

KADİR HAS UNIVERSITY

SCHOOL OF GRADUATE STUDIES

PROGRAM OF COMPUTER ENGINEERING

PEER TO PEER AND MASTER-SLAVE TOPOLOGIES

FOR EDGE COMPUTING IN INTERNET OF THINGS

MOSTAFA ZIADOON IBRAHIM IBRAHIM

MASTER’S THESIS

ISTANBUL, AUGUST, 2019

M
O

S
T

A
F

A
 Z

IA
D

O
O

N
 IB

R
A

H
IM

 IB
R

A
H

IM

 M
.S

.T
h
esis

 2
0
1
9

S
tu

d
en

t’s F
u
ll N

am
e

P
h
.D

. (o
r M

.S
. o

r M
.A

.) T
h
esis

 2
0
1
1

 PEER TO PEER AND MASTER-SLAVE TOPOLOGIES

FOR EDGE COMPUTING IN INTERNET OF THINGS

MOSTAFA ZIADOON IBRAHIM IBRAHIM

MASTER’S THESIS

Submitted to the School of Graduate Studies of Kadir Has University in partial

fulfillment of the requirements for the degree of Master’s in the Program of Computer

Engineering

ISTANBUL, AUGUST, 2019

4

TABLE OF CONTENTS

ABSTRACT .. i

ÖZET .. ii

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES ... iv

LIST OF FIGURES .. v

LIST OF SYMBOLS/ABBREVIATIONS ... vi

1. INTRODUCTION ... 1

1.1 Objectives ... 4

1.2 Motivation .. 4

1.3 Research Questions ... 4

1.4 Problem Statement .. 5

1.5 Outline .. 6

2. LITERATURE REVIEW ... 7

2.1 Introduction ... 7

2.2 Iot .. 7

2.3 The Shift From Cloud To Edge Computing ... 8

2.4 Mobile Cloud And Communication Resources .. 9

2.4.1 Communication Resources .. 10

2.4.2 Cloud Computing Resources ... 11

2.5 Assignment Problems.. 13

2.6 Scheduling And Planning Problem ... 14

2.7 Edge Computing .. 15

3. METHODOLOGY .. 17

3.1 Peer to Peer (P2P) ... 18

3.2 Master – Slave (M2S) .. 19

4. RESULTS... 22

4.1 Peer to Peer (P2P) RESULTS .. 22

4.2 Master - Slave (M2S) RESULTS ... 28

5. CONCLUSIONS ... 35

6. REFERENCES .. 36

CURRICULUM VITAE ... 40

i

PEER TO PEER AND MASTER-SLAVE TOPOLOGIES FOR EDGE COMPUTING

IN INTERNET OF THINGS

ABSTRACT

The rapid increase in the number of devices connected to the Internet has led to a

transition from cloud computing to the edge. Edge computing slowly replaces cloud

computing due to the increased capacity of mobile devices such as memory, battery, and

computing power. These computational and power resources in mobile devices may

however become insufficient, especially in time-sensitive and computationally intensive

applications. Advanced edge computing will not only improve the performance of your

device applications but it will also reduce the power consumption of your devices, by

extending battery life. However, the performance of edge based computing depends on

the effective allocation of computer and communications resources. This work assesses

the problem of improving resource allocation for sophisticated mobile computing

systems. Resource allocation is implemented to reduce the cost associated with edge

computing. In this research we link edge devices together with the application of

resource assignment to other devices depending on the type of link. The main

consideration is that each device is designed to perform a set of tasks while calculating

the usage rate of both RAM and CPU. Two methods have been used to scale the

connection of devices at the edge: peer to peer (P2P) and master-slave models. The use

of communication models such as P2P and Master-Slave shows a significant

improvement in task execution. Master-Slave model has a better performance and is

therefore recommended for advanced computing.

Keywords: IOT, edge computing, mobile edge computing, cloud computing, fog

computing, Peer to Peer, Master-Slave, CPU utilization, RAM utilization.

ii

NESNELERİN İNTERNETİNDE KENARDA HESAPLAMA İÇİN EŞLER ARASI

VE ANA-YARDIMCI TOPOLOJİLERİ

ÖZET

İnternete bağlanan cihaz sayısındaki hızlı artış bulutta hesaplamadan kenarda

hesaplamaya geçişe yol açmıştır. Gezgin cihazların hafıza, pil ömrü ve hesaplama

gücündeki artışlar sayesinde kenarda hesaplama yavaş yavaş bulutta hesaplamanın

yerini almaktadır. Ancak gezgin cihazlardaki bu hesaplama ve güç kaynakları, özellikle

süreye hassas ve hesaplama yoğun uygulamalarda, yetersiz kalabilmektedir. Kenarda

hesaplamanın gelişmesi, sadece cihazların performanslarını iyileştirmeyecek, aynı

zamanda cihazların güç harcamasını azaltarak pil ömrünü uzatacaktır. Öte yandan

kenarda hesaplamadaki performans hesaplama ve iletişim kaynaklarının etkin

atanmasına bağlıdır. Bu çalışmada gezgin hesaplama sistemlerindeki kaynak atama

problemi ele alınmıştır. Kenarda hesaplamayla bağlantılı maliyetleri azaltmak için

kaynak atama gerçekleştirilmektedir. Bu araştırmada cihazlar arasındaki bağlantı tipine

göre yapılan atama ile cihazların birbirine bağlanması öngörülmüştür. Temel yaklaşım,

her bir cihazın kendisine atanan belli sayıda görevi yerine getirirken hafıza ve işlemci

kullanımını sürekli olarak hesaplamasıdır. kenarda cihazların bağlantılarını ölçeklerken

iki yöntem kullanılmıştır: Eşler arasında (P2P) bağlantı ve ana-yardımcı bağlantı

modeli. Bu tarz iletişim modellerinin görevlerin işlenmesinde anlamlı iyileştirmeler

getirdiği gösterilmiştir. Ana-yardımcı bağlantı modelinin performansı daha iyidir ve bu

sebeple kenarda hesaplama için önerilmektedir.

Anahtar Sözcükler: nesnelerin interneti, kenarda hesaplama, gezgin kenarda

hesaplama, bulutta hesaplama, siste hesaplama, eşler arası, ana-yardımcı, işlemci

kullanımı, hafıza kullanımı.

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to the advisor of my thesis Asst. Prof. Dr. Arif

Selçuk Öğrenci for giving me the opportunity to work on this most wonderful research

and give him my thanks and pride and respect to him for his help from the title of the

topic and the application of the idea until it became a complete and beautiful thesis.

