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IDENTIFICATION OF CRITICAL PROTEINS ASSOCIATED WITH

LEARNING PROCESS FOR DOWN SYNDROME

ABSTRACT

The protein profiles of people with DS are observed by applying biochemical tech-

niques in laboratory. However, the list of analyzed proteins is long and not all

proteins in list are not related to DS. Thus, for the analysis and the treatment of

DS, protein expression levels have been analyzed by applying statistical procedures

and machine learning techniques. In this thesis, compared to previous works, dif-

ferent preprocessing steps, feature selection and classification techniques are applied

to define the subsets of proteins for datasets. These subsets differentiate mice more

accurately. When these subsets which affect the critical pathways of specific DS

aspects are analyzed, it is monitored that selected proteins have vital roles in the

processes, such as apoptosis, learning and memory, signaling pathways, immune sys-

tem and Alzheimers disease (AD). The subsets of proteins selected in this thesis can

be applied to interpret the causes of different symptoms in DS and can be utilized

to foster effective drugs for the cure of DS.

Keywords: Down syndrome, protein expression, feature selection, mem-

ory, learning, signal pathway, immune system
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DOWN SENDROMUNDA OGRENME SURECI ILE ILISKILI KRITIK

PROTEINLERIN BELIRLENMESI

ÖZET

DS protein profilleri laboratuvarda biyokimyasal teknikler uygulayarak gözlemlenmek

tedir. Fakat, elde edilen protein listesi uzundur ve listedeki her protein DS ile alakalı

değildir. Bu yüzden, DS analizi ve tedavisinde, protein ifade miktarları istatik-

sel metodlar ve makine öğrenmesi teknikleri uygulayarak analiz edilmektedir. Bu

tezde, önceki çalışmalara kıyasla, farklı ön değerlendirme adımları, özellik seçimi

ve sınıflandırma teknikleri, farklı veri setleri için protein altkümeleri belirlenmesi

için uygulanmıştır. Bu protein altkümeleri fareleri daha doğru şekilde ayrıştırır.

Spesifik DS özelliklerinin kritik yolaklara etki eden bu altkümelerdeki proteinler

tek tek analiz edildiğinde, seçilmiş proteinlerin öğrenme ve hafıza, sinyal yolakları,

Alzheimer hastalığı, bağışıklık sistemi ve hücre ölümü gibi önemli süreçlerde rol

aldığı gözlemlenmiştir. Bu tezde seçilen protein alt kümelerinden DS un farklı semp-

tomlarını anlamak için yararlanılabilinir ve DS tedavisinde etkili ilaçlar geliştirmek

için kullanılabilinir.

Anahtar Sözcükler: Down sendromu, protein ifadesi, özellik seçimi, hafıza,

öğrenme, sinyal yolakları, bağışıklık sistemi
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1. INTRODUCTION

DS is the most accepted genetic basis of intellectual disability (ID) and individuals

with DS demonstrate latency in motor skill progress. Most individuals with DS

can accomplish primary skills on their own developmental time and demonstrate

communicative intent, in spite of limitations in their verbal ability (Parker et al.,

2010).

The DS can be caused by errors of nondisjunction or a Robertsonian translocation be-

tween chromosome 21 and another chromosome. The additional copy of chromosome

21 is accountable for almost 160 protein–coding genes and five microRNAs (Sturgeon

and Gardiner, 2011). Overexpression of these proteins such as protein modifiers,

transcription factors, RNA (Ribonucleic Acid) splicing factors, adhesion molecules

and many biochemical pathway components lead to learning and memory (L/M)

deficits. Furthermore, people with DS show abnormalities in count of neurons and

cellular texture in brain regions, such as the cerebellum, cortex and hippocampus

(Chapman and Hesketh, 2000; Nadel, 2003; Silverman, 2007). Hippocampus has crit-

ical roles in the consolidation of information from short–term memory to long–term

memory. Cerebellum takes a role in motor control and some cognitive functions

such as attention and language. Cortex is the highly developed region of brain and

responsible for perceiving, producing, thinking and understanding language. DS is

also affiliated with comparably great incidences of autism and an AD like dementia

(Head et al., 2015).

