T.C.

KAFKAS ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

KİMYA ANABİLİM DALI

METAL 4-FORMİLBENZOATLARIN PİRAZİN KOMPLEKSLERİNİN SENTEZİ, YAPISAL, SPEKTROSKOPİK VE ANTİBAKTERİYEL ÖZELLİKLERİNİN İNCELENMESİ

YÜKSEK LİSANS TEZİ

Fatih ÇELİK

DANIŞMAN

Dr. Öğr. Üyesi Mustafa SERTÇELİK

TEMMUZ 2019

KARS

T.C. KAFKAS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI

METAL 4-FORMİLBENZOATLARIN PİRAZİN KOMPLEKSLERİNİN SENTEZİ, YAPISAL, SPEKTROSKOPİK VE ANTİBAKTERİYEL ÖZELLİKLERİNİN İNCELENMESİ

YÜKSEK LİSANS TEZİ

Fatih ÇELİK

DANIŞMAN

Dr. Öğr. Üyesi Mustafa SERTÇELİK

TEMMUZ 2019

KARS

T.C. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Yüksek Lisans Öğrencisi Fatih ÇELİK'in Dr. Öğr. Üyesi Mustafa SERTÇELİK'in danışmanlığında yüksek lisans tezi olarak hazırladığı "Metal 4-Formilbenzoatların Pirazin Komplekslerinin Sentezi, Yapısal, Spektroskopik ve Antibakteriyel Özelliklerinin İncelenmesi" adlı bu çalışma yapılan tez savunması sınavı sonunda jüri tarafından Lisans Üstü Eğitim Öğretim Yönetmeliği uyarınca değerlendirilerek oy

03/07/2019

Adı-Soyadı

Başkan

: Dr. Öğr. Üyesi F. Elif ÖZBEK

: Doç. Dr. Ceyran AHMEDOVA

Üye

Üye

: Dr. Öğr. Üyesi Mustafa SERTÇELİK

İmza Alf Joh

Prof. Dr. Fikret AKDENİZ

Enstitü Müdürü

ETİK BEYAN

Kafkas Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,
- Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,
- Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,
- > Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- > Bu tezde sunduğum çalışmanın özgün olduğunu,

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

İmza

atih ÇELİK

03. 07. 2019

ÖZET

(Yüksek Lisans Tezi)

Metal 4-Formilbenzoatların Pirazin Komplekslerinin Sentezi, Yapısal, Spektroskopik ve Antibakteriyel Özelliklerinin İncelenmesi

Fatih ÇELİK

Kafkas Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı

Danışmanı: Dr. Öğrt. Üyesi Mustafa SERTÇELİK

Bu çalışmada Kobalt(II), Bakır(II), Nikel(II), Çinko(II) ve Kadmiyum(II) metallerinin 4-formilbenzoat ile pirazinin beş adet kompleksi sentezlenmiş ve çeşitli spektroskopik yöntemler ile yapıları aydınlatılmıştır.

$[Co(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	1
$[Cu(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	2
$[Ni(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	3
$[Zn(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)]_n$	4
$[Cd(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)]_n$	5

Komplekslerin yapısı tek kristal x ışını difraksiyonu ile belirlenmiştir ve elemental analiz ve FT-IR spektroskopisi yöntemleri ile desteklenmiştir.

Yapısı aydınlatılan komplekslerin *Pseudomonas aeruginosa* (ATCC 27853), *Klebsiella pneumoniae* (ATCC 4352), ve *Escherichia coli* (ATCC 25922), gram pozitif *Staphylococcus aureus* (ATCC) 6538) bakterilerine karşı antimikrobiyal aktiviteleri tespit edilmiştir.

Anahtar Kelimeler: 4-Formilbenzoat, Pirazin, Antibakteriyel

2019, 105 Sayfa

ABSTRACT

(M. Sc. Thesis)

Synthesis, Structural, Spectroscopic and Antibacterial Properties of Pyrazine Complexes of Metal 4-Formylbenzoates

Fatih ÇELİK

Kafkas University Graduate School of Applied and Natural Sciences Department of Chemistry

Supervisor: Dr. Öğrt. Üyesi Mustafa SERTÇELİK

In this study, five complexes of 4-formylbenzoate and pyrazine of cobalt (II), copper (II), nickel (II), zinc (II) and cadmium (II) metals were synthesized and their structures were illuminated by various spectroscopic methods.

$[Co(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	1
$[Cu(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	2
$[Ni(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	3
$[Zn(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)]_n$	4
$[Cd(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)]_n$	5

The structure of the complexes was determined by single crystal X-ray diffraction and supported by elemental analysis and FT-IR spectroscopy methods.

The antimicrobial activities of the complexes were investigated against *Pseudomonas aeruginosa* (ATCC 27853), *Klebsiella pneumonia* (ATCC 4352), and *Escherichia coli* (ATCC 25922), gram positive *Staphylococcus aureus* (ATCC) 6538.

Key Words: 4-Formylbenzoate, Pyrazine, Antimicrobial

2019, 105 Pages

ÖN SÖZ

Bu yüksek lisans tezi Kafkas Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı, Anorganik Kimya Bilim Dalı yüksek lisans programında yapılmıştır.

Kafkas Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü'nde yüksek lisans tezimin araştırmalarını yapabilmem için gerekli imkanları sağlayan ve çalışmalarımın bütün aşamalarında bana yol gösteren tez danışmanım sayın Dr. Öğr. Üyesi Mustafa SERÇELİK'e

Fen-Edebiyat Fakültesi Kimya Bölümü Anorganik Kimya Anabilim Dalı Başkanı sayın Prof. Dr. Hacali NECEFOĞLU'na

Komplekslerin yapı analizlerinin aydınlatılmasında desteğini esirgemeyen sayın Prof. Dr. Tuncer HÖKELEK'e

Hayatım boyunca bana her konuda güvenen ve her konuda bana destek olup bu günlere gelmemi sağlayan değerli anneme ve babama teşekkürü bir borç bilirim.

Fatih ÇELİK

İÇİNDEKİLER

	Sayfa No
ETİK BEYAN	iii
ÖZET	iv
ABSTRACT	v
ÖN SÖZ	vi
ŞEKİLLER DİZİNİ	ix
TABLOLAR DİZİNİ	xii
SEMBOLLER VE KISALTMALAR LİSTESİ	xiv
1. GENEL BİLGİLER	1
1.1. Giriş	1
1.2. 4-Formilbenzoat Metal Kompleksleri	1
1.3. Pirazin	
1.4. Pirazinin Metal Kompleksleri	
2. MATERYAL VE YÖNTEM	
2.1. Sentez	
2.2. Yöntem	
2.2.1. Elemental Analiz	
2.2.2. Infrared Spektrum	
2.2.3. X-Ray Yapı Analizi	
2.2.4. Komplekslerin Antimikrobiyal Aktivitenin Belirlenmesi	
3. BULGULAR	
3.1. Elemental Analiz	
3.2. Infrared Spekrum	
3.3. X-Işınları Kristallografisi	
3.4. Komplekslerin Antibakteriyel Etkileri	

5. TARTIŞMA VE SONUÇ	74
KAYNAKLAR	81
ÖZGEÇMİŞ	90

ŞEKİLLER DİZİNİ

Sayfa No
Şekil 1. 1. [Co(H ₂ O) ₆](C ₈ H ₅ O ₃) ₂ ⁻² H ₂ O kompleksinin molekül yapısı
Şekil 1. 2. [Co(C ₈ H ₅ O ₃) ₂ (H ₂ O) ₄] ⁴ H ₂ O kompleksinin molekül yapısı
Şekil 1. 3. [Ni(C ₈ H ₅ O ₃) ₂ (H ₂ O) ₄] ² H ₂ O kompleksinin molekül yapısı
Şekil 1. 4. [Cu(C ₈ H ₅ O ₃) ₂ (H ₂ O) ₂] ² H ₂ O kompleksinin molekül yapısı
Şekil 1. 5. [Zn(C ₈ H ₅ O ₃) ₂ (H ₂ O) ₂] kompleksinin molekül yapısı
Şekil 1. 6. [Zn(C ₈ H ₅ O ₃) ₂ (H ₂ O) ₂]·H ₂ O kompleksinin molekül yapısı4
Şekil 1. 7. $[Cd(C_8H_5O_3)_2(H_2O)_3] \cdot 3H_2O]$ kompleksinin molekül yapısı
Şekil 1. 8. $[Cd(C_8H_5O_3)_2(H_2O)_3]^3.5H_2O$ kompleksinin molekül yapısı
Şekil 1. 9. [Ba($C_8H_5O_3$) ₂ (H_2O) ₇] kompleksinin molekül yapısı
Şekil 1. 10. [Co(C ₈ H ₅ O ₃) ₂ (C ₃ H ₄ N ₂) ₂ (H ₂ O) ₂] kompleksinin molekül yapısı7
Şekil 1. 11. [$Mn(C_8H_5O_3)_2(C_3H_4N_2)_2(H_2O)_2$] kompleksinin molekül yapısı7
Şekil 1. 12. [Ni(C ₈ H ₅ O ₃) ₂ (C ₃ H ₄ N ₂) ₂ (H ₂ O) ₂] kompleksinin molekül yapısı7
Şekil 1. 13. [$Zn(C_8H_5O_3)_2(C_3H_4N_2)_2$] kompleksinin molekül yapısı
Şekil 1. 14. $[Cd_2(C_8H_5O_3)_4(C_3H_4N_2)_4]$ ² H ₂ O kompleksinin molekül yapısı9
Şekil 1. 15. $[Zn(C_8H_5O_3)_2(C_7H_6N_2)_2]$ ·H ₂ O kompleksinin yapısı9
Şekil 1. 16. $[Cd(C_8H_5O_3)_2(C_7H_6N_2)_2(H_2O)] \cdot 4H_2O$ kompleksinin yapısı10
Şekil 1. 17. [MnCl(C ₁₂ H ₈ N ₂) ₂ (H ₂ O)].(C ₈ H ₅ O ₃) ³ H ₂ O kompleksinin molekül yapısı11
Şekil 1. 18. [Cu(C ₈ H ₅ O ₃)(NO ₃)(C ₁₂ H ₈ N ₂)(H ₂ O)] kompleksinin molekül yapısı12
Şekil 1. 19. [$Zn(C_8H_5O_3)_2(C_{12}H_8N_2)(H_2O)$] kompleksinin molekül yapısı
Şekil 1. 20. [Cd(C ₈ H ₅ O ₃) ₂ (C ₁₂ H ₈ N ₂)(H ₂ O)] kompleksinin molekül yapısı14
Şekil 1. 21. $[Cd(C_8H_5O_3)_2(C_{12}H_8N_2)][Cd_2(C_8H_5O_3)_4(C_{12}H_8N_2)_2]$ kompleksinin molekül yapısı. 15
Şekil 1. 22. [Co ₂ (C ₈ H ₅ O ₃) ₂ (C ₁₀ H ₈ N ₂) ₂ -(H ₂ O) ₄](C ₈ H ₅ O ₃) ₂] kompleksinin molekül yapısı.

Şekil 1. 23. $[Cd(C_8H_5O_3)_2(C_{10}H_8N_2)(H_2O)]$ ·H ₂ O kompleksinin yapısı	.17
Şekil 1. 24. $[Co_2(C_8H_5O_3)_2(C_{10}H_8N_2)_2(H_2O)_4](C_8H_5O_3)_2]$ kompleksinin molekül yapıs	sı. . 18
Şekil 1. 25. $[Cd(C_6H_6N_2O)_2(H_2O)_4](C_8H_5O_3)_2$ kompleksinin molekül yapısı	. 19
Şekil 1. 26. [Co(C ₈ H ₅ O ₃) ₂ (C ₆ H ₆ N ₂ O) ₂ ·(H ₂ O) ₂] kompleksinin molekül yapısı	. 19
Şekil 1. 27. $[Co(C_8H_5O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin molekül yapısı.	.20
Şekil 1. 28. [Ni(C ₈ H ₅ O ₃) ₂ (C ₁₀ H ₁₄ N ₂ O) ₂ (H ₂ O) ₂] kompleksinin molekül yapısı	.21
Şekil 1. 29. [Mn ($C_8H_5O_3$) ₂ ($C_{10}H_{14}N_2O$) ₂ (H_2O) ₂] kompleksinin molekül yapısı	.21
Şekil 1. 30. $[Zn(C_8H_5O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin molekül yapısı.	.22
Şekil 1. 31. $[Co(C_6H_6N_2O)_2(H_2O)_4](C_8H_5O_3)_2 \cdot 2H_2O$ kompleksinin molekül yapısı	.23
Şekil 1. 32. [Ni(C ₆ H ₆ N ₂ O) ₂ (H ₂ O) ₄](C ₈ H ₅ O ₃) ₂ ·2H ₂ O kompleksinin molekül yapısı	.23
Şekil 1. 33. $[Zn(C_8H_5O_3)_2 (C_6H_6N_2O)]_n$ kompleksinin molekül yapısı	.24
Şekil 1. 34. $[Zn(C_8H_5O_3)_2 (C_6H_6N_2O)]_n$ kompleksinin polimerik yapısı	.24
Şekil 1. 35. $[Cd(C_8H_5O_3)_2(C_6H_6N_2O)_2(H_2O)] \cdot H_2O$ kompleksinin molekül yapısı	.25
Şekil 1. 36. $[Cu_2(C_8H_5O_3)_4(C_6H_6N_2O)_4]$ kompleksinin molekül yapısı	.26
Şekil 1. 37. Pirazinin molekül yapısı	.27
Şekil 1. 38. [Ni(C ₇ H ₃ NO ₄)(C ₄ H ₄ N ₂)(C ₂ H ₆ OS)] _n Kompleksinin Molekül Yapısı	.28
Şekil 1. 39. [Cu(C ₆ F ₅ COO) ₂ (C ₄ H ₄ N ₂)] _n Kompleksinin Molekül Yapısı	.28
Şekil 1. 40. $[Cu(C_6F_5COO)_2(C_4H_4N_2)]_n$ Kompleksinin Molekül Yapısı	.29
Şekil 1. 41. [Co(NO ₃) ₂ (C ₄ H ₄ N ₂)(CH ₃ CN) ₂ (H ₂ O) ₂] _n Kompleksinin Molekül Yapısı	.29
Şekil 1. 42. [[Ni(prz)(H ₂ O) ₄](NO ₃) _{2'2} H ₂ O] _n Kompleksinin Molekül Yapısı	.30
Şekil 1. 43. [Os ₃ (CO) ₉ (µ -OH)(µ-OMeCO)(prz)] Kompleksinin Molekül Yapısı	.30
Şekil 3. 1. 1 kompleksinin FT-IR spektrumu	.36
Şekil 3. 2. 2 kompleksinin FT-IR spektrumu	.36
Şekil 3. 3. 3 kompleksinin FT-IR spektrumu	.37
Şekil 3. 4. 4 kompleksinin FT-IR spektrumu	.37

Şekil 3. 5. 5 kompleksinin FT-IR spektrumu	38
Şekil 3. 6. Komplekslerin Bakterilere karşı zon görüntüleri	72
Şekil 6. 1. 1 kompleksinin molekül yapısı	75
Şekil 6. 2. 2 kompleksinin molekül yapısı	75
Şekil 6. 3. 3 kompleksinin molekül yapısı	76
Şekil 6. 4. 4 kompleksinin molekül yapısı	76
Şekil 6. 5. 5 kompleksinin molekül yapısı	77

TABLOLAR DİZİNİ

Sayfa No
Tablo 3. 1. Komplekslerin elemental analiz verileri. 34
Tablo 3. 2. Sentezlenen komplekslerin FT-IR spektrumlar 35
Tablo 3. 3. 1 kompleksinin kristalografik verileri
Tablo 3. 4. 1 kompleksine ait atomik koordinatlar ve izotropik eşdeğer yer değiştirme parametreleri (Å ²)
Tablo 3. 5. 1 kompleksinin geometrik parametreler (Å, °)
Tablo 3. 6. 1 kompleksine ait hidrojen bağ geometrisi (Å, °)42
Tablo 3. 7. 2 kompleksinin kristalografik verileri
Tablo 3. 8. 2 kompleksine ait atomik koordinatlar ve izotropik eşdeğer yer değiştirme parametreleri (Å ²)
Tablo 3. 9. 2 kompleksinin geometrik parametreler (Å, °)
Tablo 3. 10. 2 kompleksine ait hidrojen bağ geometrisi (Å, °)46
Tablo 3. 11. 3 kompleksinin kristalografik verileri 46
Tablo 3. 12. 3 kompleksine ait atomik koordinatlar ve izotropik eşdeğer yer değiştirme parametreleri (Å ²)
Tablo 3. 13. 3 kompleksinin geometrik parametreler (Å, °)
Tablo 3. 14. 3 kompleksine ait hidrojen bağ geometrisi (Å, °)50
Tablo 3. 15. 4 kompleksinin kristalografik verileri 51
Tablo 3. 16. 4 kompleksine ait atomik koordinatlar ve izotropik eşdeğer yer değiştirme parametreleri (Å ²)
Tablo 3. 17. 4 kompleksinin geometrik parametreler (Å, °)
Tablo 3. 18. 4 kompleksine ait hidrojen bağ geometrisi (Å, °)62
Tablo 3. 19. 5 kompleksinin kristalografik verileri 63

Tablo 3. 20. 5 kompleksine ait atomik koordinatlar ve izotropik eşdeğer yer	r değiştirme
parametreleri (Å ²)	64
Tablo 3. 21. 5 kompleksinin geometrik parametreler (Å, °)	66
Tablo 3. 22. 5 kompleksine ait hidrojen bağ geometrisi (Å, °)	71
Tablo 3. 23. Komplekslere ait antibakteriyel zon çapları (mm)	73

FBA	: 4-Formilbenzoat
prz	: Pirazin
DENA	: Dietilnikotinamid
Me	: Metal
a, b, c, α, β, γ	: Birim Hücre Parametreleri
h, k, l	: Miller İndisleri
D _x	: Kristalin X-ışını yoğunluğu
Å	: Angström
0	: Derece
К	: Kelvin
°C	: Santigrad Derece
K	: Skala Faktörü
Cm	: Santimetre
Mg	: Megagram
М	: Metre
MoKa	: Molibden K-alfa (0.71069 Å)
l	: Dalga boyu
q	: (Bragg) gelme ve yansıma açısı
V	: Birim hücre hacmi
M_r	: Bileşiğin formül ağırlığı
Ζ	: Birim hücredeki asimetrik birim (molekül) sayısı
T _{mak} .	: Maksimum geçirgenlik
T _{min}	: Minimum geçirgenlik
q _{mak} .	: Maksimum (Bragg) yansıma açısı
R _{int}	: Toplanan verilerin kalitesini gösteren istatistiksel bir indis

1. GENEL BİLGİLER

1.1. Giriş

Koordinasyon kimyasının temelini, 1913 yılında Nobel ödülünün sahibi olan Alfred Werner'in çalışmaları oluşturmaktadır [1]. Özellikle koordinasyon bileşiklerinin çok geniş kullanım alanlarına sahip olması bu alanda yapılan çalışmalara farklı bir boyut kazandırmıştır. Özellikle koordinasyon kimyasında ligant tasarımları önem kazanmaya başlamış ve kristal mühendisliği bilim dalının gelişimine yol açmıştır. Kristal mühendisliği ile istenilen özelliklerde komplekslerin tasarlanması ve sentezlenmesiyle hedeflenen kimyasal ve fiziksel özelliklere sahip koordinasyon bileşikleri elde edilmektedir [2, 3]. Hedef komplekslerin sentezi multidisipliner çalışmalara ışık tutmakta ve endüstride, tıpta, ilaç sanayisinde, polimer teknolojisinde, boya sanayisinde kullanımı sağlanmaktadır. Özellikle ilaç sanayisi artan bakteri dirençleri sebebiyle yeni ilaç tasarımları konusunda araştırmalara yönelmiştir. Benzoik asit ve tuzları, antimikrobiyal aktiviteleri, toksik olmamaları ve tatsızlıkları nedeniyle gıda ve farmasötik preparatlarda uzun yıllar koruyucu ajanlar olarak kullanılan en basit aromatik bileşiklerdir [4]. Bu çalışmada bir benzoik asit türevi olan formilbenzoik asit kullanılmıştır. Şekil 1.1.'de açık formülü verilen bileşiğin IUPAC ismi 4-formilbenzoik asit'tir, 4-karboksibenzaldehit ve benzaldehit-4-karboksilik asit isimleriyle de bilinmektedir. Molekül ağırlığı 150,03, erime noktası 247 °C'dir. Kapalı formülü $C_8H_6O_3$ 'tür. 4-formilbenzoik asit bazlı tiyazollerin kuvvetli antibakteriyel özellik gösterdiği bilinmektedir.

1.2. 4-Formilbenzoat Metal Kompleksleri

 $[Co(H_2O)_6](C_8H_5O_3)_2 \cdot 2H_2O$ kompleksi hekzaakuakobalt katyonuna sahiptir molekülün yükü iki 4-formilbenzoat (FBA) anyonu ile dengelenir ve koordine olmamış iki su molekülünden ibarettir (Şekil 1. 1). Co(II) katyonu simetri merkezindedir [5].

Şekil 1. 1. $[Co(H_2O)_6](C_8H_5O_3)_2$ 2H₂O kompleksinin molekül yapısı.

 $[Co(C_8H_5O_3)_2(H_2O)_4]$ '4H₂O kompleksi dört su molekülünden gelen oksijen atomu ve 2 FBA anyonundan gelen O atomu ile oktahedral bir yapı oluşturmuştur. Ayrıca yapıda koordine olmayan dört su molekülü vardır Koordinasyona katılan ve katılmayan su molekülleriyle hidrojen bağları oluşmaktadır (Şekil 1. 2). [6]

Şekil 1. 2. [Co(C₈H₅O₃)₂(H₂O)₄]⁴H₂O kompleksinin molekül yapısı.