I would like to express my deep appreciation to Kadir Has University which has helped

me develop a strong knowledge base and acquire skills through courses and lectures. I

would like to thank the distinguished professors of the discussion committee for

accepting this thesis. I also thank my parents, wife, sister and, who are always

encouraged and supported.

iv

LIST OF TABLES

Table 4.1 P2P EXECUTION OF TASK FOR P2P………………………………....25

Table 4.2 P2P Average RAM and CPU utilization………………………………....27

Table 4.3 Master-Slave average CPU and RAM utilization…………………….….33

Table 4.4 Master-Slave task execution……………………………………………...35

Table 4.5 Comparison between Peer-to-Peer and Master-Slave……………………36

v

LIST OF FIGURES

Figure 2.1 The design of mobile cloud computing …………………...……………..10

Figure 2.2 How edge computing works……………………………………………....15

Figure 3.1 Peer To Peer Flow chart…………………….…...……………………......18

Figure 3.2 Master -Slave Flow chart…….…...........................…………………........20

Figure 4.1 P2P CPU utilization for 1000 task and 10 nodes………………….….......21

Figure 4.2 Peer to Peer RAM utilization for 1000 task and 10 nodes…………..........22

Figure 4.3 Peer to Peer subplot CPU utilization for 1000 task and 10 nodes…..…....23

Figure 4.4 Peer to Peer subplot RAM utilization for 1000 task and 10 nodes……….24

Figure 4.5 Master -Slave CPU UTILIZATION……………………………………...29

Figure 4.6 Master -Slave RAM UTILIZATION……………………………...……...30

Figure 4.7 Master- Slave subplot CPU UTILIZATION………………………...……31

Figure 4.8 Master – Slave subplot RAM UTILIZATION ……………………….......32

vi

LIST OF SYMBOLS/ABBREVIATIONS

2G 2th Generation Cellular Networks

3G 3th Generation Cellular Networks

4G 4th Generation Cellular Networks

5G 5th Generation Cellular Networks

CPU Central Processing Unit

D2D Device-To-Device Communication

DCF Distributed Coordination Function

EC Edge Computing

IaaS infrastructure-as-a-service

IoT Internet of Things

LTE Long-Term Evolution

M2M Machine to Machine

M2S Master to Slave

MCC Mobile Cloud Computing

MEC Mobile Edge Computing

OFDMA Orthogonal Frequency Division Multiple Access

P2P Peer to Peer

PaaS platform-as-a-service

PC Personal Computer

RAM Random Access Memory

RAS Resource Allocation Scheme

RFID Radio-Frequency Identification

vii

SaaS software-as-a-service

SCADA Supervisory Control And Data Acquisition

SOA Service Oriented Architecture

SPE Distributed Stream Processing Engines

TDMA Time Division Multiple Access

UID Unique Identifier

1

1. INTRODUCTION

The move towards connected devices in Internet has led to the increased number of

mobile devices such as tablets, smartphones, sensor, and other portable devices. A

recent estimation by Cisco has revealed that the number of connected mobile devices

will grow tremendously to 11.6 billion by 2021 (Gezer et al., 2018). This represents a

compound annual growth rate of 8% for the period between 2016 and 2021 (Josilo,

2018). Although there has been a significant increase in the number of these devices,

the computational capabilities are still limited compared to traditional servers and

desktops. Considering that these mobile devices are battery powered then it is vital to

note that most of the applications in these devices are profoundly limited by the

clock speed of the processor. Internet of Things (IoT) may be a tricky topic but it is

not a new principle. At the dawn of the second millennium, the concept of Internet of

Things emerged. This concept is based on the requirement that each thing must have

a wireless identifier and a connection to internet for data exchange. These things can

be controlled or communicated through a computer. In 1990, Kevin Ashton wrote an

article in RFID magazine in which he mentioned about connecting all we have with

computers, that we can control everything and know everything through the

information that will be collected without any human intervention in addition to the

possibility of knowing the quantity and location. Thus, we can reduce costs and rates

of loss and waste. We need to strengthen computers by means of data collection so

that they can see, hear and identify the world on their own. Radio frequency

identification, sensors and actuator technology gave acceptance for computers to

display, recognize and know the world – without the conditions of data that are

entered by ourselves. At that time, this sight required important technological

advancement. Along the process, several important questions have arisen: How to

connect the things on this planet? What kind of wireless communication should we

build on devices? What changes should we make to the internet infrastructure to deal

with billions of new devices? What kind of intensity can these devices hold? What

should we evolve to make these solutions cost operative?

In 1999, the number of questions was huge than the number of responses to internet

of things. All these questions represent problems in themselves and pose difficulties

2

in building the infrastructure of the IoT concept (Buyya and Dastjerdi, 2016).

Therefore, to maintain the portability of those mobile devices, we need to ensure that

the energy consumption is maintained at the lowest possible level allowing the

devices to be physically light and small while transferring the limited computational

capabilities and memory to the cloud (Dao et al., 2018). The mobile cloud is difficult

to implement in real time due to the absence of access schemes, standards, and

elasticity in the application model. Although the mobile cloud is associated with

some issues, it is also better at energy management, task division, security and better

services. The mobile cloud computing is the conventional accommodation of cloud

computing and wireless networks to allow for mobility. Furthermore, the mobile

cloud computing system is made up of three primary components: hardware,

software and the communication network (Josilo, 2018). These elements allow the

users to access computing functionalities from anywhere provided there is a full

connection to the information space considering that each node in the information

space has communication capabilities for processing information and delivering data

via the voice or data channel.

Resource assignment (allocation) is the process of utilizing and allocating the limited

computing resources contained within the environment to meet the needs of the user.

The resources are assigned in amount and type to complete a certain task (Dao et al.,

2018). For optimal resource assignment in cloud computing and connected devices

(i.e. in IoT), it is vital to utilize an optimal resource allocation scheme (RAS) that

will assist in preventing two applications from trying to access the same resource at

the same time especially in cases of isolated unlimited resources (Josilo, 2018). The

mobile cloud computing technology is a new approach that has been applied in

closing the gap between the limited computational capabilities of mobile devices and

the high requirements of certain applications. Resource assignment is a significant

part of the application process (Prabhu and J, 2015). For any program or application

to be run in a system that requires resources that’s when an application is open, the

device must allocate certain resources for it to run. In mobile cloud computing, this

condition is satisfied through the mapping of virtualized resources to a physical

application. Computing resources such as hardware and software are allocated to the

cloud application which in turns provide unlimited virtualized resources. Mobile

3

cloud computing is part of scalable computing models in cases where virtual

machines are entered therefore resource management system is vital to manage the

allocation of physical resources to the cloud servers and the mobile devices (Gezer et

al., 2018). The process is typically carried out in a on-demand fashion especially

when the process progresses to execution. The management system should not

allocate any resources prior to execution as this will reduce the number of resources

available in times of provisioning.

