(17)	1,3784	1,3708	1,3765	1,373	1,3765
O1-H6	0,9602	0,9619	0,840(10)	0,963	0,9625	0,963	0,9637	0,963
O2-H7	0,9636	0,9647	0,840(13)	0,96	0,963	0,9601	0,9629	0,96
Bağ açıları(⁰)(İ;2,3,4)							
Ci-N-H3	117,4	115,8	112,3(11)	116,6	117,2	116,4	117,2	120,3
Ci-N-H4	117,8	115,5	114,4(11)	116,5	116,8	116,9	116,8	120,2
H3-N-H4	116,2	111,9	109,9(15)	113,1	113,6	114,3	113,5	118,0
C1-B-O1	124,3	124,2	117,95(11)	119,0	124,6	118,7	126,5	118,7
C1-B-O2	120,4	119,1	124,48(11)	124,6	117,8	124,5	116,7	124,5
O1-B-O2	115,3	116,7	117,55(11)	116,5	117,6	116,9	116,8	116,9
B-O1-H6	114,7	114,9	112,2(13)	112,0	113,2	112,3	113,7	112,3
B-O2-H7	112,0	112,2	119,1(12)	114,6	111,9	114,8	111,5	114,9
Dihedral açı (⁰)							
C2-C1-B-O1	168,7	171,7	-0,23(17)	2,2	-0,2	-4,8	-0,3	-2,3
C2-C1-B-O2	-11,9	-8,1	-178,77(11)	-177,8	179,8	175,2	179,7	177,7
C6-C1-B-O1	-12,0	-8,2	177,90(11)	-177,8	179,9	175,1	179,7	177,6

Tablo 3.2 2-,3-,4-Aminofenilboronik asit ve 4-Amino-2-,3-Floro-kloro-fenilboronik asit moleküllerinin B3LYP/6-311++g(d,p) setinde optimize edilmiş geometrik parametreler.

C6-C1-B-O2	167,5	172,0	-0,64(19)	2,2	-0,2	-4,9	-0,3	-2,4	
------------	-------	-------	-----------	-----	------	------	------	------	--

	Ι	II	II _(deneysel)	III	IV	V	VI	VII	
Bağ uzunluğu	(Å)(İ;2, 3,	4)							_
C1-B	1,5688	1,5768	1,5745(18)	1,5768	1,5687	1,568	1,5787	1,5672	
Ci-N	1,3817	1,3967	1,4122(16)	1,0777	1,382	1,3839	1,3835	1,3776	
Ci-Cl	-		-	-	-	-	1,7618	1,7519	
Ci-F			· ·	-	1,3383	1,3372	-	-	
B-O1	1,3625	1,3606	1,3707(17)	1,3568	1,3569	1,3556	1,3541	1,3555	
B-O2	1,3624	1,3547	1,3623(17)	1,3569	1,3577	1,3622	1,3594	1,3626	
O1-H6	0,9387	0,9388	0,840(10)	0,9386	0,9401	0,9417	0,9393	0,9416	
O2-H7	0,9421	0,9418	0,840(13)	0,9385	09417	0,9384	0,9416	0,9383	
Bağ açıları(⁰)(İ;2,3,4)	-							
Ci-N-H3	115,6		112,3(11)	115,5	116,3	115,4	116,1	116,8	
Ci-N-H4	116,5	114,6	114,4(11)	115,5	116,0	115,5	115,8	115,9	
H3-N-H4	114,0	111,3	109,9(15)	112,2	112,9	113,0	112,7	113,7	
C1-B-O1	123,4	123,9	117,95(11)	122,4	124,9	118,5	127,0	118,6	
C1-B-O2	120,8	118,9	124,48(11)	122,4	117,6	124,3	116,4	124,3	
O1-B-O2	115,8	117,2	117,55(11)	115,3	117,6	117,1	116,6	117,1	
B-O1-H6	116,0	115,9	112,2(13)	114,8	115,2	113,3	116,0	113,4	
В-О2-Н7	112,9	113,2	119,1(12)	114,8	112,9	116,3	112,6	116,4	
Dihedral açı ()	_							
C2-C1-B-O1	161,6	172,2	-0,23(17)	152,7	-0,1	-1,9	-0,6	-1,2	
C2-C1-B-O2	-19,2	-7,6	-178,77(11)	-27,3	179,8	179,1	179,5	178,8	
C6-C1-B-O1	-19,2	-7,8	177,90(11)	-27,2	179,8	179,0	179,4	178,8	
C6-C1-B-O2	160,0	172,4	-0,64(19)	152,7	-0,2	-2,0	-0,6	-1,2	

Tablo 3.3 2-,3-,4-Aminofenilboronik asit ve 4-Amino-2-,3-Floro-kloro-fenilboronik asit moleküllerinin HF/6-311++g(d,p) setinde optimize edilmiş geometrik parametreler.

3.3 Titreşim Frekansları

Titreşim analizinde temel amaç molekülerin taban durumu geometrisine bağlı olarak titreşim modlarını bulmaktır. Bundan dolayı, 2-aminofenilboronik asit (I), 3-aminofenilboronik asit (II), 4- aminofenilboronik asit (III), 4-amino-2-florofenilboronik

asit (IV), 4-amino-3-florofenilboronik asit (V), 4-amino-2-klorofenilboronik asit (VI) ve 4-amino-3-klorofenilboronik asit (VII) molekülleri B3LYP/6-311++G(d,p) ve HF/6-311++G(d,p) metodu ile titreşim frekansları hesaplanmıştır. Moleküller 18 atomdan oluşup şekil 2.3, şekil 2.5, şekil 2.7, şekil 2.9, şekil 2.10, şekil 2.11 ve şekil 2.12 gibi düzlemsel yapıda olup 48 titreşim moduna sahiptir. Bu titreşimler hem IR aktif hem de Raman aktiflik göstermiştir. Hesaplanan teorik frekans değerleri ile deneysel frekans değerleri birbirleri ile karşılaştırılmış ve elde edilen tüm veriler Ek Tablo 3.6, 3.7, 3.8, 3.9, 3.10, 3.11 ve Ek Tablo 3.12'da gösterilmiştir. 3-aminofenilboronik asit molekülünün deneysel RAMAN titreşim spektrumu -219-6386 cm⁻¹ aralığında olup, RAMAN grafiği şekil 3.15'te ve deneysel IR titreşim spektrumu 374-3998 cm⁻¹ aralığında olup, IR grafiği şekil 3.16'da verilmiştir. 3-aminofenilboronik asit molekülünün deneysel ve teorik DFT/HF-IR titreşim korelasyon grafiği şekil 3.21 ve şekil 3.22'de karşılaştırımalı olarak verilmiştir. İncelendiğinde düzeltme faktörü kullanıldığı takdirde gaz fazında hesaplanan dalga sayılarının deneysel sonuçlara iyi uyum gösterdiği görülmüştür.

Moleküllerin IR ve RAMAN spektrumu 0-4000 cm⁻¹ aralığında ölçülmüş. Moleküllerin hem DFT hem de HF'da IR ve RAMAN karakteristik özellikleri incelendiğinde, aynı dalga sayı aralığında benzer titreşim özellikleri gösterdiği görülüyor. I, II, III, IV, V, VI ve VII. moleküllerin DFT IR ve DFT RAMAN için, titreşim yoğunluğunun (sayısının) en fazla olduğu dalga sayısı aralığı sırasıyla 48-1661cm⁻¹, 36-1703, 29-1663, 65-1669, 31-1667, 43-1664 ve 24-1658 cm⁻¹, titreşim yoğunluğunun (sayısının) en az olduğu dalga sayısı aralığı sırasıyla 3126-3883 cm⁻¹, 3133-3838, 3128-3887, 3164-3852, 3135-3886, 3163-3852 ve 3134-3887 cm⁻¹ olduğu tespit edildi. En şiddetli titreşim pikinin gözlendiği dalga sayısı noktası ise sırasıyla DFT IR için, 1379 cm⁻¹, 1388, 1381, 1374, 1387, 1368 ve 1362 cm⁻¹, DFT RAMAN için, 3190 cm-1, 3583, 3583 ve 3584 cm⁻¹ (II, III ve V moleküller için RAMAN belirlenmemiştir.) olduğu tespit edildi.

I, II, III, IV, V, VI ve VII. moleküllerin HF IR ve HF RAMAN için, titreşim yoğunluğunun (sayısının) en fazla olduğu dalga sayısı aralığı sırasıyla 55-1815 cm⁻¹, 30-1808, 34-1809, 67-1812, 29-1813, 36-1809 ve 29-1808 cm⁻¹, titreşim yoğunluğunun (sayısının) en az olduğu dalga sayısı aralığı sırasıyla 3299-4230 cm⁻¹, 3303-4229, 2983-

3836, 3324-4212, 3303-4234, 3324-4213 ve 3301-4235 cm⁻¹ olduğu tespit edildi. En şiddetli titreşim pikinin gözlendiği dalga sayısı noktası ise sırasıyla HF IR için, 1449 cm⁻¹, 1459, 1454, 1458, 1438, 1440 ve 1427 cm⁻¹, HF RAMAN için, 3349 cm⁻¹, 3338, 3795, 3802, 3800, 3800 ve 3810 cm⁻¹ olduğu tespit edildi.

IR ve RAMAN titreşim spektrum grafikleri şekil 3.17, 3.18, 3.19, 3.20, 3.23, 3.24, 3.25, 3.26, 3.27, 3.28, 3.29, 3.30, 3.31, 3.32, 3.33, 3.34, 3.35, 3.36, 3.37, 3.38, 3.39, 3.40 ve şekil 3.41'de verilmiştir.

Şekil 3.15 3-aminofenilboronik asit molekülüne ait deneysel RAMAN spektrumu.

Şekil 3.16 3-aminofenilboronik asit molekülüne ait deneysel IR spektrumu.

Şekil 3.17 2-aminofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.18 2-aminofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle hesaplanan teorik RAMAN spektrumu.

Şekil 3.19 2-aminofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.20 2-aminofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik RAMAN spektrumu.

Şekil 3.21 3-aminofenilboronik asit molekülüne ait deneysel IR ve DFT/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.22 3-aminofenilboronik asit molekülüne ait deneysel IR ve HF/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.23 3-aminofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik RAMAN spektrumu.

Şekil 3.24 4-aminofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.25 4-aminofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.26 4-aminofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik RAMAN spektrumu.

Şekil 3.27 4-amino-2-florofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.28 4-amino-2-florofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle hesaplanan teorik RAMAN spektrumu.

Şekil 3.29 4-amino-2-florofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.30 4-amino-2-florofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik RAMAN spektrumu.

Şekil 3.31 4-amino-3-florofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.32 4-amino-3-florofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.33 4-amino-3-florofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik RAMAN spektrumu.

Şekil 3.34 4-amino-2-klorofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.35 4-amino-2-klorofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle hesaplanan teorik RAMAN spektrumu.

Şekil 3.36 4-amino-2-klorofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.37 4-amino-2-klorofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik RAMAN spektrumu.

Şekil 3.38 4-amino-3-klorofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.39 4-amino-3-klorofenilboronik asit molekülüne ait DFT/6-311++g(d,p) yöntemiyle hesaplanan teorik RAMAN spektrumu.

Şekil 3.40 4-amino-3-klorofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik IR spektrumu.

Şekil 3.41 4-amino-3-klorofenilboronik asit molekülüne ait HF/6-311++g(d,p) yöntemiyle hesaplanan teorik RAMAN spektrumu.

Deneysel olarak gözlenen pik sayısı teorik olarak hesaplanan titreşim pik sayısından daha az olduğu şekillerde görülmektedir. Bunun nedeni teorik hesaplamaların gaz fazında deneysel infrared spektrumun ise katı fazda elde edilmiş olmasıdır.

3.4 Molekülün Titreşim Dalga Sayıları ve İşaretlemeleri

2-aminofenilboronik asit, 3-aminofenilboronik asit ve 4-aminofenilboronik asit molekülleri B3LYP/6-311++G(d,p) metodu ile IR titreşim frekansları hesaplanmış ve deneysel frekans değerleri ile karşılaştırılarak toplam enerji dağılımı (TED) yöntemiyle işaretlemeler yapılmıştır.

Literatürde moleküler yapıdaki hidroksi gruplarının gerilme titreşim hareketi yaptıkları bilinmektedir. Literatüre göre moleküler yapı serbest hidroksi grup ihtiva ediyorsa ya da hidrojen bağı içermiyorsa $3550-3700 \text{ cm}^{-1}$ bandında güçlü bant hareketi sergilerler[113,64]. I, II ve III moleküllerin, *v*OH gerilme titreşimi sırasıyla $3883 - 3841 \text{ cm}^{-1}$, $3838 - 3802 \text{ cm}^{-1}$ ve $3887 - 3849 \text{ cm}^{-1}$ 'de güçlü bant hareketi sağlamasına rağmen zayıf şiddetli titreşim pikleri gözlenmiş ve işaretlenmiştir. *v*NH gerilme titreşimi sırasıyla $3690 - 3570 \text{ cm}^{-1}$, $3660 - 3564 \text{ cm}^{-1}$ ve $3677 - 3576 \text{ cm}^{-1}$ 'de zayıf titreşimler olarak gözlenmiş ve işaretlenmiştir. Bu titreşimler yüzde yüz modda gerçekleştiğinden molekül yapısı içerisinde hidrojen bağı oluşmamaktadır.

Aromatik vCH gerilme titreşim bantı literatürde moleküler yapının IR spektrumunda genellikle 3000-3100 cm⁻¹ aralığında gerilme titreşim bandında gözlenir[114,64]. I, II ve III moleküllerin, vCH gerilme titreşimi sırasıyla 3126-3190 cm⁻¹, 3133-3174 cm⁻¹, 3128-3184 cm⁻¹'de zayıf gerilme titreşimler olarak hesaplanmış ve işaretlenmiştir. vCH gerilme titreşimi genelde vCC titreşimi ile beraber görülen karışık modlar olarak beklenmesine rağmen[115,116,3], bizim çalışmamızda vCH gerilme titreşimleri tek başına gözlemlenmiştir.

Literatürde, ν CC halka gerilme titreşimleri 1600-740 cm⁻¹ bölgesinde gözlenmesi beklenmektedir[117,118,3]. İncelediğimiz molekül için, benzen halkasında ν CC gerilme titreşimleri I, II ve III molekülleri için sırasıyla 851 cm⁻¹, 1046, 1083, 1168, 1187, 1276,

1340, 1379, 1485, 1598, 1645 cm⁻¹; 712 cm⁻¹, 1009, 1093, 1110, 1156, 1203, 1323, 1358, 1477, 1625 cm⁻¹ ve 844 cm⁻¹, 1074, 1125, 1211, 1305, 1311, 1365, 1456, 1551, 1602, 1645, 1663cm⁻¹'de zayıf ve şiddetli piklerin olduğu görüldü ve işaretlemesi yapıldı. Bu sonuçlar ν CC gerilme titreşimlerinin deneysel dalga sayılarının ve teorik hesaplamalarının uyumlu olduğunu gösterir.

Düzlem içi β CCC açı gerilme titreşimleri I, II ve III molekülleri için sırasıyla 535 cm⁻¹, 584, 704, 1046, 1123, 1519, 1598 cm⁻¹ ve 354 cm⁻¹, 526, 552, 712, 1009, 1110, 1534, 1625 cm⁻¹ ve 312cm⁻¹, 653, 679, 1021, 1029, 1125, 1551 cm⁻¹'de zayıf ve şiddetli piklerin olduğu görülmektedir. Ayrıca düzlem içi τ CCCC dihedral açı gerilme titreşimleri I, II ve III molekülleri için sırasıyla 116 cm⁻¹, 226, 420, 535, 664, 770, 940 cm⁻¹ ve 136 cm⁻¹, 219, 422, 508, 687, 789, 908, 955 cm⁻¹ ve 96 cm⁻¹, 261, 400, 454, 656, 752, 837, 939 cm⁻¹'de zayıf ve şiddetli piklerin olduğu da görülmektedir.

Düzlem dışı β HOB açı gerilme titreşimleri I, II ve III molekülleri için sırasıyla 975 cm⁻¹, 1032, 1123, 1379 cm⁻¹ ve 989 cm⁻¹, 1030, 1110 cm⁻¹ ve 982 cm⁻¹, 1021, 1029, 1125, 1381 cm⁻¹'de zayıf ve şiddetli piklerin olduğu da görülmektedir. Düzlem içi τ OBCC dihedral açı gerilme titreşimleri I, II ve III molekülleri için sırasıyla 48 cm⁻¹, 36 cm⁻¹ ve 29 cm⁻¹ olduğu gözlemlendi. Moleküllerin toplan enerji dağılımı (TED) Tablo 3.13, Tablo 3.14 ve Tablo 3.15'de gösterilmiştir.