 $[Ni(C_8H_5O_3)_2(H_2O)_4]$ '4H₂O kompleksinde Ni atomu çevresinde iki tane karboksilat grubunun oksijen atomuyla ve dört tane su molekülüyle koordine olarak oktahedral geometri oluşturmuştur (Şekil 1. 3). Koordine olmuş ve koordine olmamış su molekülleri üç boyutlu ağda hidrojen bağları oluştururlar [7].

Şekil 1. 3. [Ni(C₈H₅O₃)₂(H₂O)₄]⁴H₂O kompleksinin molekül yapısı.

 $[Cu(C_8H_5O_3)_2(H_2O)_2]^2H_2O$ kompleksinde Cu atomu, iki karboksilat grubunun oksijen atomuyla ve iki su molekülüyle kare düzlemsel geometri oluşturmuştur (Şekil 1. 4). Kompleks koordinat dışı su molekülleriyle de hidrojen bağları ile üç boyutlu bir ağ oluşturmuştur [8].

Şekil 1. 4. $[Cu(C_8H_5O_3)_2(H_2O)_2]^2H_2O$ kompleksinin molekül yapısı.

 $[Zn(C_8H_5O_3)_2(H_2O)_2]$ kompleksinin molekül yapısı Z-P Deng ve arkadaşları tarafından incelenmiş ve iki monodentat karboksilat grubu ve iki su molekülü ile tetrahedral geometriyi oluşturmaktadır (Şekil 1. 5). Üç boyutlu yapı üzerinde moleküller arası hidrojen bağları oluşmaktadır [9].

Şekil 1. 5. $[Zn(C_8H_5O_3)_2(H_2O)_2]$ kompleksinin molekül yapısı.

Z-P Deng ve arkadaşları tarafından incelenen Kapalı formülü $[Zn(C_8H_5O_3)_2(H_2O)_2]$ ·H₂O olan bir diğer komplekste ise Zn atomu iki karboksilat grubunun oksijen atomu ve iki su molekülü tarafından çarpıtılmış tetrahedral yapı oluşturmuştur (Şekil 1. 6). Koordinatlanmış ve koordinatlanmamış su molekülleri üç boyutlu bir ağda O-H^{...}O hidrojen bağı oluşumuna katılırlar [10].

Şekil 1. 6. $[Zn(C_8H_5O_3)_2(H_2O)_2] \cdot H_2O$ kompleksinin molekül yapısı.

[Cd(C₈H₅O₃)₂(H₂O)₃]·3H₂O] kompleksinin molekül yapısı Zhao-Peng Deng, Shan Gao, Li-Hua Huo ve Hui Zhao tarafından incelenmiştir Komplekste Cd atomu iki FBA ligantıyla şelatlanmıştır ve üç su molekülüyle pentagonal-bipramit bir yapı olmuştur (Şekil 1. 7) [11]. Kadmiyum atomu çevresinde iki FBA karboksilat oksijen atomları bidentat bağlanarak şelat oluşturmakta ve üç su molekülünden gelen oksijen atomları ile pentagonal bipiramid geometri tanımlanmaktadır.

Şekil 1. 7. $[Cd(C_8H_5O_3)_2(H_2O)_3] \cdot 3H_2O]$ kompleksinin molekül yapısı.

[Cd(C₈H₅O₃)₂(H₂O)₃]³.5H₂O kompleksinde Cd atomu, iki 4-formilbenzoik asit liganti ve koordinasyona katılmış üç su molekülü ile birlikte koordinasyona katılmayan üç buçuk su molekülüyle tek çekirdekli yapıyı oluşturmuştur. Cd atomu iki farklı 4-formilbenzoat grubunun dört tane karboksilat oksijen atomuyla ve üç tane su molekülüyle pentagonal bipramidal bir yapı oluşturmuştur (Şekil 1. 8). Üç boyutlu ağda moleküller arası hidrojen bağları oluşmaktadır [12].

Şekil 1. 8. $[Cd(C_8H_5O_3)_2(H_2O)_3]^3.5H_2O$ kompleksinin molekül yapısı.

[Ba(C₈H₅O₃)₂(H₂O)₇] kompleksi monodentat bağlanan iki formilbenzoat ligandından gelen iki oksijen atomu ve yedi su molekülünün oksijen atomu olmak üzere toplam dokuz oksijen atomu ile koordine olmuştur (Şekil 1. 9). Bir ayna düzleminde düzlem boyunca uzanan üç su oksijen atomu ve baryumla molekül iki eşit parçaya bölünmüştür. O-H^{...}O hidrojen bağları üç boyutlu bir ağda molekülleri bağlar [13].

Şekil 1. 9. [Ba(C₈H₅O₃)₂(H₂O)₇] kompleksinin molekül yapısı.

 $[Co(C_8H_5O_3)_2(C_3H_4N_2)_2(H_2O)_2], \qquad [Mn(C_8H_5O_3)_2(C_3H_4N_2)_2(H_2O)_2] \quad ve \\ [Ni(C_8H_5O_3)_2(C_3H_4N_2)_2(H_2O)_2] \ kompleksleri eş yapılıdır (Şekil 1. 10, 1.11, 1.12). Üç \\ komlekste de su molekülleri ve heterosiklik imidazoller koordine kovalent bağ \\ oluştururken, tüm trans oktahedral geometrilerde substitue olmuş benzoat gruplarına \\ kovalent olarak bağlıdır. Kobalt, mangan ve nikel atomları simetri merkezine \\ yerleşmiştir [14–16]$

Şekil 1. 10. $[Co(C_8H_5O_3)_2(C_3H_4N_2)_2(H_2O)_2]$ kompleksinin molekül yapısı.

Şekil 1. 11. [$Mn(C_8H_5O_3)_2(C_3H_4N_2)_2(H_2O)_2$] kompleksinin molekül yapısı.

Şekil 1. 12. [Ni $(C_8H_5O_3)_2(C_3H_4N_2)_2(H_2O)_2$] kompleksinin molekül yapısı.

 $[Zn(C_8H_5O_3)_2(C_3H_4N_2)_2]$ kompleksi FBA ligandından gelen iki oksijen atomu ve imidazol ligandından gelen iki azot atomuyla bağlanarak tetrahedral bir yapı oluşturmuştur (Şekil 1. 13) ve komşu moleküllerle N-H^{...}O şeklinde hidrojen bağları oluştururlar [17].

Şekil 1. 13. $[Zn(C_8H_5O_3)_2(C_3H_4N_2)_2]$ kompleksinin molekül yapısı.

[Cd₂(C₈H₅O₃)₄(C₃H₄N₂)₄]²H₂O kompleksinde iki karboksilat grubu Cd atomuyla şelatlanmıştır. Ek olarak karboksil grubunun biri köprü ligand gibi işlev görerek simetri merkezli iki çekirdekli kompleks oluşturmaktadır. Cd atomlarının her biri şelat oluşturan bir FBA ligandından gelen iki, monodentat bağlanan iki FBA ligandından gelen iki, koordine olan bir su molekülünden gelen bir olmak üzere toplam beş oksijen atomu ve iki imidazol ligandının N atomuyla yedi koordinasyonlu pentagonal bipramidal yapı oluşturmuştur. (Şekil 1. 14). Kristalde moleküller arası hidrojen bağları vasıtasıyla katmanlı yapı oluşur [18].

Şekil 1. 14. $[Cd_2(C_8H_5O_3)_4(C_3H_4N_2)_4]$ ²H₂O kompleksinin molekül yapısı.

 $[Zn(C_8H_5O_3)_2(C_7H_6N_2)_2]$ ·H₂O kompleksinde iki FBA anyonu ve İki benzimidazol ligandından gelen iki N atomuyla Zn merkezli tetrahedral yapı oluşmuştur (Şekil 1. 15). Moleküller N-H^{...}O ve O-H^{...}O şeklinde hidrojen bağlarıyla bağlanırlar [19].

Şekil 1. 15. $[Zn(C_8H_5O_3)_2(C_7H_6N_2)_2] \cdot H_2O$ kompleksinin yapısı.

[Cd(C₈H₅O₃)₂(C₇H₆N₂)₂(H₂O)]·4H₂O başlıklı komplekste Cd atomu ikisi karboksilat grubundan, biri tekdişli karboksilat grubundan ve biri de su molekülünden olmak üzere dört O atomu ve iki N-heterosiklik N atomları ile oktahedral yapıyı oluşturur (Şekil 1. 16). N atomları birbirine trans pozisyondadır. Kristal yapıda moleküller, moleküller arası hidrojen bağlarıyla üç boyutlu yapıya bağlanırlar [20].

Şekil 1. 16. $[Cd(C_8H_5O_3)_2(C_7H_6N_2)_2(H_2O)] \cdot 4H_2O$ kompleksinin yapısı.

 $[MnCl(C_{12}H_8N_2)_2(H_2O)](C_8H_5O_3)\cdot 3H_2O$ kompleksi Mn(II) atomu iki fenantrolin ligantının dört azot atomu, bir klor atomu ve bir su ligantıyla koordine olmuştur (Şekil 1. 17). Molekül çarpıtılmış bir oktahedral yapıya sahiptir [21].

Şekil 1. 17. $[MnCl(C_{12}H_8N_2)_2(H_2O)](C_8H_5O_3)$ 3H₂O kompleksinin molekül yapısı.

 $[Cu(C_8H_5O_3)(NO_3)(C_{12}H_8N_2)(H_2O)]$ kompleksinde Cu atomu piramidin en üst noktasında meydana gelen nitrat grubunun bir oksijen atomuyla hafif bozunmuş kare piramit koordinasyon geometrisine sahiptir (Şekil 1. 18). Kompleks moleküllerin nitro anyonu ve su molekülü hidrojen bağı aracılığıyla bir eksen boyunca şeritler halinde bağlanır [22].

Şekil 1. 18. $[Cu(C_8H_5O_3)(NO_3)(C_{12}H_8N_2)(H_2O)]$ kompleksinin molekül yapısı.

 $[Zn(C_8H_5O_3)_2(C_{12}H_8N_2).(H_2O)]$ kompleksinde Zn atomu bir su molekülü iki tane formilbenzoat grubunun birer oksijen atomu ve 1,10- fenantrolinin iki azot atomuyla koordine olmuştur (Şekil 1. 19). Komşu kompleks molekülleri π - π etkileşimleri vasıtasıyla tek boyutlu zincir yapısında bağlanmışlardır [23].

Şekil 1. 19. $[Zn(C_8H_5O_3)_2(C_{12}H_8N_2)(H_2O)]$ kompleksinin molekül yapısı.

 $[Cd(C_8H_5O_3)_2(C_{12}H_8N_2)(H_2O)]$ kompleksinde Cd atomu iki tane formilbenzoat ligantının üç oksijen atomuyla, 1-10 fenantrolinin iki azot atomuyla ve bir su molekülüyle koordine olmuştur (Şekil 1. 20). Kompleks üçgen pirizma koordinasyon geometrisine sahiptir [24].

Şekil 1. 20. $[Cd(C_8H_5O_3)_2(C_{12}H_8N_2)(H_2O)]$ kompleksinin molekül yapısı.

[Cd(C₈H₅O₃)₂(C₁₂H₈N₂)][Cd₂(C₈H₅O₃)₄(C₁₂H₈N₂)₂] kompleksi, tek çekirdekli ve çift çekirdekli birimlerden ibarettir (Şekil 1. 21). Tek çekirdekli komplekste Cd atomu şelat oluşturan iki FBA anyonundan gelen dört oksijen atomu ve 1-10 fenantrolinin iki azot atomuyla oktahedral yapıyı tamamlarken, çift çekirdekli komplekste her bir Cd atomu bidentat bağlanan FBA anyonunun karboksilat grubundan gelen iki oksijen atomu, Köprü görevi gören FBA anyonundan gelen bir oksijen atomu ve 1-10 fenantrolinden gelen iki azot atomuyla oktahedral geometri oluşturmaktadır [25].

Şekil 1. 21. $[Cd(C_8H_5O_3)_2(C_{12}H_8N_2)][Cd_2(C_8H_5O_3)_4(C_{12}H_8N_2)_2]$ kompleksinin molekül yapısı.

Çift çekirdekli $[Co_2(C_8H_5O_3)_2(C_{10}H_8N_2)_2(H_2O)_4](C_8H_5O_3)_2]$ komplekste her bir Co atomu bir FBA anyonu, bir 2,2'bipridin ligantı ve üç su molekülüyle oktahedral geometriyi oluşturmuştur (Şekil 1. 22). Co atomları arasında iki su molekülü köprü görevi görmektedir. Yapıda koordine olmamış iki FBA anyonu bulunmaktadır. Katyon ve anyonlar arasında hidrojen bağları oluşmaktadır [26].

Şekil 1. 22. [Co₂(C₈H₅O₃)₂(C₁₀H₈N₂)₂-(H₂O)₄](C₈H₅O₃)₂] kompleksinin molekül yapısı.

 $[Cd(C_8H_5O_3)_2(C_{10}H_8N_2)(H_2O)] \cdot H_2O$ tek çekirdekli komplekste Cd atomu şelatlanmış iki 4-formilbenzoat, şelatlanmış 2,2'-bipridin ve bir su molekülüyle koordine olmuştur. Yapıda koordine olmamış bir su molekülü bulunmaktadır (Şekil 1. 23). Koordinasyon ve hidrat su molekülleri ve FBA oksijen atomu arasında hidrojen bağları mevcuttur [27].

Şekil 1. 23. $[Cd(C_8H_5O_3)_2(C_{10}H_8N_2)(H_2O)] \cdot H_2O$ kompleksinin yapısı.

 $Cd(C_{18}H_{20}N_4)[CdCl_2(C_8H_5O_3)_2]^{\cdot}2H_2O$ kompleksinde Cd atomu dönme ekseninine yerleşmiştir. Cd atomu iki tane karboksilat grubunun şelatlanmasıyla ve cis pozisyonundaki iki klor atomuyla oktahedral geometriyi oluşturmuştur (Şekil 1. 24). Katyon ve anyonlar koordinasyon dışı su molekülleriyle etkileşerek hidrojen bağları oluşturmaktadır [28].

Şekil 1. 24. $[Co_2(C_8H_5O_3)_2(C_{10}H_8N_2)_2(H_2O)_4](C_8H_5O_3)_2]$ kompleksinin molekül yapısı. $[Cd(C_6H_6N_2O)_2(H_2O)_4](C_8H_5O_3)_2$ kompleksinde Cd^{+2} iyonu simetri merkezine yerleşerek kısmen hafif bozunmuş oktahedral yapıyı oluşturur (Şekil 1. 25). Kristal yapıda katyonlar ve anyonlar etkileşerek hidrojen bağlarıyla üç boyutlu ağı oluştururlar [29].

Şekil 1. 25. $[Cd(C_6H_6N_2O)_2(H_2O)_4](C_8H_5O_3)_2$ kompleksinin molekül yapısı.

Sertçelik arkadaşları tarafından $[Co(C_8H_5O_3)_2(C_6H_6N_2O)_2(H_2O)_2],$ ve $[Ni(C_8H_5O_3)_2(C_6H_6N_2O)_2(H_2O)_2],$ $[Cu(C_8H_5O_3)_2(C_6H_6N_2O)_2(H_2O)_2]$ ve $[Zn(C_8H_5O_3)_{26}H_6N_2O)_2(H_2O)_2]$ molekül formülüne sahip kompleks dört sentezlenmiştir. Sentezlenen kompleksler eş yapılı olup her bir kompleks iki FBA anyonu, iki nikotinamid ligandının piridin halkasının N donör atomu ve iki su molekülü ile koordine olmuştur [30-33].

Şekil 1. 26. [Co(C₈H₅O₃)₂(C₆H₆N₂O)₂ (H₂O)₂] kompleksinin molekül yapısı

Sertçelik ve arkadaşları tarafından sentezlenen $[Co(C_8H_5O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$, $[Ni(C_8H_5O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$, $[Mn(C_8H_5O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ ve $[Zn(C_8H_5O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ dört komplekste eş yapılı olup, metal atomları simetri merkezinde bulunmaktadır. FBA anyonları ve DENA molekülleri monodentant özellik göstermektedirler. Metalin oktahedrik koordinasyon çevresi iki FBA anyonunun iki karboksil oksijen atomu, iki DENA molekülünün iki N_{py} atomu ve iki su molekülünden oluşmaktadır. Karboksil grubunun metalle bağ oluşturmayan oksijen atomları koordinasyonda olan su molekülleri ile molekül içi hidrojen bağları oluşturmaktadırlar [34–37].

Şekil 1. 27. $[Co(C_8H_5O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin molekül yapısı.

Şekil 1. 28. $[Ni(C_8H_5O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2]$ kompleksinin molekül yapısı.

Şekil 1. 29. [Mn $(C_8H_5O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2$] kompleksinin molekül yapısı.

Şekil 1. 30. [$Zn(C_8H_5O_3)_2(C_{10}H_{14}N_2O)_2(H_2O)_2$] kompleksinin molekül yapısı.

 $[Co(C_6H_6N_2O)_2(H_2O)_4](C_8H_5O_3)_2 \cdot 2H_2O$ ve $[Ni(C_6H_6N_2O)_2(H_2O)_4](C_8H_5O_3)_2 \cdot 2H_2O$ molekül formülüne sahip olan komplekslerin ikisinde de metal atomu simetri merkezinde bulunan $[Co(C_6H_6N_2O)_2(H_2O)_4]^{+2}$ ve $[Ni(C_6H_6N_2O)_2(H_2O)_4]^{+2}$ kompleks katyonu, iki FBA anyonu ve iki molekül sudan oluşmaktadır. Co(II) ve Ni(II) etrafındaki ekvatoryal düzlemde dört oksijen atomu kare-düzlemsel geometri oluşturmaktadır. Kristal yapıda O – H …… O, O – H …… N ve C – H …… O hidrojen bağları vasıtasıyla üç boyutlu ağ oluşturmaktadır [38, 39].

Şekil 1. 31. $[Co(C_6H_6N_2O)_2(H_2O)_4](C_8H_5O_3)_2$ · $2H_2O$ kompleksinin molekül yapısı

Şekil 1. 32. $[Ni(C_6H_6N_2O)_2(H_2O)_4](C_8H_5O_3)_2 \cdot 2H_2O$ kompleksinin molekül yapısı $[Zn(C_8H_5O_3)_2 \ (C_6H_6N_2O)]_n$ Başlıklı komplekste Zn(II) iyonu iki FBA anyonu ve bir izonikotinamid molekülü ile tetrahedrik olarak koordine olmuştur. FBA anyonlarından biri bidentat köprü rolü oynayarak komşu Zn(II) iyonlarının *b* ekseni yönünde polimerik zincir oluşturmaktadır. Polimer zincirler arasında N – H …… O ve C – H …… O hidrojen bağları gözlemlenmektedir [40].

Şekil 1. 33. $[Zn(C_8H_5O_3)_2 (C_6H_6N_2O)]_n$ kompleksinin molekül yapısı

Şekil 1. 34. $[Zn(C_8H_5O_3)_2 (C_6H_6N_2O)]_n$ kompleksinin polimerik yapısı

[Cd(C₈H₅O₃)₂(C₆H₆N₂O)₂(H₂O)]·H₂O Başlıklı komplekste simetri merkezinde bulunan Cd atomunun koordinasyon sayısı yedi'dir. Komplekste iki izonikotinamid molekülü, iki FBA atomu, bir koordine olmamış su molekülü ve biri koordine olmuş su molekülü mevcuttur. FBA atomunun iki oksijen atomu bidentant olarak koordinasyona girerken, iki izonikotinamid molekülü iki azot atomu vasıtasıyla koordinasyona girmiştir [41].

Şekil 1. 35. $[Cd(C_8H_5O_3)_2(C_6H_6N_2O)_2(H_2O)] \cdot H_2O$ kompleksinin molekül yapısı Kapalı formülü $[Cu_2(C_8H_5O_3)_4 \cdot (C_6H_6N_2O)_4]$ olan komplekste iki FBA anyonu Cu atomları arasında köprü görevi görmekte iken, her bir Cu atomuna bir FBA anyonu şelat oluşturmakta ve iki izonikotinamid ligandı piridin halkasındaki N atomu vasıtasıyla bağlanmaktadır [42].

Şekil 1. 36. $[Cu_2(C_8H_5O_3)_4(C_6H_6N_2O)_4]$ kompleksinin molekül yapısı

1.3. Pirazin

Diazinler, altı halkada iki azot bulunduran heterosiklik bileşiklerdir. Azot atomu 1-4 pozisyonunda bulunan diazinler pirazin olarak adlandırılır. Pirazinin kristal yapısı 1957 yılında Wheatly tarafından aydınlatılmıştır [43]. İki dişli bağlanabilmeleri ve köprü oluşturmaları sebebiyle diazinler ve türevleri polimerik komplekslerin sentezi için uygun ligantlardır [44–47]. Literatürde pirazin ve türevlerinin komplekslerinin büyük bir kısmı köprü ligant şeklinde olmakla beraber nadiren tek dişli ligant olarak komplekslerine de rastlanmaktadır [48].

Şekil 1. 37. Pirazinin molekül yapısı

Pirazin (*prz*), erime noktası 57 °C olan renksiz ve çözünürlüğü yüksek olan bir bileşiktir. Pirazin ve türevlerinin çözünürlüğünün kolay olması ve kolayca koordinasyona girerek köprü oluşturabilmesi polimer komplekslerde tercih edilen bir ligant olmasını sağlamıştır.

Pirazin komplreksleri hem biyolojik aktivitelerinin yüksek olması hem de fiziksel uygulama alanları sebebiyle bir çok araştırmaya konu olmaktadır. Pirazin molekülü, manyetik, gaz adsorpsiyonu, fotoluminesans özellikleri ve antibakteriyel, antifungal, antienflamatuvar, antikanser, antidiyabetik, antiviral benzeri farmakoloji uygulamaları gibi birçok alanda yer alan çok yönlü organik bileşik olarak kabul edilir [49–52].