Mouse models are utilized in the examination of many human abnormalities. Due to

the austerity and the huge incidence rate of DS, researchers have employed mice for

the progress of cure for DS. However, it is hard to represent DS in mice as orthologs
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of the Hsa21 genes project to mouse chromosomes 10, 16 and 17 (Yu et al., 2010;

O’Doherty, 2005). The trisomic mice, Ts65Dn mice which contains 5 microRNA genes

and 88 orthologs of Hsa21 protein coding genes and Tc1 mice that is trisomic for 120

HSA21 protein–coding genes have been used as DS mice models (Davisson, 1993;

Rueda, 2012). These trisomic mice exhibit similar characteristics to the DS, including

anomalies in learning and synaptic plasticity. Using these trisomic mice, protein

expression profiles of DS patients have been assessed by computational learning

methods in order to comprehend mechanism of DS. Thanks to computational learning

methods, datasets that show protein expression profiles of mice are processed. After

preprocessing step, the important proteins are obtained by applying feature selection

methods and healthy and unhealthy mice are discriminated based on these proteins.

In the recent years, many drugs have been observed to rescue one or more abnormal-

ities in trisomic mice. Untreated trisomic mice were unsuccessful to learn unless

they are injected with drug, they can grasp successfully. These successes have

promoted noticeable passion for clinical tests to treat DS. For the cure of the DS,

numerous attempts have been tried for developing drugs. More than 20 drugs that

have different effects, such as aminobutyric acid A (GABAA) receptor antagonists,

acetylcholinesterase suprassants, N–methyl–D–aspartate receptor (NMDAR) anto-

gonist and the green tea component have been shown to be impressive for recovering

performance in L/M efforts (Gardiner, 2014; Braudeau et al., 2011; Block, 2018;

Costa, Scott-McKean and Stasko, 2007; Chang and Gold, 2008; Corrales, 2013; Das

et al., 2013; Busciglio, 2013; Gardiner, 2010, Chen and Lipton, 2005; Lipton, 2007;

Kamat, 2013; Olivares, 2012).

The protein profiles of different datasets are observed by applying biochemical

techniques in laboratory. However, the list of obtained proteins is long and not all

proteins in list are not related to DS. Thus, it is necessary to determine exact protein

subset which is critical in DS. In previous works, protein expression profiles based

on learning outcome, age, sex, brain regions and subcellular fraction of brain regions

were evaluated by statistical methods (Higuera, Gardiner and Cios, 2015; Ahmed et

2



al., 2014, 2015; Eicher and Sinha, 2017; Feng et al., 2017). Feature selection from

protein profiles based on learning outcome (succesful, rescued learning with drugs,

failed) provides the critical proteins in learning process. The result of age related

abnormalities over different brain regions displays the importance of aging in DS. In

addition, analysis based on subcellular parts of brain shows the importance of brain

regions in DS. However, statistical techniques only show the change such as decrease

or increase in protein profiles and do not exactly determine the critical proteins

in DS. In addition to the statistical techniques, the machine learning algorithms

are also practiced to determine critical proteins. However, the type and parameter

of applied techniques were not appropriate and preprocessing steps are not very

efficient in previous works.

In this thesis, the preprocessing step includes filling of missing values and normal-

ization is performed in a different way when compared to other works. Missing

values are filled with the mean value of related sample’s protein expression level

in the same class. Z score normalization (Abdi and Lynne, 2010) is done to inhibit

the huge impact of proteins with greater effects on classification. After the prepro-

cessing step, the forward feature selection technique is applied for determining the

protein subsets for different datasets. These datasets show importance of learning

outcome, age, brain regions, subcellular parts of brain regions and different type of

mouse models. Naive Bayes learner is applied for the learning process in forward

feature selection. It is efficient in multiclass classification is applied (Tsoumakas

and Katakis, 2007; Aly, 2005). After selecting features, DNN (Deep Neural Network),

gradient boosting tree, random forest and SVM classification techniques are used

to discriminate control and trisomic Ts65Dn mice. The accuracy result of this work

turned out to be higher than Feng et al. (2017) for all classification methods. The

detailed analysis to determine critical proteins in successful learning, failed learning

and rescued learning are also performed. The accuracy results of this work are

higher than Higuera et al. (2015) for all classification methods. In addition, the

pathway analyses are done in order to figure out the molecular mechanism of DS

and foster powerful drugs for the treatment of DS.
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The contribution of this work is the application of different steps to protein expression

datasets. The preprocessing steps, feature selection and classification techniques

are applied in a different way in order to differentiate healthy and unhealthy mice

more accurately. The obtained higher classification accuracies for all classification

methods substantiate the efficieny of different processing steps applied in this work.

The selected proteins are very important in order to understand the cause and cure

of the DS. The biological processes can be understood by analyzing the pathways on

which the selected proteins affect one by one or aggregately. The selected proteins can

be effective in specific DS aspects such as ID and affects motor, cognitive, linguistic,

personal or social skills. Thus, the evaluation of proteins is important in order to

understand the causes of different aspects for DS. After understanding the cause of

the DS, the treatments can be possible by developing the effective drugs.