Design optimization is the practice of determining the optimal set of design

parameters that will be vital in attaining a certain objective. Optimization is vital in

any design project especially in complicated problems (Gawanmeh et al., 2017). For

instance, when designing for resource allocation in computing, it’s vital to determine

which resources will be used for provisioning to maximize the utilization of the

limited computing resources. Optimization can be divided into functional or

combinatorial optimization (Gawanmeh et al., 2017). The functional optimization is

formulated as a continuous function for the design parameters such as hardware

(which might be a continuous function of the computing resources available in a

mobile device). In combinatorial optimization, the values of the parameters are

investigated. In this case, parameters are typically discrete, i.e., the design problem

can be accomplished in finite number of states. For complex design problems, the

functional optimization might be inadequate; thus, in this case, the problem may be

discretized to convert it to a combinatorial optimization problem (Weintraub and

Cohen, 2017). Genetic algorithm and neural networks can be implemented for

optimization. The genetic algorithm is the search technique utilized for minimizing

inefficiencies and reducing production time while maximizing productivity. On the

implementation side, software containers are emerging solutions. It is the most

important characteristic of containers that the programmer or developer will be able

to build installations and infrastructure in order to use resources and invest in a way

to get rid of the constant need to buy corporate services such as software and other

limited use, which needs a lot of time to be synchronized with the concept of the

Internet of Things. Containers are the right solution for those who need to expand or

develop the structures of the Internet of Things in a short period of time. In mobile

cloud computing the optimization algorithm will be used to reduce the energy

4

consumption, and the cost of cloud services, optimize resource allocation and

increase latency tolerance of some applications (Josilo, 2018).

1.1 Objectives

The primary aim of this thesis is to develop a methodological framework that will

improve the utilization of nodes (computing elements) in edge computing when the

nodes are overloaded by the tasks arriving to them. This will be accomplished

through simulations in MATLAB where tasks are offloaded to other nodes available

for processing. This research will evaluate two different topologies for resource

allocation in edge computing, namely, the master-slave and peer-to-peer

communication schemes.

1.2 Motivation

This thesis was motivated by the need for resource assignment process in the

emerging technology of edge computing and the increase in the low latency

requirement and delay tolerance in mobile applications. Generally, tasks require a

certain amount of computational resources to be used where the arrival of subsequent

tasks to a specific node may cause overloading in the node. The latency requirements

cannot be achieved neither by a sequential processing nor by transferring the task(s)

to the cloud as the latter would need extra latency for communication. Hence, a

suitable task offloading strategy would be desirable to achieve system level service

levels without further installations of hardware resources.

1.3 Research Questions

The simulation of the task offloading based resource assignment in edge computing

will be the main focus in the thesis as it seeks to answer the following research

questions:

5

 How to generate a set of tasks in a group of processing units that serve

as edge nodes?

 How to achieve the task offloading among the nodes using peer-to-

peer and master-slave topology?

 Which mode of communication among nodes is better in terms of

utilization?

1.4 Problem Statement

The growth in the number of connected mobile devices over the years has also led to

an increase in mobile data traffic. This increase in the mobile data traffic has

increased stress on the mobile computational performance thus leading to the

development of mobile cloud computing. This increased demand has also placed a

lot of expectation on the cloud communication and computing resources; therefore, it

is vital to evaluate resource allocation in these technologies to ensure the user

experience is always maintained. The design of mobile cloud computing has always

been faced by challenges primarily to constraints, i.e., maintaining user experience

and cost (Gawanmeh et al., 2017). User experience is fundamental as each

application should be concerned with the overall response time and energy

consumption of the battery. The responses of any application in mobile

communication are affected by access to the limited resources through the wireless

network; therefore, application performance is typically constrained by external

resources. Furthermore, the performance of applications dictates battery life as heavy

applications consume more energy. The cost of using mobile applications is another

constraint that will be evaluated as it is important in the selection of the cloud

computing services. To address all these challenges, various cloud architectures have

been considered with the common practice being that the mobile device users will

access a commercial cloud infrastructure where they would offload their

computational tasks. The recent development in the remote resourceful clouds such

as Windows Azure and Amazon EC2 has been such that resource allocation

accommodates for the extremely low latency requirements of the delay sensitive

6

applications used in mobile devices (Gawanmeh et al., 2017). The optimization

efforts in this thesis will evaluate the proposal of edge computing bringing

computational resources close to the edge of the network which is easily accessible

through the emerging 5G network. Thus, the problem statement of the thesis can be

formulated as follows. How can we simulate the resource allocation in edge

computing? The simulation of the computing scenario will be done in MATLAB and

optimized using two network topologies peer-to-peer and master-slave to increase

the efficiency of resource allocation for low latency and delay-intolerant

applications.

1.5 Outline

This thesis contains six chapters. Chapter 1 provides an introduction that outlines a

brief background, motivation, goals and problem statement. Chapter 2 provides

background knowledge of existing literature through a comprehensive literature

review of the various aspects to be considered in this research. Chapter 3 provides

the methodology that deals with problem formulation, algorithm simulation and

method comparison. Chapter 4 presents simulation results and comparison of various

topology techniques. Furthermore, it defines a detailed discussion of the results that

give meaning to each value and relates it to the research questions. Chapter 5 will

present the concluding observations of the thesis that provide a new way of research.

7

2. LITERATURE REVIEW

2.1 Introduction

This chapter provides a theoretical background to the knowledge and the concepts

that are to be utilized in this thesis. The theoretical background and methods covered

in this section will be utilized in the formulation of the problem and in the creation of

the most efficient way of solving the problem.

2.2 IoT

IoT is the emerging technology that describes a system of interrelated computing

devices, embedded systems, digital machines, microprocessor chips, people and

mechanical machines that are assigned unique identifiers (UID) which can transfer

data and interact over a network without the need for human-computer interaction

(Hassan et al., 2015). IoT systems are made up of web-enabled smart devices that

utilize sensors, communication hardware, and embedded processors to collect a huge

amount of data in their respective environments. The collected data are shared among

the connected devices via various IoT gateways or other edge devices that enable the

data to be sent to the cloud (Josilo, 2018). Related devices can access this data, and

most of these functionalities are carried out without human intervention. The internet

of things is an extension to SCADA (Supervisory Control And Data Acquisition)

which is a class of software used for process control and data gathering in real time

especially from remote locations (Elijah et al., 2018). Similar to SCADA the IoT also

include the hardware and software components but has been extended to collect a

huge amount of data and transmit via the internet to cloud storage.

IoT has numerous real-world applications ranging from manufacturing, enterprise

IoT, consumer IoT, industrial IoT, etc. (Elijah et al., 2018). The application of this

technology spans various sectors both horizontally and vertically such as energy,

automotive, business and telco. The consumer sector has seen the surge of smart

homes that are typically equipped with smart devices such as thermostats, heating

systems, electronic devices, lighting controls, smart appliances etc. which can be

remotely controlled via a network connected device such as computers and

8

smartphones (Jindal, et al., 2018). Further wearable devices contain sensors and

software that can transmit or analyze data providing real time experience to the user.

These wearables have increased safety through improving first responders’ response

time especially in emergencies or in life threatening situations (Jindal et al., 2018). In

healthcare, mobile devices with sensors have been used to monitor patients closely

collecting data which can be analyzed and stored for future diagnosis and treatment.

This increased collection of data and usage of software have led to the need for

mobile edge computing technology to improve accessibility and analysis of data.