1.4. Pirazinin Metal Kompleksleri

 $[Ni(C_7H_3NO_4)(C_4H_4N_2)(C_2H_6OS)]_n$ formüllü komplekste Ni(II) iyonları arasında pirazin molekülü monodentat-köprü görevi görmektedir. 2,6- piridin-dikarboksilik asidin karboksil gruplarından gelen oksijen atomları ve dimetil sülfoksitin oksijen atomu ile koordinasyonunu tamamlamıştır [46].

Şekil 1. 38. [Ni(C7H3NO4)(C4H4N2)(C2H6OS)]n Kompleksinin Molekül Yapısı

 $[Cu(C_6F_5COO)_2(C_4H_4N_2)]_n$ formüllü polimerik kompleksin asimetrik biriminde bir Cu(II) katyonu, iki pentaflorobenzoat ligandı ve bir pirazın ligandı yer almaktadır. Her bir Cu(II) merkezi üç bağımsız pentaflorobenzoat anyonunun üç O atomu ve ayrıca iki pirazin ligandından iki N atomu ile koordinasyonunu tamamlamıştır ve hemen hemen kare piramidal koordinasyon geometrisine sahiptir. Komşu Cu(II) katyonları, iki boyutlu bir tabaka verecek şekilde bir pirazin ligandı ve iki pentaflorobenzoat anyonuyla köprülenir [53].

Şekil 1. 39. [Cu(C₆F₅COO)₂(C₄H₄N₂)]_n Kompleksinin Molekül Yapısı

Şekil 1. 40. $[Cu(C_6F_5COO)_2(C_4H_4N_2)]_n$ Kompleksinin Molekül Yapısı

 $[Co(NO_3)_2(C_4H_4N_2)(CH_3CN)_2(H_2O)_2]_n$ formüllü polimerik komplekste pirazin molekülü Co(II) iyonları arasında köprü görevi görmektedir. Co(II) iyonu su molekülünün iki oksijen atomu, iki piridin molekülünün iki azot atomu ve iki asetonitril ligandının iki azot atomuyla oktahedral geometri oluştururken molekülün yük dengesini iki NO₃ – anyonları sağlamaktadır[54].

Şekil 1. 41. $[Co(NO_3)_2(C_4H_4N_2)(CH_3CN)_2(H_2O)_2]_n$ Kompleksinin Molekül Yapısı

Polimerik kompleksin molekül formülü $[[Ni(prz)(H_2O)_4](NO_3)_{2'2}H_2O]_n$ şeklindedir. Ni(II) iyonları arasında pirazin molekülü köprü oluşturmaktadır. Her bir Ni(II) atomu dört su molekülü ve iki pirazin molekülüyle oktahedral koordinasyonunu tamamlarken, iki nitrat anyonu yük dengesini sağlamaktadır ve yapıda koordine olmamaış iki su molekülü yer almaktadır [45]

Şekil 1. 42. [[Ni(prz)(H₂O)₄](NO₃)_{2'2}H₂O]_n Kompleksinin Molekül Yapısı

 $[Os_3(CO)_9(\mu$ -OH)(μ -OMeCO)(prz)] olarak kapalı formülü verilen komplekste üç osmiyum atomuna Os(1) iki, Os(2) dört ve Os(3) üç olmak üzere toplamda dokuz CO grubu bağlanmaktadır. Os(1)Os(2) arasında bir hidroksil ve bir metoksikarbonil ligandı köprü oluşturmaktadır. Bir pirazin ligandı ise Os(1) atomuna koordine olmaktadır [48].

Şekil 1. 43. [Os₃(CO)₉(µ -OH)(µ-OMeCO)(prz)] Kompleksinin Molekül Yapısı

2. MATERYAL VE YÖNTEM

2.1. Sentez

Komplekslerin sentezinde, Merck marka kobalt(II) sülfat (CoSO₄·7H₂O), bakır(II) sülfat (CuSO₄·5H₂O) nikel(II) sülfat (NiSO₄·6H₂O), çinko(II) sülfat (ZnSO₄·H₂O), kadmiyum(II) sülfat (3CdSO₄·8H₂O), Sigma-Aldrich marka 4-formilbenzoik asit, sodyum bikarbonat ve pirazin kullanılmıştır.

$[Co(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	1
$[Cu(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	2
$[Ni(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	3
$[Zn(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)]_n$	4
$[Cd(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)]_n$	5

kompleksleri aşağıdaki gibi sentezlenmiştir.

Sodyum 4-formilbenzoatların eldesi için 20 mmol 4-formilbenzoik asit, 20 mmol sodyum bikarbonatla 100 ml saf su içerisinde reaksiyona sokuldu. Tepkime esnasında oluşan karbondioksit ortamdan tamamen uzaklaşıncaya kadar karıştırıldı.

```
p-HOC-C<sub>6</sub>H<sub>4</sub>-COOH + NaHCO<sub>3</sub> \rightarrow p-HOC-C<sub>6</sub>H<sub>4</sub>-COONa + CO<sub>2</sub> + H<sub>2</sub>O
```

Daha ayrı ayrı beherlerde 10 mmol Me(II) sülfatların (Me = Co, Cu, Ni, Zn, Cd) 30 ml suda çözeltisi hazırlandı ve ayrı bir beherde 10 mmol pirazin 50 ml suda tamamen çözündükten sonra Me(II) sülfat çözeltisi üzerine ilave edildi. Oluşan karışımın üzerine de daha önceden hazırlanan 20 mmol sodyum 4-formilbenzoat çözeltisi ilave edildi.

Oda sıcaklığında elde edilen çözeltiler kristallenene kadar bekletildi. Bir hafta sonunda pembe renkli (Co kompleksi), yeşil renkli (Cu kompleksi), yeşil renkli (Ni kompleksi), renksiz (Zn kompleksi) ve krem renkli (Cd kompleksi), tek kristaller oluştu. Oluşan kristaller süzülerek saf suyla yıkandı ve oda sıcaklığında kurutuldu.

2.2. Yöntem

2.2.1. Elemental Analiz

Elemental analiz çalışmalarıyla komplekslerin içerdiği elementlerin miktarları hakkında kesin bir veri elde edilebilir. Bu elde edilen deneysel verilerle teorik verilerin karşılaştırılması suretiyle komplekslerin yapısında hangi liganddan ne oranda bulunduğu hakkında, kesin olmasa da, bir fikir yürütebilmemize yardımcı olur.

Elemental analizler (C, H, ve N analizi) İnönü Üniversitesi Bilimsel ve Teknoloji Merkez Araştırma Laboratuvarında CHNS932 elementel analiz cihazı ile yapıldı.

2.2.2. Infrared Spektrum

Komplekslerin bünyesinde bulunan fonksiyonel gruplar, bağlanan atomlar ve bu atomların bağlanma pozisyonları IR spektroskopisi ile belirlenebilir. Bunun yanında bu fonksiyonel grup ve atomların oluşturduğu titreşim frekanslarından da faydalanmak suretiyle komplekslerin geometrik şekilleri ve de yapıda bulunan bağların türleri hakkında da fikirler yürütülebilir.

Infrared çalışmaları, Kafkas Üniversitesi Mühendislik Mimarlık Fakültesi Laboratuarlarında PerkinElmer FrontierTM FT-IR spektrometresiyle yapıldı. Sentezlenen katı komplekslerin IR spektrumları 6004000 cm⁻¹ aralığında kaydedildi.

2.2.3. X-Ray Yapı Analizi

Analiz edilecek olan kristal yapının içeriğinin atomik seviyede resmini elde etmek için X-ışını (X-ray) difraksiyonu analizini kullanırız. X-ray analizi neticesinde moleküldeki tüm atomların konumları, atomlar arası mesafeler, bağ açıları hesaplanabilir. Molekül geometrisi tespit edilebilir [55].

Komplekslerin X-ray yapı analizleri Aksaray Üniversitesi Bilim ve Teknoloji Araştırma Uygulama Merkezinde Bruker SMART BREEZE CCD marka cihaz ile yapılmış ve yapı aydınlatması Hacettepe Üniversitesi Fizik Mühendisliği Öğretim Üyesi Prof. Dr. Tuncer HÖKELEK tarafından yapılmıştır.

2.2.4. Komplekslerin Antimikrobiyal Aktivitenin Belirlenmesi

Sentezlenen 5 yeni kompleks agar kuyucuk difüzyon yöntemi kullanılarak gram negatif Pseudomonas aeruginosa (ATCC 27853), Klebsiella pneumoniae (ATCC 4352), ve Escherichia coli (ATCC 25922), gram pozitif Staphylococcus aureus (ATCC) 6538) antimikrobiyal bakterilerine karşı aktivite çalışmaları gerçekleştirildi. Mikroorganizmalar Mikrobiyolojik Çevre Koruma firmasından temin edilerek Kafkas Üniversitesi Mühendislik Mimarlık Fakültesi araştırma laboratuarlarında çoğaltıldı. Antimikrobiyal aktivite için besiyeri olarak Müller Hilton Agar (MHA), kullanıldı. Mikroorganizmalar çalışmaya başlamadan önce stoklardan alınarak Muller Hilton Broth (MHB)'a aşılanarak aktivasyonu sağlandı. Aktifleştirmeler 24 saat 37 °C'lik inkübasyon ortamında yapıldı. Steril olarak hazırlanan petri kutularına bakteriler, 0,5 McFarland standardı ile standardize edilerek aşılandı. Bakteri aşılanan petri kaplarına steril edilmiş cam çubuk yardımı ile 4 mm çapında kuyucuklar açıldı. Sentezlenen komplekslerden 0,05 g alınarak 5 ml DMSO'te çözünerek homojen çözeltiler hazırlandı ve otomatik pipet yardımı ile 4 mm çapında açılmış olan kuyucuklara stoklardan 50 µl olarak enjekte edildi. İnhibisyon zon çaplarının belirlenmesi için 18-24±2 saat süre ile 37±1 °C de inkübe edildi. [56, 57].

İnkübasyon sonrası kuyucukların etrafında meydana gelen inhibisyon zon çapları mm cinsinden ölçülerek hesaplamalar yapıldı.

3. BULGULAR

3.1. Elemental Analiz

İlk kez sentezlenen beş yeni 4-formilbenzoat kompleksinin elemental analiz sonuçları Tablo 3.1'de verilmiştir.

KOMPLEKS %C		%H	%N
	Deneysel-Teorik	Deneysel-Teorik	Deneysel-Teorik
1	49.92-50.75	3.08-3.83	5.74-5.92
2	48.25-50.26	2.92-3.80	4.25-5.86
3	49.85-50.78	3,43-3.84	5.62-5.92
4	51.24-52.02	3.15-3.49	5.85-6.07
5	46.10-47.22	2.92-3.17	5.05-5,51

Tablo 3. 1. Komplekslerin elemental analiz verileri.

3.2. Infrared Spekrum

Sentezlenen komplekslerin FT-IR spektrumları Şekil 3.1-3.5'de verilirken, FT-IR spektrum pikleri de Tablo 3.2'de verilmiştir.

	1	2	3	4	5
<i>v</i> (О-Н)	3576	3597	3575	3300-3100	3300-3100
$v_{ar}(C-H)_{arom}$	3100-3000	3100-3000	3100-3000	3100-3000	3100-3000
v(C=O) _{aldehit}	2725	2728	2726	2750	2751
v(CN ⁻) _{pirazin} (gerilme)	1540	1555	1542	1536	1536
$v(COO^{-})_{as}$	1590	1597	1590	1588	1588
v(COO ⁻) _s	1389	1363	1391	1374	1395
$\Delta v(COO^{-})$	201	232	199	215	193
v(CN ⁻) _{pirazin} (eğilme)	1202	1201	1203	1198	1200
$v_{ar}(C-H)$	1127	1122	1126	1135	1156
v(Me-O)	470	483	482	512	500
v(Me-N)	688	688	700	700	686

Tablo 3. 2. Sentezlenen komplekslerin FT-IR spektrumlar

Şekil 3. 2. 2 kompleksinin FT-IR spektrumu

Şekil 3. 4. 4 kompleksinin FT-IR spektrumu

Şekil 3. 5. 5 kompleksinin FT-IR spektrumu

3.3. X-Işınları Kristallografisi

Sentezlenen komplekslerden tamamının molekül yapısı X-ışını kırınımıyla aydınlatılmıştır ve makale olarak yayınlanmıştır. Komplekslerin X-ışınları kristallografisi verileri ve parametreleri Tablo 3.3-3.22'de verilmiştir.

Tablo 3. 3. 1 kompleksinin kristalografik verileri [58]

Kristal verileri			
Kimyasal Formülü	$[Co(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]$		
$M_{ m r}$	473.29		
Kristal sistem, uzay grubu	Monoklinik, C2/c		
Sıcaklık (K)	296		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	22.1623 (6), 7.1193 (2), 12.2911 (3)		
β (°)	94.432 (1)		
$V(\text{\AA}^3)$	1933.49 (9)		
Ζ	4		

Işın Kaynağı	Mo K_{α}
$\mu (mm^{-1})$	0.94
Kristal boyutu (mm)	$0.47 \times 0.22 \times 0.11$
Veri Toplama	
Difaktometre	Bruker SMART BREEZE CCD
Soğurma düzeltimi	multi-scan (SADABS; Bruker, 2012)
T_{\min}, T_{\max}	0.830, 0.914
Ölçülebilen, gözlenebilen $[I > 2\sigma(I)]$ ve	27023, 2427, 2336
serbest yansıma sayısı	
R _{int}	0.024
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.668
Arıtım	
$\overline{R[F^2 > 2\sigma(F^2)]}, wR(F^2), S$	0.025, 0.071, 1.06
Yansıma sayısı	2427
Parametre sayısı	154
Sınırların sayısı	1
H-atomları davranışı	Bağımsız ve sabit arınım karışımı tarafından
	incelenmiş H atomları
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.35, -0.34

Tablo 3. 4. 1 kompleksine ait atomik koordinatlar ve izotropik eşdeğer yer değiştirme parametreleri ($Å^2$) [58]

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Co1	1.0000	-0.05145 (3)	0.7500	0.01998 (9)
01	0.91572 (4)	-0.04830 (13)	0.80894 (9)	0.0276 (2)
O2	0.86274 (5)	-0.17780 (18)	0.66579 (9)	0.0402 (3)
O3	0.60114 (6)	-0.1312 (3)	0.95577 (12)	0.0651 (4)
O4	0.96115 (5)	-0.06701 (18)	0.58454 (9)	0.0352 (2)
H41	0.9245 (12)	-0.104 (4)	0.600 (2)	0.058 (6)*
H42	0.9564 (12)	0.019 (4)	0.555 (2)	0.066 (8)*
N1	1.0000	0.2518 (2)	0.7500	0.0247 (3)

N2	1 0000	0.6436(2)	0.7500	0.0235(3)
112 C1	0.06721 (5)	0.0430 (2)	0.75002 (11)	0.0233 (3)
CI	0.86/31 (5)	-0.11157 (17)	0.75983 (11)	0.0240 (2)
C2	0.81095 (5)	-0.10250 (17)	0.82116 (10)	0.0226 (2)
C3	0.81105 (6)	-0.0089 (2)	0.92052 (11)	0.0268 (2)
H3	0.8467	0.0439	0.9518	0.032*
C4	0.75794 (6)	0.0058 (2)	0.97289 (11)	0.0301 (3)
H4	0.7580	0.0682	1.0394	0.036*
C5	0.70463 (6)	-0.0726 (2)	0.92617 (12)	0.0292 (3)
C6	0.70446 (6)	-0.1685 (2)	0.82755 (12)	0.0307 (3)
H6	0.6689	-0.2222	0.7967	0.037*
C7	0.75745 (6)	-0.18340 (19)	0.77557 (11)	0.0271 (3)
H7	0.7574	-0.2478	0.7098	0.032*
C8	0.64849 (8)	-0.0553 (3)	0.98296 (15)	0.0430 (4)
H8	0.6472 (7)	0.029 (2)	1.0463 (12)	0.021 (4)*
C9	0.97461 (6)	0.35053 (18)	0.82681 (11)	0.0287 (3)
H9	0.9563	0.2869	0.8815	0.034*
C10	0.97486 (7)	0.54530 (17)	0.82719 (12)	0.0282 (3)
 H10	0.9571	0.6090	0.8825	0.034*

Tablo 3. 5. 1 kompleksinin geometrik parametreler (Å, °) [58]

Co1—O1	2.0551 (9)	C2—C1	1.5093 (17)
Co1—O1 ⁱ	2.0551 (9)	C2—C3	1.3911 (18)
Co1—O4	2.1491 (11)	C2—C7	1.3961 (17)
Co1—O4 ⁱ	2.1491 (11)	С3—Н3	0.9300
Co1—N1	2.1588 (15)	C4—C3	1.3884 (18)
Co1—N2 ⁱⁱ	2.1714 (15)	C4—H4	0.9300
01—C1	1.2721 (16)	C5—C4	1.390 (2)
O2—C1	1.2451 (17)	C5—C6	1.391 (2)
O3—C8	1.205 (2)	C5—C8	1.478 (2)
O4—H41	0.89 (3)	С6—Н6	0.9300
O4—H42	0.71 (3)	С7—С6	1.3836 (18)
N1—C9	1.3357 (15)	С7—Н7	0.9300
N1—C9 ⁱ	1.3357 (15)	C8—H8	0.984 (13)
N2—Co1 ⁱⁱⁱ	2.1714 (15)	С9—Н9	0.9300
N2—C10	1.3347 (15)	С10—С9	1.3866 (19)
N2	1.3347 (15)	C10—H10	0.9300
O1—Co1—O1 ⁱ	178.75 (5)	C3—C2—C1	120.92 (11)

O1—Co1—O4	91.46 (4)	C3—C2—C7	119.58 (12)
01 ⁱ Co1O4	88.60 (4)	C7—C2—C1	119.46 (11)
01—Co1—O4 ⁱ	88.60 (4)	С2—С3—Н3	120.0
O1 ⁱ —Co1—O4 ⁱ	91.46 (4)	C4—C3—C2	119.94 (12)
01—Co1—N1	89.38 (3)	C4—C3—H3	120.0
O1 ⁱ —Co1—N1	89.38 (3)	C3—C4—C5	120.15 (13)
O1—Co1—N2 ⁱⁱ	90.62 (3)	C3—C4—H4	119.9
O1 ⁱ —Co1—N2 ⁱⁱ	90.62 (3)	C5—C4—H4	119.9
O4—Co1—O4 ⁱ	174.09 (7)	C4—C5—C6	120.13 (12)
O4—Co1—N1	92.96 (4)	C4—C5—C8	119.41 (14)
O4 ⁱ —Co1—N1	92.96 (4)	C6—C5—C8	120.46 (14)
O4—Co1—N2 ⁱⁱ	87.04 (4)	С5—С6—Н6	120.2
O4 ⁱ —Co1—N2 ⁱⁱ	87.04 (4)	C7—C6—C5	119.67 (12)
N1—Co1—N2 ⁱⁱ	180.000 (1)	С7—С6—Н6	120.2
C1	125.81 (9)	С2—С7—Н7	119.7
Co1—O4—H41	96.6 (15)	C6—C7—C2	120.52 (12)
Co1—O4—H42	118 (2)	С6—С7—Н7	119.7
H41—O4—H42	105 (3)	O3—C8—C5	125.34 (17)
C9—N1—Co1	121.75 (8)	O3—C8—H8	114.5 (10)
C9 ⁱ —N1—Co1	121.75 (8)	С5—С8—Н8	120.1 (10)
C9—N1—C9 ⁱ	116.49 (15)	N1	121.79 (12)
C10—N2—Co1 ⁱⁱⁱ	121.61 (8)	N1—C9—H9	119.1
C10 ⁱ —N2—Co1 ⁱⁱⁱ	121.61 (8)	С10—С9—Н9	119.1
C10—N2—C10 ⁱ	116.79 (15)	N2C10C9	121.57 (12)
01—C1—C2	116.62 (11)	N2	119.2
02—C1—O1	125.42 (12)	C9—C10—H10	119.2
O2—C1—C2	117.96 (11)		
O4—Co1—O1—C1	23.45 (11)	C3-C2-C1-01	7.53 (18)
O4 ⁱ Co1C1C1	-150.64 (11)	C3—C2—C1—O2	-171.75 (13)
N1-Co1-01-C1	116.39 (10)	C7—C2—C1—O1	-174.80 (12)
N2 ⁱⁱ —Co1—O1—C1	-63.61 (10)	C7—C2—C1—O2	5.92 (18)
01—Co1—N1—C9	35.39 (8)	C1—C2—C3—C4	176.79 (12)
01 ⁱ —Co1—N1—C9	-144.61 (8)	C7—C2—C3—C4	-0.9 (2)
01—Co1—N1—C9 ⁱ	-144.61 (8)	C1—C2—C7—C6	-176.64 (12)
01 ⁱ —Co1—N1—C9 ⁱ	35.39 (8)	C3—C2—C7—C6	1.1 (2)
O4—Co1—N1—C9	126.82 (8)	C5—C4—C3—C2	-0.1 (2)
O4 ⁱ —Co1—N1—C9	-53.18 (8)	C4—C5—C6—C7	-0.8 (2)
O4—Co1—N1—C9 ⁱ	-53.18 (8)	C6—C5—C4—C3	1.0 (2)

O4 ⁱ —Co1—N1—C9 ⁱ	126.82 (8)	C8—C5—C4—C3	-179.86 (14)
Co1-01-C1-02	-3.6 (2)	C8—C5—C6—C7	-179.95 (14)
Co1-01-C1-C2	177.23 (8)	C4—C5—C8—O3	-172.93 (18)
Co1—N1—C9—C10	179.66 (10)	C6—C5—C8—O3	6.3 (3)
C9 ⁱ —N1—C9—C10	-0.34 (10)	C2—C7—C6—C5	-0.2 (2)
Co1 ⁱⁱⁱ —N2—C10—C9	179.66 (10)	N2-C10-C9-N1	0.7 (2)
C10 ⁱ —N2—C10—C9	-0.34 (10)		

Simetri Kodları: (*i*) (i) –*x*+2, *y*, –*z*+3/2; (ii) *x*, *y*–1, *z*; (iii) *x*, *y*+1, *z*.