Yapılan çalışmada görülüyor ki moleküler titreşim spekturumları tekli atomlar arsında küçük şiddetli pikler oluştururken, üçlü veya dörtlü atom gurupları arasında büyük şiddetli pikler oluşturur. Yani hesaplanan her molekül için bağ titreşim modu 17, açı titreşim modu 15 ve dihedral bağ titreşim modu ise 15 olarak hesaplanmıştır. Titreşim pikinin en güçlü olduğu durum ise dihedral açı titreşim durumu, sonra açı titreşim durumu ve sonra da bağ titreşim durumu olarak tespit edildi.

Skala edilen(cm ⁻¹)	Dalga(cm ⁻¹)	TED İşaretleme (%)
3720,4	3883,6	ν O1H (52), ν O2H (48)
3679,8	3841,1	v O1H (48), v O2H (52)
3536,0	3691,0	ν NH (97)
3420,4	3570,4	ν NH (97)
3056,5	3190,5	v C4H (28), v C6H (61)
3037,4	3170,6	ν C3H (74), ν C5H (13), ν C6H (13)
3018,2	3150,5	ν C4H (43), ν C5H (45)
2995,3	3126,6	ν C3H (17), ν C4H (29), ν C5H (38), ν C6H (16)
1591,8	1661,6	β HNH (72)
1576,2	1645,3	ν C4C3 (27), ν C3C2 (16), β HNH (12), β HC4C5 (16)
1531,4	1598,5	ν C1C6 (13), ν C4C3 (20), ν C5C4 (13), β C1C6C5 (14), β C5C4C3 (10)
1455,2	1519,0	β C1C6C5 (18), β HC3C4 (45)
1423,3	1485,7	ν C5C4 (22), ν NC2 (10), β HC4C5 (10), β HC6C1 (27)
1321,4	1379,3	ν C1C6 (17), ν O2B (17), ν C1B (22), β HO1B (10)
1307,8	1365,2	ν O1B (33), β HC6C1 (37)
1283,8	1340,1	ν C1C6 (24), ν C3C2 (12), β HNC2 (14)
1261,3	1316,6	ν NC2 (16), ν O1B (30), β HC6C1 (12)
1222,7	1276,3	ν C1C6 (17), ν C4C3 (15), ν NC2 (14), β HC4C5 (16)
1137,2	1187,1	ν C1C6 (12), β HC5C6 (73)
1119,8	1168,8	ν C5C4 (21), β HNC2 (16), β HC4C5 (37)
1076,1	1123,3	β C1C6C5 (11), β HO1B (24), β HNC2 (16)
1037,8	1083,3	ν C4C3 (11), ν C6C5 (25), β HNC2 (10), β HC3C4 (14)
1002,2	1046,1	ν C6C5 (28), ν C3C2 (11), β HNC2(14), β C4C3C2 (17)
989,1	1032,5	ν Ο2Β (17), β ΗΟ2Β (62)
940,8	982,1	τ HC3C4C5 (10), τ HC5C6C1 (66)
934,9	975,9	ν Ο2Β (29), β ΗΟ1Β (36), β ΗΟ2Β (22)
901,1	940,6	τ ΗC4C5C6 (66), τ C5C4C3C2 (10)
822,0	858,1	τ HC3C4C5 (55), τ NC3C1C2 (12)
816,0	851,8	ν C3C2 (10), ν NC2 (18), β C4C3C2 (37)
720 1	770 E	τ ΗC3C4C5(15), τ ΗC5C6C1(14), τ C6C5C4C3(21), τ O2C1O1B(13),
/50,1	770,5	τ BC2C6C1(12),τ NC3C1C2(20)
725,0	756,8	τ HC6C1C2 (77)
674,8	704,4	ν C1B (12), β C1C6C5 (17), β C5C4C3 (38)
636,7	664,6	τ C6C5C4C3 (16), τ O2C1O1B (58)
559,8	584,4	β C5C4C3 (26), β O2BO1 (10)
544,6	568,5	τ HO1BC1 (54), τ HO2BC1 (11)
518,3	541,0	β NC2C1 (13), β O2BO1 (11), τ HNC2C3 (18)
512.2	525 7	β C6C5C4 (11), β O2BO1 (12), τ HO1BC1 (16), τ C1C6C5C4 (10),
515,2	555,7	τ NC3C1C2 (19)
500,7	522,6	τ HNC2C3 (17), τ HNC2C3 (35)
462,0	482,2	τ HO2BC1 (80)
445,2	464,8	β NC2C1 (23), β O1BC1 (25), β BC1C6 (10)
403,0	420,7	τ ΗC4C5C6 (12), τ C5C4C3C2 (46)
371,9	388,3	τ HNC2C3 (47), τ HNC2C3 (41)
349,0	364,3	β NC2C1 (25), β O1BC1 (25), β O2BO1 (14), β BC1C6 (10)
320,3	334,3	ν C1B (21), β C6C5C4 (23), β O2BO1 (20)
217,3	226,9	τ C1C6C5C4 (42), τ C6C5C4C3 (13), τ BC2C6C1 (17), τ NC3C1C2 (15)
201,6	210,5	β Ο1ΒC1 (32), β ΒC1C6 (56)
111,9	116,8	τ C1C6C5C4 (12), τ C5C4C3C2 (13), τ C6C5C4C3 (18), τ BC2C6C1 (43)
46,2	48,3	τ Ο1ΒC1C2 (91)
u: gerilme titresimi.	Braci gerilme t	itresimi Tidihedral acı gerilme titresimi

 Tablo 3.14
 3-aminofenilboronik asit molekülünün DFT/6-311++G(d,p) setinde FT-IR Toplam Enerji

Dağılımı(TED)

Skala edilen(cm ⁻¹)	Dalga(cm ⁻¹)	TED İşaretleme (%)
3677,3	3838,5	ν Ο1Η (53), ν Ο2Η (47)
3643,0	3802,7	ν Ο1Η (47), ν Ο2Η (53)
3506,4	3660,1	ν NH (100)
3415,2	3564,9	ν NH (100)
3041,2	3174,5	ν C4H (21), ν C6H (65)
3032,1	3165,0	ν C2H (29), ν C4H (32), ν C5H (22), ν C6H (17)
3017,9	3150,2	ν C2H (53), ν C4H (15), ν C5H (29)
3001,5	3133,1	ν C4H (32), ν C5H (46), ν C6H (14)
1632,4	1704,0	β HNH (83), τ HNC3C2 (12)
1576,1	1645,2	β HC4C5 (10)
1557,2	1625,5	ν C6C5 (15), ν C4C3 (36), β HC2C1 (10), β C5C4C3 (11), β C6C5C1(13)
1470,0	1534,5	β HC6C1 (45), β C6C5C1 (14)
1415,8	1477,9	ν C1C2 (25), β HC4C5 (19)
1330,2	1388,5	ν Ο1Β (35), ν Ο2Β (14), ν C1Β (13)
1312,9	1370,4	ν Ο1Β (28), ν C1Β (14)
1301,7	1358,8	ν C3C2 (24), β HC2C1 (18), β HC5C6 (37)
1268,3	1323,9	ν C3C2 (36), ν O1B (17), β HC2C1 (11)
1236,8	1291,0	ν NC3 (35), β HC2C1 (11), β HC6C1 (11)
1152,8	1203,3	ν C5C4 (16), β HC2C1 (14), β HC4C5 (20), β HC5C6 (35)
1107,5	1156,0	ν C1C2 (11), β HNC3 (18), β HC4C5 (18), β HC5C6 (12)
1064,0	1110,7	ν C6C5 (15), β HO1B (13), β HNC3 (13), β HC6C1 (11), β C6C5C1 (12)
1047,4	1093,3	ν C1C2 (38), β HNC3 (36)
987,5	1030,8	ν O2B (15), β HO1B (10), β HO2B (66)
967,5	1009,9	ν C6C5 (20), ν C4C3 (11), β C1C2C3 (51)
947,5	989,1	ν Ο2Β (20), β ΗΟ1Β (40), β ΗΟ2Β (21)
915,0	955,1	τ ΗC2C1C6 (18), τ ΗC4C5C6 (13), τ ΗC5C6C1 (45), τ C6C5C4C3 (16)
870,6	908,7	τ ΗC4C5C6 (14), τ ΗC5C6C1 (11), τ ΗC6C1C2 (16), τ C6C5C4C3 (12)
863,3	901,2	ν Ο2Β (12), ν NC3 (14)
832,9	869,5	τ HC2C1C6 (33), τ HC4C5C6 (47)
756,4	789,6	τ HC6C1C2 (57), τ C6C5C4C3 (12)
687,7	717,8	τ HC2C1C6 (12), τ HC5C6C1 (21), τ HC6C1C2 (11), τ O2C1O1B (23)
682,6	712,6	ν C4C3 (11), β C5C4C3 (34), β C6C5C1 (16)
658,5	687,4	τ HC5C6C1 (13), τ C6C5C4C3 (22), τ O2C1O1B (34), τ NC2C4C3 (13)
581,1	606,6	τ HO1BC1 (24), τ HNC3C2 (36)
559,4	583 <i>,</i> 9	τ HO1BC1 (37), τ HNC3C2 (37)
529,0	552,1	ν NC3 (14), β C1C2C3 (11), β C4C3C2 (13), β C5C4C3 (17)
504,8	526,9	β C4C3C2 (35), β O2BO1 (35)
487,5	508,9	β HO1BC1 (13), τ C1C2C3C4 (13), τ NC2C4C3 (30)
475,4	496,2	τ HO1BC1 (16), τ HO2BC1 (79)
437,2	456,4	β O1BC1 (21), β NC3C4 (28), β BC1C6 (19)
404,4	422,1	τ HC2C1C6 (12), τ C5C4C3C2 (57)
339,3	354,2	β C4C3C2 (11), β O2BO1 (19), β O1BC1 (16), β NC3C4 (24)
301,5	314,7	ν C1B (21), β O2BO1 (23), β O1BC1 (20), β NC3C4 (12)
279,4	291,7	τ HNC3C2 (96)
210,3	219,6	τ C1C2C3C4 (67), τ NC2C4C3 (17)
142,3	148,5	β Ο1ΒC1 (22), β ΒC1C6 (60)
131,0	136,7	τ C5C4C3C2 (15), τ BC2C6C1 (60)
34,5	36,0	τ Ο1ΒC1C2 (93)
υ; gerilme titreşimi,	β:açı gerilme t	itreşimi, τ:dihedral açı gerilme titreşimi

Tablo 3.13 2-aminofenilboronik asit molekülünün DFT/6-311++G(d,p) setinde FT-IR Toplam EnerjiDağılımı(TED)

$3724,0$ $3887,2$ ν O1H (53), ν O2H (47) $3688,3$ $3850,0$ ν O1H (47), ν O2H (53) $3523,5$ $3677,9$ ν NH(100) $3426,6$ $3576,8$ ν NH(100) $3050,9$ $3184,7$ ν C2H (34) ν C5H (12) ν C5H (42)
3688,3 3850,0 ν O1H (47), ν O2H (53) 3523,5 3677,9 ν NH(100) 3426,6 3576,8 ν NH(100) 3050,9 3184,7 ν C2H (34) ν C2H (11) ν C5H (12) ν C5H (42)
3523,5 3677,9 ν NH(100) 3426,6 3576,8 ν NH(100) 3050,9 3184,7 ν C2H (34) ν C2H (11) ν C5H (12) ν C5H (42)
3426,6 3576,8 ν NH(100) 3050 9 3184 7 ν C2H (34) ν C2H (11) ν C5H (12) ν C5H (42)
2050 0 $2184 7$ $y C2H (24) y C2H (11) y CEH (12) y CEH (42)$
ουσυ,σ στο ν , ν τοπ (σν), ν τοπ (το), ν τοπ (42)
3028,1 3160,8 v C2H (39), v C3H (15), v C6H (39)
3020,8 3153,2 v C2H (15), v C3H (32), v C5H (43)
2996,7 3128,1 v C2H (11), v C3H (41), v C5H (38), v C6H(10)
1593,3 1663,2 ν C1C6 (10), β HNH (67)
1575,9 1645,0 ν C1C6 (41), β HNH (17), β HC5C6 (17)
1535,3 1602,6 <i>v</i> C1C6 (13), <i>v</i> C6C5 (16), <i>v</i> C5C4 (30)
1486,6 1551,7 ν C3C2 (15), β HC2C3 (48), β C6C5C4 (11)
1395,8 1457,0 ν C3C2 (30), β HC3C4 (30)
1323,1 1381,1 ν O1B (26), ν O2B (16), ν C1B (16), β HO1B (10)
1308,5 1365,9 v C4C3 (19), v O1B (26), v C1B (13)
1301,7 1358,8 ν O1B (11), β HC6C1 (61)
1256,5 1311,5 <i>ν</i> C6C5 (15), <i>ν</i> NC4 (50), β HC2C3 (15)
1250,8 1305,6 <i>ν</i> C4C3 (40), <i>ν</i> O1B (16), β HC6C1 (16)
1160,8 1211,7 ν C1C6 (15), β HC5C6 (74)
1104,5 1152,9 β HNC4 (11), β HC3C4 (54)
1077,9 1125,2 ν C6C5 (20), β HO1B (23), β C6C5C4 (11)
1029,7 1074,8 ν C3C2 (17), β HNC4 (59)
986,2 1029,4 β HO2B (27), β HC2C3 (10), β C5C4C3 (28)
978,9 1021,8 β HO2B (52), β C5C4C3 (18)
943,6 984,9 τ ΗC2C1C6 (33), τ ΗC6C1C2 (46)
941,0 982,2 ν Ο2Β (34), β ΗΟ1Β (42), β ΗΟ2Β (13)
899,9 939,4 τ HC3C4N (41), τ HC5C6C1 (34), τ C6C5C4C3 (17)
809,3 844,8 v C6C5 (18), v C5C4 (17), v NC4 (12)
802,7 837,9 τ HC3C4N (29), τ HC5C6C1 (23), τ C1C6C5C4 (10)
782,3 816,6 τ HC2C1C6 (39), τ HC6C1C2 (36), τ NC3C5C4 (10)
720,7 752,3 τ HC5C6C1 (12), τ C6C5C4C3 (31), τ O2C1O1B (16), τ BC2C6C1 (10),
T NC3C5C4 (19)
$650,5 \qquad 679,1 \qquad \nu \text{ O2B (13), } \nu \text{ C1B (25), } \beta \text{ C1C6C5 (12), } \beta \text{ C5C4C3 (21)}$
629,2 656,8 t C6C5C4C3 (13), t O2C1O1B (55)
$\beta_{26,1}$ $\beta_{53,6}$ $\beta_{11,65,5}$ (42), $\beta_{14,35,2}$ (17), $\beta_{16,55,4}$ (11)
535,5 559,0 T HUIBCI (56), T NC3C5C4 (14)
499,1 521,0 t HUIBCI (10), t HNC4C3 (48)
482,8 503,9 p 02801 (39)
451,4
435,4 454,5 T HUIBUL (16), T HUZBUL (53), T USU4U3UZ (16)
426,0 444,7 β OIBCI (33), β NC4C5 (22), β NC1C6 (21)
384,1 400,9 THU2BCI (14), TC5C4C3C2 (68)
348,1 363,4 p OIBCI (24), p NC4C5 (52)
255,1 $512,5$ $V \cup 18 (25), p \cup 4 \cup 3 \cup 2 (18), p \cup 2 B \cup 1 (34)$
251,0 202,0 I ULOUSUA (27), T BUZUDUI (34), T NUSUSUA (13)
147,5 154,0 p OLECT (23), p NULLO (62)
92,0 $90,0$ $1 (100,5)(4 (43), TB(200,1 (41))$
25,2 $25,3$ (OIDCIC2 (54)

 Tablo 3.15
 3-aminofenilboronik asit molekülünün DFT/6-311++G(d,p) setinde FT-IR Toplam Enerji

Dağılımı(TED)

3.5 Homo-Lumo Enerji Farkları

2-aminofenilboronik asit, 3-aminofenilboronik asit ve 4-aminofenilboronik asit, 4amino 2-florofenilboronik asit. 4-amino-3-florofenilboronik asit. 4-amino-2klorofenilboronik asit ve 4-amino-3-klorofenilboronik asit molekülleri B3LYP-HF/6-311++G(d,p) metodu ile enerji hesaplaması yapıldı. Moleküllerin elektronik enerjisi, en yüksek dolu orbital (HOMO) enerjisi, en düşük boş orbital (LUMO) enerjisi Çizelge 3.3'te, polarizebilitesi ve hiperpolarizebilitesi Çizelge 3.4'te verilmiştir. HOMO ve LUMO enerji değerleri arasındaki fark ($\Delta E_g(eV)$) molekülün kimyasal kararlılığını gösterir. Bu karalılık moleküllerin elektron alma (akseptör) ve elektron verme (donör) özelliklerine bağlı olarak, HOMO enerjisi molekülün elektron veren, LUMO enerjisi molekülün elektron alan kısmı olarak bilinir. I, II, III, IV, V, VI ve VII moleküllerin, orbitaller arası enerji farkı ($\Delta E_{o}(eV)$) B3LYP'de en büyük 5.321eV ile IV molekül, en küçük 4.734 eV ile I molekül olurken, HF'da en büyük 9.471 eV ile VI molekül, en küçük 9.079 eV ile I molekül olarak belirleniyor. Kısacası I. Molekül hem DFT'de hem HF'de orbitaller arası elektron geçişinin daha kolay olacağı görülür.