2.3 The Shift from Cloud to Edge Computing

Cloud computing has been at the center of the internet of things; conventionally it is

the practice of utilizing remote network service via the internet to process and store

data. Cloud computing has grown tremendously over the last decade from a business

idea to an aspect of the information technology industry (Kang et al., 2015). A

definitive advantage of cloud computing paradigm is the capability to deploy any

application or service without the cost of local hardware. Further, the cloud offers the

ability to scale the computing capacity of a mobile device which can either be scaled

up or down in a “on demand” basis. This elasticity has improved the process of

resource allocation as it is dependent on real time demand. This feature has become a

significant form of mobile device users especially those in the internet of things that

suffer from seasonal demand peak (Liu et al., 2017). This elasticity has seen a change

in investment as initially there was the need for infrastructure such as servers with

increased processing power and storage to be able to accommodate a huge amount of

data as all this is easily accessible through the cloud services. Presently, the cloud

can offer any connected user services based on a variety of pricing models that will

fit the user.

Users and companies are becoming increasingly aware of the importance of cloud

computing in business and the value it takes the transition to the cloud. A smooth

transition can only be realized where the comprehension of the benefits and

challenges involved in the cloud is achieved (Liang, 2017). Cloud services are

expected to have the potential of exceeding service reliability, and availability

requirements of the traditional deployment in mobile or business sectors.

9

Consequently, the primary concerns in edge computing are security and privacy as

there is a fundamental shift in the traditional model of accessing resources from a

centralized position to a distributed and decentralized system (Ahmed and Rehmani,

2017). This new paradigm is referred to as edge computing in which case the

fundamental computing building blocks such as computational resources, network,

and storage are brought closer to the consumer. However, edge computing is still in

its infancy as various vendors are positioning it from a different perspective. The

current cloud market is made of networked devices, public cloud, and automation

companies; thus, edge computing can be divided into two, i.e., fog computing and

edge computing (Ahmed and Rehmani, 2017). The fog computing technique entails

the moving of intelligence down the local area network where data can be processed

in the fog node. Edge computing pushes processing power, intelligence and

communication capabilities towards connected mobile devices via the edge gateway.

The movement of the computing notes close to the origin of the data reduces latency

in the round trip to the cloud, this advantage is being exploited in numerous areas

such as gaming, healthcare, video streaming and internet of things (Liang, 2017).

The internet of things is the primary driver of edge computing accelerating the pace

of adoption of this technology, especially in the data driven applications. Most

clouds are underpinned by a network of virtualized infrastructure that allows the

optimization of hardware use. Virtualization technology that enables elasticity in

cloud computing increasing flexibility in the speed of deployment, cloud

management and dynamic auto provisioning of resources. Currently, multiple

vendors offer the virtualization environments where the primary factor for the

selection of the vendor is based on the requirements of the user.

2.4 Mobile Cloud and Communication Resources

The two primary types of resources that are contained the mobile cloud system, that

is, computational and communication resources, are illustrated in Figure 2.1 below.

The mobile devices will decide whether to utilize computational resources locally or

to upload the task to external cloud storage where the communication network is

used (Josilo, 2018). Offloading the tasks to computational resources requires an

external resource manager. An increased competition for the resources might affect

10

the performance of both a mobile device and other devices in the system. Therefore,

it’s vital to evaluate the various access technologies, mobile cloud computing

architectures and their effects on the mobile cloud computing systems.

Figure 2.1 The design of mobile cloud computing (Josilo, 2018).

2.4.1 Communication Resources

The process of offloading specific tasks to external computational resources such as

the cloud is highly reliant on wireless communication networks. There is a

heterogeneity in the wireless networks available to mobile users hence they can

select between the different radio access technologies such as 2G, 3G, 4G, 5G and

Wi-Fi communication (Gusain and Kumar, 2014). The radio communication

technologies may experience problems such as intermittent connectivity, limited

bandwidth, and variable network conditions. Moreover, the sharing of the

communication medium considerably affects the transmission rate which is highly

dependent on the bandwidth allocation algorithm of the service provider, for

instance, distributed coordination function (DCF) is a protocol used for CSMA/CA

which uses the fair bandwidth sharing protocol (Sonkar and Kharat, 2015). Other

alternatives, fair bandwidth sharing mechanisms include the ones used for time fair

TDMA and OFDM where the medium access protocol can be computed using the

mathematical relations, but in this case, it will be dependent on the total number of

11

users sharing the access point (Sonkar and Karate, 2015). The model can also be

used to describe the proportional fair scheduling (PFS) which is a characteristic of

the 3G networks (Jennings and Stadler, 2015). The overall growth rate of the mobile

devices, the increase in the latency requirement, and delay sensitive applications

have made it clear that it’s vital for the communication resources stored in the cloud

to be adequately managed (Jennings and Stadler, 2015). Recently, there has been the

emergence of mechanisms for predicting network connectivity to the user based on

the movement or database of network connectivity within a geographical region. The

emergence of connected devices has improved the above mechanism using a

collaboration of the mobile devices to determine the connectivity. This method of

connected devices improves the bandwidth utilization and allows device-to-device

communication (D2D) that might promote the development of 5G communication

network (Nzanywayingoma and Yang, 2017). Additionally, the collaboration

between the devices would lead to a highly distributed mobile cloud computing

system that will promote edge computing.

2.4.2 Cloud Computing Resources

In mobile cloud computing, the computational resources may originate from various

sources such as the cloud at the network, the edge, mobile devices and commercial

clouds (Jennings and Stadler, 2015). The origin of the mobile cloud computational

resources will affect the performance of applications in a mobile device; therefore,

we evaluate the traditional centralized system and the emerging distributed mobile

cloud system. Cloud computing, depending on its storage and processing capabilities,

can be used to analyze the data generated by the IoT objects in batch and stream

formats, and has reduced the pay-as-you-go model adopted by cloud computing

providers. Data storage and analysis, as well as efficient procedure creation for the

construction of IoT applications, and the advantage of cloud flexibility with

distributed Stream Processing Engines (SPE) can implement important features such

as fault tolerance for fault loads (Buyya and Dastjerdi, 2016).

Researchers who propose a framework that supports the collection of sensor data in a

cloud based IoT context are based on SOA and event oriented, and define the

benefits of the heuristic layer responsible for processing events and their logic.

12

Others suggest Multitenant, a platform as a service to deploy IoT applications, that

provides users with an isolated virtual service that can be customized to their IoT

devices while sharing the cloud infrastructure with other users.

2.4.2.1 Centralized Cloud System

The currently offered commercial cloud services by the four major providers, i.e.,

Amazon, Microsoft, Google, and IBM may either be; platform-as-a-service (PaaS),

software-as-a-service (SaaS) and infrastructure-as-a-service (IaaS) (De Filippi and

McCarthy, 2012). The PaaS and IaaS are characterized by flexibility, increased

control and management, and therefore they are suitable for other providers that

provide the mobile user with SaaS. It is evident that from the above perspective the

SaaS is the most vital cloud computing service (Krogh, 2013). The commercial cloud

services have huge transmission delays due to the distance between the user and the

servers; thus, for mobile users, the commercial cloud will not offer the best solution

in delay sensitive applications.

2.4.2.2 Fog Computing Resources

The fog computing technology is the beginning of a paradigm shift from the

centralized cloud architecture to the distributed system that brings the resources close

to the user (More and Kulkarni, 2017). The primary idea for computing is extending

the existing centralized cloud computing architecture through a collaboration of the

distributed cloud resources to the heterogeneous devices. This practice has increased

the computational resources accessible to mobile devices through the pooling of

resources (Silva et al., 2019). The emergence of IoT applications is preparing the

reason for shifting towards the distributed architecture. This technology has

increased the number of devices that access the cloud resources, therefore, making it

difficult for a centralized cloud to be accessed through a limited network bandwidth.