D—H···A	D—H	Н…А	D····A	<i>D</i> —Н···A
O4—H41…O2	0.89 (3)	1.72 (3)	2.5909 (16)	164 (2)
O4—H42…O4 ⁱ	0.71 (3)	2.63 (3)	2.958 (2)	111 (2)
C10—H10…O3 ⁱⁱ	0.93	2.46	3.320 (2)	154
C7—H7…Cg1 ⁱⁱⁱ	0.93	2.65	3.4216 (15)	142

Tablo 3. 6. 1 kompleksine ait hidrojen bağ geometrisi (Å, °) [58]

Tablo 3. 7. 2 kompleksinin kristalografik verileri [59]

Kristal verileri			
Kimyasal Formülü	$[Cu(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]$		
M _r	477.90		
Kristal sistem, uzay grubu	Monoklinik, C2/c		
Sıcaklık (K)	296		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	21.7514 (4), 6.8794 (2), 12.9048 (3)		
β (°)	93.621 (3)		
$V(\text{\AA}^3)$	1927.17 (8)		
Ζ	4		
Işın Kaynağı	Mo K_{α}		
μ (mm ⁻¹)	1.19		

Kristal boyutu (mm)	$0.42 \times 0.22 \times 0.13$		
Veri Toplama			
Difaktometre	Bruker SMART BREEZE CCD		
Soğurma düzeltimi	multi-scan (SADABS; Bruker, 2012)		
T_{\min}, T_{\max}	0.738, 0.857		
Ölçülebilen, gözlenebilen $[I > 2\sigma(I)]$	14917, 2398, 2231		
ve serbest yansıma sayısı			
R _{int}	0.024		
Arıtım			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.089, 1.14		
Yansıma sayısı	2398		
Parametre sayısı	150		
Sınırların sayısı	2		
H-atomları davranışı	Bağımsız ve sabit arınım karışımı tarafından		
	incelenmiş H atomları		
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.47, -0.30		

Tablo 3. 8. 2 kompleksine ait atomik koordinatlar ve izotropik eşdeğer yer değiştirme parametreleri (Å²) [59]

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.50000	0.56167 (4)	0.25000	0.0226 (1)
01	0.58159 (6)	0.55545 (17)	0.19469 (11)	0.0283 (3)
02	0.63771 (7)	0.6755 (3)	0.33131 (11)	0.0478 (5)
03	0.90018 (8)	0.6186 (4)	0.03875 (15)	0.0643 (7)
04	0.54054 (7)	0.5818 (3)	0.43338 (12)	0.0429 (5)
N1	0.50000	0.8590 (3)	0.25000	0.0222 (5)
N2	0.50000	1.2632 (3)	0.25000	0.0228 (5)
C1	0.63185 (7)	0.6123 (2)	0.24173 (13)	0.0255 (4)
C2	0.68848 (7)	0.5984 (2)	0.18010 (13)	0.0233 (4)
C3	0.68624 (8)	0.5098 (3)	0.08295 (13)	0.0278 (4)
C4	0.73941 (8)	0.4934 (3)	0.02948 (13)	0.0311 (5)
C5	0.79501 (8)	0.5656 (3)	0.07299 (15)	0.0298 (5)

C6	0.79729 (8)	0.6554 (3)	0.16972 (14)	0.0322 (5)
C7	0.74435 (8)	0.6718 (3)	0.22284 (13)	0.0286 (5)
C8	0.85122 (10)	0.5472 (3)	0.01458 (19)	0.0433 (7)
C9	0.52244 (8)	0.9602 (2)	0.17228 (13)	0.0263 (5)
C10	0.52268 (8)	1.1618 (2)	0.17257 (13)	0.0265 (5)
H3	0.64910	0.46150	0.05390	0.0330*
H4	0.73790	0.43420	-0.03540	0.0370*
H6	0.83440	0.70420	0.19860	0.0390*
H7	0.74590	0.73200	0.28750	0.0340*
H8	0.84820	0.47380	-0.04600	0.0520*
H9	0.53820	0.89410	0.11700	0.0310*
H10	0.53900	1.22800	0.11770	0.0320*
H41	0.5464 (15)	0.485 (3)	0.465 (2)	0.065 (10)*
H42	0.5738 (10)	0.609 (5)	0.414 (2)	0.064 (9)*

Tablo 3. 9. 2 kompleksinin geometrik parametreler (Å, °) [59]

Cu1—O1	1.9547 (13)	C2—C3	1.392 (2)
Cu1—O4	2.4766 (15)	C2—C7	1.397 (2)
Cu1—N1	2.046 (2)	C3—C4	1.388 (2)
Cu1—N2 ⁱ	2.053 (2)	C4—C5	1.392 (3)
Cu1—O1 ⁱⁱ	1.9547 (13)	C5—C6	1.391 (3)
Cu1—O4 ⁱⁱ	2.4766 (15)	C5—C8	1.482 (3)
01—C1	1.278 (2)	C6—C7	1.381 (2)
O2—C1	1.234 (2)	C9—C10	1.3869 (19)
O3—C8	1.196 (3)	С3—Н3	0.9300
O4—H42	0.80 (2)	C4—H4	0.9300
O4—H41	0.79 (2)	С6—Н6	0.9300
N1-C9 ⁱⁱ	1.3382 (19)	С7—Н7	0.9300
N1—C9	1.3382 (19)	C8—H8	0.9300
N2	1.3382 (19)	С9—Н9	0.9300
N2-C10 ⁱⁱ	1.3382 (19)	C10—H10	0.9300
C1—C2	1.511 (2)		
O1—Cu1—O4	94.21 (5)	C3—C2—C7	119.60 (15)
01—Cu1—N1	91.25 (4)	C1—C2—C7	119.15 (14)
O1—Cu1—N2 ⁱ	88.75 (4)	C1—C2—C3	121.23 (14)
01—Cu1—O1 ⁱⁱ	177.49 (5)	C2—C3—C4	120.02 (16)

O1—Cu1—O4 ⁱⁱ	85.93 (5)	C3—C4—C5	120.01 (16)
O4—Cu1—N1	86.80 (5)	C4—C5—C6	120.08 (16)
O4—Cu1—N2 ⁱ	93.21 (5)	C4—C5—C8	119.21 (18)
O1 ⁱⁱ —Cu1—O4	85.93 (5)	C6—C5—C8	120.71 (17)
O4—Cu1—O4 ⁱⁱ	173.59 (7)	C5—C6—C7	119.87 (17)
N1—Cu1—N2 ⁱ	180.00	C2—C7—C6	120.41 (16)
O1 ⁱⁱ —Cu1—N1	91.25 (4)	O3—C8—C5	125.6 (2)
O4 ⁱⁱ —Cu1—N1	86.80 (5)	N1	121.31 (16)
O1 ⁱⁱ —Cu1—N2 ⁱ	88.75 (4)	N2-C10-C9	121.45 (16)
O4 ⁱⁱ —Cu1—N2 ⁱ	93.21 (5)	С2—С3—Н3	120.00
O1 ⁱⁱ —Cu1—O4 ⁱⁱ	94.21 (5)	С4—С3—Н3	120.00
Cu1—O1—C1	126.09 (12)	C3—C4—H4	120.00
Cu1—O4—H41	119.0 (18)	C5—C4—H4	120.00
Cu1—O4—H42	89.4 (18)	С5—С6—Н6	120.00
H41—O4—H42	104 (3)	С7—С6—Н6	120.00
C9—N1—C9 ⁱⁱ	117.30 (18)	С2—С7—Н7	120.00
Cu1—N1—C9	121.35 (10)	С6—С7—Н7	120.00
Cu1—N1—C9 ⁱⁱ	121.35 (10)	O3—C8—H8	117.00
Cu1 ⁱⁱⁱ —N2—C10	121.42 (10)	С5—С8—Н8	117.00
C10—N2—C10 ⁱⁱ	117.16 (18)	N1—C9—H9	119.00
Cu1 ⁱⁱⁱ —N2—C10 ⁱⁱ	121.42 (10)	С10—С9—Н9	119.00
01—C1—02	125.98 (16)	N2-C10-H10	119.00
O2—C1—C2	118.42 (15)	C9—C10—H10	119.00
01—C1—C2	115.60 (14)		
04—Cu1—O1—C1	-20.13 (13)	O1—C1—C2—C7	174.99 (15)
N1—Cu1—O1—C1	66.75 (12)	O2—C1—C2—C3	173.20 (18)
N2 ⁱ —Cu1—O1—C1	-113.26 (12)	O2—C1—C2—C7	-5.2 (2)
$O4^{ii}$ $Cy1$ $O1$ $C1$	152 44 (12)	C1 $C2$ $C3$ $C4$	-177.90
04 - Cui - 01 - Ci	135.44 (15)	01-02-03-04	(16)
01—Cu1—N1—C9	39.77 (10)	C7—C2—C3—C4	0.5 (3)
01—Cu1—N1—C9 ⁱⁱ	-140.23 (10)	C1—C2—C7—C6	177.88 (16)
O4—Cu1—N1—C9	133.92 (9)	C3—C2—C7—C6	-0.6 (3)
O4—Cu1—N1—C9 ⁱⁱ	-46.08 (9)	C2—C3—C4—C5	0.0 (3)
01 ⁱⁱ —Cu1—N1—C9	-140.23 (10)	C3—C4—C5—C6	-0.4 (3)
04 ⁱⁱ C 1 N1 C0	46.08 (0)		-179.83
04 —CUI—NI—C9	-40.08 (9)	しう―し4―しう―し8	(19)
Cu1—O1—C1—O2	2.3 (2)	C4—C5—C6—C7	0.4 (3)
Cu1—01—C1—C2	-177.93 (9)	C8—C5—C6—C7	179.77 (19)

Cu1—N1—C9—C10	-179.70 (12)	C4—C5—C8—O3	172.6 (2)
C9 ⁱⁱ —N1—C9—C10	0.3 (2)	C6—C5—C8—O3	-6.8 (4)
Cu1 ⁱⁱⁱ —N2—C10—C9	-179.70 (12)	C5—C6—C7—C2	0.1 (3)
C10 ⁱⁱ —N2—C10—C9	0.3 (2)	N1-C9-C10-N2	-0.6 (2)
O1—C1—C2—C3	-6.6 (2)		

Symmetry codes: (i) x, y=1, z; (ii) -x+1, y, -z+1/2; (iii) x, y+1, z.

Tablo 3. 10. 2 kompleksine ait hidrojen bağ geometrisi (Å, °) [59]

<i>D</i> —H…A	D—H	H···A	$D \cdots A$	<i>D</i> —H···A
O4—H42…O2	0.80 (2)	1.86 (2)	2.640 (2)	163 (3)
O4— $H41$ ···O4 ^{iv}	0.79 (2)	2.41 (3)	2.778 (2)	110 (3)
С9—Н9⋯О3 ^v	0.93	2.49	3.335 (3)	152
C7—H7···C g^{vi}	0.93	2.66	3.433 (2)	141

Symmetry codes: (iv) -x+1, -y+1, -z+1; (v) -x+3/2, -y+3/2, -z; (vi) -x+3/2, y+1/2, -z+1/2.

Tablo 3. 11. 3 kompleksinin	kristalografik v	erileri [60]
-----------------------------	------------------	--------------

Kristal verileri	
Kimyasal Formülü	$[Ni(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]$
M _r	473.07
Kristal sistem, uzay grubu	Monoklinik, C2/c
Sıcaklık (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	22.1032 (5), 6.9925 (2), 12.3366 (3)
β (°)	94.160 (3)
$V(\text{\AA}^3)$	1901.68 (8)
Ζ	4
Işın Kaynağı	Mo K_{α}
$\mu (mm^{-1})$	1.08
Kristal boyutu (mm)	0.48 imes 0.23 imes 0.14
Veri Toplama	
Difaktometre	Bruker SMART BREEZE CCD

multi-scan (SADABS; Bruker, 2012)

T_{\min}, T_{\max}	0.743, 0.860
Ölçülebilen, gözlenebilen $[I > 2\sigma(I)]$ ve	9913, 1717, 1554
serbest yansıma sayısı	
R _{int}	0.070
Arıtım	
$\overline{R[F^2 > 2\sigma(F^2)]}, wR(F^2), S$	0.079, 0.209, 1.16
Yansıma sayısı	1717
Parametre sayısı	150
Sınırların sayısı	2
H-atomları davranışı	Bağımsız ve sabit arınım karışımı
	tarafından incelenmiş H atomları
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	2.49, -1.05

Tablo 3. 12. 3 kompleksine ait atomik koordinatlar ve izotropik eşdeğer yer değiştirmeparametreleri ($Å^2$) [60]

Ni1	0.00000	0.44790 (12)	0.25000	0.0222 (3)
01	0.13672 (19)	0.3246 (7)	0.3338 (3)	0.0435 (14)
O2	0.08397 (17)	0.4511 (5)	0.1900 (3)	0.0294 (11)
O3	0.3999 (2)	0.3724 (9)	0.0460 (4)	0.0614 (19)
O4	0.0372 (2)	0.4332 (6)	0.4119 (3)	0.0342 (12)
N1	0.00000	0.1464 (8)	0.25000	0.0242 (17)
N2	0.00000	0.7500 (8)	0.25000	0.0260 (19)
C1	0.1321 (2)	0.3907 (7)	0.2394 (5)	0.0277 (16)
C2	0.1890 (2)	0.3983 (7)	0.1787 (5)	0.0284 (16)
C3	0.1889 (3)	0.4908 (8)	0.0787 (5)	0.0300 (17)
C4	0.2420 (3)	0.5042 (9)	0.0271 (5)	0.0320 (17)
C5	0.2955 (3)	0.4294 (8)	0.0736 (5)	0.0339 (17)

-	C6	0 2958 (3)	0 3342 (8)	0 1733 (5)	0.0338 (17)
	00	0.2900 (3)	0.00 12 (0)	0.1755 (5)	0.0550 (17)
	C7	0.2424 (2)	0.3196 (8)	0.2243 (5)	0.0290 (17)
	C8	0.3520 (3)	0.4471 (10)	0.0178 (6)	0.045 (2)
	C9	0.0252 (3)	0.0463 (7)	0.1723 (5)	0.0290 (17)
	C10	0.0250 (2)	0.8494 (7)	0.1733 (4)	0.0280 (17)
	H3	0.15320	0.54320	0.04700	0.0360*
	H4	0.24170	0.56450	-0.04010	0.0380*
	H6	0.33140	0.28130	0.20480	0.0410*
	H7	0.24240	0.25590	0.29040	0.0350*
	H8	0.35070	0.52240	-0.04450	0.0540*
	H9	0.04310	0.11080	0.11700	0.0350*
	H10	0.04300	0.78400	0.11840	0.0340*
	H41	0.040 (4)	0.545 (5)	0.430 (7)	0.06 (3)*
	H42	0.0721 (18)	0.396 (13)	0.407 (7)	0.07 (3)*

Tablo 3. 13. 3 kompleksinin geometrik parametreler (Å, °) [60]

Ni1—O2	2.048 (4)	С2—С3	1.393 (8)
Ni1—O4	2.107 (4)	C2—C7	1.384 (7)
Ni1—N1	2.108 (6)	C3—C4	1.378 (9)
Ni1—N2	2.112 (6)	C4—C5	1.379 (9)
Ni1—O2 ⁱ	2.048 (4)	C5—C6	1.398 (9)
Ni1—O4 ⁱ	2.107 (4)	C5—C8	1.474 (9)
01—C1	1.250 (7)	С6—С7	1.381 (8)
O2—C1	1.260 (6)	C9—C10 ⁱⁱ	1.377 (7)
O3—C8	1.209 (8)	С3—Н3	0.9300
O4—H42	0.82 (5)	C4—H4	0.9300
O4—H41	0.81 (4)	С6—Н6	0.9300
N1—C9 ⁱ	1.340 (7)	С7—Н7	0.9300
N1C9	1.340 (7)	C8—H8	0.9300

N2	1.327 (6)	С9—Н9	0.9300
N2	1.327 (6)	C10—H10	0.9300
C1—C2	1.511 (7)		
O2-Ni1-O4	92.38 (16)	C3—C2—C7	119.4 (5)
O2—Ni1—N1	90.63 (10)	C1—C2—C7	120.0 (5)
O2—Ni1—N2	89.37 (10)	C1—C2—C3	120.5 (5)
O2-Ni1-O2 ⁱ	178.75 (15)	C2—C3—C4	119.6 (6)
O2—Ni1—O4 ⁱ	87.68 (16)	C3—C4—C5	121.0 (6)
O4—Ni1—N1	87.20 (12)	C4—C5—C6	119.7 (6)
O4—Ni1—N2	92.80 (12)	C4—C5—C8	120.2 (6)
O2 ⁱ —Ni1—O4	87.68 (16)	C6—C5—C8	120.0 (6)
O4—Ni1—O4 ⁱ	174.41 (17)	C5—C6—C7	119.1 (6)
N1—Ni1—N2	180.00 (1)	C2—C7—C6	121.2 (6)
O2 ⁱ —Ni1—N1	90.63 (10)	O3—C8—C5	125.7 (7)
O4 ⁱ —Ni1—N1	87.20 (12)	N1-C9-C10 ⁱⁱ	120.9 (5)
O2 ⁱ —Ni1—N2	89.37 (10)	N2-C10-C9 ⁱⁱⁱ	122.2 (5)
O4 ⁱ —Ni1—N2	92.80 (12)	С2—С3—Н3	120.00
O2 ⁱ —Ni1—O4 ⁱ	92.38 (16)	С4—С3—Н3	120.00
Ni1—O2—C1	125.3 (4)	C3—C4—H4	119.00
Ni1—O4—H41	103 (6)	C5—C4—H4	120.00
Ni1—O4—H42	105 (6)	С5—С6—Н6	120.00
H41—O4—H42	106 (9)	С7—С6—Н6	120.00
C9—N1—C9 ⁱ	117.0 (5)	С2—С7—Н7	120.00
Ni1—N1—C9	121.5 (3)	С6—С7—Н7	119.00
Ni1—N1—C9 ⁱ	121.5 (3)	O3—C8—H8	117.00
Ni1—N2—C10	121.6 (3)	С5—С8—Н8	117.00
Ni1—N2—C10 ⁱ	121.6 (3)	N1—C9—H9	120.00
C10—N2—C10 ⁱ	116.8 (5)	C10 ⁱⁱ —C9—H9	120.00
01—C1—O2	125.7 (5)	N2-C10-H10	119.00
O2—C1—C2	116.9 (5)	C9 ⁱⁱⁱ —C10—H10	119.00
01—C1—C2	117.4 (4)		
O4—Ni1—O2—C1	22.0 (4)	Ni1—N1—C9—C10 ⁱⁱ	179.9 (4)
N1—Ni1—O2—C1	-65.3 (4)	Ni1—N2—C10—C9 ⁱⁱⁱ	179.9 (4)
N2 Ni1 O2 C1	1147(4)	$01 - C1 - C^2 - C^3$	-172.2
1,2 1,11 02 01	** 107 (1)	01 01 02 05	(5)
O4 ⁱ —Ni1—O2—C1	-152.5 (4)	01—C1—C2—C7	5.2 (8)
O2—Ni1—N1—C9	-35.6 (3)	O2—C1—C2—C3	8.0 (7)
O2—Ni1—N1—C9 ⁱ	144.4 (3)	O2—C1—C2—C7	-174.5

			(5)
O4—Ni1—N1—C9	-128.0 (3)	C1—C2—C3—C4	176.9 (5)
O4—Ni1—N1—C9 ⁱ	52.0 (3)	C7—C2—C3—C4	-0.6 (8)
Ω^{i} N:1 N1 C0	1444(2)	C1 $C2$ $C7$ $C6$	-176.3
02—NII—NI—C9	144.4 (3)	$C_1 - C_2 - C_7 - C_0$	(5)
O4 ⁱ —Ni1—N1—C9	52.0 (3)	С3—С2—С7—С6	1.2 (8)
O2-Ni1-N2-C10	35.5 (3)	C2—C3—C4—C5	-0.8 (9)
O2-Ni1-N2-C10 ⁱ	-144.5 (3)	C3—C4—C5—C6	1.6 (9)
04 - Ni1 - N2 - C10	127.0 (3)	$C_{3}^{3} C_{4}^{4} C_{5}^{5} C_{8}^{8}$	-179.3
04-111-112-010	127.9 (3)	05-04-05-08	(6)
O4—Ni1—N2—C10 ⁱ	-52.1 (3)	C4—C5—C6—C7	-1.0 (9)
O2 ⁱ —Ni1—N2—C10	-144.5 (3)	C8—C5—C6—C7	179.9 (6)
$\Omega 4^{i}$ Ni1 N2 C10	-52 1 (3)	C_{4} C_{5} C_{8} O_{3}	-172.9
04-111-112-010	52.1 (5)	01-05	(7)
Ni1-02-C1-01	-2.3 (8)	C6—C5—C8—O3	6.3 (10)
Ni1—O2—C1—C2	177.5 (3)	C5—C6—C7—C2	-0.4 (9)

Symmetry codes: (i) -x, y, -z+1/2; (ii) x, y-1, z; (iii) x, y+1, z.