METOT / TEMEL SET								
	B3L	F/6-311++G(d.p)					
Molekül	E _{HOMO} (a.u)	E _{LUMO} (a.u)	$\Delta E_{g}(eV)$	E _{HOMO} (a.u)	E _{LUMO} (a.u)	$\Delta E_{g}(eV)$		
Ι	-0.20889	-0.03493	4.734	-0.29265	0.04100	9.079		
II	-0.21596	-0.03625	4.890	-0.29928	0.03940	9.216		
III	-0.21807	-0.02538	5.244	-0.30694	0.03275	9.243		
IV	-0.22913	-0.03503	5.321	-0.31324	0.03480	9.450		
V	-0.22767	-0.03213	5.203	-0.31217	0.03509	9.387		
VI	-0.22539	-0.03392	5.282	-0.30973	0.03373	9.471		
VII	-0.22478	-0.03360	5.210	-0.30975	0.03521	9.346		

Çizelge 3.3 Moleküllerin denge durumu HOMO-LUMO enerji farkı $(\Delta Eg \ (eV))$ değerleri.

Moleküllerin polarizebilite değerleri ile HOMO-LUMO enerji farkı arasında ters bir orantı vardır. Yani enerji farkı (ΔE_g) küçük olursa elektron alma ve verme kolaylaşır böylece polarlanma yüksek olur, enerji farkı (ΔE_g) büyük olursa elektron alma ve verme zorlaşır böylelikle polarlanma düşük olur. Burada moleküller arası polarizebilite ve hiperpolarizebilite değerleri oransal olarak artmıştır. En büyük polarizebilite VII. molekül, en yüksek hiperpolarizebilite V. molekül olarak belirlenmiştir.

		METOT / TEMEL SET								
MOLEKÜL	B3LYP /α (a.u)	B3LYP/β(a.u)	HF/α (a.u)	HF/β(a.u)						
Ι	100.95284	335.56599	90.76271	291.33111						
II	92.116289	332.81456	68.44862	260.70772						
III	102.39531	690.97890	91.11044	442.92798						
IV	101,67227	587,51656	89,87539	379,73461						
V	102,24346	833,67688	90.18683	542.70158						
VI	114.89102	585.14872	102,1576	390,58296						
VII	115,12010	740,06847	102,1715	486,90808						

Çizelge 3.4 Moleküllerin 6-311++G(d,p) temel setinde denge durumundaki polarizebilite ($\alpha(a.u)$) ve hiperpolarizebilite ($\beta(a.u)$) değerleri.

HOMO-LUMO orbital analizi sonucu elde edilen orbital diyagramları Şekil 3.42, 3.43, 3.44, 3.45, 3.46, 3.47 ve Şekil 3.48'de verilmiştir.

Şekil 3.43 3-Aminofenilboronik asit molekülünün B3LYP-HF/6-311++g(d,p) metodunda HOMO-LUMO yüzey şekli ve enerji farkı (ΔE_g).

Şekil 3.45 4-Amino-2-Florofenilboronik asit molekülünün B3LYP-HF/6-311++g(d,p) metodunda HOMO-LUMO yüzey şekli ve enerji farkı (ΔE_g).

Şekil 3.47 4-Amino-2-Klorofenilboronik asit molekülünün B3LYP-HF/6-311++g(d,p) metodunda HOMO-LUMO yüzey şekli ve enerji farkı (ΔE_g).

Şekil 3.48 4-Amino-3-Klorofenilboronik asit molekülünün B3LYP-HF/6-311++g(d,p) metodunda HOMO-LUMO yüzey şekli ve enerji farkı (ΔE_g).

3.6 Moleküller Elektrostatik Potansiyel (MEP)

Moleküler elektrostatik potansiyel enerji haritaları ile atom, atom gurupları veya moleküler yapı üzerinde elektron yoğunluğunun bulunduğu bölgeleri belirlemek için 2-aminofenilboronik asit, 3-aminofenilboronik asit ve 4-aminofenilboronik asit, 4-amino 2-florofenilboronik asit, 4-amino-3-florofenilboronik asit, 4-amino-2-klorofenilboronik asit ve 4-amino-2-klorofenilboronik asit ve 4-amino-3-klorofenilboronik asit molekülleri B3LYP-HF/6-311++G(d,p) metodu ile enerji hesaplaması yapıldı.

Moleküler elektrostatik potansiyel (MEP) enerji haritasında kırmızı bölgeler elektron yoğunluğunun fazla, yani nükleofilik, mavi bölgeler ise elektron yoğunluğunun düşük, yani elektrofilik bölge olduğu bilinmektedir. Elde edilen moleküler elektrostatik potansiyel (MEP) haritaları Şekil 3.49, 3.50, 3.51, 3.52, 3.53, 3.54 ve Şekil 3.55'te verilmiştir. Moleküller incelendiğinde, nötral form için elektron yoğunluğunun en yüksek olduğu bölgelerin oksijen (O) atomlarının çevresinde olduğu ve elektron yoğunluğunun en düşük olduğu bölgelerin ise azot (N) ve hidrojen (H) atomlarının çevresinde olduğu görülmüştür.

DFT/MEP

HF/MEP

Şekil 3.49 2-Aminofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP haritaları.

Şekil 3.50 3-Aminofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP haritaları.

Şekil 3.51 4-Aminofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP haritaları.

Şekil 3.52 4-Amino-2-florofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP haritaları.

Şekil 3.53 4-Amino-3-florofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP haritaları.

Şekil 3.54 4-Amino-2-klorofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP haritaları.

Şekil 3.55 4-Amino-3-klorofenilboronik Asit Molekülünün B3LYP,HF sırasıyla, MEP haritaları.

4. SONUÇ VE TARTIŞMA

Bu 2-aminofenilboronik asit. 3-aminofenilboronik çalışmada, asit 4ve aminofenilboronik asit molekülleri ile 4-aminofenilboronik asit molekül yapısı üzerinden florlu ve klorlu türevleri olan, 4-amino-2-florofenilboronik asit, 4-amino-3florofenilboronik asit, 4-amino-2-klorofenilboronik asit ve 4-amino-3-klorofenilboronik asit moleküllerinin GAUSSİAN 09W paket programı ile B3LYP metodu ve 6-31g temel seti kullanılarak moleküllerin mininmum enerjili konformasyon yapısını hesaplamak için potansiyel enerji yüzeyi (PES) hesaplaması yapıldı. Moleküllerin minimum enerjili durumları üzerinden Hartree Fock (HF) ve Yoğunluk Fonksiyonel Teorisi (DFT/B3LYP) metotlarında 6-311++G(d,p) temel seti kullanılarak moleküllerin denge enerjileri, yapısal parametreleri, titreşim spektrumları, elektronik ve lineer olmayan optik özelliklerin deneysel ve teorik olarak incelenmesi yapıldı. Bu moleküllerin denge durumu yapısal parametreleri hesaplandıktan sonra moleküllerin elektronik enerjileri, dipol momentleri, HOMO-LUMO enerji farkları ve yüzeyleri, polarizebilite ve hiperpolarizebilite değerleri, moleküler elektrostatik potansiyel (MEP) yüzey haritaları hesaplandı.

Hesaplamada potansiyel enerji yüzeyleri incelenen moleküller için 81 potansiyel enerji noktası (modu) belirlendi. Moleküllerin potansiyel enerji yüzeyindeki kırmızı bölgeler elektronegatifliğin yüksek olduğu yerleri, mavi bölgeler ise elektronegatifliğin düşük olduğu bölgeleri gösterdi. Moleküllerde potansiyel enerji eğrileri üzerinde ise kırmızı bölgeler maksimum enerjili bölgeleri, siyah bölgeler ise minimum enerjili bölgeleri gösterdi. Moleküllerin B3LYP metodun da elektronik enerji ve dipol moment değerinin daha yüksek olduğu görülmektedir. Ayrıca, moleküllere bağlı atom veya atom guruplarının yerlerinin değişmesi ve moleküle farklı bir atomun bağlanması sistemin enerjisinin ve buna bağlı olarak dipol momentlerinin değişmesine neden oluyor. Dikkat edilirse, hesaplanmış deneysel bağ uzunlukları ile teorik bağ uzunlukları arasında uyum olduğu gözlendi. Ayrıca hesaplama sonucunda HF modeli bağ uzunluğu değerlerinin, B3LYP modeli bağ uzunluğu değerlerine göre daha kısa olduğunu gördük. Bunun sebebi HF modeli elektron korelasyonu içermediğinden B3LYP modeline göre bağ uzunluklarını daha kısa olarak hesaplar. VI ve VII moleküllerinin C2-Cl, C3-Cl bağ uzunluğu sırası ile B3LYP'de 1.7841, 1.767 Å, HF'de 1.7618, 1.7519 Å olduğu ve bağ uzunluğu VI. molekülde daha uzun olduğu tespit edilmiştir. Bağ açısında azot atomu bor atomunu çekme, oksijen ve hidrojen atomunu itme eğilimindedir. Buda azot gurubunun I, II, III moleküldeki konumuna göre C1-B-O1 bağ açısı sırası ile 124.2936, 124.2239, 118.9544⁰ olarak azaldığı tespit edildi. Aynı durum flor atomlu IV, V molekülünde ve klor atomlu VI, VII molekülünde C1-B-O1 bağ açı sırası ile 124.6007, 118.679, 126,4959, 118,651⁰ olarak azaldığı tespit edildi. Moleküllerin C2-C1-B-O1, C2-C1-B-O2, C6-C1-B-O1 ve C6-C1-B-O2 dihedral açıları; I. molekülün B3LYP/6-311++g(d,p)'de dihedral açısı sırası ile 168.6524, -11.8678, -12.0147 ve 167.4651⁰, HF/6-311++g(d,p)'de dihedral açısı sırası ile 161.5536, -19.2204, -19.183 ve 160.043⁰ değerleri elde edildi. Bu moleküldeki atom gurupları ortalama düzlemsel bir yapıya yaklaşmış fakat B3LYP'de yaklaşık 12⁰ sapma, HF'da yaklaşık 19⁰ sapma gözlenmiştir. Bu kadarlık bir sapmanın deneysel çalışmalarda yapı aydınlatmaları katı fazda yapılır iken, teorik çalışmalarda ise gaz fazında yapılmasından kaynaklandığı düşünülmektedir.

Moleküllerin IR ve RAMAN spektrumu 0-4000 cm⁻¹ aralığında ölçülmüş. Moleküllerin hem DFT hem de HF'da IR ve RAMAN karakteristik özellikleri incelendiğinde, aynı dalga sayı aralığında benzer titreşim özellikleri gösterdiği belirlendi. Moleküler titreşim spekturumları tekli atomlar arsında küçük şiddetli pikler oluştururken, üçlü veya dörtlü atom gurupları arasında büyük şiddetli pikler oluşturur. Yani hesaplanan her molekül için bağ titreşim modu 17, açı titreşim modu 15 ve dihedral bağ titreşim modu ise 15 olarak hesaplanmıştır. Titreşim pikinin en güçlü olduğu durum ise dihedral açı titreşim durumu, sonra açı titreşim durumu ve sonra da bağ titreşim durumu olarak tespit edildi.

Moleküllerin elektronik enerji farkı B3LYP modelide HF modeline göre yüksek çıkmıştır. Ayrıca polarizebilite değerleri ile HOMO-LUMO enerji farkı arasında ters bir orantı gözlendi. Yani homo- lumo enerji farkı (ΔE_g) küçük olursa elektron alma ve verme kolaylaşır böylece polarlanma yüksek olur, enerji farkı (ΔE_g) büyük olursa elektron alma ve verme zorlaşır böylelikle polarlanma düşük olur. Moleküllerin moleküler elektrostatik potansiyelleri incelendiğinde, nötral form için elektron yoğunluğunun en yüksek olduğu bölgelerin oksijen (O) atomlarının çevresinde olduğu ve elektron yoğunluğunun en düşük olduğu bölgelerin ise azot (N) ve hidrojen (H) atomlarının çevresinde olduğu görülmüştür.

5. KAYNAKLAR

- Banwell, C.N. (1972). "Fundamentals of Molecular Spectroscopy", London, New York, McGraw-Hill.
- [2] <u>http://www.boren.gov.tr/tr/bor/bor-elementi.html</u>. Mart. (2019)
- [3] Yalçın, Y. (2015). "4 (Metilsülfanil) Fenilboronik Asit Molekülünün Titreşim Spektrumlarının Deneysel ve Teorik Yöntemlerle İncelenmesi" Nevşehir Hacı Bektaş Veli Üniv. Fen Bil. Ens.
- [4] Dennis G. Hall, Boronic Acids, (2005). "Preparation, Applications in Organic Synthesis and Medicine", Wiley-VCH Verlag Gmbh & co. KGaA, Weinheim, pp 1-2.
- [5] Winter M., (2003). "Webelements periodic table (professional edition)", The University of Sheffield and WebElement Ltd. UK, http://www.webelements.com/webelements/elements/text/B/; Rio Tinto Borax, www.borax.com; Eti Holding.
- [6] Frankland, E., Duppa, B. F. (1860). "Vorläufige Notiz über Boräthyl" Justus Liebigs Ann Chem 115, 319-322.
- [7] Sümer, G. (2004). "Bor Bileşikleri Uluslararası Bor Sempozyum". 23-25 Eylül Eskişehir Türkiye.
- [8] Sağlam M., Köseoğlu E. (2013). "Boron in Periodontology". Sağlık Bilimleri Dergisi (Journal of Health Sciences) 22(1) 70-75.
- [9] Soloway, A.H.; Tjarks, W.; Barnum, B.A.; Rong, F.G.; Barth, R.F.; Codogni, I.M.; Wilson, G. (1998). "The chemistry of Neutron Capture Therapy". Chem. Rev. 98, 1515-1562.
- [10] Sasmita Das, Vladimir L. Alexeev, Anjal C. Sharma, Steven J. Geib and Sanford Asher, A. (2003). "Synthesis and crystal structure of 4-amino-3fluorophenylboronic acid". Tetrahedron Letters 44-7719-7722.

- [11] Miyaura, N.; Suzuki, A. (1995). "Palladium-catalyzed cross-coupling reactions of organoboron compounds". Chem. Rev. 95, 2457-2483.
- [12] Naskar, D.; Roy, A.; Seibel, W.L.; Portlock, D.E. (2003). "Novel Petasis Boronic Acid- Mannich Reactions with Tertiary Aromatic Amines". Tetrahedron Lett. 44, 5819 – 5821 and references cited therein.
- [13] Petasis, N. A.; Zavialov, I. A. J. (1998). "Highly Stereocontrolled One-Step Synthesis of anti-β-Amino Alcohols from Organoboronic Acid, Amines, and α-Hydroxy Aldehydes". Am. Chem. Soc. 120, 11798-11799.
- [14] Ishihara, K.; Yamamoto, H. (1999). "Arylboron Compounds as Acid Catalysts in Organic Synthetic Transformations". Eur. J. Org. Chem. 527-538.
- [15] Latta. R.; Springsteen, G.; Wang, B. (2001). "Development of an Arylboronic Acid-based Solid-Phase Amidation Catalyst". Synthesis, 1611-1613.
- [16] Yang, W.; Gao, X.; Springsteen, G.; Wang, B. (2002). "Catechol Pendant Polystyrene for Solid Phase Synthesis". Tetrahedron Lett. 43, 6339-6342.
- [17] Currie, G. S.;Drew, M. G. B.; Harwood, L. M.; Hughes, D. J.; Luke, R. W. A.; Vickers, R. (2000). "Chirally templated boronic acid Mannich reaction in the synthesis of optically active olamino acids".. J. J. Chem. Soc., Perkin Trans. 1, 2982-2990.
- [18] Varughese, S., Sinha, S. B., Desiraju, G. R. (2011). "Phenylboronic acids in crystal engineering: Utility of the energetically unfavorable syn,synconformation in co-crystal design", Sci china chem., 54 (12), 1909-1919.
- [19] Petasis, N. A. (2007). "Expanding Roles For Organoboron Compounds Versatile And Valuable Molecules For Synthetic, Biological And Medicinal Chemistry Australian Journal of Chemistry", 60(11), 795-798.
- [20] Baker, S. J., Akama, T., Zhang, Y. K., Sauro, V., Pandit, C., Singh, R., Kully, M., Khan, J., Plattner, J. J., Benkovic, S. J., Lee, V., Maples, K. R. (2006).
 "Identification of a Novel Boron-containing Antibacterial Agent (AN0128) with

Anti-inflammatory Activity, for the Potential Treatment of Cutaneous Diseases. Bioorg". Med. Chem. Lett. 16, 5963-5967.