The rest of the thesis is designed as follows: Chapter 2 explains the background

information and related works. Datasets used for this work and data preprocessing

steps are explained in Chapter 3. The feature selection algorithm to identify the

critical proteins are described in Chapter 4. Chapter 5 introduces the classification

methods and Chapter 6 illustrates the pathway analysis of the selected protein

subsets. The results part in Chapter 7 shows the feature selection and classification

results. Finally, in conclusions, the general evaluation of this thesis is presented and

possible extensions to the work are introduced.
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2. BACKGROUND INFORMATION AND RELATED WORKS

2.1 Down Syndrome

This chapter presents general information on DS such as its diagnosis, treatment,

therapies and drugs. To understand DS, many researchers are working on differ-

ent mice models. These mice models and current research efforts to observe the

important proteins associated with the DS are also explained in this chapter.

DS is the most accepted genetic reason of ID and affects almost one in 700 live

births worldwide (Parker et al., 2010). DS is characterized with anomalies at the

cellular, electrophysiological, molecular and behavioral level. People with DS have a

characteristic facial display and weak muscles in childhood. All affected individuals

struggle cognitive delays, but ID is frequently mild to moderate. With DS, the

count of neurons and cellular texture becomes unusual in brain regions, such as the

cortex, hippocampus and cerebellum (Chapman and Hesketh, 2000; Nadel, 2003;

Silverman, 2007). Furthermore, people with DS are at danger for specific types

of blood disorders, like autoimmune disorders, leukemia and an AD like dementia

(Head et al., 2015).

DS was first described by Jean-Étienne Dominique Esquirol in 1838 and later by

Édouard Séguin in 1844 (Neri and Opitz, 2009). However, DS was first characterized

in 1862 by English physician John Langdon Down and named after him. Down

published a report in 1866 and recognized DS as a specific type of mental disorder

(Hickey and Summar, 2012; Down, 1867). By the 20th century, DS became the

most noticeable type of mental disorder. In the ancient times, many newborns

with disorders were either abandoned or killed. Various historical items of art are
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considered to illustrate DS (Bernal and Briceno, 2006). In the 20th century, numerous

individuals with DS were stereotyped. Some of the related medical troubles were

handled and most people with DS died in childhood. With the upsurge of the

eugenics movement, a lot of countries started programs of restricted sterilization of

individuals with DS (Prost and Nasreen, 2013).

With the invention of karyotype methods in the 1950s, it became possible to pinpoint

anomalies of chromosomal number. In 1959, Jerome Lejeune determined that DS

was associated with an additional, third copy of human chromosome 21 (Lejeune,

Turpin and Gautier, 1959). The extra copy of 21st chromosome is accountable for

nearly 160 protein–coding genes and five microRNAs. The overproduction of genes

coded by the additional copy of Hsa21 in DS is considered to be adequate to disrupt

numerous distinct biological actions and pathways, such as influencing development

of brain and cause learning and memory defects.

Figure 2.1 shows the karyotype depiction of chromosomes (Ghani, 2019). People with

DS have one extra 21 chromosome. Karyotype analysis of both parents is advised for

analysis of DS.

Figure 2.1: Karyotype representation of chromosomes (Ghani, 2019)

Figure 2.2 depicts nondisjunction of chromosomes during meiosis stage (Sleigh,

2019). When one cell divides in two, pairs of chromosomes are divided and one

of the pairs goes to one daughter cell, the other pair goes to the other daughter
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cell. In nondisjunction, both chromosomes from one pair go into one cell and no

chromosomes for that pair go into the other cell. This process causes an extra copy

of 21st chromosome.

Figure 2.2: Nondisjunction of chromosomes during meiosis (Sleigh, 2019)

Another reason of DS is a Robertsonian translocation (Cooper, 2019) between chromo-

some 21 and another chromosome as shown in Figure 2.3. Robertsonian translocation

is occurred when the whole long arms of two acrocentric chromosomes in which the

centromere is located quite near one end of the chromosome are merged.

Figure 2.3: Robertsonian translocation (Cooper, 2019)

The major signs of DS are physical development, intellectual impairments and other

health dilemmas. Figure 2.4 shows deficiencies that can be seen with a person

diagnosed by DS (Pameer, 2019). DS is associated with several distinct physical
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characteristics, such as short and broad neck, flattened facial facets, smaller than

average head and ears. Even though babies with DS are typically of average size at

birth, they have smaller growth rate when compared to children without the disorder.

As a result of poor muscle tone, a person with DS has delays during walking.