 Tablo 3. 14. 3 kompleksine ait hidrojen bağ geometrisi (Å, °) [60]
 [60]

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A
0.4 1140 01	0.00 (5)	1.01.(4)	A 55 0 (4)	1 = = (0)
O4—H42…O1	0.82 (5)	1.81 (6)	2.579 (6)	155 (8)
O_4 U41 O_2^{iv}	0.92(2)	2(5(5))	2,205,(9)	152 (9)
04—н41…03	0.82 (2)	2.05 (5)	3.393 (8)	152 (8)
С9—Н9…О3 [∨]	0.93	2.45	3.311 (8)	154
			0.011(0)	
C7—H7··· $Cg1^{vi}$	0.93	2.62	3.395 (6)	141

Symmetry codes: (iv) -*x*+1/2, *y*+1/2, -*z*+1/2; (v) -*x*+1/2, -*y*+1/2, -*z*; (vi) -*x*+1/2, *y*-1/2, -*z*+1/2.

Kristal verileri	
Kimyasal Formülü	$[Zn(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)]$
$M_{ m r}$	461.74
Kristal sistem, uzay grubu	Monoklinik, $P2_1/c$
Sıcaklık (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	22.4721 (7), 7.1729 (2), 23.6377 (8)
β (°)	91.764 (2)
$V(\text{\AA}^3)$	3808.4 (2)
Ζ	8
Işın Kaynağı	Mo K_{α}
$\mu (mm^{-1})$	1.34
Kristal boyutu (mm)	$0.50 \times 0.29 \times 0.28$
Veri Toplama	
Difaktometre	Bruker SMART BREEZE CCD
Soğurma düzeltimi	multi-scan (SADABS; Bruker, 2012)
T_{\min}, T_{\max}	0.628, 0.676
Ölçülebilen, gözlenebilen [I > 20	(I)] ve 87627, 9571, 7984
serbest yansıma sayısı	
R _{int}	0.031
Arıtım	
$\overline{R[F^2 > 2\sigma(F^2)]}, wR(F^2), S$	0.041, 0.102, 1.10
Yansıma sayısı	9571
Parametre sayısı	583
Sınırların sayısı	8
H-atomları davranışı	Bağımsız ve sabit arınım karışımı tarafından
	incelenmiş H atomları
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.64, -0.65

 Tablo 3. 15. 4 kompleksinin kristalografik verileri [61]

	x	У	Z	$U_{ m iso}*/U_{ m eq}$	Occ. (<1)
Zn1	0.744994 (11)	0.75073 (4)	0.403123 (11)	0.02258 (7)	
Zn2	0.747592 (11)	0.65126 (4)	0.153050 (11)	0.02257 (7)	
O1	0.64782 (8)	0.7653 (3)	0.39486 (8)	0.0367 (4)	
O2	0.68812 (7)	0.7386 (3)	0.47961 (8)	0.0382 (4)	
O3	0.82950 (8)	0.7338 (3)	0.42612 (9)	0.0431 (5)	
O4	0.85759 (9)	0.8088 (4)	0.51393 (10)	0.0694 (8)	
O5A	0.36210 (12)	0.7654 (6)	0.51051 (16)	0.0724 (11)	0.75
O5B	0.3980 (6)	0.710 (2)	0.5801 (6)	0.107 (5)	0.25
O6	1.15317 (10)	0.6472 (5)	0.43755 (12)	0.0785 (9)	
07	0.75486 (8)	0.7571 (3)	0.31819 (7)	0.0313 (4)	
H71	0.7277 (10)	0.721 (4)	0.2918 (10)	0.045 (9)*	
H72	0.7893 (8)	0.736 (4)	0.3040 (11)	0.033 (8)*	
O8	0.64987 (8)	0.6395 (3)	0.14295 (8)	0.0382 (4)	
O9	0.69021 (7)	0.6319 (3)	0.22812 (8)	0.0396 (4)	
O10	0.83197 (8)	0.6462 (3)	0.17805 (9)	0.0433 (5)	
O11	0.85687 (9)	0.7240 (4)	0.26661 (9)	0.0617 (7)	
O12A	0.36444 (14)	0.6022 (7)	0.25759 (18)	0.0804 (13)	0.70
O12B	0.4034 (4)	0.5896 (16)	0.3355 (5)	0.091 (3)	0.30
O13	1.15688 (9)	0.6937 (4)	0.18855 (11)	0.0677 (7)	
O14	0.75787 (8)	0.6458 (3)	0.06810 (8)	0.0330 (4)	

Tablo 3. 16. 4 kompleksine ait atomik koordinatlar ve izotropik eşdeğer yer değiştirme parametreleri ($Å^2$) [61]

H141	0.7321 (10)	0.667 (4)	0.0432 (10)	0.031 (8)*
H142	0.7912 (10)	0.665 (5)	0.0536 (13)	0.052 (10)*
N1	0.74426 (8)	1.0554 (3)	0.40613 (8)	0.0266 (4)
N2	0.74172 (8)	1.4441 (3)	0.40378 (8)	0.0272 (4)
N3	0.74446 (8)	0.9567 (3)	0.15473 (9)	0.0273 (4)
N4	0.74520 (8)	1.3452 (3)	0.15394 (8)	0.0261 (4)
C1	0.64294 (10)	0.7548 (3)	0.44733 (11)	0.0287 (5)
C2	0.58192 (10)	0.7557 (3)	0.47132 (10)	0.0262 (5)
C3	0.57341 (11)	0.7017 (4)	0.52678 (11)	0.0337 (5)
H3	0.6059	0.6714	0.5503	0.040*
C4	0.51606 (12)	0.6931 (4)	0.54700 (11)	0.0373 (6)
H4	0.5101	0.6543	0.5839	0.045*
C5	0.46791 (11)	0.7419 (4)	0.51255 (13)	0.0376 (6)
C6	0.47625 (11)	0.8009 (4)	0.45766 (12)	0.0396 (6)
H6	0.4438	0.8366	0.4348	0.048*
C7	0.53321 (11)	0.8062 (4)	0.43705 (11)	0.0324 (5)
H7	0.5389	0.8440	0.4000	0.039*
C8	0.40702 (14)	0.7343 (5)	0.53588 (17)	0.0566 (9)
H8	0.4038	0.6009	0.5274	0.068*
С9	0.86731 (10)	0.7533 (3)	0.46598 (11)	0.0307 (5)
C10	0.93070 (10)	0.7064 (3)	0.45186 (10)	0.0257 (5)
C11	0.94340 (11)	0.6169 (4)	0.40145 (11)	0.0316 (5)
H11	0.9128	0.5835	0.3761	0.038*
C12	1.00211 (11)	0.5777 (4)	0.38922 (11)	0.0349 (6)

H12	1.0107	0.5146	0.3561	0.042*
C13	1.04793 (11)	0.6319 (4)	0.42600 (11)	0.0331 (5)
C14	1.03533 (11)	0.7237 (4)	0.47596 (11)	0.0349 (6)
H14	1.0661	0.7617	0.5005	0.042*
C15	0.97691 (11)	0.7583 (4)	0.48905 (11)	0.0319 (5)
H15	0.9684	0.8167	0.5230	0.038*
C16	1.11037 (13)	0.5922 (5)	0.41156 (15)	0.0518 (8)
H16	1.1144 (15)	0.523 (5)	0.3781 (10)	0.064 (11)*
C17	0.71703 (11)	1.1488 (3)	0.36395 (11)	0.0333 (5)
H17	0.6983	1.0825	0.3347	0.040*
C18	0.71592 (11)	1.3417 (3)	0.36259 (11)	0.0328 (5)
H18	0.6968	1.4016	0.3323	0.039*
C19	0.76825 (12)	1.3503 (3)	0.44611 (11)	0.0324 (5)
H19	0.7863	1.4165	0.4758	0.039*
C20	0.76983 (11)	1.1575 (3)	0.44727 (11)	0.0309 (5)
H20	0.7892	1.0976	0.4775	0.037*
C21	0.64505 (10)	0.6280 (3)	0.19529 (11)	0.0292 (5)
C22	0.58421 (10)	0.6087 (3)	0.21928 (10)	0.0256 (5)
C23	0.57669 (11)	0.6078 (4)	0.27715 (11)	0.0362 (6)
H23	0.6096	0.6147	0.3019	0.043*
C24	0.51980 (12)	0.5964 (4)	0.29793 (12)	0.0411 (6)
H24	0.5147	0.5928	0.3368	0.049*
C25	0.47064 (11)	0.5905 (4)	0.26150 (12)	0.0368 (6)
C26	0.47806 (11)	0.5890 (4)	0.20375 (12)	0.0419 (7)

H26	0.4451	0.5832	0.1790	0.050*
C27	0.53487 (11)	0.5963 (4)	0.18292 (11)	0.0349 (6)
H27	0.5400	0.5928	0.1440	0.042*
C28	0.40987 (14)	0.5920 (5)	0.28524 (17)	0.0579 (9)
H28	0.4083	0.4555	0.2839	0.069*
C29	0.86873 (10)	0.6787 (3)	0.21806 (11)	0.0306 (5)
C30	0.93360 (10)	0.6650 (3)	0.20327 (10)	0.0248 (5)
C31	0.94955 (10)	0.5928 (3)	0.15123 (10)	0.0297 (5)
H31	0.9204	0.5538	0.1251	0.036*
C32	1.00910 (10)	0.5795 (4)	0.13868 (10)	0.0315 (5)
H32	1.0200	0.5284	0.1043	0.038*
C33	1.05277 (10)	0.6418 (4)	0.17684 (11)	0.0297 (5)
C34	1.03676 (11)	0.7148 (4)	0.22858 (11)	0.0322 (5)
H34	1.0660	0.7570	0.2542	0.039*
C35	0.97750 (10)	0.7249 (3)	0.24191 (10)	0.0296 (5)
H35	0.9669	0.7719	0.2768	0.035*
C36	1.11601 (12)	0.6292 (5)	0.16198 (13)	0.0442 (7)
H36	1.1225 (14)	0.564 (4)	0.1284 (10)	0.055 (10)*
C37	0.71896 (11)	1.0551 (4)	0.11238 (11)	0.0335 (5)
H37	0.7006	0.9920	0.0822	0.040*
C38	0.71914 (12)	1.2480 (3)	0.11217 (11)	0.0335 (6)
H38	0.7006	1.3111	0.0821	0.040*
C39	0.77052 (12)	1.2490 (3)	0.19636 (11)	0.0328 (5)
H39	0.7890	1.3126	0.2264	0.039*

C40	0.76986 (11)	1.0558 (3)	0.19668 (11)	0.0321 (5)
H40	0.7877	0.9932	0.2272	0.039*

Tablo 3. 17. 4 kompleksinin geometrik parametreler (Å, °) [61]

Zn1—01	2.1889 (18)	С10—С9	1.511 (3)
Zn1—O2	2.2477 (19)	C10—C15	1.390 (3)
Zn1—O3	1.9628 (18)	C11—C10	1.391 (3)
Zn1—O7	2.0271 (17)	C11—C12	1.388 (3)
Zn2—O8	2.2034 (18)	C11—H11	0.9300
Zn2—09	2.2297 (19)	C12—C13	1.383 (4)
Zn2—O10	1.9689 (18)	C12—H12	0.9300
Zn2—O14	2.0288 (18)	C13—C16	1.482 (4)
Zn1—N1	2.186 (2)	C14—C13	1.389 (4)
Zn1—N2 ⁱ	2.200 (2)	C14—H14	0.9300
Zn2—N3	2.192 (2)	C15—C14	1.380 (3)
Zn2—N4 ⁱ	2.1957 (19)	C15—H15	0.9300
Zn1—C1	2.550 (2)	C16—H16	0.943 (18)
Zn2—C21	2.545 (2)	C17—H17	0.9300
O1—C1	1.251 (3)	C18—C17	1.384 (3)
O2—C1	1.256 (3)	C18—H18	0.9300
O3—C9	1.257 (3)	C19—H19	0.9300
O4—C9	1.227 (3)	C21—C22	1.503 (3)
O5A—C8	1.179 (5)	C22—C23	1.383 (3)
O6—C16	1.192 (4)	C22—C27	1.385 (3)
O7—H71	0.897 (16)	C23—C24	1.386 (4)
O7—H72	0.866 (16)	C23—H23	0.9300
O8—C21	1.248 (3)	C24—H24	0.9300
O9—C21	1.259 (3)	C25—C24	1.380 (4)
O10—C29	1.258 (3)	C25—C28	1.492 (4)
O11—C29	1.230 (3)	C26—C25	1.380 (4)
O13—C36	1.190 (4)	C26—H26	0.9300
O14—H141	0.826 (17)	C27—C26	1.383 (3)
O14—H142	0.845 (18)	С27—Н27	0.9300
N1—C17	1.334 (3)	C28—O12A	1.197 (5)
N1-C20	1.333 (3)	C28—O12B	1.202 (10)

N2—Zn1 ⁱⁱ	2.200 (2)	C28—H28	0.9800
N2—C18	1.338 (3)	C31—C32	1.383 (3)
N2—C19	1.331 (3)	C31—C30	1.392 (3)
N3—C37	1.339 (3)	C31—H31	0.9300
N3—C40	1.334 (3)	C34—C35	1.380 (3)
N4—Zn2 ⁱⁱ	2.1957 (19)	C34—C33	1.388 (3)
N4—C38	1.330 (3)	C34—H34	0.9300
N4—C39	1.331 (3)	C20—C19	1.384 (3)
C2—C1	1.500 (3)	С20—Н20	0.9300
C2—C3	1.386 (3)	C30—C35	1.392 (3)
C2—C7	1.390 (3)	C30—C29	1.513 (3)
C3—C4	1.390 (3)	C32—C33	1.386 (3)
С3—Н3	0.9300	С32—Н32	0.9300
C4—H4	0.9300	C33—C36	1.477 (3)
C5—C4	1.379 (4)	С35—Н35	0.9300
C5—C6	1.383 (4)	С36—Н36	0.937 (18)
C5—C8	1.492 (4)	С37—Н37	0.9300
С6—Н6	0.9300	C38—C37	1.383 (3)
С7—С6	1.384 (3)	C38—H38	0.9300
С7—Н7	0.9300	С39—Н39	0.9300
C8—O5B	1.086 (14)	C40—C39	1.386 (3)
С8—Н8	0.9800	C40—H40	0.9300
O1—Zn1—O2	58.88 (7)	C11—C10—C9	120.8 (2)
O1—Zn1—N2 ⁱ	90.85 (7)	C15—C10—C9	119.5 (2)
01—Zn1—C1	29.37 (7)	C15-C10-C11	119.8 (2)
O2—Zn1—C1	29.52 (7)	C10-C11-H11	120.2
O3—Zn1—O1	169.01 (8)	C12-C11-C10	119.6 (2)
O3—Zn1—O2	110.13 (8)	C12-C11-H11	120.2
O3—Zn1—O7	98.12 (8)	C11—C12—H12	119.8
O3—Zn1—N1	93.49 (8)	C13—C12—C11	120.4 (2)
O3—Zn1—N2 ⁱ	88.20 (8)	C13—C12—H12	119.8
O3—Zn1—C1	139.64 (9)	C12—C13—C14	120.0 (2)
O7—Zn1—O1	92.86 (7)	C12-C13-C16	119.5 (3)
O7—Zn1—O2	151.61 (7)	C14—C13—C16	120.4 (3)
O7—Zn1—N1	90.62 (7)	C13—C14—H14	120.1
O7—Zn1—N2 ⁱ	91.96 (7)	C15—C14—C13	119.7 (2)
O7—Zn1—C1	122.20 (8)	C15—C14—H14	120.1
N1—Zn1—O1	86.95 (7)	C10-C15-H15	119.8
N1—Zn1—O2	90.42 (7)	C14—C15—C10	120.5 (2)
--------------------------	-------------	-------------	-------------
N1—Zn1—N2 ⁱ	176.68 (7)	C14—C15—H15	119.8
N1—Zn1—C1	88.14 (7)	O6-C16-C13	124.9 (3)
N2 ⁱ —Zn1—O2	86.32 (7)	O6C16H16	121 (2)
N2 ⁱ —Zn1—C1	88.73 (7)	C13—C16—H16	114 (2)
O8—Zn2—O9	59.00 (7)	N1-C17-C18	121.8 (2)
O8—Zn2—C21	29.37 (7)	N1—C17—H17	119.1
O9—Zn2—C21	29.64 (7)	C18—C17—H17	119.1
O10—Zn2—O8	168.30 (8)	N2	121.7 (2)
O10—Zn2—O9	109.58 (8)	N2	119.2
O10—Zn2—O14	99.14 (8)	C17—C18—H18	119.2
O10—Zn2—N3	92.54 (8)	N2-C19-C20	122.0 (2)
O10—Zn2—N4 ⁱ	90.13 (8)	N2-C19-H19	119.0
O10—Zn2—C21	139.14 (9)	C20-C19-H19	119.0
O14—Zn2—O8	92.03 (7)	N1-C20-C19	121.6 (2)
O14—Zn2—O9	150.78 (7)	N1-C20-H20	119.2
O14—Zn2—N3	92.41 (8)	C19—C20—H20	119.2
O14—Zn2—N4 ⁱ	89.63 (8)	O8—C21—Zn2	59.97 (12)
O14—Zn2—C21	121.28 (8)	O8—C21—O9	121.1 (2)
N3—Zn2—O8	90.45 (7)	O8—C21—C22	119.2 (2)
N3—Zn2—O9	91.62 (7)	O9—C21—Zn2	61.18 (13)
N3—Zn2—N4 ⁱ	176.35 (7)	O9—C21—C22	119.7 (2)
N3—Zn2—C21	91.63 (7)	C22—C21—Zn2	178.24 (17)
N4 ⁱ —Zn2—O8	86.45 (7)	C23—C22—C21	120.9 (2)
N4 ⁱ —Zn2—O9	85.14 (7)	C23—C22—C27	119.6 (2)
N4 ⁱ —Zn2—C21	84.72 (7)	C27—C22—C21	119.5 (2)
C1—O1—Zn1	91.51 (15)	C22—C23—C24	119.5 (2)
C1—O2—Zn1	88.67 (15)	C22—C23—H23	120.2
C9—O3—Zn1	145.76 (18)	C24—C23—H23	120.2
Zn1—O7—H71	126.2 (19)	C23—C24—H24	119.7
Zn1—O7—H72	120.4 (18)	C25—C24—C23	120.7 (2)
H71—O7—H72	106 (2)	C25—C24—H24	119.7
C21—O8—Zn2	90.66 (15)	C24—C25—C26	119.9 (2)
C21—O9—Zn2	89.18 (15)	C24—C25—C28	119.3 (3)
C29—O10—Zn2	145.70 (18)	C26—C25—C28	120.8 (3)
Zn2	127 (2)	C25—C26—C27	119.5 (2)
Zn2—O14—H142	122 (2)	C25—C26—H26	120.2
H141—O14—H142	107 (3)	C27—C26—H26	120.2

C17—N1—Zn1	118.79 (16)	C22—C27—H27	119.6
C20—N1—Zn1	124.69 (16)	C26—C27—C22	120.8 (2)
C20—N1—C17	116.5 (2)	C26—C27—H27	119.6
C18—N2—Zn1 ⁱⁱ	123.89 (16)	O12A—C28—O12B	114.5 (6)
C19—N2—Zn1 ⁱⁱ	119.73 (16)	O12A—C28—C25	124.7 (4)
C19—N2—C18	116.3 (2)	O12A—C28—H28	90.8
C37—N3—Zn2	121.77 (16)	O12B—C28—C25	120.7 (6)
C40—N3—Zn2	122.19 (16)	O12B—C28—H28	90.8
C40—N3—C37	116.0 (2)	C25—C28—H28	90.8
C38—N4—Zn2 ⁱⁱ	121.85 (16)	O10—C29—C30	115.4 (2)
C38—N4—C39	117.1 (2)	O11—C29—O10	126.5 (2)
C39—N4—Zn2 ⁱⁱ	121.05 (16)	O11—C29—C30	118.1 (2)
01—C1—Zn1	59.12 (12)	C31—C30—C29	120.3 (2)
01—C1—O2	120.9 (2)	C31—C30—C35	119.9 (2)
01—C1—C2	118.9 (2)	C35—C30—C29	119.8 (2)
O2—C1—Zn1	61.81 (13)	C30—C31—H31	120.3
O2—C1—C2	120.1 (2)	C32—C31—C30	119.5 (2)
C2-C1-Zn1	177.97 (18)	C32—C31—H31	120.3
C3—C2—C1	120.7 (2)	C31—C32—C33	120.6 (2)
C3—C2—C7	119.7 (2)	C31—C32—H32	119.7
C7—C2—C1	119.6 (2)	C33—C32—H32	119.7
C2—C3—C4	119.6 (2)	C32—C33—C34	119.8 (2)
С2—С3—Н3	120.2	C32—C33—C36	119.5 (2)
С4—С3—Н3	120.2	C34—C33—C36	120.7 (2)
С3—С4—Н4	119.8	C33—C34—H34	120.0
C5—C4—C3	120.3 (3)	C35—C34—C33	119.9 (2)
C5—C4—H4	119.8	C35—C34—H34	120.0
C4—C5—C6	120.3 (2)	C30—C35—H35	119.9
C4—C5—C8	119.0 (3)	C34—C35—C30	120.2 (2)
C6—C5—C8	120.7 (3)	C34—C35—H35	119.9
C5—C6—C7	119.5 (3)	O13—C36—C33	125.7 (3)
С5—С6—Н6	120.3	O13—C36—H36	120 (2)
С7—С6—Н6	120.3	C33—C36—H36	114 (2)
С2—С7—Н7	119.7	N3—C37—C38	121.9 (2)
C6—C7—C2	120.5 (2)	N3—C37—H37	119.0
С6—С7—Н7	119.7	C38—C37—H37	119.0
O5A—C8—C5	125.8 (4)	N4—C38—C37	121.5 (2)
O5A—C8—H8	91.3	N4—C38—H38	119.2