- [21] Yang, W, Gao, X., Wang, B. (2003). "Boronic acid compounds potential pharmaceutical Agents, Med". Res. Rev., 23, 346-368.
- [22] Cooper, C. R., Spencer, N., James, T. D. (1998). "Selective Fluorescence Detection of Fluoride Using Boronic Acids". Chem. Commun. 1365-1366.
- [23] Jabbour, A., Steinberg, D., Dembitsky, V. M., Moussaieff, A., Zaks, B., Srebnik,
 M. (2004). "Synthesis and Evaluation of Oxazaborolidines for Antibacterial Activity against Streptococcus Mutans", J. Med.Chem., 47, 2409-2410.
- [24] Halo, T. L., Appelbaum, J., Hobert, E. M., Balkin, D. M., Schepartz, A. (2009).
 "Selective Recognition of Protein Tetraserine Motifs with a Cell-permeable, Profluorescent Bis-boronic Acid". J. Am. Chem.Soc. 131, 438-439.
- [25] Yang, W., Fan, H., Gao, S., Gao, X., Ni, W., Karnati, V., Hooks, W. B., Carson, J., Weston, B., Wang, B. (2004). "The First Fluorescent Diboronic Acid Sensor Specific for Hepatocellular Carcinoma Cells Expressing Sialyl Lewis X". Chem. Biol., 11, 439-448.
- [26] Millennium Cell, Inc., Hydrogen on Demand System, New Jersey, USA, (2003).
- [27] Tavman, A. (2004/2). "Bor Esaslı Yakıt Hücresi Ve Bataryalar.", İstanbul Üniversitesi, Mühendislik Fakültesi, Kimya Bölümü, Avcılar-İSTANBUL.
- [28] Hockaday R. G., Turner P. S., De John M. D., Navas C. J., Vaz H. L., Vazul L., (2003). "Portable chemical hydrogen hydride system", U.S. 6,544,400.
- [29] Amendola S. C., Petillo P. J., Petillo S. C., Mohring R. M., (2003). "Portable hydrogen generator" U.S. Pat. Apl. 30037487. ; Amendola S. C., Mohring R. M., Petillo P. J., Fennimore K. A., (2003). "Differential pressure-driven borohydride based generator", U.S. Pat. Appl. 30009942.
- [**30**] Amendola S., (1998). "Electroconversion cell", U.S. 5,804,329.

- [31] Amendola S., (1999). "High Energy Density Boride Batteries", U.S. 5,948,558;Amendola S., (2002). "High Energy Density Boride Batteries", U.S. Pat. Apl.,20177042.
- [32] Cowan G. R. L., (2003). "Boron: A Better Energy Carrier than Hydrogen?" Ontario, Canada.
- [33] Günay, N., Pir, H., ve Atalay,Y. (2011-1). "L-Asparaginyum Pikrat Molekülünün Spektroskopik Özelliklerinin Teorik Olarak İncelenmesi", SAÜ Fen Edebiyat Dergisi.
- [34] Skoog. D. A., Holler, F. J. and Nieman, T.A., (1998). "Enstrümentel analizin ilkeleri." (Çev E.Kılıç, F. Köseoglu, H. Yılmaz). 846s. Bilim Yayıncılık, İstanbul.
- [35] Akar, İ. (2011). "Teorik Ve Deneysel Titreşim Spektroskopisi Yardımıyla 5-Kloro-8 Hidroksikinolin ve Zn ve Mn Komplekslerinin İncelenmesi", Kilis.
- [36] Erdik, E., (1998). "Organik Kimyada Spektroskopik Yöntemler.", 531s. Gazi Büro Kitapevi Yayını, Ankara.
- [37] Banwell, C.N., McCash, E.M., (1996). "Fundamentals of Molecular Spectroscopy." 308p. Tata McGraw-Hill Publishing Company Limited, New Delhi.
- [38] Chang R., (1971). "Basic principles of spectroscopy.", McGraw Hill, New York.
- [39] Parlak, C. (2009). "1-Fenilpiperazin Molekülünün Titreşim Bandlarının Kuantum Kimyasal Hesaplamalarla Belirlenmesi ve Bu Moleküle Ait Hofmann Tipi Kompleks ve Klatratların Titreşim Spektroskopisiyle İncelenmesi" (Anadolu Üniversitesi/Fen Bilimleri Enstitüsü/Fizik Anabilim Dalı.
- [40] Banwell C.N., (1983). "Fundamentals of molecular spectroscopy.", McGraw Hill, London.
- [41] Skoog D.A., Holler F.J. and Nieman T.A. (1998). "Enstrümental analizin ilkeleri.", (Çev. Kılıç E., Köseoğlu H., Yılmaz H.), Bilim yayıncılık, İstanbul.

- [42] Atkins, P. W., (1985). Quanta. Oxford University Clarenden pres, Oxford.
- [43] Çınar M., (2007). "2, 4 ve 6-kloronikotinik asit moleküllerinin yapılarının titreşim spektroskopisi yöntemiyle deneysel ve teorik olarak incelenmesi." Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Yüksek lisans Tezi, s.9, Afyon.
- [44] Bransden, B. H., and Joachim, C. J., (1983). "Physics of Atom and Molecules." Logman, London.
- [45] Kutlu, N., (2007). "4-Amino-1H-Benzo[4,5] imidazo[1,2α]primidin-2-one bileşiğinin koordinasyon modları ve titreşim frekanslarının Gaussian 03 ile incelenmesi.", Yüksek Lisans Tezi, S.D.Ü Fen Bilimleri Enstitüsü.
- [46] Woodward, L. A., (1972). "Introduction to the Theory and Molecular Vibration Spectroscopy." Oxford University Press, UK.
- [47] Palancıgiller B., (2012). "2-3-ve 4-aminobenzenesulfanamide moleküllerinin yapılarının titreşim spektroskopisi yöntemiyle deneysel ve teorik olarak incelenmesi", Erciyes Üniversitesi. Fen Bilimleri Enstitüsü, Yüksek lisans Tezi, s.4-5, Kayseri.
- [48] Akbay, A. (2010). "ibuprofen molekülünün oda sıcaklığındaki kararlı konformerlerinin belirlenmesi ve deneysel titreşimsel spektrumlarının analizi", İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Yüksek lisans Tezi, s.9-11, İstanbul.
- [49] Cotton, F. A., (1971). "Chemical Applications of Group Theory.", 2nd ed Wiley, London.
- [50] Woodward, L. A., (1972). "Introduction to the Theory and Molecular Vibration Spectroscopy", Oxford University Press, s.32-33, New York.
- [51] Gans P., (1971). "Vibrating molecules", Chapman and Hall, London.
- [52] Alpert, N.L., Keiser, W.E., and Szymanski, H.A., (1964). "IR Theory and Practice of Infrared Spectroscopy.", Plenum Press, s.379, New York.

- [53] Colthup, N. B., Daly L. H. and Wiberlays, E. "Introduction to Infrared and Raman Spectroscopy.", Academic Pres, New York, 1964.
- [54] Aslantatar E., (2013). "Bis(2-İzobutirilamidofenil)Amin Bileşiğinin TitreşiSpektrumunun İncelenmesi", Mersin Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Mersin.
- [55] Nakamoto, K., (1997). "Infrared and Raman Spectra of Inorganic and Coordination Compounds 5th edn", Nyquist, R.A.; Putzig, C.L.; and Leugers, M.A. Infrared and Raman Spectral Atlas of Inorganic Copounds and Organic Salts: Raman Spect, John Wiley & Sons, Ltd., s.115.
- [56] Rao , C., (1963). "Chemical Application of Infrared Spectroscopy.", Academic Press Inc., NewYork.
- [57] Gündüz T., (1999). "İnstrümental analiz.", Gazi kitapevi, 5. Baskı, Ankara.
- [58] Erdik E., (1993). "Organik kimyada spektroskopik yöntemler.", Gazi kitapevi, Ankara.
- [59] Davies, M., (1963). "Infrared Spectroscopy and Molecular Structure.", Elsevier, London.
- [60] Albert., N.L., Keiser, W.E. and Szymanski, H.A., (1970). "IR theory and practica of infrared spectroscopy". 2nd ed., Plenum press, NewYork.
- [61] Foresman J.B. and Frisch A., (1996). "Exploring chemistry with electronic structure methods, Second edition.", Gaussian, Inc., Pittsburgh.
- [62] Dorsett H.E. and White A., (2000). "Overview of molecular modelling and abinitio molecular orbital methods suitable for use with energetic materials", DSTO technical report, Australia.
- [63] Cook, DB., (1974). "Ab-initio Valence Calculations in Chemistry.", John Wiley and Sons Inc. New York.

- [64] Bayrakdar, A., (2015). "Yeni Floresan Esaslı Azokaliks[4]Arenlerin Sentezi Ve Ab-İnitio Yöntemi İle Özelliklerinin İncelenmesi.", Pamukkale Ünv. Fen Bil. Ens. Fizik Ana. Dalı.
- [65] Young, D., (2004). "Computational chemistry: a practical guide for applying techniques to real world problems", John Wiley & Sons, p.19.

[66] Akkuş, H., (2007). "SbSI Kristalinin Elektronik ve Optik Özellikleri: Yoğunluk Fonksiyonel Teorisinin Uygulanması", Doktora tezi, Fen Bilimleri Enstitüsü, ADANA, p. 113s.

- [67] Schrödinger, E. (1926). "Quantisierung als eigenwertproblem", Annalen der physik, 385(13), 437-490.
- [68] Born, M., Oppenheimer, J. R., (1927). "Zur Quantentheorie der Molekeln [On the Quantum Theory of Molecules]", Annalen der Physik (in German) 389 (20), 457–484.
- [69] Çelik, V., (2012). "Titanyum Dioksit Yüzeylerinin Safsızlıkların Elektronik Yapıya Etkileri.", Balıkesir Üniv. Fen Bil. Ens. Fizik Ana. Dalı.
- [70] Erdem, S., (2006). "Hesapsal Organik Kimya Ders Notları", Marmara Üniversitesi Fen Bilimleri Enstitüsü Organik Kimya Programı, İstanbul, Türkiye.
- [71] Thomas, L. H., (1927). "The calculation of atomic fields", Proc. Cambridge Phil. Soc., 23 (5), 542-548.
- [72] Fermi, E., (1927)."Un Metodo Statistico per la Determinazione di alcune Prioprietà dell'Atomo", Rend. Accad. Naz. Lincei, 6, 602-607.
- [73] Hohenberg P. and Kohn, W., (1964)."Inhomogeneous Electron Gas", Phys. Rev., 136, 864.
- [74] Kohn, W. and Sham, L. J., (1965). "Self-Consistent Equations Including Exchange and Correlation Effects", Phys. Rev., 140.

- [75] Strutt J. W. (Lord Rayleigh), (1945). "Theory of Sound.", Vo. 1, Sec. 88, New York: Daver Publications.
- [76] Ritz W., (1908). "Über eine neue Methode Zur losung Gewisser Variations probleme der matehematichen phsik," Reine Angew. Math., 135:1.
- [77] Becke A.D., (1993). "Density functional thermo chemistry, III. The role of exactex change.", J. Chem. Phys. 98, 5648.
- [78] Bahat, M., (2000). "Kinazolin molekülünün kuvvet alanının DFT B3LYP/ 6-31 G* tabanlı SQM metodu ile hesabı ve bazı Hofmann-tipi komplekslerin titreşimsel spektroskopisi ile incelenmesi.", Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, s.20-50, Ankara.
- [79] Perdew J.P., Burke K. and Wang Y., (1996). "Generalised gradient approximation for the exchange correction hole of a many electron system", Phys. Rev. B, 54, 16533-16539.
- [80] Özcan, B. (2014). "4-Metilamino Benzoik Asit Molekülü ve Türevlerinin Lineer ve Lineer Olmayan Optik Özellikleri, Yapısal Parametreleri ve Elektronik Özelliklerinin Teorik Olarak İncelenmesi.", Kafkas Üni. Fen Bil. Ens. Fizik Ana. Dalı.
- [81] Simons, J. (2003). "An Introduction to Theoretical Chemistry.", Cambridge, Utah, 188-191.
- [82] Öztürk, T. (2009). "2-Fenilfuran Molekülü ile Klorlu ve Florlu Türevlerinin Yapısal Parametreleri, Elektronik ve Lineer Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi.", Kafkas Üni. Fen Bil. Ens. Fizik Ana. Dalı.
- [83] Çiftçi, S. (2014). "1H-Benzimidazole-2-Carboxylic Acid Monohydrate Molekülünün Elektronik Yapısı Ve Çözücü Etkisi" Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü.
- [84] Şafak, Y. (2007). "3-Fenilfuran Molekülü Ve Klorlu Türevlerinin Yapısal Parametreleri, Elektronik Ve Lineer Olmayan Optik Özelliklerinin Teorik

Olarak İncelenmesi", Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü.

- [85] Internet: "Specifying the geometry of molecules.", <u>http://chemweb.ucc.ie</u>/courses/RPB/CM3109/09_06_L2.doc. (2005).
- [86] Internet: "Introduction to Theoretical organic Chemistry.", <u>http://www.chem.elte.hu/departments/szerves/szerves/oktatas/ea/Perczel/Fund.T</u> <u>heor.Org</u>. Chem.1.5.pdf. (2006).
- [87] Pople, J. A., Krishnan, R., Schlegel, H. B., Binkly, J. S., (1979). "Drivative studies in Hartree-Fock and Möller-Plesset theories", Int. J. Quantum Chem. Symp., 13: 225-233.
- [88] Gill, P. M., W., (1996). "DFT, HF and self consistent field", Enc. Of Comp. Chemistry, John Wiley & Sons Ltd., New York, 65-87.
- [89] D. Sajan, J. Hubert, VS. Jayakumar, J. Zaleski, J Mol Struct 785:43. (2006).
- [90] Fatih,T. Özkan, K. Başak, K. Cem Cüneyt, E., (2015). "3-Hidroksi-6-[(4-Hidroksifenilamino)Metilen]Siklohekza-2,4-Diyenon'ın Kuantum Kimyasal Hesaplamaları Üzerine Bir Çalışma." Dumlupınar Üniversitesi-Fen Bilimleri Enstitüsü Dergisi. ISSN-1302-3055.
- [91] Francl, M.M., Petro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J. and Pople, J.A., (1982). "Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements", J. Chem. Phys., 77: 3654-3665.
- [92] Clark, T., Chandrasekhar, J., Schleyer, P.v.R., (1983). "Efficient diffuse function-augmented basis sets for anion calculations. III. —The 3-21+G basis set for first-row elements, Li F", J. Comp. Chem., 4: 294-301.
- [93] Leszczynski, J., (2006). "Non-Linear Optical Properties of Matter." Springer, Dordrecht, The Netherlands, 676 s.

- [94] Dadakdeniz, F. (2007)." Halotiyofen Moleküllerinin Elektronik ve Çizgisel Olmayan Optik Özelliklerinin Teorik İncelenmesi.", Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü.
- [95] Yılmaz, M. (2013). "Kiral Simetrik Schiff Bazlarının Lineer Olmayan Optik Özelliklerinin Teorik Olarak Hesaplanması", Yüksek Lisans Tezi, Kafkas Üniversitesi Fen Bilimleri Enstitüsü.

[96] Yıldız, S., Yılmaz, H., Kılıç, E., (2001). "Fizikokimya" Bilim Yayıncılık, Ankara.

- [97] Liu, Y., Ma, H., Xu, H., Sun, J., Han, K., (2005). "Study of the Molecular Configuration and the Dipole Moment in Fluorinated Liquid Crystals", Inter. J. Quant. Chem., 102: 415-421.
- [98] Uğurlu, G., (2006). "3-Feniltiyofen Molekülü Ve Florlu Türevlerinin Yapısal Parametreleri, Elektronik ve Lineer Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi.", Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü. Ankara, 35-42.
- [99] Serap, U., Başak, K., Zeynep, E., Koç, K. (2016). "Kinolin Türevi Biyolojik Aktif Bir Molekülün Farklı Çevrelerde Çizgisel Olmayan Davranışının Yoğunluk Fonksiyoneli Teorisi Kullanılarak İncelenmesi." AKÜ FEMÜBİD 16-59-66.
- [100] <u>http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Chemical_Bonding</u>

/General_Principles/Electrostatic_Potential_maps (Kasım2013).

- [101] Levine, l.N. (2000). "Many-electron Atoms." Quantum chemistry. Prentice-Hall lnc, New Jersey,739s.
- [102] Cramer, C.J. (2004). "Essentials of commputational chemistry." Johnn Wiley and Sons, London, 596s.