For computing, this provides advantages in both communicational and computational

resources due to the collaboration of nearby devices through device to device (D2D)

communication (Prakash et al., 2017). The D2D communication has improved

bandwidth utilization but the challenge of integrating heterogeneous devices into a

13

single cloud computing platform while efficiently assigning tasks among the

numerous devices, still exists.

2.4.2.3 Mobile Edge Clouds

The distributed mobile edge cloud (MEC) is a rather more popular alternative to the

centralized cloud. The MEC advocates for the installation of computational and

storage resources in the existing infrastructure such as mobile base stations (BS)

(Ahmed and Rehmani, 2017). This practice is more applicable for network operators

as they can profit from bringing the computational resources to the edge of the

network. MEC has the potential of improving performance and resource allocations

to users however the increased number of users accessing the MEC resources will

lead to a downgraded performance. The quantity of the bandwidth allocated to a user

may not be sufficient for transmission especially in offloading vast amounts of data

(Ahmed and Rehmani, 2017). Secondly, the MEC provides limited storage and

computational resources as compared to the commercial cloud. As a consequence,

this limitation in the computing resources that can be assigned to the user has led to

the development of the optimization technique to ensure that the resources are

adequately and fairly allocated.

2.5 Assignment Problems

Assignment problems (AP) need an optimization technique that entails the optimal

matching, i.e., assigning the components of two sets these are agents and tasks where

each matching has a different weight (cost) (Chauvet et al., 2000). Problems in this

class are combinatorial optimization problems and can be described mathematically

in multiple ways such as a bijective mapping between two finite sets and flows in a

network. The AP technique functions to assign m agents to n tasks; each task will be

assigned to a single agent to minimize the cost of assignment (Dil Afroz and Hossen,

2017). It can be described as a one-to-one mapping such as a worker (agent) to a

machine (task). The AP optimization technique has numerous real world applications

such as assigning developers to a software project, military personnel to operations,

resource scheduling in cloud, etc.

The main statement is the constraint of the problem and defines that each agent is

assigned to a single task and in no instance will an agent be assigned to more than

14

one task (Singh et al., 2012). The AP can be naively solved through a comparison

mechanism of all the possible assignments of tasks to agents, but this approach is

computationally infeasible as it will cause a combinatorial explosion (Kabiru et al.,

2017). For instance, consider a problem with several combinations for assigning

more than 100 tasks to a similar number of agents. Increasing the number of nodes

will also increase the possibilities of combinations exponentially. The access point

approach has several flavors such as multiple agents per task, multiple tasks per

agent and multidimensional assignment problems that require matching of members

of two or more sets (Supian et al., 2018).

2.6 Scheduling and Planning Problem

Scheduling is defined as the assignment of resources over a period to perform a

collection of tasks (Hyari et al., 2006). The primary aim of scheduling in any

problem is to optimize one or more of the performance criteria while assigning the

limited resources over a period to a sequence of activities. The most significant

elements of scheduling are the sequence of activity and the timing on resources.

Schedules can be categorized into two as dictated by the availability of tasks: either

before or after the creation of the schedule, i.e., static or dynamic schedules (Hassani

et al., 2018). In the static case, the tasks do not change once the process schedule has

been defined, i.e., no new jobs can be added do the process (Hassani et al., 2018). In

dynamic scheduling the arrival of tasks is unpredicted; thus, jobs can emerge at any

point of the process and would require to be scheduled. This practice of scheduling

emerging unpredictable activities in dynamic scheduling and tells the modification of

the original schedule is known as rescheduling.

Rescheduling is an important element of individual and organizational decision-

making processes in various fields. Rescheduling is an integral aspect of real-life

problems such as rescheduling of a nurse shift due to an emergency, rescheduling of

a trip due to a vehicle breakdown, rescheduling of human resources due to new

activities, etc. (Hassani et al., 2018). Rescheduling may directly affect the different

assigning criteria such as quality, cost, time and security. Planning in optimization

15

problems is related to determine the tasks that need to be performed. Scheduling

differs from planning as it is primarily concerned with the assignment of limited

resources in a period of sequence of activities while planning is best on the

determination of the subset of events that will require to be performed to attain a

particular objective (Ben Issa and Tu, 2017). The planning problem is concerned

mostly with the selection of a subset of tasks which are selected from a set of given

alternatives.

2.7 Edge Computing

First, the desire was driven using platforms that provide the facilities and tools that

we have always used in cloud computing (Whitaker, 2017). Edge computing

represents an environment for the distribution of information technology in which

the client and user data are processed in less time from the network source. Through

this computing we can reduce the consumption of hardware components and devices

associated with the network in the Internet of Things. Edge computing can benefit

from office environments and remote branches of companies, especially as these

companies have a large database of users that are distributed in a sophisticated

geographic manner. There is a need to improve the performance with the possibility

of damaged data to work with on the devices (Yetimler, 2018). A general

architecture of edge computing is given in Figure 2.2.

16

Figure 2.2 How edge computing works (Yetimler, 2018)

In edge computing security has two sides: On the one hand, some argue that edge

computing is the best and base their decision on the evidence that data is not

transmitted over a network and that it remains at the source of its creation. The

second aspect is that the security is weak in edge computing since the devices are the

first elements exposed to risks (Brandon, 2017). Further considerations of network

security in edge computing can be reviewed in (Benslimane, 2019).

https://www.networkworld.com/author/Brandon-Butler/

17

3. METHODOLOGY

Each node at the edge has certain hardware related properties such as CPU capacity

and RAM capacity. Tasks arriving at nodes also have the same set of resource usage

requirements (CPU and RAM). In the standard approach, each node executes the

tasks arriving to it; however, depending on the frequency of tasks arrived at a node,

the capacity of the node may be exceeded, either for the CPU or for the RAM. In this

case, the task has to wait until the resources will be available again. Hence, the

execution time for the task will be extended. The proposed solution to this deficiency

is task offloading which will be investigated in this thesis. The main idea of task

offloading is to transfer (assign) a particular task along with its data to another node

which has available resources for the specific task. Once the task is executed in the

remote node, the result will be transferred back to the original node. The proper

implementation of a task offloading strategy at the edge is necessary to prevent tasks to be

sent to the cloud directly. This strategy should not impose further costs and latency issues

than the case with direct cloud computing. Depending on the characteristics of the node

devices at the edge which are the CPU capacity, RAM capacity, and the communication

capability in terms of bandwidth, the methodology used has to yield an increased utilization

with respect to the case without task offloading. The offloading methods have to be based

on a sustainable communication mechanism which has to deal with the transfer of task

data and task results among nodes. Furthermore, there is also the need to exchange the

utilization levels of individual nodes so as to determine the available nodes for task

offloading. This can only be achieved by devising a proper communication scheme for the

edge network. In our work, two alternative methods have been used to assess the

performance of task offloading:

1. Peer-to-peer communication of tasks and status information,

2. Master-slave system where a master node is responsible for the collection

and distribution of data, and for the decision making.