O5B—C8—O5A	109.7 (8)	С37—С38—Н38	119.2
O5B—C8—C5	124.3 (8)	N4C39C40	121.2 (2)
O5B—C8—H8	91.3	N4—C39—H39	119.4
С5—С8—Н8	91.3	С40—С39—Н39	119.4
O3—C9—C10	115.5 (2)	N3-C40-C39	122.2 (2)
O4—C9—O3	126.4 (2)	N3—C40—H40	118.9
O4—C9—C10	118.2 (2)	C39—C40—H40	118.9
O2—Zn1—O1—C1	0.71 (14)	Zn1-N1-C20-C19	179.19 (18)
O3—Zn1—O1—C1	1.0 (5)	C17—N1—C20—C19	-0.1 (4)
07—Zn1—O1—C1	177.90 (15)	Zn1 ⁱⁱ —N2—C18—C17	177.49 (19)
N1—Zn1—O1—C1	-91.63 (15)	C19—N2—C18—C17	-0.2 (4)
N2 ⁱ —Zn1—O1—C1	85.90 (15)	Zn1 ⁱⁱ —N2—C19—C20	-177.02 (19)
O1—Zn1—O2—C1	-0.71 (14)	C18—N2—C19—C20	0.8 (4)
O3—Zn1—O2—C1	179.35 (14)	Zn2—N3—C37—C38	-177.2 (2)
O7—Zn1—O2—C1	-6.6 (2)	C40—N3—C37—C38	0.2 (4)
N1—Zn1—O2—C1	85.47 (15)	Zn2—N3—C40—C39	176.65 (19)
N2 ⁱ —Zn1—O2—C1	-93.92 (15)	C37—N3—C40—C39	-0.7 (4)
O1—Zn1—O3—C9	-20.6 (6)	Zn2 ⁱⁱ —N4—C38—C37	178.53 (19)
O2—Zn1—O3—C9	-20.4 (3)	C39—N4—C38—C37	-0.8 (4)
O7—Zn1—O3—C9	162.5 (3)	Zn2 ⁱⁱ —N4—C39—C40	-179.05 (19)
N1—Zn1—O3—C9	71.3 (3)	C38—N4—C39—C40	0.3 (4)
N2 ⁱ —Zn1—O3—C9	-105.8 (3)	C3—C2—C1—O1	165.0 (2)
C1—Zn1—O3—C9	-19.9 (4)	C7—C2—C1—O1	-13.2 (3)
O1—Zn1—N1—C17	-55.30 (18)	C3—C2—C1—O2	-13.1 (4)
O1—Zn1—N1—C20	125.40 (19)	C7—C2—C1—O2	168.7 (2)
O2—Zn1—N1—C17	-114.10 (18)	C1—C2—C3—C4	-176.2 (2)
O2—Zn1—N1—C20	66.59 (19)	C7—C2—C3—C4	2.0 (4)
O3—Zn1—N1—C17	135.70 (18)	C1—C2—C7—C6	177.4 (2)
O3—Zn1—N1—C20	-43.6 (2)	C3—C2—C7—C6	-0.8 (4)
07—Zn1—N1—C17	37.53 (18)	C2—C3—C4—C5	-1.4 (4)
O7—Zn1—N1—C20	-141.78 (19)	C6—C5—C4—C3	-0.4 (4)
C1—Zn1—N1—C17	-84.67 (18)	C8—C5—C4—C3	-178.9 (3)
C1—Zn1—N1—C20	96.02 (19)	C4—C5—C6—C7	1.6 (4)
01—Zn1—C1—O2	178.8 (2)	C8—C5—C6—C7	-179.9 (3)
02—Zn1—C1—O1	-178.8 (2)	C4—C5—C8—O5A	-177.0 (4)
O3—Zn1—C1—O1	-179.71 (14)	C4—C5—C8—O5B	8.1 (11)
O3—Zn1—C1—O2	-0.9 (2)	C6—C5—C8—O5A	4.4 (6)
07—Zn1—C1—O1	-2.48 (17)	C6—C5—C8—O5B	-170.5 (10)

O7—Zn1—C1—O2	176.29 (13)	C2—C7—C6—C5	-1.0 (4)
N1—Zn1—C1—O1	87.09 (15)	C11—C10—C9—O3	-11.0 (3)
N1—Zn1—C1—O2	-94.15 (15)	C11—C10—C9—O4	170.3 (3)
N2 ⁱ —Zn1—C1—O1	-93.99 (15)	C15—C10—C9—O3	167.2 (2)
N2 ⁱ —Zn1—C1—O2	84.77 (15)	C15—C10—C9—O4	-11.5 (4)
O9—Zn2—O8—C21	-0.91 (14)	C9-C10-C15-C14	-177.4 (2)
O10-Zn2-O8-C21	12.3 (5)	C11—C10—C15—C14	0.8 (4)
O14—Zn2—O8—C21	175.05 (15)	C12-C11-C10-C9	179.2 (2)
N3—Zn2—O8—C21	-92.53 (15)	C12-C11-C10-C15	1.0 (4)
N4 ⁱ —Zn2—O8—C21	85.54 (15)	C10-C11-C12-C13	-1.9 (4)
O8—Zn2—O9—C21	0.90 (14)	C11—C12—C13—C14	1.0 (4)
O10-Zn2-O9-C21	-176.27 (14)	C11—C12—C13—C16	-178.7 (3)
O14—Zn2—O9—C21	-7.4 (2)	C12-C13-C16-O6	172.9 (3)
N3—Zn2—O9—C21	90.46 (15)	C14-C13-C16-O6	-6.8 (5)
N4 ⁱ —Zn2—O9—C21	-87.87 (15)	C15-C14-C13-C12	0.8 (4)
O8—Zn2—O10—C29	-37.1 (6)	C15-C14-C13-C16	-179.4 (3)
O9—Zn2—O10—C29	-25.1 (4)	C10-C15-C14-C13	-1.7 (4)
O14—Zn2—O10—C29	160.4 (3)	N2-C18-C17-N1	-0.5 (4)
N3—Zn2—O10—C29	67.6 (3)	N1-C20-C19-N2	-0.6 (4)
N4 ⁱ —Zn2—O10—C29	-109.9 (3)	O8—C21—C22—C23	-175.8 (2)
C21—Zn2—O10—C29	-27.9 (4)	O9—C21—C22—C23	4.4 (4)
O8—Zn2—N3—C37	-56.67 (19)	O8—C21—C22—C27	2.6 (3)
O8—Zn2—N3—C40	126.14 (18)	O9—C21—C22—C27	-177.2 (2)
O9—Zn2—N3—C37	-115.67 (18)	C21—C22—C23—C24	177.7 (2)
O9—Zn2—N3—C40	67.14 (19)	C27—C22—C23—C24	-0.7 (4)
O10-Zn2-N3-C37	134.64 (19)	C21—C22—C27—C26	-176.3 (2)
O10-Zn2-N3-C40	-42.54 (19)	C23—C22—C27—C26	2.1 (4)
O14—Zn2—N3—C37	35.38 (19)	C22—C23—C24—C25	-1.5 (4)
O14—Zn2—N3—C40	-141.80 (19)	C26—C25—C24—C23	2.4 (4)
C21—Zn2—N3—C37	-86.02 (19)	C28—C25—C24—C23	-175.7 (3)
C21—Zn2—N3—C40	96.79 (19)	C24—C25—C28—O12A	173.7 (4)
O8—Zn2—C21—O9	-178.4 (2)	C24—C25—C28—O12B	-3.4 (8)
O9—Zn2—C21—O8	178.4 (2)	C26-C25-C28-O12A	-4.3 (6)
O10-Zn2-C21-O8	-176.21 (15)	C26—C25—C28—O12B	178.6 (7)
O10—Zn2—C21—O9	5.4 (2)	C27—C26—C25—C24	-1.0 (4)
O14—Zn2—C21—O8	-5.79 (18)	C27—C26—C25—C28	177.1 (3)
O14—Zn2—C21—O9	175.79 (14)	C22—C27—C26—C25	-1.3 (4)
N3—Zn2—C21—O8	88.02 (15)	C31—C30—C29—O10	-9.5 (3)

N3—Zn2—C21—O9	-90.40 (15)	C31—C30—C29—O11	172.2 (3)
N4 ⁱ —Zn2—C21—O8	-92.14 (15)	C35—C30—C29—O10	170.5 (2)
N4 ⁱ —Zn2—C21—O9	89.44 (15)	C35—C30—C29—O11	-7.8 (4)
Zn1—O1—C1—O2	-1.3 (2)	C29—C30—C35—C34	-179.3 (2)
Zn1—O1—C1—C2	-179.36 (19)	C31—C30—C35—C34	0.7 (4)
Zn1—O2—C1—O1	1.2 (2)	C32—C31—C30—C29	-179.3 (2)
Zn1—O2—C1—C2	179.30 (19)	C32—C31—C30—C35	0.7 (4)
Zn1—O3—C9—O4	-3.0 (5)	C30—C31—C32—C33	-1.7 (4)
Zn1—O3—C9—C10	178.4 (2)	C31—C32—C33—C34	1.3 (4)
Zn2—O8—C21—O9	1.6 (2)	C31—C32—C33—C36	-178.9 (3)
Zn2—O8—C21—C22	-178.21 (19)	C32—C33—C36—O13	172.4 (3)
Zn2—O9—C21—O8	-1.6 (2)	C34—C33—C36—O13	-7.7 (5)
Zn2—O9—C21—C22	178.23 (19)	C35—C34—C33—C32	0.1 (4)
Zn2—O10—C29—O11	6.8 (5)	C35—C34—C33—C36	-179.7 (3)
Zn2—O10—C29—C30	-171.3 (2)	C33—C34—C35—C30	-1.1 (4)
Zn1—N1—C17—C18	-178.7 (2)	N4-C38-C37-N3	0.6 (4)
C20—N1—C17—C18	0.7 (4)	N3-C40-C39-N4	0.5 (4)

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*, *y*+1, *z*.

 Tablo 3. 18. 4 kompleksine ait hidrojen bağ geometrisi (Å, °) [61]
 Complexity

<i>D</i> —H…A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H···A
O7—H71…O9	0.90 (2)	1.82 (2)	2.694 (3)	165 (2)
O7—H72…O11	0.87 (2)	1.78 (2)	2.640 (3)	170 (2)
O14—H141…O2 ⁱⁱⁱ	0.83 (2)	1.90 (2)	2.705 (3)	165 (2)
O14—H142…O4 ⁱⁱⁱ	0.84 (2)	1.80 (3)	2.635 (3)	172 (3)
C17—H17····O12A ^{iv}	0.93	2.56	3.375 (5)	146
C19—H19…O6 ^v	0.93	2.47	3.222 (4)	138
C23—H23…O1	0.93	2.57	3.361 (3)	143
C38—H38····O5 A^{iv}	0.93	2.59	3.381 (4)	144
C39—H39…O13 ^{vi}	0.93	2.47	3.154 (4)	130
C12—H12····Cg10 ^{vii}	0.93	2.81	3.579 (3)	140

C32—H32··· <i>Cg</i> 8 ^{vii}	0.93	2.78	3.468 (3)	132
---------------------------------------	------	------	-----------	-----

Symmetry codes: (iii) x, -y+3/2, z-1/2; (iv) -x+1, y+1/2, -z+1/2; (v) -x+2, -y+2, -z+1; (vi) -x+2, y+1/2, -z+1/2; (vii) -x, y-1/2, -z+1/2.

Kristal verileri	
Kimyasal Formülü	$[Cd(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)]$
$M_{ m r}$	508.76
Kristal sistem, uzay grubu	Monoklinik, $P2_1/c$
Sıcaklık (K)	294
<i>a</i> , <i>b</i> , <i>c</i> (Å)	22.6016 (5), 7.4947 (2), 11.9196 (3)
β (°)	99.673 (2)
$V(\text{\AA}^3)$	1990.38 (9)
Ζ	4
Işın Kaynağı	Mo K_{α}
$\mu (mm^{-1})$	1.14
Kristal boyutu (mm)	$0.45 \times 0.35 \times 0.15$
Veri Toplama	
Difaktometre	Bruker SMART BREEZE CCD
Soğurma düzeltimi	multi-scan (SADABS; Bruker, 2012)
T_{\min}, T_{\max}	0.625, 0.842
Ölçülebilen, gözlenebilen $[I > 2\sigma(I)]$ ve	40178, 3587, 3497
serbest yansıma sayısı	
R _{int}	0.048
Aritim	

Tablo 3. 19. 5 kompleksinin kristalografik verileri [61]

$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.144, 1.35
Yansıma sayısı	3587

Parametre sayısı	287
Sınırların sayısı	3
H-atomları davranışı	Bağımsız ve sabit arınım karışımı tarafından
	incelenmiş H atomları
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	1.77, -1.85

Tablo 3. 20. 5 kompleksine ait atomik koordinatlar ve izotropik eşdeğer yer değiştirmeparametreleri ($Å^2$) [61]

	x	у	z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	0.25229 (2)	0.17641 (6)	0.12918 (4)	0.02711 (18)	
01	0.3237 (2)	0.1914 (8)	0.2983 (4)	0.0451 (13)	
O2	0.3601 (2)	0.1504 (9)	0.1430 (5)	0.0567 (16)	
O3	0.6257 (4)	0.2685 (15)	0.5777 (8)	0.105 (3)	
O4	0.1447 (2)	0.1687 (9)	0.0798 (5)	0.0551 (16)	
O5	0.1829 (2)	0.1597 (8)	0.2594 (5)	0.0503 (15)	
O6A	-0.1449 (4)	0.134 (2)	0.2280 (11)	0.124 (6)	0.79 (2)
O6B	-0.111 (2)	0.139 (9)	0.378 (6)	0.16 (3)	0.21 (2)
07	0.2521 (2)	0.1713 (7)	-0.0625 (4)	0.0362 (11)	
H71	0.263 (3)	0.278 (4)	-0.054 (7)	0.056*	
H72	0.221 (2)	0.168 (9)	-0.109 (6)	0.056*	
N1	0.2519 (2)	0.4797 (9)	0.1242 (4)	0.0299 (13)	
N2	0.2503 (2)	0.8645 (6)	0.1216 (5)	0.0263 (11)	
C1	0.3678 (3)	0.1700 (9)	0.2472 (6)	0.0330 (15)	
C2	0.4297 (3)	0.1712 (9)	0.3143 (6)	0.0304 (14)	
C3	0.4421 (3)	0.2522 (11)	0.4201 (6)	0.0406 (17)	

_						
	Н3	0.4112	0.3025	0.4521	0.049*	
	C4	0.5005 (4)	0.2584 (12)	0.4780 (6)	0.047 (2)	
	H4	0.5089	0.3158	0.5480	0.056*	
	C5	0.5460 (3)	0.1806 (12)	0.4330 (7)	0.047 (2)	
	C6	0.5336 (4)	0.0950 (14)	0.3294 (8)	0.059 (2)	
	H6	0.5645	0.0402	0.2996	0.071*	
	C7	0.4760 (3)	0.0897 (12)	0.2694 (7)	0.0452 (19)	
	H7	0.4681	0.0321	0.1993	0.054*	
	C8	0.6082 (4)	0.1889 (19)	0.4960 (10)	0.082 (4)	
	H8	0.6366	0.1221	0.4662	0.099*	
	C9	0.1387 (3)	0.1613 (9)	0.1813 (6)	0.0335 (15)	
	C10	0.0767 (3)	0.1475 (10)	0.2111 (6)	0.0351 (16)	
	C13	-0.0386 (4)	0.1296 (14)	0.2620 (8)	0.054 (2)	
	C11A	0.0653 (14)	0.171 (3)	0.320 (3)	0.050 (4)	0.50
	H11A	0.0972	0.1880	0.3797	0.060*	0.50
	C12A	0.0074 (12)	0.170 (3)	0.342 (2)	0.050 (4)	0.50
	H12A	0.0005	0.1985	0.4151	0.060*	0.50
	C14A	-0.0278 (12)	0.089 (3)	0.153 (2)	0.050 (4)	0.50
	H14A	-0.0592	0.0529	0.0966	0.060*	0.50
	C15A	0.0301 (13)	0.104 (3)	0.128 (3)	0.050 (4)	0.50
	H15A	0.0369	0.0829	0.0548	0.060*	0.50
	C11B	0.0702 (14)	0.106 (4)	0.319 (3)	0.057 (5)	0.50
	H11B	0.1038	0.0856	0.3747	0.068*	0.50
	C12B	0.0126 (12)	0.093 (3)	0.348 (2)	0.057 (5)	0.50

	H12B	0.0076	0.0606	0.4208	0.068*	0.50
	C14B	-0.0305 (12)	0.171 (3)	0.153 (2)	0.057 (5)	0.50
	H14B	-0.0635	0.1966	0.0976	0.068*	0.50
	C15B	0.0255 (13)	0.174 (3)	0.126 (3)	0.057 (5)	0.50
	H15B	0.0303	0.1945	0.0515	0.068*	0.50
	C16	-0.0996 (5)	0.1259 (19)	0.2908 (12)	0.081 (3)	
	H16A	-0.1021	0.1161	0.3677	0.097*	0.80
	H16B	-0.1313	0.1104	0.2310	0.097*	0.20
	C17	0.2264 (3)	0.5861 (11)	0.0310 (7)	0.0441 (18)	
	H17	0.2087	0.5283	-0.0352	0.053*	
	C18	0.2260 (3)	0.7705 (9)	0.0313 (6)	0.0391 (17)	
	H18	0.2080	0.8306	-0.0339	0.047*	
	C19	0.2755 (3)	0.7728 (10)	0.2113 (6)	0.0381 (17)	
	H19	0.2933	0.8340	0.2762	0.046*	
	C20	0.2764 (3)	0.5877 (9)	0.2121 (6)	0.0375 (16)	
	H20	0.2954	0.5323	0.2783	0.045*	
_						

Tablo 3. 21. 5 kompleksinin geometrik parametreler (Å, °) [61]

Cd1—N1	2.274 (6)	С6—Н6	0.9300
Cd1—07	2.284 (5)	С7—Н7	0.9300
Cd1—N2 ⁱ	2.340 (5)	С8—Н8	0.9300
Cd101	2.364 (5)	C9—C10	1.505 (10)
Cd105	2.388 (5)	C10-C15A	1.36 (3)
Cd1O4	2.405 (5)	C10-C11B	1.36 (3)
Cd1—O2	2.423 (6)	C10-C11A	1.38 (3)
Cd1—C9	2.744 (7)	C10-C15B	1.42 (3)
Cd1—C1	2.750 (7)	C13—C12A	1.33 (3)

01—C1	1.262 (9)	C13—C14B	1.38 (3)
O2—C1	1.234 (9)	C13—C14A	1.40 (3)
O3—C8	1.154 (14)	C13—C12B	1.44 (3)
O4—C9	1.242 (9)	C13—C16	1.475 (13)
О5—С9	1.247 (9)	C11A—C12A	1.38 (3)
O6A—C16	1.165 (15)	C11A—H11A	0.9300
O6A—H16B	0.3504	C12A—H12A	0.9300
O6B—C16	1.12 (6)	C14A—C15A	1.39 (3)
O7—H71	0.83 (2)	C14A—H14A	0.9300
O7—H72	0.82 (2)	C15A—H15A	0.9300
N1-C20	1.365 (9)	C11B—C12B	1.40 (3)
N1—C17	1.410 (10)	C11B—H11B	0.9300
N2—C19	1.318 (9)	C12B—H12B	0.9300
N2	1.326 (9)	C14B—C15B	1.36 (3)
N2—Cd1 ⁱⁱ	2.340 (5)	C14B—H14B	0.9300
C1—C2	1.491 (9)	C15B—H15B	0.9300
C2—C3	1.385 (10)	C16—H16A	0.9300
С2—С7	1.394 (10)	C16—H16B	0.9300
C3—C4	1.383 (11)	C17—C18	1.382 (11)
С3—Н3	0.9300	C17—H17	0.9300
C4—C5	1.368 (12)	C18—H18	0.9300
C4—H4	0.9300	C19—C20	1.387 (10)
C5—C6	1.378 (12)	C19—H19	0.9300
C5—C8	1.479 (12)	C20—H20	0.9300
C6—C7	1.376 (11)		
N1-Cd1-07	89.51 (17)	С6—С7—Н7	120.2
N1—Cd1—N2 ⁱ	176.30 (17)	С2—С7—Н7	120.2
O7—Cd1—N2 ⁱ	87.02 (18)	O3—C8—C5	127.7 (12)
N1-Cd1-O1	88.49 (18)	O3—C8—H8	116.1
O7—Cd1—O1	137.71 (18)	С5—С8—Н8	116.1
N2 ⁱ —Cd1—O1	94.94 (19)	O4—C9—O5	121.6 (7)
N1—Cd1—O5	93.98 (19)	O4—C9—C10	119.4 (6)
O7—Cd1—O5	139.32 (18)	O5—C9—C10	119.0 (6)
N2 ⁱ —Cd1—O5	87.8 (2)	O4—C9—Cd1	61.2 (4)
O1—Cd1—O5	82.94 (17)	O5—C9—Cd1	60.4 (4)
N1—Cd1—O4	91.1 (2)	C10-C9-Cd1	178.3 (5)
O7—Cd1—O4	85.57 (18)	C15A—C10—C11B	116 (2)
N2 ⁱ —Cd1—O4	87.4 (2)	C15A—C10—C11A	118.0 (17)