- [103] Avcı, D. (2009). "Heteroatom Atom İçeren Bazı Aromatik Moleküllerin Lineer Olmayan Optik Ve Spektroskopik Özelliklerinin Teorik İncelenmesi.", Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü.
- [104] Graham, S., Craig, F. (2002). "Organik Kimya", ISBN:975-8431-87-0, Literatür Yayıncılık.
- [105] Fukui, K. (1982). "Role of Frontier Orbitals in Chemical Reactions." Science 218, 747-754.
- [106] Dennington R., Keith T., Millam J. (2009). "Semichem Inc., GaussView, Version 5, Shawnee Mission KS."
- [107] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchina HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Vreven TJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Martin LR, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. (2010). "Gaussian Inc.,(Wallingford, CT)".
- [108] Becke AD., (1988). "Density-Functional Exchange-energey approximation with correct asymptotic behavior." Physical Review A, 38(6):3098-310.
- [109] Moller C, Plesset MS, (1934). "Note on an approximation treatment for manyelectron systems. Physical Review,46:618-622.
- [110] Francl MM, Pietro Wj, Hehre WJ, Binkley JS, Gordon MS, Defrees DJ, Pople JA. (2001). "Self-consistent moleculer robital methods. XXIII. A polarization-type basis set for second-row elements." Chemical Physics, 77:3654-3665.1982.

/ Rassolow VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA. "6-31G* basis set for third-row atoms." Journal of Computational Chemistry, 22:976-984.

- [111] http://yunus.hacettepe.edu.tr/~abilgin/15Stereoizomeri.pdf
- [112] Fragoso-Medina, A.J., Escobedo-Gonzalez, R. G., Nicolas-Vazquez, M.I., Arroyo-Razo, G. A., Noguez-Cordova, M.O., Miranda-Ruvalcaba, R. (2017). "A DFT Study of the Geometrical, Spectroscopical and Reactivity Properties of Diindolylmethane-Phenylboronic Acid Hybrids. Molecules.", 22, 1-25.
- [113] Teimouri, A., Emami, M., Chermahini, A. N., & Dabbagh, H. A., (2009).
 "Spectroscopic, quantum chemical DFT/HF study and synthesis of [2.2. 1] hept-2'-en-2'-amino-N-azatricyclo [3.2. 1.0 2, 4] octane.", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(5), 1749-1755,
- [114] Krishnakumar, V., Xavier, R. J., (2003). "Normal coordinate analysis of 2mercapto and 4, 6-dihydroxy-2-mercapto pyrimidines", Indian Journal of Pure and Applied Physics, 41(8), 597-601.
- [115] Subashchandrabose, S., Saleem H., Erdogdu, Y., Rajarajanc, G., Thanikachalam V., Spectrochima Acta A, 82,260-269, (2011).
- [116] Druzbicki, K., Mikuli, E., (2010). "M.D. Ossowska-Chrusciel, Vibrational Spectroscopy." 52, 54-62.
- [117] Etlik, İ. (2011). "Atomların Form Faktörlerinin Hartree-Fock-Roothaan Metodu İle Hesaplanması" Rize Üniversitesi Fen Bilimleri Enstitüsü.
- [118] Özçelik, F. (2016). "5-Bromo-2-Metilbenzoksazol ve 2,6 Dibromonaftalin Moleküllerinin Spektroskopik Yöntemlerle İncelenmesi" Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü.

6. EKLER

	I	II	II _(deneysel)	III	IV	V	VI	VII
Bağ uzunluğu (Å)								
(İ;2, 3, 4)								
C1-C2	1,4236	1,4005	1,3991(17)	1,4072	1,3929	1,4077	1,4011	1,4044
C1-C6	1,408	1,4045	1,4005(18)	1,4048	1,4097	1,4039	1,4123	1,4048
C1-B	1,5577	1,5658	1,5745(18)	1,5567	1,5615	1,559	1,5689	1,5592
C2-C3	1,4101	1,401	1,3941(18)	1,3866	1,3803	1,375	1,3865	1,3839
Ci-N	1,3797	1,3978	1,4122(16)	1,3904	1,3863	1,3835	1,3864	1,379
C3-C4	1,3842	1,403	1,3980(18)	1,4047	1,403	1,4012	1,4022	1,4074
Ci-H8	1,0858	1,0862	0,9500	1,0842	- /	-	-	-
Ci-Cl		-	- / /	-	- /	-	1,7841	1,767
Ci-F	-	-	- I	4.7	1,3753	1,3662	-	-
C4-C5	1,3979	1,3906	1,3846(18)	1,404	1,4069	1,4041	1,4041	1,4065
Ci-H5	1,0848	1,0869	0,9500	1,0858	1,0834	1,0833	1,0831	1,0828
C5-C6	1,3874	1,3928	1,3894(18)	1,3881	1,3848	1,3896	1,3834	1,3855
С5-Н2	1,0831	1,0858	0,9500	1,0856	1,0849	1,0851	1,085	1,0853
C6-H1	1,0874	1,0875	0,9500	1,0876	1,0837	1,0868	1,0832	1,0869
N-H3	1,0068	1,0096	0,860(3)	1,0086	1,0082	1,0086	1,0083	1,0084
N-H4	1,0092	1,0096	0,860(13)	1,0087	1,0082	1,0078	1,0083	1,0074
B-O1	1,3753	1,3749	1,3707(17)	1,3711	1,3701	1,3693	1,3677	1,3693
B-O2	1,3792	1,3679	1,3623(17)	1,3784	1,3708	1,3765	1,373	1,3765
O1-H6	0,9602	0,9619	0,840(10)	0,963	0,9625	0,963	0,9637	0,963
O2-H7	0,9636	0,9647	0,840(13)	0,96	0,963	0,9601	0,9629	0,96
Bağ açıları(⁰)								
C2-C1-C6	117,3	118,4	118,08(11)	116,5	114,4	117,0	114,4	116,8
C2-C1-B	123,3	119,3	119,71(11)	120,3	124,6	119,8	128,1	119,7
C6-C1-B	119,3	122,3	122,19(11)	123,2	121,0	123,3	117,5	123,5
C1-C2-C3	119,3	121,8	121,72(11)	122,1	125,3	120,2	124,1	121,2
C1-C2-N	121,9	-	-	-	-	-	-	-
С1-С2-Н8	-	118,8	119,1	118,8	-	-	-	-
C1-C2-F	-	-	-	-	118,6	-	-	-
С1-С2-Н5	-	-	-	-	-	120,7	121,1	-
C1-C2-Cl	-	-	-	-	-	-	-	119,6

Ek Tablo 3.4 2-,3-,4-Aminofenilboronik asit ve 4-Amino-2-,3-Floro-klorofenilboronik asit moleküllerinin B3LYP/6-311++g(d,p) setinde optimize edilmiş geometrik parametreler.

Ek Tablo 3.4 Devam

C3-C2-N	118,8	-	-	-	-	-	-	-
С3-С2-Н8	-	119,3	119,1	119,1	-	-	-	-
C3-C2-F	-	-	-	-	116,1	-	-	-
С3-С2-Н5	-	-	-	-	-	119,1	114,8	-
C3-C2-Cl	-	-	-	-	-	-	-	119,2
C2-C3-C4	121,2	118,5	119,1	120,5	118,6	123,4	119,7	122,0
С2-С3-Н8	118,9	-	-	-	-	-	-	-
C2-C3-N	-	120,7	120,86(11)	-	-	-	-	-
C2-C3-H5	-	-	-	120,1	119,7	-	-	119,3
C2-C3-F	-	-	-	-	-	119,9	-	-
C2-C3-Cl	-	-	-	-	-	-	120,0	-
C4-C3-H8	119,9	-	· .		<u> </u>		-	-
C4-C3-N	-	120,7	119,91(11)	- /	· .	-	-	-
C4-C3-H5	-	- /	-	119,4	121,7	-	-	118,7
C4-C3-F	\sim	-	. / /	•	- / .	116,8	-	-
C4-C3-C1	- /	-	- /	-		-	120,4	-
C3-C4-C5	120,5	120,3	119,91(11)	118,4	118,6	116,5	118,3	116,8
C3-C4-H5	119,4	119,7	120,0		-	-	-	-
C3-C4-N	-	-	- /	120,8	120,5	120,5	120,5	121,0
C5-C4-H5	120,1	120,0	120,0	-	-	-	-	-
C5-C4-N	-	-	-	120,8	120,9	123,0	121,1	121,1
C4-C5-C6	118,4	120,6	120,73(11)	120,2	120,4	120,6	120,2	121,1
С4-С5-Н2	120,8	119,3	119,6	119,6	119,5	119,0	119,7	118,7
С6-С5-Н2	120,8	120,1	119,6	120,2	120,1	120,3	120,1	120,2
C1-C6-C5	123,2	120,4	120,52(11)	122,3	122,7	122,3	123,4	122,1
C1-C6-H1	119,2	121,1	119,7	120,4	118,0	120,3	117,6	120,5
С5-С6-Н1	117,6	118,5	119,7	117,3	119,3	117,4	119,1	117,4
Ci-N-H3	117,4	115,8	112,3(11)	116,6	117,2	116,4	117,2	120,3
Ci-N-H4	117,8	115,5	114,4(11)	116,5	116,8	116,9	116,8	120,2
H3-N-H4	116,2	111,9	109,9(15)	113,1	113,6	114,3	113,5	118,0
C1-B-O1	124,3	124,2	117,95(11)	119,0	124,6	118,7	126,5	118,7
C1-B-O2	120,4	119,1	124,48(11)	124,6	117,8	124,5	116,7	124,5
O1-B-O2	115,3	116,7	117,55(11)	116,5	117,6	116,9	116,8	116,9
B-O1-H6	114,7	114,9	112,2(13)	112,0	113,2	112,3	113,7	112,3
В-О2-Н7	112,0	112,2	119,1(12)	114,6	111,9	114,8	111,5	114,9

Ek Tablo 3.4 Devam

Dihedral açı (⁰)								
C6-C1-C2-C3	0,2	0,4	-0,73(18)	-0,1	0,0	0,4	0,0	0,2
C6-C1-C2-N7	177,8	-	-	-	-	-	-	-
B8-C1-C2-C3	179,6	-179,5	177,47(11)	179,9	-180,0	-179,7	-180,0	-179,9
B8-C1-C2-N7	-2,9	-	-	-	-	-	-	-
C2-C1-C6-C5	-0,1	-0,3	0,08(18)	0,1	0,0	-0,4	0,0	-0,2
C2-C1-C6-H14	178,6	178,9	-	-179,7	-180,0	179,2	-180,0	179,6
B8-C1-C6-C5	-179,5	179,6	-178,07(11)	-179,9	180,0	179,7	-180,0	179,9
B8-C1-C6-H14	-0,8	-1,2	-	0,3	0,0	-0,7	0,1	-0,3
C2-C1-B8-O9	168,7	171,7	-0,23(17)	2,2	-0,2	-4,8	-0,3	-2,3
C2-C1-B8-O10	-11,9	-8,1	-178,77(11)	-177,8	179,8	175,2	179,7	177,7
C6-C1-B8-O9	-12,0	-8,2	177,90(11)	-177,8	179,9	175,1	179,7	177,6
C6-C1-B8-O10	167,5	172,0	-0,64(19)	2,2	-0,2	-4,9	-0,3	-2,4
C1-C2-C3-C4	-0,3	-0,2	1,14(18)	0,1	0,0	-0,1	0,0	0,0
C1-C2-C3-H11	179,5	- 7	- /		- []	-	-	-
N7-C2-C3-C4	-177,8	•	- /	-	A \	-	-	-
N7-C2-C3-H11	1,9		-		-	-	-	-
C1-C2-N7-H15	163,5	- /			-	-	-	-
C1-C2-N7-H16	16,8	-	- / /	-	-	-	-	-
C3-C2-N7-H15	-18,9		_	-	-	-	<u>.</u>	-
C3-C2-N7-H16	-165,7	-	-	-	-	-	-	-
C2-C3-C4-C5	0,1	-0,1	-0,90(18)	-0,1	-0,1	-0,2	-0,1	-0,2
C2-C3-C4-H12	-179,8	179,6	-	-	-	-	-	-
H11-C3-C4-C5	-179,6	-	-	-	-	-	-	-
H11-C3-C4-H12	0,5	-	-	-	-	-	-	-
C3-C4-C5-C6	0,1	0,3	0,28(18)	0,1	0,1	0,2	0.1298	0,2
C3-C4-C5-H13	-179,6	-179,6	-	-179,7	-179,7	179,9	-179,7	179,8
H12-C4-C5-C6	180,0	-179,5	-	-	-	-	-	-
H12-C4-C5-H13	0,3	0,7	-	-	-	-	-	-
C4-C5-C6-C1	0,0	-0,1	0,13(18)	-0,1	-0,1	0,1	-0,1	0,0
C4-C5-C6-H14	-178,7	-179,2	-	179,7	179,9	-179,6	179,9	-179,8
H13-C5-C6-C1	179,6	179,8	-	179,8	179,7	-179,6	179,7	-179,7
H13-C5-C6-H14	0,9	0,6	-	-0,5	-0,3	0,7	-0,3	0,6
C1-B8-O9-H17	-4,6	-2,9	-	-179,5	-0,1	179,0	0,0	179,5
O10-B8-O9-H17	175,9	176,9	-	0,5	180,0	-0,9	180,0	-0,5
С1-В8-О10-Н18	179,1	178,6	-	1,2	179,9	-2,4	179,9	-1,3
O9-B8-O10-H18	-1,4	-1,3	-	-178,8	-0,1	177,5	-0,1	178,7

Ek '	Tablo	3.4	Devam
------	-------	-----	-------

EK Tablo 3.4 Deval	u							
N7-C3-C4-C5	-	-177,4	173,96(11)	-	-	-	-	-
N7-C3-C4-H12	-	2,4	-	-	-	-	-	-
C2-C3-N7-H15	-	156,6	-	-	-	-	-	-
C2-C3-N7-H16	-	23,2	-	-	-	-	-	-
C4-C3-N7-H15	-	-26,2	-	-	-	-	-	-
C4-C3-N7-H16	-	-159,6	-	-	-	-	-	-
C1-C2-C3-N7	-	177,0	-173,7(11)	-	-	-	-	-
H11-C2-C3-C4	-	-179,9	-	-179,8	-	-	-	-
H11-C2-C3-N7	-	-2,7	-	-	-	-	-	-
C6-C1-C2-H11	-	-179,9	-	179,8	-	-	-	-
B8-C1-C2-H11	-	0,2		-0,1	<u> </u>	·	-	-
N7-C4-C5-C6	-	-	- I	177,5	177,6	-177,3	177,6	-177,6
N7-C4-C5-H13	-	- /	-	-2,3	-2,2	2,4	-2,2	2,1
C3-C4-N7-H15				-160,0	-21,8	185037,0	-21,6	18,1
C3-C4-N7-H16	- /	-	- / /	-22,2	-161,6	158,7	-161,3	161,3
C5-C4-N7-H15	-	- / -	-	22,6	160,8	-164,1	161,1	-164,3
C5-C4-N7-H16	-		- / /	160,5	21,0	-23,9	21,4	-21,1
H11-C2-C3-H12	-	-	- / /		0,4	-	-	-
C1-C2-C3-H12	- · ·		-	-179,7	-179,6	-	-179,7	-
C2-C3-C4-N7	-	-	-	-177,5	-177,6	-177,4	-177,5	177,6
H12-C3-C4-C5	-	-	-	179,7	179,6	-	179,6	-
H12-C3-C4-N7	-	-	-	2,3	2,1	-	2,2	-
F11-C2-C3-C4	-	-	-	-	-179,9	-	-	-
F11-C2-C3-H12	-	-	-	-	0,4	-	-	-
C6-C1-C2-F11	-	-	-	-	180,0	-	-	-
B8-C1-C2-F11	-	-	-	-	0,0	-	-	-
C1-B8-O9-H18	-	-	-	-	0,0	-	-	-
O10-B8-O9-H18	-	-	-	-	180,0	-	-	-
C1-B8-O10-H17	-	-	-	-	-180,0	-	-	-
O9-B8-O10-H17	-	-	-	-	0,0	-	-	-
C1-C2-C3-F11	-	-	-	-	-	-179,7	-	-
H12-C2-C3-C4	-	-	-	-	-	179,7	-	179,8
H12-C2-C3-F11	-	-	-	-	-	-0,2	-	-
F11-C3-C4-C5	-	-	-	-	-	179,4	-	-
F11-C3-C4-N7	-	-	-	-	-	-3,0	-	-
C6-C1-C2-H12	-	-	-	-	-	-179,5	-	-179,6
Ek Table	o 3.4 Devam							
----------	-------------							
----------	-------------							

B8-C1-C2-H12	-	-	-	-	-	0,5	-	0,3
B8-C1-C2-Cl11	-	-	-	-	-	-	-0,1	-
C6-C1-C2-Cl11	-	-	-	-	-	-	179,9	-
Cl11-C2-C3-C4	-	-	-	-	-	-	-179,9	-
Cl11-C2-C3-H12	-	-	-	-	-	-	0,4	-
C1-C2-C3-Cl11	-	-	-	-	-	-	-	-179,7
H12-C2-C3-Cl11	-	-	-	-	-	-	-	0,2
Cl11-C3-C4-C5	-	-	-	-	-	-	-	179,5
Cl11-C3-C4-N7	-	-	-	-	-	-	-	-2,8

Ek Tablo 3.5 2-3-4-Aminofenilboronik asit ve 4-Amino-2-,-3-floro-klorofenilboronik asit moleküllerinin HF/6-311++g(d,p) setinde optimize edilmiş geometrik parametreler.