Figure 2.4: Abnormalities of person with DS (Pameer, 2019)

People with DS have intellectual disabilities. Delayed improvement of language

and speech, poor attentiveness and impulse regulation and learning problems are

common characteristics. In addition, they are usually at much higher risk for

developing other health problems, such as vision problems, digestion problems and

heart disease. Understanding the molecular anomalies that form the basis of the DS

can lead to the development of cures to prevent or alleviate at least some facets of

the phenotype. Thus, functions of specific Hsa21 genes linked to anomalies detected

in DS have been examined. This examination provided the discoveries of efficient

treatments for pharmacotherapies that can stop or proper the abnormalities and

cognitive deficits.

By 1990, 13 Hsa21 genes with biological associations had been identified (Gardiner

et al., 1990). Before this time, gene mapping was a slow and laborious process. The

pace of Hsa21 gene identification raised in the 1990s thanks to the development of

the techniques of exon trapping and cDNA (Complementary DNA). These techniques

identified transcribed sequences from defined genomic regions (Chen et al., 1996;

Dahmane et al., 1998; Tassone et al., 1995). Together with the augmentation of
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the number of dbEST (database of expressed sequence tags) entries from human

tissues, there has been a rapid rise in complete cDNA open reading frame (ORF)

sequences (Gardiner and Yaspo, 1998). In 2000, the genomic sequence of Hsa21q was

disclosed (Hattori et al., 2000). Table 2.1 lists the classes and numbers of HSa21q

genes present in that initial annotation.

Table 2.1: Initial annotation of Hsa21 (Hattori et al., 2000)

# protein coding genes
Known protein coding 127

Protein similarity 13
Domain similarity 17

Novel 68
Total 225

Initial annotation had few gaps and identified 225 genes and gene models. The

dbEST extended in both human and model organism entries and the mouse genome

was sequenced. Thus, the Hsa21 gene catalog was reviewed and supplemented with

experimental validation and information on conservation in mouse (Gardiner et al.,

2002, 2003; Reymond et al., 2001, 2002). Data from the most recent annotation of

Hsa21 (Sturgeon and Gardiner, 2011) are presented in Table 2.2.

Table 2.2: Annotation of Hsa21 (Sturgeon and Gardiner, 2011)

# protein coding genes
RefSeqP 161

MicroRNA 5
Novel; ORF > 50 AA 146

Novel; ORF < 50 AA, repetitive or incomplete 250
Total 562

The most impressive discrepancy in comparison with the 2000 gene list is the

more than two-fold raise in the number of genes. This is the result of the mRNA

(messenger RNA) and dbEST databases.

2.2 Diagnosis of DS

People at risk of having a baby with DS can take screening and diagnostic tests.

While the screening tests can predict the probability of DS, diagnostic tests can
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decisively inform whether a baby will have DS. Thus, only diagnostic tests can

clearly identify whether the baby will have DS. These tests are explained below.

2.2.1 Screening Tests

The chance of having a DS baby increases with parents’ age. Women aged 30–35

years or above can take genetic screening during pregnancy. Screening is an afford-

able way to substantiate whether more detailed diagnostic tests are required or not.

Screening tests include ultrasound, integrated screen, nuchal translucency testing,

triple screen, quadruple screen, cell-free DNA (Deoxyribonucleic Acid).

Thanks to sound waves in ultrasound imaging, the inside of the body is shown and

the pregnancy status is determined. Nuchal translucency testing is done at 11

–14 weeks. In this test, an ultrasound can quantify the open space in tissue back

of the fetus neck. When abnormalities are present in a baby with DS, more fluid

tends to collect in this neck tissue. Triple screen or quadruple screen procedure is

done at 15–18 weeks of pregnant women. This test quantifies the volume of several

substances in the mother’s blood. Integrated screen links results from first-trimester

blood test with second-trimester quadruple screening results. It measures blood

level of some substances like alpha fetoprotein, estriol, HCG (Human Chorionic

Gonadotropin), plasma protein–A (PAPP–A) and the pregnancy hormone known as

human chorionic gonadotropin (HCG). It checks certain protein levels in the mother’s

blood. Abnormalities in protein levels are indicators of the baby with DS. Cell –free

DNA test is a blood test that evaluates fetal DNA present in the mother’s blood.

2.2.2 Diagnostic Tests

Diagnostic tests are more definite for the diagnosis of DS. Diagnostic tests are

amniocentesis, chorionic villus sampling and percutaneous umbilical blood sampling.

Chorionic villus sampling is done at 8 –12 weeks. In the procedure, a small sample of

placenta is taken for the analysis of fetal chromosomes. Amniocentesis is done at 15
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–20 weeks and a tiny amount of amniotic fluid is taken for analysis. The cells from

the fluid are then cultured. Then, karyotype analysis is performed for detecting DS.

Percutaneous umbilical blood sampling is done after 20 weeks and a little sample of

blood from the umbilical cord is analyzed for chromosome abnormalities.