The devices (nodes, computing or edge elements) are either connected to each other

by a peer-to-peer scheme, or they communicate with the master node only.

18

3.1 Peer-to-Peer (P2P)

In P2P communication, each node informs all the other nodes in the network about

the CPU and RAM capacity available at the sending node so that each node is aware

of the available nodes for task offloading. In case of a congestion, the node will send

the task forward to another node which is available and which has the ability to

execute the task. The simplest way of selection would be based on a weighted

scheme of availability of resources. The process of P2P task offloading is simulated

according to the scenario described in the following steps where the time step is

taken as 1ms in an arbitrary way.

1- Each task has an arrival time at nodes distributed between 1 s and 1000 s. The

CPU and RAM loads of tasks are distributed between 5% and 50%, and their

duration is distributed between 5 and 20 time units (s).

2- Each node has a CPU capacity and RAM capacity set to 100%.

3- Nodes will keep a list of tasks that are assigned from other nodes. If there is a

task assigned, then the execution starts, and the node updates her capacity and

informs about her current status to the other nodes.

4- If there is no task assigned from other nodes, the node executes her first task in

the own list and calculates utilization (CPU and RAM) and updates her capacity

and sends her current state to other nodes.

5- Each node has the utilization (CPU and RAM) status of other nodes and

according to the status values, nodes will make forward or assign her task that

cannot be executed locally.

6- Then, the utilization (CPU and RAM) of nodes can be obtained.

The flowchart in Figure 3.1 explains how the P2P system works.

19

Figure 3.1 Peer-To-Peer flow chart

3.2 Master–Slave (M2S)

In this configuration, each node informs a “predefined” master node about their

status. In the case of a congestion, the node also sends the task and the data to the

master node which carries out the selection of the node which will execute the task.

Hence the communication of the data will be done via the master node which is

assumed to have a larger capacity of processing. The process of M2S task offloading

is simulated according to the scenario described in the following steps where the time

step is taken as 1ms in an arbitrary way.

20

1- Each task has an arrival time at nodes distributed between 1 s and 1000 s. The

CPU and RAM loads of tasks are distributed between 5% and 50%, and their

duration is distributed between 5 and 20 time units (s).

2- Each node has a CPU capacity and RAM capacity set to 100%.

3- Nodes will keep a list of tasks that are assigned from the master node. If there

is a task assigned, then the execution starts and the node updates her capacity and

informs about her current status to the master node.

4- If there is no task assigned from other nodes, the node executes her first task in

the own list and calculates utilization (CPU and RAM) and updates her capacity

and sends her current state to the master node.

5- Master node has the utilization (CPU and RAM) status of other nodes and

according to the status values, master node will make forward or assign tasks that

cannot be executed locally.

6- Then, the utilization (CPU and RAM) of nodes can be obtained.

The flowchart in Figure 3.2 explains how the master-slave system works.

21

Figure 3.2 Master -Slave flow chart

22

4. RESULTS

This scenario is based on 1000 tasks distributed over 10 nodes so that each node has

100 tasks. These tasks come with random arrival times between 1 to 1000 seconds

and a random duration period of 5s to 20s. More importantly, these tasks have CPU

load values and RAM load values between 5% and 50%. The nodes also have 100%

CPU capacity and RAM capacity.

4.1 Peer-to-Peer (P2P) results

Based on the simulation of the scenario, the CPU utilization for 10 nodes with 1000

tasks is displayed in Figure 4.1.

23

Figure 4.1 P2P CPU utilization for 1000 tasks and 10 nodes

It can be noticed that the total execution time exceeded 1100 seconds and that there

are many nodes in which the utilization reached 100%. In Figure 4.2, the RAM usage

over the task execution can be seen. As for the CPU, there are many nodes in which

the RAM utilization reached 100%.

24

Figure 4.2 Peer-to-Peer RAM utilization for 1000 tasks and 10 nodes

Figure 4.3 Peer-to-Peer subplot CPU utilization for 1000 tasks and 10 nodes

In Figure 4.3 and Figure 4.4, the CPU and RAM utilization, respectively, of each

individual node is displayed as a separate panel. These illustrate the work of each

node and show how to achieve the implementation of some tasks to 100% within the

prescribed period of time.

25

Figure 4.4 Subplot Peer to Peer RAM utilization for 1000 tasks and 10 nodes

In Table 4.1, the offloading performance of the P2P scheme can be investigated. As

tasks arrive at the node, some of them are offloaded to other nodes when the original

node is busy. Depending on the scenario, some nodes are less loaded by their original

list of tasks, so, they are the natural candidates for tasks to be offloaded. It is clear

that Node-10 has been the node which was available for task offloading for most of

the times.

26

Table 4.1 P2P EXECUTION OF TASK FOR P2P

Node Original Offloaded from other

nodes

Total duration in Sec

1 93 0 998 Sec

2 92 0 962 Sec

3 94 6 1009 Sec

4 93 11 1001 Sec

5 92 1 966 Sec

6 92 14 996 Sec

7 95 0 1018 Sec

8 91 6 981 Sec

9 92 9 992 Sec

10 89 30 996 Sec

 Original + From other =1000 task AVERAGE 991.9 Sec

1. The number of tasks performed in the first node is 93, while the number of tasks

not executed is 7 while the number of tasks assigned to it is 0.

2. The number of tasks executed in the second node is 92, while the number of non-

executed is 8 while the number of tasks assigned to him and carried out is 0.

3. The number of tasks performed in the third node is 94, while the number of tasks

not performed is 6, while the number of tasks assigned to him and executed is 6.

4. The number of tasks performed in the fourth node is 93, while the number of tasks

not executed 7 while the number of tasks assigned to 11.

5. The number of tasks performed in the fifth node is 92, while the number of tasks

not performed is 8 while the number of tasks assigned to it is 1.

6. The number of tasks performed in the sixth node is 92, while the number of tasks

not executed is 8 while the number of tasks assigned to it is 14.

7. The number of tasks performed in the seventh node is 95, while the number of

exemptions is 5 while the number of tasks assigned to it is 0.

8. The number of tasks carried out in the eighth node is 91, while the number of tasks

not executed 9 while the number of tasks assigned to 6.

27

9. The number of tasks performed in the ninth node is 92, while the number of tasks

not executed 8 while the number of tasks assigned to 9.

10. The number of tasks performed in the tenth node is 89, while the number of tasks

not implemented 11, while the number of tasks assigned to him and carried out is 30

tasks.

The highest total duration is reached in the seventh node, which amounted to 1018

seconds, while the lowest total duration is reached in the second node, which reached

991.9 seconds. The average total duration reached the P2P system is 1002.1 seconds.