O1—Cd1—O4	136.69 (18)	C11B—C10—C15B	120.2 (17)
O5—Cd1—O4	53.88 (18)	C11A—C10—C15B	113.1 (19)
N1-Cd1-O2	94.7 (2)	C15A—C10—C9	119.1 (14)
O7—Cd1—O2	84.23 (18)	C11B—C10—C9	119.6 (14)
N2 ⁱ —Cd1—O2	86.3 (2)	C11A—C10—C9	122.9 (15)
O1—Cd1—O2	53.89 (17)	C15B—C10—C9	120.3 (14)
O5—Cd1—O2	135.59 (18)	C12A—C13—C14B	114.6 (19)
O4—Cd1—O2	168.3 (2)	C12A—C13—C14A	119.0 (16)
N1—Cd1—C9	92.74 (18)	C14B—C13—C12B	119.6 (15)
O7—Cd1—C9	112.4 (2)	C14A—C13—C12B	112.0 (17)
N2 ⁱ —Cd1—C9	87.41 (19)	C12A—C13—C16	119.1 (14)
O1—Cd1—C9	109.87 (19)	C14B—C13—C16	120.2 (14)
O5—Cd1—C9	26.99 (19)	C14A—C13—C16	122.0 (14)
O4—Cd1—C9	26.9 (2)	C12B—C13—C16	120.2 (14)
O2—Cd1—C9	161.8 (2)	C12A—C11A—C10	121 (2)
N1—Cd1—C1	91.69 (18)	C12A—C11A—H11A	119.5
O7—Cd1—C1	110.7 (2)	C10-C11A-H11A	119.5
N2 ⁱ —Cd1—C1	90.73 (19)	C13—C12A—C11A	121.2 (19)
O1—Cd1—C1	27.25 (19)	C13—C12A—H12A	119.4
O5—Cd1—C1	109.70 (19)	C11A—C12A—H12A	119.4
O4—Cd1—C1	163.5 (2)	C15A—C14A—C13	119.6 (18)
O2—Cd1—C1	26.64 (19)	C15A—C14A—H14A	120.2
C9—Cd1—C1	136.7 (2)	C13—C14A—H14A	120.2
C1Cd1	93.7 (4)	C10-C15A-C14A	121 (2)
C1	91.7 (4)	C10—C15A—H15A	119.6
C9—O4—Cd1	91.9 (4)	C14A—C15A—H15A	119.6
C9—O5—Cd1	92.6 (4)	C10-C11B-C12B	120 (2)
Cd1—O7—H71	85 (6)	C10-C11B-H11B	120.1
Cd1—O7—H72	123 (6)	C12B—C11B—H11B	120.1
H71—O7—H72	108 (3)	C11B—C12B—C13	119.2 (19)
C20—N1—C17	109.2 (6)	C11B—C12B—H12B	120.4
C20—N1—Cd1	125.0 (4)	C13—C12B—H12B	120.4
C17—N1—Cd1	125.8 (4)	C15B—C14B—C13	120.3 (18)
C19—N2—C18	116.5 (5)	C15B—C14B—H14B	119.9
C19—N2—Cd1 ⁱⁱ	119.1 (4)	C13—C14B—H14B	119.9
C18—N2—Cd1 ⁱⁱ	124.4 (4)	C14B—C15B—C10	121 (2)
02—C1—O1	120.8 (7)	C14B—C15B—H15B	119.5
O2—C1—C2	120.1 (6)	C10—C15B—H15B	119.5

01—C1—C2	119.1 (6)	O6B—C16—O6A	106 (3)
O2-C1-Cd1	61.7 (4)	O6B-C16-C13	126 (3)
01—C1—Cd1	59.1 (4)	O6A-C16-C13	127.2 (13)
C2-C1-Cd1	177.9 (5)	O6A—C16—H16A	116.4
C3—C2—C7	119.5 (7)	C13—C16—H16A	116.4
C3—C2—C1	121.2 (6)	O6B—C16—H16B	117.0
C7—C2—C1	119.3 (6)	C13—C16—H16B	117.0
C4—C3—C2	119.9 (7)	H16A—C16—H16B	125.4
С4—С3—Н3	120.0	C18—C17—N1	124.4 (7)
С2—С3—Н3	120.0	C18—C17—H17	117.8
C5—C4—C3	120.5 (7)	N1—C17—H17	117.8
C5—C4—H4	119.8	N2	122.0 (7)
C3—C4—H4	119.8	N2	119.0
C4—C5—C6	119.7 (7)	C17—C18—H18	119.0
C4—C5—C8	119.7 (9)	N2-C19-C20	122.1 (7)
C6—C5—C8	120.5 (9)	N2	119.0
C7—C6—C5	120.8 (8)	C20—C19—H19	119.0
С7—С6—Н6	119.6	N1-C20-C19	125.7 (7)
С5—С6—Н6	119.6	N1-C20-H20	117.1
C6—C7—C2	119.5 (7)	C19—C20—H20	117.1
N1—Cd1—O1—C1	-96.7 (4)	Cd1	0.4 (7)
O7—Cd1—O1—C1	-9.0 (6)	Cd1	178.2 (5)
N2 ⁱ —Cd1—O1—C1	82.0 (4)	N1-Cd1-C9-O4	87.0 (5)
O5—Cd1—O1—C1	169.1 (5)	O7-Cd1-C9-O4	-3.6 (5)
O4—Cd1—O1—C1	173.4 (4)	N2 ⁱ —Cd1—C9—O4	-89.3 (5)
O2—Cd1—O1—C1	0.2 (4)	O1-Cd1-C9-O4	176.3 (4)
C9—Cd1—O1—C1	171.0 (4)	O5-Cd1-C9-O4	-179.6 (7)
N1—Cd1—O2—C1	84.5 (5)	O2-Cd1-C9-O4	-159.0 (7)
O7—Cd1—O2—C1	173.5 (5)	C1Cd1C9O4	-177.7 (4)
N2 ⁱ —Cd1—O2—C1	-99.1 (5)	N1-Cd1-C9-05	-93.4 (4)
O1-Cd1-O2-C1	-0.2 (4)	O7-Cd1-C9-O5	176.0 (4)
O5—Cd1—O2—C1	-16.1 (6)	N2 ⁱ —Cd1—C9—O5	90.3 (4)
O4—Cd1—O2—C1	-156.6 (9)	O1-Cd1-C9-O5	-4.0 (5)
C9—Cd1—O2—C1	-29.3 (10)	O4—Cd1—C9—O5	179.6 (7)
N1-Cd1-O4-C9	-94.0 (5)	O2—Cd1—C9—O5	20.6 (9)
O7—Cd1—O4—C9	176.6 (5)	C1—Cd1—C9—O5	2.0 (6)
N2 ⁱ —Cd1—O4—C9	89.4 (5)	O4—C9—C10—C15A	14.6 (15)
O1-Cd1-O4-C9	-5.0 (6)	O5-C9-C10-C15A	-163.3 (13)

O5-Cd1-O4-C9	0.2 (4)	O4—C9—C10—C11B	167.6 (15)
O2-Cd1-O4-C9	146.8 (9)	O5-C9-C10-C11B	-10.3 (16)
C1—Cd1—O4—C9	5.7 (10)	O4C9C10C11A	-167.9 (13)
N1-Cd1-05-C9	88.2 (4)	O5-C9-C10-C11A	14.2 (15)
O7—Cd1—O5—C9	-5.7 (6)	O4-C9-C10-C15B	-11.1 (16)
N2 ⁱ —Cd1—O5—C9	-88.6 (4)	O5-C9-C10-C15B	171.0 (13)
O1-Cd1-O5-C9	176.2 (5)	C15A—C10—C11A—C12A	-7 (2)
O4—Cd1—O5—C9	-0.2 (4)	C11B—C10—C11A—C12A	-97 (8)
O2-Cd1-O5-C9	-171.0 (4)	C15B—C10—C11A—C12A	17 (3)
C1-Cd1-05-C9	-178.6 (4)	C9-C10-C11A-C12A	175.2 (14)
O7—Cd1—N1—C20	-150.7 (5)	C14B—C13—C12A—C11A	-29 (2)
O1-Cd1-N1-C20	-13.0 (5)	C14A—C13—C12A—C11A	-1 (3)
O5-Cd1-N1-C20	69.8 (5)	C12B—C13—C12A—C11A	79 (5)
O4—Cd1—N1—C20	123.7 (5)	C16-C13-C12A-C11A	178.4 (16)
O2-Cd1-N1-C20	-66.6 (5)	C10-C11A-C12A-C13	7 (3)
C9-Cd1-N1-C20	96.9 (5)	C12A—C13—C14A—C15A	-4 (2)
C1-Cd1-N1-C20	-40.0 (5)	C14B—C13—C14A—C15A	83 (5)
O7—Cd1—N1—C17	29.5 (5)	C12B—C13—C14A—C15A	-30 (2)
O1-Cd1-N1-C17	167.3 (5)	C16—C13—C14A—C15A	176.7 (15)
O5-Cd1-N1-C17	-109.9 (5)	C11B—C10—C15A—C14A	26 (3)
O4—Cd1—N1—C17	-56.0 (5)	C11A—C10—C15A—C14A	2 (2)
O2-Cd1-N1-C17	113.7 (5)	C15B—C10—C15A—C14A	-81 (6)
C9-Cd1-N1-C17	-82.9 (5)	C9—C10—C15A—C14A	179.9 (14)
C1-Cd1-N1-C17	140.2 (5)	C13—C14A—C15A—C10	3 (3)
Cd1	0.4 (7)	C15A—C10—C11B—C12B	-26 (3)
Cd1—O2—C1—C2	-178.8 (5)	C11A—C10—C11B—C12B	75 (7)
Cd1-01-C1-02	-0.4 (8)	C15B—C10—C11B—C12B	-1 (3)
Cd1—O1—C1—C2	178.8 (5)	C9-C10-C11B-C12B	180.0 (16)
N1-Cd1-C1-02	-97.0 (5)	C10-C11B-C12B-C13	-2 (3)
O7—Cd1—C1—O2	-6.9 (5)	C12A—C13—C12B—C11B	-83 (5)
N2 ⁱ —Cd1—C1—O2	80.2 (5)	C14B—C13—C12B—C11B	2 (3)
01—Cd1—C1—O2	179.6 (7)	C14A—C13—C12B—C11B	29 (3)
O5—Cd1—C1—O2	168.1 (5)	C16—C13—C12B—C11B	-176.9 (17)
O4—Cd1—C1—O2	163.5 (7)	C12A—C13—C14B—C15B	28 (3)
C9—Cd1—C1—O2	167.2 (4)	C14A—C13—C14B—C15B	-78 (5)
N1-Cd1-C1-01	83.4 (4)	C12B—C13—C14B—C15B	1 (3)
O7—Cd1—C1—O1	173.5 (4)	C16—C13—C14B—C15B	-180.0 (17)
N2 ⁱ —Cd1—C1—O1	-99.4 (4)	C13-C14B-C15B-C10	-4 (3)

05-Cd1-C1-01	-11.5 (5)	C15A—C10—C15B—C14B	90 (7)
04—Cd1—C1—O1	-16.1 (10)	C11B—C10—C15B—C14B	5 (3)
02-Cd1-C1-01	-179.6 (7)	C11A—C10—C15B—C14B	-18 (3)
C9-Cd1-C1-01	-12.4 (6)	C9—C10—C15B—C14B	-176.8 (16)
O2—C1—C2—C3	157.1 (7)	C12A—C13—C16—O6B	-8 (5)
O1—C1—C2—C3	-22.1 (10)	C14B—C13—C16—O6B	-159 (5)
O2—C1—C2—C7	-22.7 (10)	C14A—C13—C16—O6B	171 (5)
01—C1—C2—C7	158.2 (7)	C12B—C13—C16—O6B	21 (5)
C7—C2—C3—C4	2.7 (11)	C12A—C13—C16—O6A	160.9 (19)
C1—C2—C3—C4	-177.0 (7)	C14B—C13—C16—O6A	10 (3)
C2—C3—C4—C5	-1.8 (13)	C14A—C13—C16—O6A	-20 (3)
C3—C4—C5—C6	-0.2 (14)	C12B—C13—C16—O6A	-171 (2)
C3—C4—C5—C8	179.8 (9)	C20—N1—C17—C18	-1.0 (10)
C4—C5—C6—C7	1.2 (15)	Cd1—N1—C17—C18	178.8 (6)
C8—C5—C6—C7	-178.8 (10)	C19—N2—C18—C17	0.5 (11)
C5—C6—C7—C2	-0.3 (14)	Cd1 ⁱⁱ —N2—C18—C17	179.5 (6)
C3—C2—C7—C6	-1.7 (12)	N1-C17-C18-N2	0.2 (13)
C1—C2—C7—C6	178.0 (8)	C18—N2—C19—C20	-0.3 (11)
C4—C5—C8—O3	-7.4 (19)	Cd1 ⁱⁱ —N2—C19—C20	-179.4 (6)
C6—C5—C8—O3	172.6 (13)	C17—N1—C20—C19	1.2 (10)
Cd1	-0.4 (7)	Cd1—N1—C20—C19	-178.6 (6)
Cd1—O4—C9—C10	-178.2 (6)	N2-C19-C20-N1	-0.6 (13)

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*, *y*+1, *z*.

Tablo 3. 22. 5 kompleksine ait hidrojen bağ geometrisi (Å, °) [61]

D—H…A	<i>D</i> —Н	Н…А	$D^{\dots}A$	D—H···A
O7—H72⋯O5 ⁱⁱⁱ	0.82 (2)	2.10 (6)	2.727 (7)	133 (7)
C18—H18····O6A ^{iv}	0.93	2.52	3.394 (14)	157
C19—H19····O3 ^v	0.93	2.43	3.085 (10)	127
C8—H8···· $Cg1^{vi}$	0.93	2.93	3.691 (10)	147

Symmetry codes: (iii) x, -y+1/2, z-1/2; (iv) -x, -y+1, -z; (v) -x+1, -y+1, -z+1; (vi) -x+1, y-1/2, -z+1/2.

3.4. Komplekslerin Antibakteriyel Etkileri

Komplekslerin antibakteriyel uygulamaları yapılmış inkibasyon sonrası zon çapları görüntülenmiş ve zon çapları milimetre olarak ölçülmüştür. Bakterilerin zon görüntüleri şekil 3.6'da ve zon çapları çizelge 5.23'te verilmiştir.

Escherichia coli

Staphylococcus aureus

Şekil 3. 6. Komplekslerin Bakterilere karşı zon görüntüleri

		Bakteriler			
Kompleksler	P. Aeruginosa	K. pneumoniae	E. coli	S. aureus	
1	18	10	12	18	
2	10	9	7	11	
3	12			15	
4	35	27	32	30	
5	18	12	16	20	

Tablo 3. 23. Komplekslere ait antibakteriyel zon çapları (mm)

5. TARTIŞMA VE SONUÇ

İlk kez sentezlenen beş yeni 4-formilbenzoik asitin pirazin metal komplekslerinin yapıları X-ray yapı analizi neticesinde aydınlatılmış ve yapılar FT-IR spektroskopisi ve elementel analiz sonuçları ile desteklenilmiştir. Literatüre kazandırılan beş polimerik bileşiğin aynı zamanda antibakteriyel özellikleri araştırılmıştır. Sentezlenen beş yeni kompleks de polimerik bir koordinasyon çevresine sahip olsa da farklı koordinasyon yapısına sahiptir. 1, 2 ve 3 Kompleksinin metal: 4-formilbenzoik asit : pirazin : su oranı 1:2:1:2, . 4 ve 5 Kompleksinin metal: 4-formilbenzoik asit : pirazin : su oranı 1:2:1:1 olduğu görülmektedir.

$[Co(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	1
$[Cu(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	2
$[Ni(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)_2]_n$	3
$[Zn(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)]_n$	4
$[Cd(C_8H_5O_3)_2(C_4H_4N_2)(H_2O)]_n$	5

Eş yapılı olan 1, 2 ve 3 kompleksinde metal (Co, Cu, Ni) atomuna monodentat bağlanmış iki FBA anyonunun karboksilat O atomları, iki koordine su molekülünün O atomları ve iki köprü pirazin molekülünün N atomları ile hafif bozunmuş oktahedral geometri oluşturmaktadır. Pirazin molekülü metal atomları arasında köprü görevi görerek polimer yapıyı oluşturmaktadır. Moleküller arası O – H — O ve C – H — O hidrojen bağları oluşmaktadır(Şekil 5.1-5.3).

Şekil 5. 2. 2 kompleksinin molekül yapısı [59]

Şekil 5. 3. 3 kompleksinin molekül yapısı [60]

Kompleks 4'ü incelediğimiz zaman merkezde çinko atomuna bir FBA anyonunun karboksilat O atomlarının şelat oluşturduğunu bir FBA anyonunun karboksilat O atomunun ise monodentat bağlandığı görülmektedir. İki pirazin molekülünün N atomları ve bir su molekülünün O atomu ile koordine olmaktadır. Moleküller arası O – H — O ve C – H — O hidrojen bağları oluşmaktadır(Şekil 5.4).

Şekil 5. 4. 4 kompleksinin molekül yapısı [61]

Kompleks 5'te ise kadmiyum atomuna iki FBA anyonunun karboksilat O atomları şelat oluşturmaktadır. Bir su molekülünün O atomu ve köprü konumunda polimer yapıyı oluşturan iki pirazin molekülünün N atomları ile koordinasyon çevresi tamamlanmıştır(Şekil 5.5).

Şekil 5. 5. 5 kompleksinin molekül yapısı [62]

Komplekslerin FT-IR spektrumları Şekil 3.1-3.5'te, pik değerleri Tablo 3.2'de verilmiştir. Sentezlenen tüm komplekslerin yapısındaki su moleküllerinin O-H grubundan kaynaklanan pikler 3500-3300 cm⁻¹ aralığında gözlemlenmiştir. O-H grubu absorpsiyon pikleri literatürde yayvan pikler olarak bilinmektedir. Bu piklerin keskin pikler olarak görülmesinin nedeni molekül içi ve moleküller arası hidrojen bağları varlığını göstermektedir. Benzen ve pirazin halkalarına ait olan aromatik C-H pikleri ise 3100-3000 cm⁻¹ aralığında kaydedilmiştir.

Aldehit grubu C=O titreşimleri kompleksler için sırasıyla 2725 (1), 2728 (2), 2726 (3), 2750 (4) ve 2751 (5) cm⁻¹ de gözlenmiştir. Aldehit grubu pikleri genel olarak bu bölgede görülmektedir. Pik değerlerinde de büyük bir kayma gerçekleşmediğinden aldehit grubunun koordinasyona katılmadığı söylenebilir.

Pirazin halkası C-N grupları için gerilme ve eğilme absorpsiyon bantları 1540-1202 (1), 1555-1201 (2), 1542-1203 (3), 1536-1198 (4) ve 1536-1200 (5) cm⁻¹'de gözlemlenmiştir.

Komplekslerin karboksil grubu COO⁻ asimetrik ve simetrik titreşimleri sırasıyla 1590-1389 (1), 1597-1363 (2), 1590-1391 (3), 1588-1374 (4), 1588- 1395 (5) cm⁻¹'de gözlenirken karboksilik aside ait C=O absorpsiyon piklerinin kaybolması karboksilik asidin karboksilat grubu oksijen atomları üzerinden koordine olduğunu doğrulamaktadır. Karboksil grubuna ait asimetrik ve simetrik titreşimleri arasındaki farktan hesaplanan $\Delta v(COO^{-})$ değerleri, inorganik komplekslerin karakterizasyonunda monodentat, şelat bidentat, köprü, vb. gibi karboksilat koordinasyon tipinin belirlemek için bir kriter olarak kullanılmıştır. Genel olarak, iki değerlikli metal karboksilatlar için asidin sodium tuzu ile kıyaslanması durumunda şu sıralama önerilmiştir: $\Delta v_{\text{monodentat}} >> \Delta v_{\text{ivonik}} \geq \Delta v_{\text{köprü}} >> \Delta v_{\text{selat}}$. Ayrıca literatürde genel olarak $\Delta v(\text{COO})$ değeri 200 cm⁻¹'den büyükse monodentat olduğu bildirilmiştir. 1, 2 ve 3 nolu kompleksler tablodan da görülebileceği gibi monodentat, 4 nolu kompleks bidentattır. 5 nolu kompleksin ise hem monodentat hem de bidentat koordine olduğu komplekslerin tek kristal X-ışını diffraksiyonu ile belirlenmiştir.

Sentezlenen komplekslerin Me-O absorpsiyon titreşimleri 470 (1), 483 (2), 482 (3), 512 (4) ve 500 (5) cm⁻¹'de; Me-N absorpsiyon titreşimleri ise 688 (1), 688 (2), 700 (3), 700 (4) ve 686 (5) cm⁻¹'de görülmüştür[63–67].

Elementel analiz sonuçları teorik hesaplamalarla uyum içerisindedir.

Sentezlenen polimerik komplekslerin antimikrobiyal etkileri incelenmiş ve zon çapları Tablo 3.23'te verilmiştir. Zon çaplarına baktığımızda *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Escherichia coli* ve *Staphylococcus aureus* bakterilerine karşı her kompleksin farklı etki gösterdiği görülmektedir.

Pseudomonas aeruginosa 'ya karşı kompleksler sırasıyla 18 (**1**), 10 (**2**), 12 (**3**), 35 (**4**) ve 18 (**5**) mm zon çapı oluşturmuştur.

Klebsiella pneumoniae 'ya karşı kompleksler sırasıyla 10 (**1**), 9 (**2**), 0 (**3**), 27 (**4**) ve 12 (**5**) mm zon çapı oluşturmuştur.

Escherichia coli 'ya karşı kompleksler sırasıyla 12 (**1**), 7 (**2**), 0 (**3**), 32 (**4**) ve 16 (**5**) mm zon çapı oluşturmuştur.

Staphylococcus aureus karşı kompleksler sırasıyla 18 (**1**), 11 (**2**), 15 (**3**), 30 (**4**) ve 20 (**5**) mm zon çapı oluşturmuştur.

Bu sonuçlara göre sentezlenen polimerik komplekslerin tamamı *Pseudomonas aeruginosa ve Staphylococcus aureus* 'a karşı antibakteriyel özellik göstermektedir.

Klebsiella pneumoniae 'ya karşı 1, 2, 4 ve 5 kompleksi antibakteriyel özellik gösterirken 3 kompleksi antibakteriyel özellik göstermemektedir.