2.3 Treatments and Therapies for the DS

While there is no effective cure for DS, there are therapies to enhance the life

standard of a person with DS. Medications for DS change by individual. The exact

stage of cure relies on the individual, considering the person’s health, age, strengths

and limitations.

Treatments are primary care to monitor growth, medical specialists and vaccinations

based on the needs of the patient, speech therapy to enhance the ability to commu-

nicate, occupational therapy to support refine motor skills and make daily tasks

painless, physical therapy to aid strengthen muscles and boost motor skills, behav-

ioral therapy to help manage the emotional challenges (Winders, Wolter-Warmerdam

and Hickey, 2018; Kumin, 1996; Costa, 2011; Kishnani et al.,2010; Fidler, Hepburn

and Rogers, 2006; Phelps, 2010).

Speech-language therapy enhances the child’s communication ability and it is given

at toddler stage. It deals with communication and language skills, cognitive skills

and strengthening the oral muscles. Hearing loss is frequently seen with people

diagnosed by DS. Because of the anatomical distinctions in children with DS, they are

susceptible to fluid detention behind the eardrum which in turn results in hearing

loss. This causes life-long problems for speech and understanding (Phelps, 2010).

Physical therapy concentrates on improvement of how the person moves. People

with DS generally have weak muscles and shorter hands. Thus, physical treatment

can alleviate any obstacles caused by these features. A physical treatment is likely

to consist bolstering and toning muscles, recovering balance and correcting posture

(Winders, Wolter-Warmerdam and Hickey, 2018). Occupational therapy is carried out

11



to develop the daily abilities which are essential for living a healthy life. Contrary

to physical therapists, occupational therapists operate on boosting fine motor skills

and the achievement of daily tasks like brushing teeth, getting dressed and eating.

As the child grows, the target of the therapy concentrates on getting skills like using

a computer (Daunhauer and Fidler, 2011).

Assistive technology involves in equipments that aid a person with an impairment

to function better. These equipments consist of hearing aids, large-button mobile

phones, seat cushions, walking aids and large-letter keyboards. Tablets and com-

puters are helpful for children with DS who have conflict in performing motor

movements (Al-Moghyrah, 2017).

In USA, thanks to the U.S. Individuals with Disabilities Education Act (IDEA),

children with DS take exclusive education until they either finish high school or

reach the age of 21.

2.4 Prevalence of DS

Throughout the world based on 2010 data, DS occurs in about 1 per 1000 births

(Weijerman and de Winter, 2010) and causes about 17,000 deaths per year (Lozano

et al., 2012). Mostly, children are born with DS in places where abortion is not

permitted and pregnancy usually appears at an older age. About 1.4 per 1000 live

births in the US (Parker et al., 2010) and 1.1 per 1000 live births in Norway are

influenced (Malt et al., 2013). The amount of pregnancies with DS is more than twice

higher with many naturally aborting countries (Kliegma, 2011). It is the reason of

8% of all congenital disabilities. Also, thanks to prenatal screening and abortions,

the prevalence of DS decreases.

Maternal age increases the probability of having a pregnancy with DS. At age 20,

the probability is one in 1441; at age 50 it is one in 44. The father’s older age is

also a hazard component in women older than 35. Also, DS liability increases with

women age.
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2.5 Life Expectancy for DS People

The lifespan of people with DS increased enormously between 1960 and 2007. In

1960, on the average, persons with DS lived around age 10. In 2007, persons with

DS lived around age 47. Numerous factors can impact how long a person with DS

lives.

If babies with DS are born weighing less than 1,500 grams, they are 24 times more

probable to die in the first 28 days of life in comparison to baby with normal weight

(between 2,500 grams and 4,000 grams). Black or African-American babies with DS

have little chance of living beyond the first year of life compared with white babies

with DS. Further investigation is required to understand the cause of this. Infants

with DS who have a congenital heart defect (CHD) are five times more probable to

die in the first year of life. Between 1983 and 2003, about 93% of babies born with

DS lived to one year of age. In the same course of time, about 88% of babies born

with DS endured to 20 years of age. The number of babies with DS who die before

one year has reduced over time. By comparison, the percentage of death during the

first year of life reduced from 1.5% during 1979-1983 to 0.9% during 1999-2003.

2.6 Alzheimer’s Disease Risk

DS increases the risk of AD. Approximately all adults with DS display the neu-

ropathological modifications of AD by the age of 40 years. This linkage promotes

an understanding in the advancement of AD and offers special understandings

for AD in the overall community. Amyloid-β builds up in the brain through the

lifetime of people with DS, which contributes a special change to grasp the temporal

advancement of AD and the dementia initiation.