Table 4.2 P2P Average RAM and CPU utilization

Nodes Average CPU Average RAM

1 54.76 51

2 47.3 50.4

3 54.5 50.5

4 49 56

5 41 52.5

6 54 52.18

7 51 56

8 48 53.19

9 48.45 48.45

10 54.70 51.12

Average Total 50.5 52.15

Table 4.2 displays the CPU and RAM utilization of all tasks in all nodes. The first

node has recorded the highest utilization value that reached about 54.76 % but, the

fifth node had the lowest CPU utilization rate of 41 %. On the other hand, the

random-access memory (RAM) of the eighth node reached to the peak utilization

value of 53.19 %, while the lowest utilization was 48.45% in the ninth node. In the

28

end, the average CPU and RAM utilization for all nodes was calculated as 61.8% and

59% respectively.

4.2 Master-Slave (M2S) results

In Figure 4.5 and Figure 4.6, the CPU and RAM utilization values for all nodes are

given. It can be noticed that the time interval in calculating the rate of CPU usage

exceeded 1100 seconds and that there are many nodes in which the utilization

reached 100%. Similarly, the time interval in calculating the rate of RAM usage

exceeded 1100 seconds and that there are many nodes in which the utilization

reached 100%.

Figure 4.5 Master -Slave CPU utilization

29

Figure 4.6 Master -Slave RAM utilization

30

Figure 4.7 Master-Slave subplot CPU utilization

The utilization of CPU and RAM for each node can be seen in Figure 4.7 and Figure

4.8 respectively. Here, we have divided the original form into 10 nodes, these

illustrate the work of each node and show how to achieve the implementation of

tasks to 100% within a period of time.

31

Figure 4.8 Master – Slave subplot RAM utilization

In Table 4.3 the utilization of all tasks in any node was calculated and the average

values of use are displayed for the CPU and RAM. The seventh node has recorded

the highest utilization value that reached about 74.3%, but, the fifth node had the

lowest CPU utilization rate of 55.9%. On the other hand, the random-access memory

(RAM) of the fourth node reached a maximum average utilization of 69%, while the

lowest utilization has been reached as 53.1% in the tenth node. In the end, the

average CPU and RAM utilization for all nodes was calculated as 61.8% and 59%.

32

Table 4.3 Master – Slave average CPU and RAM for each node

Nodes Average CPU utilization Average RAM utilization

1 59.9 % 56.4 %

2 63.7 % 63.5 %

3 58.7 % 54 %

4 62.2 % 69 %

5 55.9 % 56.3 %

6 56.4 % 60.8 %

7 74.3 % 57.1 %

8 56.9 % 62.2 %

9 68.9 % 57.7 %

10 60.8 % 53.1 %

average 61.8 % 59 %

In Table 4.4, the offloading performance of the Master-Slave scheme can be

investigated. As tasks arrive at the node, some of them are offloaded to other nodes

when the original node is busy. Depending on the scenario, some nodes are less

loaded by their original list of tasks, so, they are the natural candidates for tasks to be

offloaded. It is clear that Node-2 has been the node which was available for task

offloading for most of the times.

Table 4.4 Master -Slave task execution

Nodes Original task executed Task executed from other Total duration in Sec

1 63 0 1005 sec

2 60 245 1020 sec

3 94 83 1009 sec

4 65 0 983 sec

5 66 0 970 sec

6 63 0 1009 sec

33

7 60 0 1005 sec

8 67 0 1006 sec

9 59 0 1001 sec

10 59 16 1013 sec

 Original + From other =1000 task Average=1002.1 sec

1. The number of tasks performed in the first node is 63, while the number of tasks

not executed is 37 while the number of tasks assigned to it is 0.

2. The number of tasks executed in the second node is 60, while the number of non-

executed is 40 while the number of tasks assigned to him and carried out is 245 tasks.

3. The number of tasks performed in the third node is 94, while the number of tasks

not performed is 6, while the number of tasks assigned to him and executed is 83.

4. The number of tasks performed in the fourth node is 65, while the number of tasks

not executed 35 while the number of tasks assigned to 0.

5. The number of tasks performed in the fifth node is 66, while the number of tasks

not performed is 34 while the number of tasks assigned to it is 0.

6. The number of tasks performed in the sixth node is 63, while the number of tasks

not executed is 27 while the number of tasks assigned to it is 0.

7. The number of tasks performed in the seventh node is 60, while the number of

exemptions is 40 while the number of tasks assigned to it is 0.

8. The number of tasks carried out in the eighth node is 67, while the number of tasks

not executed 33 while the number of tasks assigned to 0.

9. The number of tasks performed in the ninth node is 59, while the number of tasks

not executed 41 while the number of tasks assigned to it.

10. The number of tasks performed in the tenth node is 59, while the number of tasks

not implemented 41, while the number of tasks assigned to him and carried out is 16

tasks.

The highest total duration has been reached in the second node, which amounted to

1,020 seconds, while the lowest total duration was reached in the fifth node, which

reached 970 seconds. The average total duration for the master-slave system is

1002.1 seconds.

34

Table 4.5 Comparison between Peer-to-Peer and Master-Slave

Topology Average

CPU

Average

RAM

Average

CPU

utilization

Average

RAM

utilization

Task

from

other

nodes

Average

duration

time

(Sec)

PEER TO

PEER

50.57 52.15 64 71 77 991.9

MASTER-

SLAVE

61.81 59 81.7 77.3 344 1002.1

Table 4.5 shows the comparison between peer-to-peer topology and master-slave

topology. It can be concluded that the master-slave topology exhibits a higher

average duration time (1002.1s versus 991.9s) and also the number of tasks offloaded

to other nodes is 344 versus 77 in peer-to-peer topology.

35

5. CONCLUSIONS

In this thesis, we considered the task offloading problem of busy resources in edge

computing. The problem was evaluated based on the utilization rate and execution

time for devices in the edge network. The research first considered the move from

the centralized cloud computing architecture to the edge computing structure that

would allow to easily access resources that are managed in the edge of the network.

Master-Slave topology was worse than peer-to-peer topology. This was first shown

in the number of tasks executed in the above two models. It has been noted in the

topology of master-slave that the utilization and execution time are higher than the

values in the topology of peer-to-peer and also number of tasks assigned to other

nodes reached a much higher value in the master-slave indicating a more overloaded

system. The system was modeled using the theoretical knowledge from the literature

review. MATLAB simulations have been carried out for the scenarios where the

same set of tasks has been applied for both the communication schemes.

36

6. REFERENCES

Ahmed, E. and Rehmani, M. H., (2017). Mobile Edge Computing Opportunities,

solutions, and challenges. Future Generation Computer Systems, pp. 59-63.

Ben Issa, S. and Tu, Y., (2017). Integrated multi-resource planning and scheduling in an

engineering project. Journal of Project Management, Volume 2, pp. 11-26.

Benslimane N., (2019). Living on the Edge How Edge Computing is Redefining the

Network Landscape.https//www.idg.com/blog/living-on-the-edge-how-edge-

computing-is-redefining-the-network-landscape

Brandon B., (2017). What is edge computing and how it’s changing the network? (n.d.).

Retrieved from https//www.networkworld.com/article/3224893/what-is-edge-

computing-and-how-it-s-changing-the-network.html

Buyya, R., and Dastjerdi, A., (2016). Internet of Things Principles and Paradigms. In

Internet of Things, pp. 36-50

Chauvet, F., Proth, J.-M. and Soumare, A., (2000). The Simple and Multiple Job

Assignment Problems. International Journal of Production Research, 38(14), pp.