	Ι	II	II _(deneysel)	III	IV	V	VI	VII
Bağ uzunluğu (Å)								
(İ;2, 3, 4)								
C1-C2	1,4087	1,3913	1,3991(17)	1,3962	1,3832	1,3978	1,3925	1,3931
C1-C6	1,4	1,3941	1,4005(18)	1,3962	1,4008	1,3926	1,4027	1,3957
C1-B	1,5688	1,5768	1,5745(18)	1,5768	1,5687	1,568	1,5787	1,5672
C2-C3	1,4003	1,3908	1,3941(18)	1,3806	1,3736	1,365	1,3791	1,3781
Ci-N	1,3817	1,3967	1,4122(16)	1,0777	1,382	1,3839	1,3835	1,3776
C3-C4	1,3758	1,3914	1,3980(18)	1,3933	1,3917	1,3886	1,3914	1,3941
Ci-H8	1,0764	1,0757	0,9500	1,0764	-	-	-	-
Ci-CL	-		-	-	-	-	1,7618	1,7519
Ci-F	-		-	-	1,3383	1,3372	-	-
C4-C5	1,3894	1,3825	1,3846(18)	1,3932	1,3975	1,3906	1,3932	1,3969
Ci-H5	1,0762	1,0767	0,9500	1,3884	1,0744	1,0742	1,0738	1,0735
C5-C6	1,3784	1,3843	1,3894(18)	1,3806	1,3765	1,3827	1,376	1,3768
C5-H2	1,0743	1,0759	0,9500	1,0764	1,0756	1,076	1,0758	1,076
C6-H1	1,0777	1,0767	0,9500	1,0777	1,0745	1,0772	1,0737	1,0775

N-H3	0,9938	0,9957	0,860(3)	0,995	0,9945	0,995	0,9947	0,9939
N-H4	0,9941	0,9957	0,860(13)	0,995	0,9945	0,9946	0,9947	0,9939
B-O1	1,3625	1,3606	1,3707(17)	1,3568	1,3569	1,3556	1,3541	1,3555
B-O2	1,3624	1,3547	1,3623(17)	1,3569	1,3577	1,3622	1,3594	1,3626
O1-H6	0,9387	0,9388	0,840(10)	0,9386	0,9401	0,9417	0,9393	0,9416
O2-H7	0,9421	0,9418	0,840(13)	0,9385	09417	0,9384	0,9416	0,9383
Bağ açıları(⁰)								
C2-C1-C6	117,4	118,6	118,08(11)	116,2	114,5	116,9	114,5	116,7
C2-C1-B8	123,5	119,1	119,71(11)	121,9	124,8	119,6	128,6	119,6
C6-C1-B8	119,0	122,3	122,19(11)	121,9	120,7	123,5	117,0	123,7
C1-C2-C3	119,5	121,6	121,72(11)	122,4	125,1	120,4	123,8	121,5
C1-C2-N7	122,1	-	-	-	-	-	-	-
C3-C2-N7	118,4	-	-	-	-	-	-	-
C1-C2-H11	-	119,1	119,1	119,9	- /	-	-	-
C3-C2-H11	-	119,3	119,1	117,7	-	-	-	-
C1-C2-H12	- ()	-	-	-	-	120,7	-	119,6
C3-C2-H12		-		- ^	-	118,9	-	118,9
C1-C2-F11	-	-	£ . / .	1	118,7	-	-	-

Ek Tablo 3.5 Devamı

C3-C2-F11		-		-	116,3		-	-
C1-C2-Cl11	-	-	-	-	-	-	121,4	-
C3-C2-Cl11	-	-	-	-	-	-	114,8	-
C2-C3-C4	121,0	118,7	119,1	120,3	118,6	123,0	119,8	121,7
C2-C3-H11	119,1	-	-	-	-	-	-	-
C4-C3-H11	119,9	-	-	-	-	-	-	-
C2-C3-N7	-	120,7	120,86(11)	-	-	-	-	-
C4-C3-N7	-	120,6	119,91(11)	-	-	-	-	-
C2-C3-H12	-	-	-	120,0	119,6	-	119,9	-
C4-C3-H12	-	-	-	119,7	121,7	-	120,4	-
C2-C3-F11	-	-	-	-	-	119,7	-	-
C4-C3-F11	-	-	-	-	-	117,3	-	-
C2-C3-Cl11	-	-	-	-	-	-	-	118,9
C4-C3-Cl11	-	-	-	-	-	-	-	119,4
C3-C4-C5	120,6	120,3	119,91(11)	118,5	118,9	116,9	118,5	117,1
C3-C4-H12	119,3	119,8	120,0	-	-	-	-	-
C5-C4-H12	120,1	120,0	120,0	-	-	-	-	-
C3-C4-N7	-	-	-	120,7	120,4	120,6	120,4	122,4

C5-C4-N7	-	-	-	120,7	120,7	122,5	121,0	120,5
C4-C5-C6	118,2	120,6	120,73(11)	120,3	120,0	120,6	119,9	120,9
C4-C5-H13	120,9	119,4	119,6	119,7	119,7	119,2	119,9	118,9
C6-C5-H13	120,9	120,0	119,6	120,0	120,2	120,2	120,1	120,2
C1-C6-C5	123,2	120,2	120,52(11)	122,4	122,9	122,2	123,5	122,1
C1-C6-H14	119,1	121,2	119,7	119,9	118,1	120,5	117,8	120,6
C5-C6-H14	117,7	118,6	119,7	117,7	119,0	117,3	118,7	117,3
C2-N7-H15	115,6	-	-	-	-	-	-	-
C2-N7-H16	116,5	-	-	-	-	-	-	-
C3-N7-H15	-	114,7	112,3(11)	-	-	-	-	-
C3-N7-H16	-	114,6	114,4(11)	-	-	-	-	-
C4-N7-H15	-	-	-	115,5	116,3	115,4	116,1	116,8
C4-N7-H16	-	-	-	115,5	116,0	115,5	115,8	115,9
H15-N7-H16	114,0	111,3	109,9(15)	112,2	112,9	113,0	112,7	113,7
C1-B8-O9	123,4	123,9	117,95(11)	122,4	124,9	118,5	127,0	118,6
C1-B8-O10	120,8	118,9	124,48(11)	122,4	117,6	124,3	116,4	124,3
O9-B8-O10	115,8	117,2	117,55(11)	115,3	117,6	117,1	116,6	117,1
B8-O9-H17	116,0	115,9	112,2(13)	114,8	115,2	113,3	116,0	113,4
Ek Tablo 3.5 Devamı								

m

B8-O10-H18	112,9	113,2	119,1(12)	114,8	112,9	116,3	112,6	116,4
Dihedral açı (⁰)								
C6-C1-C2-C3	0,7	0,3	-0,73(18)	0,3	0,1	0,1	0,1	0,1
C6-C1-C2-N7	177,8	-	-	-	-	-	-	-
B8-C1-C2-C3	179,9	-179,7	177,47(11)	-179,7	-180,0	-179,9	-180,0	-179,9
B8-C1-C2-N7	-3,0	-	-	-	-	-	-	-
C2-C1-C6-C5	-0,1	-0,2	0,08(18)	0,4	0,0	-0,2	0,0	-0,1
C2-C1-C6-H14	178,5	179,1	-	179,1	180,0	179,8	180,0	179,9
B8-C1-C6-C5	-179,4	179,8	-178,1(11)	-179,7	180,0	179,9	-180,0	180,0
B8-C1-C6-H14	-0,8	-0,9	-	-0,9	0,0	-0,1	0,0	-0,1
C2-C1-B8-O9	161,6	172,2	-0,23(17)	152,7	-0,1	-1,9	-0,6	-1,2
C2-C1-B8-O10	-19,2	-7,6	-178,8(11)	-27,3	179,8	179,1	179,5	178,8
C6-C1-B8-O9	-19,2	-7,8	177,90(11)	-27,2	179,8	179,0	179,4	178,8
C6-C1-B8-O10	160,0	172,4	-0,64(19)	152,7	-0,2	-2,0	-0,6	-1,2
C1-C2-C3-C4	-0,7	-0,1	1,14(18)	-0,7	0,0	0,0	0,0	0,0
C1-C2-C3-H11	179,1	-	-	-	-	-	-	-
N7-C2-C3-C4	-177,9	-	-	-	-	-	-	-
N7-C2-C3-H11	1,8	-	-	-	-	-	-	-

C1-C2-N7-H15	160,2	-	-	-	-	-	-	-
C1-C2-N7-H16	22,2	-	-	-	-	-	-	-
C3-C2-N7-H15	-22,7	-	-	-	-	-	-	-
C3-C2-N7-H16	-160,6	-	-	-	-	-	-	-
C2-C3-C4-C5	0,3	-0,2	-0,90(18)	0,5	-0,2	-0,1	-0,2	-0,1
C2-C3-C4-H12	-179,7	179,5	-	-	-	-	-	-
H11-C3-C4-C5	-179,5	-	-	-	-	-	-	-
H11-C3-C4-H12	0,5	-	-	-	-	-	-	-
C3-C4-C5-C6	0,3	0,3	0,28(18)	0,1	0,2	0,0	0,2	0,1
C3-C4-C5-H13	-179,5	-179,6	-	179,9	-179,5	-179,6	-179,5	179,6
H12-C4-C5-C6	-179,8	-179,4	-	-	-	-	-	-
H12-C4-C5-H13	0,5	0,6	-	-	-	-	-	-
C4-C5-C6-C1	-0,3	-0,1	0,13(18)	-0,6	-0,1	0,1	-0,1	0,0
C4-C5-C6-H14	-179,0	-179,5		-179,4	179,9	-179,9	179,9	-180,0
H13-C5-C6-C1	179,4	179,9	-	179,6	179,6	-179,4	179,6	-179,5
H13-C5-C6-H14	0,8	0,5	-	0,9	-0,4	0,6	-0,4	0,5
C1-B8-O9-H17	-7,3	-2,7	- / /	-8,4	-0,1	179,6	0,0	179,7
O10-B8-O9-H17	173,4	177,1	-	171,6	179,9	-0,4	180,0	-0,3

Ek Tablo 3.5 Devamı

С1-В8-О10-Н18	179,1	178,9		-8,1	179,9	-1,1	179,8	-0,7
O9-B8-O10-H18	-1,7	-0,9	-	171,9	-0,1	178,9	-0,1	179,3
N7-C3-C4-C5	-	-177,7	173,96(11)	-	-	-	-	-
N7-C3-C4-H12	-	2,0	-	-	-	-	-	-
C2-C3-N7-H15	-	154,7	-	-	-	-	-	-
C2-C3-N7-H16	-	24,2	-	-	-	-	-	-
C4-C3-N7-H15	-	-27,8	-	-	-	-	-	-
C4-C3-N7-H16	-	-158,4	-	-	-	-	-	-
C1-C2-C3-N7	-	177,4	-173,7(11)	-	-	-	-	-
H11-C2-C3-C4	-	-179,8	-	-179,5	-	-	-	-
H11-C2-C3-N7	-	-2,3	-	-	-	-	-	-
C6-C1-C2-H11	-	-179,9	-	179,0	-	-	-	-
B8-C1-C2-H11	-	0,1	-	-1,0	-	-	-	-
N7-C4-C5-C6	-	-	-	-177,4	177,9	-177,5	179,8	-177,7
N7-C4-C5-H13	-	-	-	2,4	-1,8	2,0	-1,9	1,8
C3-C4-N7-H15	-	-	-	24,5	-23,3	20,4	-23,5	20,9
C3-C4-N7-H16	-	-	-	158,3	-159,6	155,4	-159,1	159,2
C5-C4-N7-H15	-	-	-	-158,0	159,1	-162,1	158,9	-161,4

C5-C4-N7-H16	-	-	-	-24,2	22,7	-27,2	23,3	-23,2
H11-C2-C3-H12	-	-	-	0,1	-	-	-	-
C1-C2-C3-H12	-	-	-	178,8	-179,6	-	-179,6	-
C2-C3-C4-N7	-	-	-	178,1	-177,8	177,6	-177,8	177,7
H12-C3-C4-C5	-	-	-	-179,1	179,5	-	179,5	-
H12-C3-C4-N7	-	-	-	-1,5	1,8	-	1,9	-
F11-C2-C3-C4	-	-	-	-	-179,9	-	-	-
F11-C2-C3-H12	-	-	-	-	0,4	-	-	-
C6-C1-C2-F11	-	-	-	-	-180,0	-	-	-
B8-C1-C2-F11	-	-	-	-	0,0	-	-	-
C1-B8-O9-H18	-	-	-	-	0,0	-	-	-
O10-B8-O9-H18	-	-	-	-	180,0	-	-	-
C1-B8-O10-H17	-	-	-	-	180,0		-	-
О9-В8-О10-Н17	-	-		-	0,0	-	-	-
C1-C2-C3-F11	-	- <i>1</i>	-	-	-	179,6	-	-
H12-C2-C3-C4	-	-	-	-	-	179,8	-	179,9
H12-C2-C3-F11		-	- / /	-	-	0,2	-	-
F11-C3-C4-C5	-	- /	-	-	-	179,6	-	-

Ek Tablo 3.5 Devamı		

F11-C3-C4-N7			-	-	-	-2,8	-	-
C6-C1-C2-H12	-	-	-	-	-	-179,7	-	-179,8
B8-C1-C2-H12	-	-	-	-	-	0,2	-	0,1
B8-C1-C2-Cl11	-	-	-	-	-	-	-0,1	-
C6-C1-C2-Cl11	-	-	-	-	-	-	180,0	-
Cl11-C2-C3-C4	-	-	-	-	-	-	-179,9	-
Cl11-C2-C3-H12	-	-	-	-	-	-	0,5	-
C1-C2-C3-Cl11	-	-	-	-	-	-	-	-79,9
H12-C2-C3-Cl11	-	-	-	-	-	-	-	0,0
Cl11-C3-C4-C5	-	-	-	-	-	-	-	179,8
Cl11-C3-C4-N7	-	-	-	-	-	-	-	-2,5