Studying the function of APP in DS might cause comprehending its function in

both sporadic AD and familial AD. The age reliance in the progress of AD in DS

can stimulate research into the appearance of AD. Juxtaposition of the biomarker

profiles, genetic profiles and risk profiles of adults with DS with those of individuals
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with AD can aid to figure out specific pathways for dementia. Analysis of brain scans

and other tests aid to diagnose AD.

2.7 Mice Models Used for the Analysis of DS

Investigation of molecular actions at the level of protein modification contributes

a direct assessment of functional feedbacks. Thus, protein expression data have

been assessed by computational learning methods using mice models in order to

diagnose and treat DS. Nonetheless, DS is hard to model in mice as orthologs of

Hsa21 genes project to three mouse chromosomes, indicated as Mmu10, Mmu16,

and Mmu17. Figure 2.5 displays mapping of three different mouse chromosomes to

HSA21 (Antonarakis et al., 2014).

Figure 2.6 shows the mapping of Hsa21 genes on mice chromosomes Mmu10, Mmu16,

and Mmu17 and different type of trisomic mice models (Sturgeon et al., 2012). Using

these trisomic mice models, DS can be analyzed. In Figure 2.6, genes within three

regions of HSA21 shown at the left project to segments of mouse chromosomes 10,

17, and 16 as indicated. Two mouse models, Ts65Dn and Tc1, are shown at right.

The Ts65Dn is trisomic for the telomeric segment of MMU16. The Tc1 mouse model

carries normal complement of mouse chromosomes and Hsa21 that has internal

deletions (indicated by grey circles). The number of HSA21 Reference Sequence

database protein-coding genes (RefSeqP) mapping to HSA21 regions. The regions in

mouse models are indicated at bottom part of figure.

Ts65Dn and Tc1 mouse models are used in this thesis. Mouse models have become

very helpful for scientists to analyze human ailments. Humans have a lot of similar

genes with mice. Since, mice are bred quickly, relatively cheap and perform exper-

iments not applicable to humans, they are frequently used. The ideal DS mouse

model is that all genes placed on Hsa21 are triplicated. This is difficult as the genes

placed on Hsa21 are expanding over three mouse chromosomes (chromosomes 10, 16

and 17).
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Figure 2.5: Mapping of three different mouse chromosomes to HSA21 (Antonarakis
et al., 2014)

The first designed mouse model is the Ts16 and it was designed in the 1970s. This

model has an additional copy of mouse chromosome 16 that incorporates significant

part of the genes placed on Hsa21. Unfortunately, these mice do not endure past

birth and thus cannot be utilized to inspect the progress and function of the aging

progresses or the nervous system. These mice have additional genes from mouse

chromosome 16 that are not triplicated in DS (Heyn, 2005).
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Figure 2.6: Hsa21 and the regions of trisomy in the Ts65Dn and Tc1 mouse models
of DS (Sturgeon et al., 2012)

2.7.1 Ts65Dn Mouse Model

The Ts65Dn mouse is trisomic for the Mmu16 region from mir155 to Zfp295, a

region that displays excellent conserved linkage with Hsa21 (Davisson et al., 1990;

Gardiner et al., 2003). The Ts65Dn is partly trisomic. This means that it encom-

passes an additional copy of many, but not all mouse genes identical to Hsa21. It

expresses some characteristics of DS such as impaired learning, behavior deficits,

developmental delay and weight problems.

These mice are at dosage asymmetry for the region from APP through Tmprss2 that

contains nearly half of the genes on Hsa21. Ts65Dn mice are not at dosage asymme-

try for the most distal segment of Hsa21, which demonstrates conserved synteny

with Mmu10 and Mmu17. On the other hand, the region triplicated in Ts65Dn incor-

porates the Hsa21 segment from D21S55 to MX1 that has been recorded to consist

of genes chargeable for numerous DS features. Ts65Dn mice displays unsatisfactory

efficiency in the Morris water maze (Braudeau et al., 2011a; Escorihuela et al., 1995,

1998; Olson et al., 2007; Rueda et al., 2010; Stasko and Costa, 2004), contextual
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fear conditioning (Faizi et al., 2011; Kleschevnikov et al., 2012; Hyde et al., 2001),

object recognition (Braudeau et al., 2011a; Kleschevnikov et al., 2012; Lockrow et al.,

2011; Fernandez et al., 2007), other memory tests (Demas et al., 1996, 1998; Hunter

et al., 2003), as well as deficient long term potentiation (LTP) (Siarey et al., 1997;

Costa and Grybko, 2005; Garcia-Cerro et al., 2014; Lysenko et al., 2014; Fernandez

et al., 2007; Kleschevnikov et al., 2004; Filippo et al., 2010), as well as age related

worsening of neuronal cultures spontaneously impacted by DS and AD (Cooper et

al., 2001; Salehi et al., 2009).