Escherichia coli'ye karşı 1, 2, 4 ve 5 kompleksi antibakteriyel özellik gösterirken 3 kompleksi antibakteriyel özellik göstermemektedir.

Her bir kompleksi oluşturduğu inhibisyon zonlarına göre: 6 mm antibakteriyel etki yok; 6-15 mm zayıf antibakteriyel etki; 15-20 mm iyi antibakteriyel etki; 20-25 mm çok iyi antibakteriyel etki referans aralıklarıyla değerlendirdiğimiz zaman [68];

1 kompleksi *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Escherichia coli* ve *Staphylococcus aureus* 'a karşı iyi derecede antibakteriyel etki göstermektedir.

2 kompleksi *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Escherichia coli* ve *Staphylococcus aureus* '*a* karşı zayıf derecede antibakteriyel etki göstermektedir.

3 kompleksi *Pseudomonas aeruginosa* ve *Staphylococcus aureus'a* karşı zayıf derecede antibakteriyel etki göstermekteyken, *Klebsiella pneumoniae* ve *Escherichia coli* ye karşı bir direnç gösterememektedir.

4 kompleksi *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Escherichia coli* ve *Staphylococcus aureus'a* karşı çok iyi derece olarak kabul edilen referans aralığınında üzerinde antibakteriyel etki göstermektedir.

5 kompleksi *Klebsiella pneumoniae* üzerinde zayıf antibakteriyel etki gösterirken *Pseudomonas aeruginosa, Escherichia coli* ve *Staphylococcus aureus'a* karşı iyi derecede antibakteriyel etki göstermektedir.

Sonuç olarak sentezlenen komplekslerin genel olarak iyi bir antibakteriyel etkiye sahip olduğu klinik patojen bakteriler üzerinde antibakteriyel etkilerinin olduğu tespit edilmiştir. Komplekslerin antibakteriyel inceleme sonuçları, yaygın patojen bakterilere karşı kullanılan antibiyotiklere alternatif olabileceğini göstermiştir. Bilim dünyası için antibiyotik direncinin önemli bir sorun teşkil etmesinden dolayı literatüre yapıları ve antibakteriyal özellikleri belirlenen beş yeni kompleksin yeni ilaç etken malzemesi olarak ileri klinik araştırmalar ile incelenebileceği önerilmektedir.

KAYNAKLAR

- Bekaroğlu, Ö. (1972). Koordinasyon Kimyası (Birinci Baskı.). İstanbul: Kurtuluş Matbası İstanbul Üniversitesi, Kimya Fakültesi Yayını.
- [2] Desiraju, G. R. (1989). Crystal engineering: the design of organic solids. Amsterdam; New York: Elsevier.
- [3] Saha, S., Mishra, M. K., Reddy, C. M., Desiraju, G. R. (2018). From Molecules to Interactions to Crystal Engineering: Mechanical Properties of Organic Solids. Accounts of Chemical Research, 51(11), 2957–2967.
- [4] Z. Laczkowski, K., Biernasiuk, A., Baranowska-Laczkowska, A., Misiura, K., Malm, A., Plech, T., Paneth, A. (2016). Synthesis, Antibacterial Activity, Interaction with Nucleobase and Molecular Docking Studies of 4-Formylbenzoic Acid Based Thiazoles, Med Chem., 12(6), 553-562.
- [5] Deng, Z., Gao, S., Weng Ng, S. (2006). Hexaaqua-cobalt(II) bis-(4-formylbenzoate) dihydrate. Acta Cryst. Sec. E., 62(12), 3423-3424.
- [6] Deng, Z.-P., Gao, S., Huo, L.-H. Ng, S. W. (2008). Tetraaquabis(4-formylbenzoatokappa O)-cobalt(II) tetrahydrate. Acta Cryst. Sect. E., 64, 446
- [7] Deng, Z.-P., Gao, S., Ng, S. W. (2006). Tetraaquabis(4-formylbenzoato-kappa O)nickel(II) tetrahydrate. Acta Cryst. Sec. E., 62, 2904–2905.
- [8] Deng, Z.-P., Gao, S., Ng, S. W. (2006). Diaquabis(4-formylbenzoato-kappa O)copper(II) dihydrate. Acta Cryst. Sec. E., 62, 2906–2907.
- [9] Deng, Z.-P., Gao, S., Huo, L.-H., Ng, S. W. (2008). Diaquabis(4-formylbenzoatokappa O)zinc(II). Acta Cryst. Sec. E., 64, 447
- [10] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2006). Diaquabis(4-formylbenzoatokappa O)zinc(II) monohydrate. Acta Cryst. Sec. E., 62, 3524–3526.

- [11] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2007). Triaquabis(4formylbenzoato-kappa O-2,O ')cadmium(II) trihydrate. Acta Cryst. Sec. E., 63, 2818.
- [12] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2006). Triaquabis(4formylbenzoato-kappa O-2,O ')cadmium(II) 3.5-hydrate. Acta Cryst. Sec. E., 62, 3362–3364.
- [13] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2006). Heptaaquabis(4formylbenzoato-kappa O)barium(II). Acta Cryst. Sec. E., 62, 3230–3232.
- [14] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2007). Diaquabis(4-formylbenzoatokO)bis(1H-imidazole-kN(3))cobalt(II). Acta Cryst. Sec. E., 63, 1116–1117.
- [15] Deng, Z.-P., Gao, S., Ng, S. W. (2006). Diaquabis(4-formylbenzoato-kappa O)bis(1H-imidazole-kappa N-3)manganese(II). Acta Cryst. Sec. E., 62, 2106–2107.
- [16] Deng, Z.-P., Gao, S., Ng, S. W. (2006). Diaquabis(4-formylbenzoato-kappa O)bis(1H-imidazole-kappa N-3)nickel(II). Acta Cryst. Sec. E., 62, 2422–2423.
- [17] Deng, Z.-P., Gao, S., Ng, S. W. (2007). Bis(4-formylbenzoato-kappa O)bis(1Himidazole-kappa N-3)zinc(II). Acta Cryst. Sec. E., 63, 3113.
- [18] Deng, Z.-P., Gao, S., Ng, S. W. (2006). Bis(mu-4-formylbenzoato)-kappa O-3,O
 ': O ';kappa 3O: O,O '-bis[(4-formylbenzoato-kappa 2O,O')(imidazole-kappa N)cadmium(II)] dihydrate. Acta Cryst. Sec. E., 62, 3249–3250.
- [19] Deng, Z.-P., Gao, S., Weng Ng, S. (2007). Bis(benzimidazole-κ N)bis(4formylbenzoato-κ O)zinc(II) monohydrate. Acta Cryst. Sec. E., 63(6) 1712.
- [20] Deng, Z.-P., Gao, S., Ng, S. W. (2006). Aquabis(benzimidazole-kappa N)bis(4-formylbenzoato)-kappa O;kappa O-2,O'-cadmium(II) tetrahydrate. Acta Cryst. Sec.
 E., 62, 3251–3253.

- [21] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2006). cis-Aqua-chloro-bis(1,10phenanthroline-κ2N,N')manganese(II) 4-formyl-benzoate trihydrate. Acta Crystallographica Section E, 62(12), 3388–3389.
- [22] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2007). Aqua(4-formylbenzoatokappa O)(nitrato-kappa O)(1,10-phenanthroline-kappa N-2,N') copper(II). Acta Cryst. Sec. E., 63, 2739.
- [23] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2006). Aquabis(4-formylbenzoatokappa O)(1,10-phenanthroline-kappa N-2,N ')zinc(II). Acta Cryst. Sec. E., 62, 3527–3529.
- [24] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2007). Aquabis(4-formylbenzoato) kappa O-2,O'; kappa O-(1,10-phenanthroline-kappa N-2,N')-cadmium(II). Acta
 Cryst. Sec. E., 63, 2694.
- [25] Deng, Z.-P., Gao, S., Ng, S. W. (2006). Bis(4-formylbenzoato-kappa O-2,O ')(1,10-phenanthroline-kappaN-2,N')cadmium(II)-bis(mu(2)-4-formylbenzoato-kappa O-2: O ')bis[(4-formylbenzoato-kappa O-2,O')(1,10-phenanthroline-kappa 2N,N ')cadmium(II)] (1/1). Acta Cryst. Sec. E., 62, 3432–3434.
- [26] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2007). Di-mu-aqua-bis[aqua(2,2 '-bipyridine-kappaN-2,N')(4-formylbenzoato-kappaO)
 cobalt(II)]bis(4-formylbenzoate). Acta Cryst. Sec. E., 63, 3124.
- [27] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2007). Aqua(2,2'-bipyridine-kappa N-2,N')bis(4-formylbenzoato-kappa O-2,O')cadmium(II)monohydrate. Acta Cryst. Sec. E., 63, 2799.

- [28] Deng, Z.-P., Gao, S., Huo, L.-H., Zhao, H. (2007). 2,2'-[m-Phenyl-enebis(methyl-eneimino)]dipyridinium dichloridobis(4-formyl-benzoatoκ2O,O')cadmate(II) dihydrate. Acta Cryst. Sec. E., 63(11), 2834–2834.
- [29] Deng, Z.-P., Gao, S., & Ng, S. W. (2007). Tetraaquabis(nicotinamideκN)cadmium(II) bis(4-formylbenzoate). Acta Crystallographica Section E, 63(9), 2323–2323.
- [30] Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T. (2012).
 Diaqua-bis-(4-formyl-benzoato-кО1)bis-(nicotinamide-кN1)cobalt(II). Acta Cryst.
 Sec. E., 68(8), 1091–1092.
- [31] Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T. (2012). Diaqua-bis-(4-formyl-benzoato-κO1)bis-(nicotinamide-κN1)nickel(II). Acta Cryst. Sec. E., 68(7), 946–947.
- [32] Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T. (2012).
 Diaqua-bis-(4-formyl-benzoato-κO1)bis-(nicotinamide-κN1)copper(II). Acta Cryst.
 Sec. E., 68(7), 1010–1011.
- [33] Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T. (2012).
 Diaqua-bis-(4-formyl-benzoato-κO1)bis-(nicotinamide-κN1)zinc. Acta Cryst. Sec.
 E., 68(8), 1127–1128.
- [34] Sertcelik, M., Tercan, B., Sahin, E., Necefoglu, H., Hokelek, T. (2009).
 Diaquabis(N,N-diethylnicotinamide-kappa N-1)bis(4-formylbenzoato-kappa O)cobalt(II). Acta Cryst. Sec. E., 65, 389.
- [35] Sertcelik, M., Tercan, B., Sahin, E., Necefoglu, H., Hokelek, T. (2009).
 Diaquabis(N,N-diethylnicotinamide-kappa O)nickel(II). Acta Cryst. Sec. E.,65,326.

84

- [36] Sertcelik, M., Tercan, B., Sahin, E., Necefoglu, H., Hokelek, T. (2009).
 Diaquabis(N,N-diethylnicotinamide-kappa N-1)bis(4-formylbenzoato-kappa O-1)manganese(II). Acta Cryst. Sec. E., 65, 324.
- [37] Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T. (2012). Diaqua-bis-(N,N-diethyl-nicotinamide-κN1)bis-(4-formyl-benzoato-κO1)zinc. Acta Cryst. Sec. E., 68(8), 1067–1068.
- [38] Hökelek, T., Ylmaz, F., Tercan, B., Sertçelik, M., Necefolu, H. (2009).
 Tetraaquabis(isonicotinamide-N 1)cobalt(II) bis-(4- formylbenzoate) dihydrate.
 Acta Cryst. Sec. E., 65(9), 1130–1131.
- [39] Hökelek, T., Ylmaz, F., Tercan, B., Gürgen, F., Necefolu, H. (2009).
 Tetraaquabis(isonicotinamide-kN1)nickel(II) bis-(4- formylbenzoate) dihydrate.
 Acta Cryst. Sec. E., 65(9), 1101–1102.
- [40] Hokelek, T., Yilmaz, F., Tercan, B., Sertcelik, M., Necefoglu, H. (2009). catena-Poly[[(4-formylbenzoato-kappa O-1)(isonicotinamide-kappa N-1)zinc(II)]-mu-4formylbenzoato-kappa O-2(1):O-1 ']. Acta Cryst. Sec. E., 65, 1399.
- [41] Hokelek, T., Yilmaz, F., Tercan, B., Gurgen, F., Necefoglu, H. (2009).
 Aquabis(4-formylbenzoato-kappa O-2(1),O-1 ')bis(isonicotinamide-kappa N-1)cadmium(II) monohydrate. Acta Cryst. Sec. E., 65, 1416.
- [42] Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T. (2013). Bis(μ-4formyl-benzoato-κ2O:O')bis-[(4-formyl-benzoato-κ2O,O')bis-(iso-nicotin-amideκN1)copper(II)]. Acta Cryst. Sec. E., 69(5), 290–291.
- [43] Wheatley, P. J. (1957). The crystal and molecular structure of pyrazine. Acta Cryst., 10, 182-187.

- [44] Bordallo, H. N., Chapon, L., Manson, J. L., Ling, C. D., Qualls, J. S., Hall, D., Argyriou, D. N. (2003). Structural and magnetic behavior of a quasi-1D antiferromagnetic chain compound Cu(NCS)2(pyz). Polyhedron, 22(14), 2045– 2049.
- [45] Choudhury, C. R., Dey, S. K., Sen, S., Bag, B., Mitra, S., Gramlich, V. (2002).
 A Pyrazine-Bridged Ni(II) Coordination Polymer. Zeitschrift f
 ür Naturforschung B, 57(11), 1191–1194.
- [46] Liu, C., Thuijs, A. E., Felts, A. C., Ballouk, H. F., Abboud, K. A. (2016). Crystal structure of catena-poly[[(dimethyl sulfoxide-κO)(pyridine-2,6-di-carboxyl-atoκ3O,N,O')nickel(II)]-μ-pyrazine-κ2N:N']. Acta Cryst. Sec. E., 72(5), 768–771.
- [47] Liu, C., Felts, A. C., Thuijs, A. E., Useche, A., Abboud, K. A. (2016). Crystal structure of catena-poly[[[trans-bis(aceto-nitrile-κN)diaquacobalt(II)]-μ-pyrazineκ2N:N'] dinitrate]. Acta Cryst. Sec. E., 72(2), 151–154.
- [48] Begum, N., Ghosh, A. C., Kabir, S. E., Miah, Md. A., Hossain, G. M. G. (2005). Synthesis, structures and reactivity of triosmium clusters containing terminal pyrazines, bridging hydroxy and methoxycarbonyl ligands. Polyhedron, 24(18), 3074–3081.
- [49] Heine, J., Wehner, T., Bertermann, R., Steffen, A., Müller-Buschbaum, K. (2014). 2∞[Bi2Cl6(pyz)4]: a 2D-pyrazine coordination polymer as soft host lattice for the luminescence of the lanthanide ions Sm3+, Eu3+, Tb3+, and Dy3+. Inorganic Chemistry, 53(14), 7197–7203.
- [50] Ferreira, S. B., Kaiser, C. R. (2012). Pyrazine derivatives: a patent review (2008 present). Expert Opinion on Therapeutic Patents, 22(9), 1033–1051.

- [51] Dolezal, M., Zitko, J. (2015). Pyrazine derivatives: a patent review (June 2012 present). Expert Opinion on Therapeutic Patents, 25(1), 33–47.
- [52] Miniyar, P. B., Murumkar, P. R., Patil, P. S., Bothara, M. A. B. and K. G. (2013). Unequivocal Role of Pyrazine Ring in Medicinally Important Compounds: A Review. Mini-Reviews in Medicinal Chemistry, 13, 1607-1625.
- [53] Han, L.-J., Kong, Y.-J. (2014). Poly[(μ-penta-fluoro-benzoatoκ2O:O')(penta-fluoro-benzoato-κO)(μ-pyrazine-κ2N:N')copper(II)]: a coordination polymer linked into a three-dimensional network by inter-molecular C—H···F—C inter-actions. Acta Cryst. Sect. C. 70(11), 1017–1020.
- [54] Liu, C., Felts, A. C., Thuijs, A. E., Useche, A., & Abboud, K. A. (2016). Crystal structure of catena-poly[[[trans-bis(aceto-nitrile-κN)diaquacobalt(II)]-μ-pyrazineκ2N:N'] dinitrate]. Acta Cryst. Sec. E., 72(2), 151–154.
- [55] Tercan, M.B., (2006) X-ışını kırınımı yöntemiyle kripta-fosfazen türevlerinin kristal yapı analizi, Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
- [56] Yildiz, S., Yilmaz, A., Can, Z. (2017). In Vitro Bioactive Properties of Some Wild Mushrooms Collected from Kastamonu Province. Kastamonu Üniversitesi Orman Fakültesi Dergisi, 17(3), 523–530.
- [57] Sertçelik, M., Özbek, F. E., Sugeçti, S., Necefoğlu, H. (2018). 4-Formilbenzoat'ın Co(II), Cu(II) ve Zn(II) ile İzonikotinamid Komplekslerinin Sentezi; Spektroskopik, Termik Özelliklerinin ve Antibakteriyel Etkinliklerinin İncelenmesi. Synthesis Of Izonicotınamide Complexes Of 4-Formilbenzoate with Co (II), Cu (II) And Zn (II); Investigation of Spectroscopic, Thermal Properties and Antibacterial Activities., 8(4), 189–195.

- [58] Askin, G. S., Celik, F., Dilek, N., Necefoglu, H., Hokelek, T. (2015). Crystal structure of catena-poly[[diaquabis(4-formylbenzoato- kappa O-1)cobalt(II)]-mupyrazine-kappa N-2:N ']. Acta Cryst. Sec. E., 71, 339-341.
- [59] Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T. (2014).
 catena-Poly[[di-aqua-bis-(4-formyl-benzoato-κO1)copper(II)]-μ-pyrazine-κ2N:N'].
 Acta Cryst. Sec. E., 70(1), 4–5.
- [60] Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T. (2014).
 catena-Poly[[di-aqua-bis-(4-formyl-benzo-ato-κO1)nickel(II)]-μ-pyrazine-κ2N:N'].
 Acta Cryst. Sec. E., 70(2), 65–66.
- [61] Askin, G. S., Celik, F., Dilek, N., Necefoglu, H., Hokelek, T. (2015). Crystal structure of catena-poly[[aquabis(4-formylbenzoato)-kappa O-2(1),O1 ';kappa O-1zinc]-mu-pyrazine-kappa N-2:N ']. Acta Cryst. Sec. E., 71, 402-405.
- [62] Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T. (2014). catena-Poly[[aqua-bis-(4-formyl-benzoato-κ2O1,O1')cadmium]-μ-pyrazineκ2N:N']. Acta Cryst. Sec. E., 70(2), 37–38.
- [63] McAfee, L. (2000). Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic Chemistry; Part B: Application in Coordination, Organometallic, and Bioinorganic Chemistry, 5th Edition (Nakamoto, Kazuo). Journal of Chemical Education, 77(9), 1122.
- [64] Bellamy, L. (1975). The Infra-red Spectra of Complex Molecules. Springer Netherlands.
- [65] Pavia, D. L., Lampman, G. M., Kriz, G. S. (2001). Introduction to spectroscopy a guide for students of organic chemistry (3rd ed.). Fort Worth Harcourt College Publishers.

- [66] Yıldırım, T., Köse, D. A., Avcı, E., Özer, D., Şahin, O. (2019). Novel mixed ligand complexes of acesulfame / nicotinamide with some transition metals. Synthesis, crystal structural characterization, and biological properties. Journal of Molecular Structure, 1176, 576–582.
- [67] Özbek, F. E., Sertçelik, M., Yüksek, M., Necefoğlu, H., Çelik, R. Ç., Nayir, G. Y., & Hökelek, T. (2017). Cu(II) and Ni(II) 4-cyanobenzoate complexes with nicotinamide: Synthesis, spectral, structural and optical characterization and thermal behavior. Journal of Molecular Structure, 1150, 112–117.
- [68] Al-Majidi, S. M. H. (2014). Synthesis of some new 4-oxo-thiazolidines, tetrazole and triazole derived from 2-SH-benzothiazole and antimicrobial screening of some synthesized. Journal of Saudi Chemical Society, 18(6), 893–901.

ÖZGEÇMİŞ

Adı Soyadı : Fatih ÇELİK Doğum Yeri : Erzurum Doğum Tarihi : 20.09.1980 Medeni Hali : Evli Yabancı Dili : İngilizce

Egitim Durumu (Kurum ve Yıl)

Lise : Erzurum Lisesi 1996-1999

Lisans : Atatürk Üniversitesi Fen Fakültesi Kimya Bölümü 2000-2004

Yüksek Lisans: Kafkas Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Anorganik Kimya Bilim Dalı 2014-Devam

Yayınları (SCI ve diğer)

1. Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T., "Catena-Poly[[diaquabis(4-formylbenzoato- κO^1)nickel(II)]- μ-pyrazine- $\kappa^2 N:N'$]", Acta Crys. Sec. E:70(2), 65-66, 2014.

2. Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T., "Catena-Poly[[aquabis(4-formylbenzoato- $\kappa^2 O^1$, $O^{1'}$)cadmium]- μ -pyrazine- $\kappa^2 N:N'$]", Acta Crys. Sec. E:70(2), 37-38, 2014.

3. Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H., Hökelek, T., "Catena-Poly[[diaquabis(4-formylbenzoato- κO^1)copper(II)]- μ -pyrazine- $\kappa^2 N:N'$]", Acta Crys. Sec. E:70(2), 4-5, 2014.

4. Aşkin, G.S., Çelik, F., Dilek, N., Necefoğlu, H., Hökelek, T., Weil M., "Crystal structure of catena-poly[[aquabis(4-formyl-benzoato)- $\kappa^2 O^1$, O^1 ; κO^1 -zinc]- μ -pyrazine- $\kappa^2 N$: N']", Acta Crys. Sec. E:71(4), 339-341, 2015.