-	2-ar	ninofenilbor	onik asit/DF	2-aminofenilboronik asit/HF				
	SE. fre.	Frekans	IR	Raman	SE. fre.	Frekans	IR	Raman
1	46,2307808	48,2576	1,2776	0,6426	50,6184	55,8702	1,393	0,6497
2	111,9005312	116,8064	1,6155	2,4036	115,1888	127,14	1,1134	2,54
3	201,6123454	210,4513	4,3163	0,2957	195,5232	215,8093	2,2631	0,1449
4	217.3317842	226,8599	6,9367	0,6371	222,8649	245,9877	8,235	0,8128
5	320,3047134	334,3473	5,0961	2,4942	314,9121	347,5851	4,0771	2,0941
6	348,9770786	364,2767	1,8012	2,087	349,0716	385,2887	2,8384	0,9104
7	371,9461824	388,2528	153,3063	0,7445	375,1458	414,0682	44,8978	1,0454
8	403,010961	420,6795	1,6652	0,5338	413,1977	456,0681	6,1101	0,3736
9	445,2312664	464,7508	10,6155	0,4611	454,4981	501,6535	12,8359	0,4297
10	461,9823754	482,2363	140,1263	2,1416	463,6257	511,7281	145,4251	1,4503
11	500,682893	522,6335	120,2561	1,2342	506,3464	558,8812	93,9733	0,8125
12	513,2209096	535,7212	23,3967	1,6622	520,6381	574,6557	23,4383	1,7988
13	518,3018542	541,0249	19,3826	2,1256	540,7186	596,8197	112,4927	0,9582
14	544,6161982	568,4929	19,6299	1,2003	554,5939	612,1345	18,0117	3,8655
15	559,8315374	584,3753	13,9886	12,18	572,8736	632,3108	102,5422	10,4047
16	636,6884286	664,6017	90,1366	0,5001	655,8498	723,896	134,9085	0,3183
17	674,7942198	704,3781	4,1027	18,4933	677,0273	747,2707	5,1026	15,6619
18	724,9792414	756,7633	45,2352	1,1069	757,5509	836,1489	8,935	0,6742
19	738,1432152	770,5044	12,5032	0,5985	762,0434	841,1075	88,8888	2,2059
20	816,0393448	851,8156	4,4034	7,6943	819,9264	904,996	6,096	9,6828
21	822,0385324	858,0778	6,2846	1,1087	862,9495	952,4829	10,305	0,3699
22	901,1050506	940,6107	1,5604	0,3932	946,0734	1044,231	98,2191	1,4592
23	934,8947644	975,8818	104,6892	3,0595	969,8272	1070,449	1,5587	0,6709
24	940,8437528	982,0916	1,4408	0,209	999,6722	1103,391	1,8829	0,0929
25	989,1099962	1032,474	166,6582	3,3657	1002,909	1106,963	22,4759	26,2847
26	1002,1524	1046,088	5,1925	23,3801	1005,904	1110,269	161,4525	2,833
27	1037,815674	1083,315	14,3515	10,4016	1048,056	1156,795	4,1946	12,6374
28	1076,100132	1123,278	35,6253	5,932	1084,355	1196,86	124,4348	5,8674
29	1119,757438	1168,849	18,8733	2,9915	1105,041	1219,693	23,5454	7,3641
30	1137,219095	1187,076	15,7661	5,8169	1141,722	1260,178	12,9864	4,2816
31	1222,702489	1276,307	59,3687	8,0123	1195,252	1319,263	31,4119	0,7466
32	1261,273581	1316,57	54,867	20,554	1256,62	1386,998	11,2917	27,7539
33	1283,776139	1340,059	144,1525	2,8864	1277,915	1410,502	102,4033	2,5899
34	1307,849721	1365,188	202,6762	1,5459	1313,474	1449,75	473,6323	6,0875
35	1321,414809	1379,347	263,9698	17,0024	1327,363	1465,08	242,8946	0,4076
36	1423,260172	1485,658	167,6857	1,8149	1445,17	1595,11	181,9165	0,829
37	1455,237542	1519,037	62,3981	4,7183	1486,382	1640,598	52,0912	1,3187
38	1531,388004	1598,526	31,7363	10,5674	1577,836	1741,54	51,4277	13,7842
39	1576,19079	1645,293	92,5123	22,3953	1618,987	1786,962	137,3473	34,4183
40	1591,78109	1661,567	176,0681	20,0532	1645,082	1815,764	146,7645	16,796
41	2995,278489	3126,596	30,705	67,5582	2989,656	3299,842	25,8577	43,6998
42	3018,192891	3150,515	9,7947	90,7353	2999,617	3310,835	6,3403	89,3612
43	3037,400216	3170,564	20,1558	103,9933	3016,82	3329,823	28,7498	78,4259
44	3056,453974	3190,453	15,5249	214,2025	3034,763	3349,628	18,4132	187,7734
45	3420,449714	3570,407	88,4332	170,7749	3449,647	3807,557	63,1922	130,658
46	3535,964875	3690,986	63,5427	52,0895	3548,025	3916,142	69,247	35,2973
47	3679,795355	3841,123	80,9264	175,6802	3785,331	4178,07	141,3021	117,6824
48	3720,442912	3883,552	43,4375	45,9051	3832,682	4230,333	76,8782	33,7116

Ek Tablo 3.6 2-Aminofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans $(cm^{-1})(Skala Edilmiştir (SE))$

değerleri

	3-ami	nofenilboroni	k asit/DFT		3-aminofenilboronik asit/HF				
	SE. fre.	Frekans	IR	SE. fre.	Frekans	IR	Raman		
1	34,52948	36,0433	1,2776	27,48768	30,3396	3,5281	0,3027		
2	130,9956	136,7386	1,6155	133,074	146,8808	2,8202	2,7597		
3	142,2782	148,5159	4,3163	147,169	162,4382	2,5171	0,2603		
4	210,3357	219,5571	6,9367	219,1226	241,8572	3,3173	0,7982		
5	279,4377	291,6886	5,0961	231,9617	256,0284	22,546	0,2953		
6	301,4795	314,6968	1,8012	305,131	336,7892	7,6198	3,1327		
7	339,307	354,1827	153,3063	341,0198	376,4015	2,6562	0,5288		
8	404,408	422,1378	1,6652	413,7641	456,6933	11,5685	0,1103		
9	437,1981	456,3655	10,6155	442,0288	487,8905	21,3193	0,8851		
10	475,3619	496,2024	140,1263	453,6721	500,7418	142,1389	1,4701		
11	487,5337	508,9078	120,2561	492,9452	544,0896	10,7571	0,5008		
12	504,7586	526,8879	23,3967	510,811	563,8091	31,4721	2,1084		
13	528,9542	552,1443	19,3826	533,1641	588,4814	21,1579	4,5817		
14	559,3815	583,9055	19,6299	552,6142	609,9495	139,2019	3,053		
15	581,1035	606,5799	13,9886	622,8948	687,5218	164,4556	5,2234		
16	658,531	687,4019	90,1366	677,7465	748,0646	40,1615	2,8791		
17	682,645	712,5731	4,1027	688,0121	759,3952	22,7476	12,631		
18	687,6844	717.8334	45,2352	708,4746	781,9808	147.1036	0.7584		
19	756,4329	789,5959	12,5032	795,1012	877,5951	34.0899	1.6316		
20	832,9434	869,4608	4,4034	865.5364	955,3382	6.0462	4.3766		
21	863.3069	901.1554	6.2846	895.6435	988.569	2.7568	0.5584		
22	870.5768	908,7441	1.5604	912.1285	1006.764	16.0989	0.1124		
23	915.0336	955,1499	104.6892	957.3303	1056.656	121.5353	6.5698		
24	947.5222	989.0628	1.4408	973,4702	1074.47	17.3382	38.1121		
25	967.5222	1009.94	166.6582	989.3247	1091.97	1.6977	0.1414		
26	987.4639	1030.756	5.1925	998.3155	1101.894	158.0413	1.5306		
27	1047.428	1093.349	14,3515	1039.714	1147.587	2.6393	2,6844		
28	1064.033	1110.681	35,6253	1072.224	1183.471	14.8784	5.9407		
29	1107.49	1156.044	18.8733	1097,191	1211.028	52.0077	0.5858		
30	1152.773	1203.312	15,7661	1148.37	1267.517	9.4986	3.6977		
31	1236.772	1290,994	59,3687	1200.268	1324.799	39.3461	1.2302		
32	1268.338	1323.944	54.867	1242,513	1371.428	24,1276	9,1403		
33	1301.701	1358.77	144.1525	1306.931	1442.529	179.2889	3.0274		
34	1312.855	1370.412	202.6762	1321.906	1459.057	465.0756	12.77		
35	1330,179	1388.495	263.9698	1332.073	1470.279	307.1517	3.6542		
36	1415.789	1477.859	167.6857	1439,156	1588.473	106.5649	0.5917		
37	1470.041	1534.49	62.3981	1495.297	1650.439	12.5241	0.2987		
38	1557.224	1625.495	31,7363	1595.43	1760.961	48,1149	14.7254		
39	1576.125	1645.225	92,5123	1615.933	1783.59	3.7797	33.1028		
40	1632.399	1703.965	176.0681	1638.356	1808.34	123.6668	20.1058		
41	3001.488	3133.077	30.705	2992,836	3303.351	7.8619	62.1501		
42	3017.884	3150,192	9.7947	3003.004	3314.574	32.149	61.4649		
43	3032.082	3165.013	20.1558	3019.525	3332,809	13,3941	31.5101		
44	3041.163	3174.492	15.5249	3024.541	3338.346	19.5404	201.2925		
45	3415 211	3564 939	88.4332	3431 035	3787 014	23,1815	141.1411		
46	3506.395	3660.12	63.5427	3518.843	3883.933	19.7759	46.6263		
47	3642.968	3802.68	80.9264	3790 162	4183.402	137.2673	118.1507		
48	3677,258	3838,474	43,4375	3831,519	4229,05	71,8456	32,4449		

Ek Tablo 3.7 3-Aminofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans (cm⁻¹) (Skala Edilmiştir (SE))

değerleri

	4-aminofenilboronik asit/DFT				4-aminofenilboronik asit/HF				
	SE. fre.	Frekans	IR	SE. fre.	Frekans	IR	Raman		
1	28,22977	29,4674	4,2597	31,19394	34,4304	4,5115	0,7403		
2	91,9977	96,031	1,9791	95,5069	105,416	1,9319	1,3064		
3	147,4934	153,9597	2,4968	149,2134	164,6947	2,3972	0,1592		
4	250,968	261,9708	2,2426	259,239	286,1358	3,3246	1,8545		
5	299,1473	312,2623	4,2338	275,0368	303,5726	21,3371	0,2629		
6	307,5457	321,0289	16,5868	299,7705	330,8725	4,6461	4,2938		
7	348,1439	363,407	3,1497	351,9532	388,4693	3,0826	0,1233		
8	384,088	400,9269	25,2032	395,1057	436,099	49,5424	0,4569		
9	426,0214	444,6987	5.5711	427,7924	472,177	5,3519	0,4475		
10	435,4415	454,5318	73,5895	434,3981	479,4681	82,5473	0,4624		
11	461,3782	481,6056	286,9635	476,9391	526,4228	151.0175	1,7206		
12	482,767	503,9322	66,6879	488,8411	539,5597	56,6026	1,2827		
13	499,0849	520.9654	122,1149	525,9223	580,4882	28.364	2,4698		
14	535,5471	559.0262	23.086	571.1208	630.3762	274.6723	11.5351		
15	626,1197	653.5696	5.5296	631.6946	697,2347	0.8518	6.0621		
16	629,225	656.8111	84.3737	649,4952	716.8821	93.0321	0.8273		
17	650,5412	679.0618	8.6394	651.2575	718.8273	41.0994	2.0977		
18	720,7075	752.3043	15.5022	739.9649	816.7383	35.9307	1,1655		
19	782,3342	816 6328	11 5862	809 4002	893 3777	2.6564	36 9874		
20	802 7408	837 934	21 6914	824 7259	910 2935	14 3763	1 3601		
21	809 3247	844 8066	10 9124	841 9555	929 3107	48 8068	0 7934		
22	899,9217	939 3851	0 1597	942 8176	1040 638	99 1191	0,7328		
23	940 9878	982 242	97 1926	957 8169	1057 193	0 2989	0,7320		
24	943 5755	984 9431	0.0526	991 2148	1094.056	87 0973	1,0632		
25	978 9176	1021 835	125 2199	998 8042	1102 433	87 9746	3 3 5 7 2		
26	986 16/1	1021,855	60 505	999 7066	1102,433	10 9013	0 3701		
27	1029 671	1027,377	5 7951	1047 912	1156 636	3 928	0,8701		
28	1027,071	1125 107	<i>45</i> 2061	1082 751	1195,090	10 1231	15 7568		
29	1077,939	1123,197	10 362	1001 784	1205.06	50 7602	6 6 8 6 6		
30	1160 776	1211 666	19,302 51 2384	1071,784	1203,00	50,7092	0,0800		
31	1250 778	1205 614	17 261	1175,256	1297,194	2 7826	1 2 4 0 0		
32	1256,778	1211 525	17,201	1163,721	1306,743	5,7650 206.0724	1,3499		
32	1230,431	1259 910	143,0290	1204 687	1300,099	200,9734	23,7937		
34	1208 524	1265 002	220 7118	1217 771	1440,032	223,2330 541 2927	1,1055		
35	1306,334	1303,902	329,7110 459 1221	1317,771	1454,494	J41,3037	20,0334		
36	1323,139	1361,147	436,1221	1320,038	1404,281	179,2180	5,2342		
30	1393,781	1430,974	27,8455	1419,301	1500,024	40,7410	0,1802		
38	1480,575	1551,748	4,2987	1517,09	10/4,492	12,0483	0,3353		
20	1535,321	1602,031	13,8077	1581,839	1745,959	28,1591	1,/1/		
39 40	15/5,948	1645,039	109,0394	1613,987	1/81,443	149,1455	95,4125		
40	1593,348	1663,202	231,5178	1639,389	1809,48	224,5447	52,4323		
41 42	2996,703	3128,082	50,7222 15,2492	2983,528	5293,077	30,9369	54,5649		
42	3020,777	3153,212	15,3483	3003,133	3314,/16	15,7248	/5,40//		
45	3028,08	3160,835	22,0747	3010,779	3323,156	25,1767	116,7312		
44	3050,906	3184,662	6,3095	3034,479	3349,315	7,7333	103,2264		
45 46	3426,606	3576,833	32,9533	3439,174	3795,998	35,3032	167,2167		
46	3523,462	3677,936	19,7684	3530,751	3897,077	23,4768	50,6186		
47	3688,285	3849,985	82,6905	3793,246	4186,806	138,5097	119,352		
48	3723,953	3887,216	36,3617	3836,984	4235,082	66,5534	32,9847		

Ek Tablo 3.8 4-Aminofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans (cm-1) (Skala Edilmiştir (SE))

değerleri

	4-amin	o-2-florofer	ilboronik as	sit/DFT	4-amino-2-florofenilboronik asit/HF			
	SE. fre.	Frekans	IR	Raman	SE. fre.	Frekans	IR	Raman
1	63,16401	65,9332	2,4278	0,0574	61,4943	67,8745	2,5892	0,0456
2	87,50573	91,3421	1,1535	1,7795	90,46863	99.855	1,2223	1,5579
3	159.01	165,9812	4,8602	0,2159	157,2933	173,6129	4,1579	0,0896
4	216.1504	225.6267	2.4356	1.4222	224.2164	247,4795	3.3577	1.3983
5	253,7167	264.84	1.4542	1.5422	262.6793	289.933	2.4227	1.9045
6	286.159	298.7046	2.4827	2.8722	286.4502	316,1702	2.2245	2.3401
7	316.8955	330,7886	7.7505	0.5291	301.2546	332.5106	17.298	0.2364
8	326 9134	341 2457	8 8928	2,7627	329 1357	363 2844	3 4959	1 94
9	344 6727	359 7836	6 8582	0.0819	348 5502	384 7132	5 9101	0 1333
10	432 998	451 9812	111 6365	1 2944	448 1299	494 6246	85 6743	0.8645
11	460 1444	480 3177	270 8781	6 1671	480 3508	530 1885	54 8456	0,5686
12	400,1444	400,5177	18/1356	0,7819	400,5500	5/19 9693	76 08/6	2 0152
12	500 9976	522 962	17 9052	5 4028	501 8667	553 9368	1/9 37/7	0.8967
14	502 4713	524,5003	125 0328	2 3700	525 0758	579 5539	221 2625	12 6634
15	545 4803	560 3040	125,0528	6 68 18	544 4853	600 0771	60 5323	0 5681
16	564 0278	588 7555	60 502	0,0848	555 8312	613 5002	13 4414	6.0362
17	602 6021	620 021	7 1860	0,0742	631 3002	606 7003	70 4652	0,0302
10	624 5257	662 3546	50.0510	0,3001	654 1606	722 0415	17,4032	0,7150
10	654,0537	682 728	7 4256	0,3094 5 8038	661 4485	722,0413	17,347	3,7333
20	712 0126	742 2282	12 5866	0,1822	727 6424	202 1272	43,9308	1,9365
20	712,0120	745,2282	13,3800	0,1855	727,0424	805,1575	0,1147	20,2520
21	701 2051	748,8004	0,9914	19,4081	/43,8/33	821,0524	27,4005	0,4901
22	/91,3951	820,0909	1,7075	0,0581	828,0278	913,938	19,4320	0,2441
23	807,0276	842,4088	44,9229	0,2672	850,1306	938,334	64,8387	0,2599
24	926,1968	966,8025	52,3624	18,1051	943,0321	1040,874	45,7908	12,9671
25	939,9521	981,1609	0,6972	0,0322	969,0143	1069,552	111,5312	1,0908
26	962,7291	1004,936	119,4324	2,6324	999,2885	1102,967	0,4768	0,0042
27	1000,636	1044,505	156,0478	2,2911	1010,363	1115,191	157,8215	2,5944
28	1036,373	1081,809	2,2393	5,4909	1050,936	1159,974	1,3963	4,1678
29	1063,289	1109,905	5,1992	4,6972	1068,488	11/9,347	9,3219	8,1436
30	1104,828	1153,265	126,0877	6,7388	1124,079	1240,706	112,3257	2,754
31	1125,25	1174,583	2,8462	1,2387	1148,157	1267,281	46,121	0,4467
32	1208,639	1261,627	39,752	8,4299	1188,078	1311,344	35,1839	1,8422
33	1276,543	1332,508	85,8424	19,1689	1241,5	1370,309	46,6404	15,9997
34	1279,18	1335,261	64,9383	0,9052	1288,426	1422,104	292,591	33,8058
35	1316,614	1374,336	534,3957	38,6776	1321,412	1458,512	457,9952	10,6343
36	1330,436	1388,764	278,2031	9,2924	1330,29	1468,311	323,324	1,2462
37	1411,24	1473,11	130,0826	0,3794	1442,571	1592,242	160,3558	0,443
38	1473,111	1537,694	4,8251	11,1586	1504,496	1660,591	16,2073	1,2534
39	1530,962	1598,081	74,2015	0,1709	1581,612	1745,709	127,9053	1,3851
40	1586,211	1655,753	38,1799	24,7177	1623,888	1792,371	199,6221	70,8851
41	1599,044	1669,149	446,3574	108,2784	1642,058	1812,427	378,0709	74,3124
42	3031,359	3164,258	11,1921	85,4389	3012,406	3324,952	12,1229	73,5222
43	3054,501	3188,415	3,681	63,5496	3033,113	3347,807	4,3501	77,8795
44	3058,236	3192,313	3,9338	143,4502	3042,118	3357,746	5,13	104,8761
45	3432,971	3583,477	43,5695	247,9614	3445,322	3802,784	46,8596	163,6308
46	3531,242	3686,056	23,7103	61,2838	3539,679	3906,93	28,5534	49,5201
47	3688,989	3850,719	64,4688	178,7398	3791,306	4184,665	144,8772	116,1696
48	3690,738	3852,545	113,6117	20,7867	3816,323	4212,277	115,6748	25,362