The Ts65Dn strain is aneuploid, which means that it has an additional chromosome

conveying a portion of Mmu16 orthologous to Hsa21 and so utilized widely for the

investigation of DS (Reeves et al., 1995). Nonetheless, this extra chromosome also

encompasses 10 Mb of Mmu17 including 60 mouse genes that are not orthologous to

Hsa21, thus reducing the benefit of this model (Duchon et al., 2011).

2.7.2 Tc1 Mouse Model

The Ts65Dn mice do not represent a complete trisomy. The model contains extra

genes on Hsa21 that may cause anatomical, behavioral or physical differences that

are irrelevant to DS. Thus, scientists look for improving mouse models to make them

more similar to human habituates.

Tc1 mice model carries roughly the entire replica of Hsa21 (nearly 92% of all genes).

This model was constructed by utilizing a technique called transfer of irradiation

microcell mediated chromosome. Over a series of transfer, Hsa21 was removed

from a donor cell and independently inserted into small cells. These microcells

were combined to recipient mouse embryonic stem cells. The cell encompassing

the chromosome 21 largest fragment (90%) was selected for insertion into mouse

embryos at initial phase of improvement. Afterwards, the embryos were reimplanted

into the mother. The derived mice were fused to normal mice to create the mouse

model known as Tc1. More than 40% of the mice acquires the Hsa21 fragment.
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The Tc1 mouse type is practically trisomic for nearly 120 Hsa21 protein coding

genes. They exhibit features related to the DS phenotype, containing anomalies in

learning (O’Doherty et al., 2012; Morice, 2008; Galante et al., 2009). The Tc1 mice

not only demonstrates some of the DS features present in other mouse models. It

also displays heart deficiencies that are similar to those that make trisomy 21 the

main reason of congenital heart disease. None of the other mouse models mimic DS

heart defects so well. The considerable harm of Tc1 mice is that they are mosaic,

thus not every cell in the Tc1 mouse has a copy of Hsa21 and every mouse is distinct.

This becomes an intricate matter as it is more lengthy and more costly to figure out

whether or not the tested cells were trisomic after the experiment. A larger number

of mice may be required in order for the statistics to be worthwhile. The Tc1 mouse

contains various genes not present in Ts65Dn mice. Tc1 is thus a more integrated

model of DS. However, Tc1 has absence for a few genes that are present in Ts65Dn

mice.

2.8 Drugs for DS

To cure the DS, numerous attempts are done for developing drugs. Over the last

few years, some drugs have been observed to recover one or more anomalies in the

trisomic mice. Untreated trisomic mice have been unsuccessful to learn but if they

are first instilled with drug, they can learn correctly, thus, learning is recovered.

Comparison of the trisomic mice protein profiles when they are unsuccessful and

when their learning is recovered with drugs shows numerically important variations

in protein levels related with rescued learning. These successes have promoted to

noticeable passion for clinical trials to improve drugs. Greater than 20 drugs with

varied qualities, such as γ aminobutyric acid A (GABAA) receptor antagonists, the

green tea component and acetylcholinesterase suppressants have been shown to be

useful for rescuing performance in L/M (Gardiner, 2014; Braudeau et al., 2011; Block,

2018; Costa, Scott-McKean and Stasko, 2007; Chang and Gold, 2008; Corrales, 2013;

Das et al., 2013; Busciglio, 2013; Gardiner, 2010; Chen and Lipton, 2005; Lipton,
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2007; Kamat, 2013; Olivares, 2012).

The memantine drug is currently in operation for remedy of learning impairments

in DS. The structure of memantine is illustrated in Figure 2.7 (DrugCentral, 2019).

Figure 2.7: Memantine (DrugCentral, 2019)

Even though memantine is notable to adjust excitatory neurotransmission via antag-

onizing activity of NMDA (N-methyl-D-Aspartate) receptor as shown in Figure 2.8

(DrugsDetails, 2018), limited knowledge is available about its responses on pro-

tein expression, either solo or with learning situations. Memantine prevents Ca2+

cytotoxicty by supressing excitatory neurotransmission.

Figure 2.8: NMDA receptor and memantine (DrugsDetails, 2018)

GABAA-mediated inhibition is known to be a vital system for supplying the L/M

modifications found in trisomic mice. Figure 2.9 (Ezza and Khadrawyb, 2014) shows

glutamate effect.
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Figure 2.9: Glutamate effect on NMDA receptor (Ezza and Khadrawyb, 2014)

When glutamate binds to NMDA receptor, it increases calcium influx. This causes

free radicals and these free radicals damage the cells. However, drug memantine

prevents binding of glutamate to NMDA receptor. Thus, it prevents cell deaths.