3165-3179.

Dao, N.-N.et al., (2018). Pattern-Identified Online Task Scheduling in Multitier Edge

Computing for Industrial IoT Services. Mobile Information Systems, pp. 9-19.

De Filippi, P. and McCarthy, S., (2012). Cloud Computing Centralization and Data

Sovereignty. European Journal of Law and Technology, 3(2), pp. 1-18.

Dil Afroz, H. and Hossein, M. A., (2017). New Proposed Method for Solving

Assignment Problem and Comparative Study with the Existing Methods. Journal

of Mathematics, 13(2), pp. 84-88.

Elijah, O., Rahman, T. A., Orikumhi, I. and Leow, C. Y., (2018). An Overview of

Internet of Things (IoT) and DataAnalytics in Agriculture Benefits and

Challenges. IEEE Internet of Things Journal, 5(5), pp. 3758-3773.

https://www.networkworld.com/article/3224893/what-is-edge-computing-and-how-it-s-changing-the-network.html
https://www.networkworld.com/article/3224893/what-is-edge-computing-and-how-it-s-changing-the-network.html

37

Gawanmeh, A., Alomari, A. and April, A., (2017). Optimizing resource allocation

scheduling in cloud computing services. Journal of Theoretical and Applied

Information Technology, 95(1), pp. 31-39.

Gezer, V., Um, J. and Ruskowski, M., (2018). An Introduction to Edge Computing and

A Real-Time Capable Server Architecture. International Journal of Intelligent

Systems, 11(1and2), pp. 105-114.

Gusain, S. and Kumar, R., (2014). An Optimization in Cloud Computing for Job

Forecast. International Journal of Computer Science and Mobile Computing,

3(5), pp. 304-309.

Hassani, Z. I. M., El Barkany, A., Abdelouahhab, J. and Ikram, E. A., (2018). New

Approach to Integrate Planning and Scheduling of Production System Heuristic

Resolution. International Journal of Engineering Research in Africa, Volume 39,

pp. 156-169.

Hassan, Z., Ali, H. A. and Badawy, M. M., (2015). Internet of Things (IoT) Definitions,

Challenges, and Recent Research Directions. International Journal of Computer

Applications, 128(1), pp. 975-987.

Hyari, K. H., El-Rayes, K. and Asce, M., (2006). Optimal Planning and Scheduling for

Repetitive Construction Projects. Journal of Management in Engineering, 22(1),

pp. 11-19.

Jennings, B. and Stadler, R., (2015). Resource management in clouds Survey and

research challenges. Journal of Network and Systems Management, 23(3), pp.

567-619.

Jindal, F., Jamar, R. and Churi, P., (2018). Future and Challenges of Internet of Things.

International Journal of Computer Science and Information Technology, 10(2),

pp. 13-25.

Josilo, S., (2018). Decentralized Algorithms for Resource Allocation in Mobile Cloud

Computing Systems, Stockholm, Sweden KTH School of Electrical Engineering

and Computer Science.

Kabiru, S., Saidu, B. M., Abdul, A. Z. and Ali, U. A., (2017). An Optimal Assignment

Schedule of Staff-Subject Allocation. Journal of Mathematical Finance, Volume

805-820, p. 7.

38

Kang, Y.-M., Han, M.-R., Han, K.-S. and Kim, J.-B., (2015). A Study on the Internet of

Things (IoT) Applications. International Journal of Software Engineering and Its

Applications, 9(9), pp. 117-126.

Karimi, K. and Atkinson, G. (2013). What the Internet of Things (IoT) Needs to

Become a Reality. Technical report, Freescale

Krogh, S., (2013). Cloud Computing A Social Relations Perspective. Journal of

Information Architecture, 5(1-2), pp. 21-30.

Liang, B., (2017). Mobile Edge Computing, Toronto, Canada University of Toronto.

Liu, H. et al., (2017). Mobile Edge Cloud System Architectures, Challenges, and

Approaches. IEEE Systems Journal, 12(3), pp. 2495 - 2508.

More, P. and Kulkarni, J., (2017). Fog Computing. International Research Journal of

Engineering and Technology, 4(2), pp. 1113-1116.

Nzanywayingoma, F. and Yang, Y., (2017). Efficient Resource Management techniques

in Cloud Computing Environment A Review and discussion. Telkominika,

15(4), pp. 1918-1928.

Pardalos, P. M., 1996. Continuous Approaches to Discrete Optimization Problems.

Boston, MA Nonlinear Optimization and Applications. Springer.

Prabhu, L. G. K. S. L. N. and Rao J., V., (2015). Resource Allocation in Mobile Cloud

Computing using Optimization Techniques. International Journal of Wireless

Communications and Networking Technologies, 4(2), pp. 30-36.

Prakash, P., Darshaun, K. G., Yaazhlene, P. and Ganesh, M. V., (2017). Fog Computing

Issues, Challenges, and Future Directions. International Journal of Electrical and

Computer Engineering, 7(6), pp. 3669-3673.

Silva, C. A., Aquino Jr., G. S., Melo, S. R. M. and Egídio, D. J. B., 2019. A Fog

Computing-Based Architecture for Medical Records Management. Wireless

Communications and Mobile Computing, Issue 1968960, pp. 1-16.

Sonkar, S. K. and Kharat, M. U., (2015). A Survey on Resource Management in Cloud

Computing Environment. International Journal of Advanced Trends in

Computer Science and Engineering, 4(4), pp. 48-51.

Supian, S., Sri, W., Nahar, J. and Subiyanto, (2018). Optimization of Personnel

Assignment Problem Based on Traveling Time by Using Hungarian Methods

39

Case Study on the Central Post Office Bandung. Medan Indonesia, The

Indonesian Mathematical Society Section Aceh, and Sumatera Utara.

Weintraub, E. and Cohen, Y., (2017). Multi-Objective Optimization of Cloud

Computing Services for Consumers. International Journal of Advanced

Computer Science and Applications, 8(2), pp. 139-147.

Whitake B., (2017). Cloud Edge Computing Beyond the Data Center - OpenStack is

open source software for creating private and public clouds.

https//www.openstack.com

Yetimler E., (2018). What is Edge Computing? What is the Difference from Cloud

Computing and Fog Computing? https//www.karel.com.tr/blog/edge-computing-

nedir-cloud-computing-ve-fog-computingden-farki-nedir.

https://www.openstack.com/

40

CURRICULUM VITAE

Personal Information

Name Surname MOSTAFA ZIADOON IBRAHIM IBRAHIM

Place and Date of Birth IRAQ - 11\08\1990

Education

Undergraduate Education B. Sc. Computer Engineering

Graduate Education M. Sc. Computer Engineering

Foreign Language Skills Arabic, English

Work Experience

Name of Employer and Dates of Employment:

 EARTHLINK Internet Service Company in IRAQ: From 2011 To 2016

Contact

Telephone 47173009050509

E-mail Address M.ziedoon@gmail.com