Ek Tablo 3.9 4-Amino-2-florofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans değerleri (cm⁻¹) (Skala Edilmiştir (SE))

	4-amino-3-florofenilboronik asit/DFT			4-amino-3-florofenilboronik asit/HF				
	SE. fre.	Frekans	IR	SE. fre.	Frekans	IR	Raman	
1	30,51881	31,8568	2,1849	26,44741	29,1914	2,7361	0,0999	
2	92,74647	96,8126	2,2037	96,51237	106,5258	1,9382	1,4725	
3	135,2901	141,2214	1,1793	139,2384	153,6848	1,1013	0,0727	
4	195,1745	203,7312	1,4104	203,4298	224,5362	2,503	1,5303	
5	278,6698	290,8871	0,3891	284,1706	313,6541	5.0977	3,1861	
6	290.3185	303.0465	8.0363	286.5919	316.3266	17.896	0.4834	
7	297,4972	310.5399	7.9226	302,401	333,7759	9.2672	2.2304	
8	340,7765	355.7166	22.0001	313,5221	346.0509	5.722	0.8535	
9	351.2831	366.6838	19.886	353,9784	390,7046	8.1033	0.6397	
10	428,6795	447,4734	131.9595	422,3947	466.2193	165,4989	1.4671	
11	440.8285	460.155	52.9415	453.0559	500.0617	23.9214	0.536	
12	459.4844	479.6288	86.4259	467,1366	515.6033	25,7935	0.1571	
13	477.1064	498.0234	234.173	496.0174	547.4806	58,1473	0.9048	
14	497 2782	519 0795	21 7163	512 1895	565 3306	44 3146	0.8151	
15	506 5225	528 7291	14 3574	546 9189	603 6632	102 3145	11 7224	
16	544 546	568 4196	8 8498	560 3067	618 4401	78 0296	5 2632	
17	567 477	592 3559	23 5494	578 983	639 0541	158 517	4 0834	
18	653 4813	682 1308	5 4564	657 9814	726 2488	8 5459	6 6646	
19	658 1331	686 9865	69 7592	682,6335	753 4586	101 2285	0,369	
20	556,1551	5.12,0002	1.5.0155	502,0335	011,7250	20.0050	1,0,00	
20	711,6908	742,8923	15,2175	738,1416	814,7258	29,3858	1,9628	
21	760,1301	793,4552	20,2514	767,9295	847,6043	17,6038	21,5259	
22	780,6216	814,8451	25,3015	824,1352	909,6415	36,2719	0,3072	
23	873,0986	911,3764	12,0297	882,8913	974,4937	8,7567	6,7772	
24	876,513	914,9405	7,043	931,7061	1028,373	6,0984	0,1983	
25	900,2492	939,7173	4,7315	954,6411	1053,688	164,0524	0,4404	
26	945,7617	987,2252	158,8523	963,2741	1063,217	6,7202	0,0895	
27	979,2853	1022,219	173,8216	994,893	1098,116	174,1866	2,8672	
28	1024,592	1069,512	0,8288	1044,871	1153,279	3,2754	1,5468	
29	1054,835	1101,081	46,7798	1069,913	1180,92	32,0944	13,3851	
30	1126,429	1175,813	32,351	1111,694	1227,036	35,0748	3,5173	
31	1163,811	1214,834	13,1074	1181,918	1304,545	24,7009	2,9274	
32	1225,027	1278,733	10,4879	1206,172	1331,315	37,2138	4,2811	
33	1263,537	1318,932	25,5266	1258,291	1388,843	3,8965	4,6646	
34	1293,885	1350,61	379,4747	1302,894	1438,073	697,6034	35,1971	
35	1309,754	1367,175	303,6635	1311,724	1447,82	15,9265	5,7189	
36	1329,335	1387,615	401,9675	1326,647	1464,29	501,6564	21,0467	
37	1392,339	1453,381	120,187	1414,498	1561,256	166,5198	1,8143	
38	1489,056	1554,338	32,5735	1521,668	1679,546	56,6229	2,3481	
39	1535,779	1603,11	7,0668	1595,627	1761,178	14,8453	0,7712	
40	1570,527	1639,381	6,9005	1613,972	1781,426	24,2754	65,8745	
41	1597,206	1667,23	248,4868	1642,715	1813,152	226,7526	107,1684	
42	3004,047	3135,749	24,8123	2992,64	3303,135	25,4413	54,1211	
43	3034,784	3167,833	15,6182	3017,392	3330,455	19,0434	114,352	
44	3064,333	3198,677	1,5633	3047,132	3363,28	1,2047	76,8922	
45	3434,421	3584,99	54,9657	3443,444	3800,711	51,4058	166,6471	
46	3535,535	3690,538	34,1261	3538,155	3905,248	37,1752	46,2741	
47	3688,339	3850,041	87,9796	3792,142	4185,587	145,4634	118,5278	
48	3723,095	3886,32	38,1195	3836,168	4234,181	69,3448	32,7024	

Ek Tablo 3.10 4-Amino-3-florofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans değerleri (cm⁻¹) (Skala Edilmiştir (SE))

	4-amino-2-klorofenilboronik asit/DFT					4-amino-2-klorofenilboronik asit/HF			
	SE. fre.	Frekans	IR	Raman	SE. fre.	Frekans	IR	Raman	
1	41,98416	43,8248	1,762	0,0305	32,99299	36,4161	2,3144	0,6462	
2	84,29375	87,9893	0,8469	1,9968	89,26537	98,5269	0,879	1,1956	
3	170,5518	178,029	2,825	0,8463	173,5235	191,527	3,8795	1,6989	
4	173,6552	181,2685	5,0628	0,432	178,9201	197,4836	3,1051	0,6462	
5	232,3719	242,5594	0.3374	1,8933	233,2993	257,5048	0.3113	1,1956	
6	253,2309	264,3329	2,031	1,4007	264,6558	292,1146	2,918	1,6989	
7	303,0432	316,329	3,9396	3,7187	178,9201	197,4836	3,1051	0,6462	
8	313,787	327,5438	13,457	0,2097	233,2993	257,5048	0.3113	1,1956	
9	332.2974	346.8658	5.5322	2.8032	264.6558	292,1146	2.918	1.6989	
10	406,2858	424,0979	1,6013	7,4262	287,8857	317,7546	18,4907	0,2206	
11	424,6946	443,3138	74,4873	0,964	304,1713	335,7299	4,5711	2,7221	
12	458,1654	478.252	311.1249	8.0228	335.8637	370,7105	4.7962	2.3573	
13	480.7711	501.8487	21.3888	5.1677	492,3402	543,4219	147.2431	1.2768	
14	492,9338	514.5447	23,5711	4.1221	495.6351	547.0586	74.8568	0.3429	
15	496,7423	518.5201	105.0322	2.048	525,9604	580,5302	193.4753	11.3288	
16	550,9949	575.1513	61.2728	0.4045	535.0104	590,5192	83.9339	3.512	
17	576.8017	602.0895	2.158	0.2483	602,6667	665,195	69,7274	1.0932	
18	631.0061	658.6703	63.1694	0.2358	647,5563	714.742	19.8558	6.0718	
19	646.3428	674.6793	12.8408	8.5337	653,9505	721.7997	78.645	1.0736	
20	671.6527	701.0989	4.1378	4.3285	680,605	751.2197	6.4682	7.3759	
$\frac{-3}{21}$	707.9918	739.0311	16.242	0.1829	737.2405	813.7312	28.2607	0.6066	
22	797.3736	832,3315	8.7189	0.2457	837.3049	924.1776	24.3672	0.4069	
23	816.0079	851.7828	34.1571	0.476	861.0581	950.3952	40.2014	1.3427	
24	857.9764	895.5912	56.0344	22.0551	875.0375	965.825	55,7843	13.9981	
25	945.9682	987.4407	0.204	0.0378	966.5994	1066.887	92.2826	3.7195	
26	963.1295	1005.354	97.6328	1.8922	1001.742	1105.675	0.2016	0.1064	
27	996.069	1039.738	102.179	9.1848	1010.739	1115.606	168.2842	2.0925	
28	1010.58	1054.885	51.4048	4,7079	1018.867	1124.577	7.1208	13.0114	
29	1041.193	1086.84	1.0575	1.6621	1051.795	1160.922	4,4846	2.9111	
30	1092.857	1140.769	51.4593	14.7428	1100.052	1214.185	50.5028	10.6907	
31	1119.381	1168.456	8.3944	1.9855	1124.202	1240.842	23.9398	3.1098	
32	1208.159	1261.126	61.8591	7.2067	1172.567	1294.224	8.5466	0.8892	
33	1259.268	1314.476	10,1975	2.1669	1233.688	1361.687	147.5365	21.2656	
34	1271.444	1327.186	135.0895	10.934	1278.733	1411.406	185.8487	13,9953	
35	1310,744	1368.209	527.7232	44,9466	1305.041	1440.443	456.0814	14.8444	
36	1323,482	1381.505	257.821	3.3589	1332.803	1471.085	364,4334	3.2555	
37	1389.349	1450.26	111.756	2.9493	1417.232	1564.274	119,527	1.2072	
38	1462.654	1526.778	9.5347	11.5336	1495.682	1650.863	17.4519	1.6719	
39	1517.88	1584.426	54.8073	0.942	1567.206	1729.808	85,3065	2.3014	
40	1572,748	1641.7	193.5067	76,7074	1608.154	1775.004	247.099	97.507	
41	1594.314	1664.211	236.6465	43,1904	1639.621	1809.737	227.8686	41.1668	
42	3030.61	3163.476	12,317	98,7802	3011.864	3324.353	13,1118	86,6667	
43	3052.633	3186.465	3,4832	63,9874	3034.747	3349.611	3,8859	59,8652	
44	3061.988	3196.23	3,7408	124,4924	3049.716	3366.132	4,008	102,0896	
45	3432.675	3583.169	44,4668	256.045	3442.99	3800.21	45,865	173,6112	
46	3530.598	3685.384	23.3763	63.7367	3536.486	3903.406	27.6318	51.1005	
47	3647.792	3807.716	141,778	41,48	3792.471	4185.95	150,8298	114,1275	
48	3690,636	3852,439	91,0622	165,045	3817,327	4213,385	128,0148	28,3414	

Ek Tablo 3.11 4-Amino-2-klorofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans değerleri (cm⁻¹) (Skala Edilmiştir (SE))

	4-ami	no-3-klorofe	nilboronik as	it/DFT	4-amino-3-klorofenilboronik asit/HF			
	SE. fre.	Frekans	IR	Raman	SE. fre.	Frekans	IR	Raman
1	23,05159	24,0622	2,7784	0,0494	26,85973	29,6465	2,952	0,0446
2	92,33214	96,3801	1,868	2,0221	95,62504	105,5464	1,7702	1,6582
3	123,0563	128,4513	1,0621	0,3646	126,6877	139,8319	0,8373	0,2967
4	156,498	163,3591	0,3862	1,0877	162,4137	179,2646	0,7202	1,0766
5	242,7571	253,3999	0,7248	3,0865	246,6223	272,21	0.663	2,3811
6	275,1707	287,2345	4,1566	0,5256	282,5155	311,8273	6.5315	0,7678
7	296,7086	309,7167	8,3152	4,9056	299,7614	330,8625	5,4423	3,9703
8	319,5842	333,5952	4,7821	2,2302	324,9143	358,625	4,4221	2,4791
9	360.0456	375.8305	41.2906	0.8813	326,9657	360.8893	20,4046	0.4651
10	412,3176	430,3942	185,1485	2,3087	416,6805	459,9122	163,4571	0,7375
11	418,7371	437,0951	61,1956	2,3087	429,8278	474,4236	30,2412	3,5197
12	432.8163	451,7915	22,5248	2,4554	448,1396	494.6353	11.1893	0.6089
13	442,7767	462,1886	176.1064	3.4811	479,4529	529.1975	58,7949	3.4374
14	474.821	495.6378	20,5017	2.9531	486,5938	537.0793	150.4448	2.3882
15	488,7666	510,1948	26,7891	1.6634	498,7684	550.517	79.6007	3.0405
16	493.7534	515,4002	19,4438	4.2502	509,4379	562.2935	92,7881	8.5361
17	555,9468	580.3202	17.6688	0.5457	562,1443	620,4683	47.8881	0.6084
18	645.644	673,9499	11.06	6.4865	650,7598	718.2779	4.6627	7.1432
19	648.6917	677.1312	60.962	2.1075	673.5508	743.4336	103.5136	0.381
20	703.1514	733.9785	40.9955	3.7711	709.3616	782,9598	38.6286	6.2722
$\frac{-3}{21}$	715,1548	746.5081	14.5315	1.1248	745,4388	822,7801	23,4054	1.8578
22	783.1179	817.4508	24.5877	0.6484	823,7097	909.1719	33,5343	1,4656
${23}$	834.8697	871.4715	10.2116	31.1668	843.3293	930.827	10.3865	20.2051
24	886.3172	925.1745	3.2135	0.1976	945.5403	1043.643	2.7661	0.2722
25	904.7631	944.4291	3,1478	0.0534	948,1941	1046.572	157.715	0.9104
26	939.687	980.8841	152,4819	2,6408	973.4888	1074.491	3.3403	0.1087
27	977.2432	1020.087	175.8549	4.6197	993,5078	1096.587	175.4321	3.2332
28	1009.864	1054.138	7.3455	1.0408	1027.928	1134.579	7.4412	0.5457
$\frac{-0}{29}$	1035.794	1081.205	22.707	2.1667	1058,595	1168.428	36.9838	3.9461
30	1084.889	1132,453	3.7355	11.3808	1091.68	1204.945	5.7664	12.3511
31	1139.633	1189.596	23.3551	4.9624	1129.526	1246.717	12.6988	7.2445
32	1235.026	1289,171	15.4027	2.3816	1184.496	1307.39	20.2712	6.0755
33	1262.508	1317.858	28.8782	1.4583	1265.382	1396.669	18,789	7.8991
34	1286.158	1342.545	227.6669	15.8574	1293.73	1427.958	646.3154	32,1903
35	1305.343	1362.571	444.407	35.3554	1306.724	1442.301	187.6897	2.9272
36	1323.452	1381.474	375.1572	16.6702	1324.346	1461.751	360.6102	7.8114
37	1371.362	1431.485	82.4338	1.3113	1391.539	1535.915	129.8432	3.2014
38	1475.6	1540.292	6.3097	11.7764	1506.576	1662.888	21.1115	1.0258
39	1517.009	1583.517	0.4345	2,4371	1572.59	1735,751	4.3249	2,7756
40	1561.855	1630.329	29.9536	66.2542	1606.095	1772.732	86.2402	94.2702
41	1588.668	1658.317	278.3115	76.8014	1638.878	1808.917	237.9307	53,4963
42	3002.89	3134.541	24,6088	72,1485	2991.356	3301.717	24,3869	58,4765
43	3031.16	3164.05	18.1335	151.0272	3015.977	3328.892	22.0968	133,3043
44	3065.482	3199.877	0,5418	60,7909	3050.914	3367.455	0,1656	55,0797
45	3434.077	3584.631	52.2905	214.3201	3452.429	3810.628	54.4184	147,9947
46	3538.347	3693.473	35.2817	47.8004	3549.805	3918.107	37,7303	37.9313
47	3688.638	3850.353	89,8045	180,9836	3792.508	4185.992	148,0729	122,0169
48	3724,198	3887,472	39,0099	47,5685	3836,969	4235,065	70,248	34,5445

Ek Tablo 3.12 4-Amino-3-klorofenilboronik asit molekülünün 6-311++G(d,p) setinde frekans değerleri (cm⁻¹) (Skala Edilmiştir (SE))

ÖZGEÇMİŞ

Adı Soyadı	: Yusuf TAZEGÜL
Doğum Yeri ve Tarihi	: KARS / 22.05.1983
Yabancı Dili	: İngilizce
İletişim (e-posta)	: yusuftazegul36@gmail.com
Eğitim Durumu (Kurum ve	Yıl)
Lise	: Kars / Alpaslan Lisesi
Lisans	: Kafkas Üniversitesi Fen-Edebiyat Fizik Bölümü
Yüksek Lisans	: Kafkas Üniversitesi Fen Bilimleri Enstitüsü
	Atom ve Moleküler Fiziği