Another drug, RO4938581 (3- bromo-10-(difluoromethyl)- 9H-benzo[f]imidazo[1,5-

a][1,2,4] triazolo [1,5-d] [1,4] diazepine) is shown in Figure 2.10 (Davies, 2019) is

GABAA receptor negative allosteric modulator (NAM).

Figure 2.10: RO4938581 (3- bromo-10-(difluoromethyl)- 9H-benzo[f]imidazo[1,5-
a][1,2,4] triazolo [1,5-d] [1,4] diazepine) (Davies, 2019)
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RO4938581 has a binding and functional affinity specific for GABAA receptors which

has a5 subunit. Just like memantine, it is also used for refining protein abnormalities

in the Ts65Dn. It has been demonstrated that RO4938581 enhances L/M and recover

neurogenesis, without the side effects, such as anxiety and convulsions.

2.9 Analysis of Protein Profiles

The datasets of protein profiles are divided into classes of mice after experimenting

in CFC (Context Fear Conditioning) with and without treatment of memantine.

2.9.1 Context Fear Conditioning

In CFC protocols (Fanselow, 1990), CS group is inserted into a cage, waiting a few

minutes to analyze the context. Subsequently, an electric shock is given. It is awaited

from control mice to connect the condition with an electric shock and freeze after

re-expose to the identical cage. The SC group is placed in a cage for checking the

reaction of the shock only. After the placement in the cage, the electric shock is

applied instantly. It is forecasted that wild type mice do not understand to connect

the cage with shock and do not freeze after re-expose the identical cage. Thus, CS

mice have learning capacity. However, SC mice are not capable of learning. Protein

responses after CFC have been recorded. The trisomic (such as Ts6Dn, Tc1) CS

group of mice cannot learn and not freeze. However, if the trisomic CS group of mice

is instilled with drug, learning can be recovered.

2.9.2 Reverse Phase Protein Arrays

The protein expression amounts of each mice are quantified with RPPA (Tibes et

al., 2006) that is a high-output method. Protein samples from each mice are robot-

assisted placed onto nitrocellulose-coated microscope slides. RPPA detects protein

expression through antibody and antigen interaction and provides a quantitative

assesment of the differential expression of proteins.
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2.9.3 Classes of Mice

Table 2.3 shows the class of mice and the learning outcome. As seen in Table 2.3, the

dataset is divided into eight classes of mice according to the expression profiles of

proteins after training in CFC with and without injection of memantine. The control

mice and trisomic mice are shown as c and t, respectively. Control mice are healthy

mice and learn successfully. These mice are divided into groups based on context

shock or drug mematine is applied or not. CS stands for mice that are exposed to

context shock and SC represents the shock context only. The letter m stands for

drug memantine and s shows saline. Saline is a salt solution and used as a control

of drug.

Table 2.3: Classes and learning outcome of datasets.

Class Learning Outcome
c−SC−s No Learning
c−SC−m No Learning
c−CS−s Successful Learning
c−CS−m Successful Learning
t−SC−s No Learning
t−SC−m No Learning
t−CS−s Failed Learning
t−CS−m Rescued Learning

2.10 Related Works

The protein profiles of different datasets are observed by applying biochemical

techniques in laboratory. However, the list of obtained proteins is long and not

all proteins in list are not related to DS. Thus, it is necessary to determine exact

protein subset which is critical in DS. In the literature, protein anomalies in DS

have been observed by using a variety of techniques to select proteins. Table 2.4

shows a summary of the techniques that can be applied in the literature.

Firstly, Ahmed et al. (2014) examined a three level mixed effects (3LME) statistical

analysis method of the Ts65Dn and normal mice protein profiles with and without

exposure to Context Fear Conditioning (CFC). Then, Higuera et al. (2015) inspected
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Table 2.4: Applied techniques in the literature.

Techniques
Ahmed et al. (2013, 2014, 2015, 2017) 3LME statistical model

Higuera, Gardiner and Cios (2015) SOM
Eicher and Sinha (2017) Linear SVM

Block et al. (2018) 3LME statistical model
Feng et al. (2017) Decision Tree+Random Forest+SVM

the profiles by applying unsupervised learning method, Self Organizing Map (SOM).

It pinpoints the critical proteins for three cases; successful learning, rescued learning

with memantine and failed learning. However, Eicher and Sinha (2017) stated that

the problem was more relevant to a classification problem rather than a clustering

problem. They used the linear SVM (Support Vector Machines) to figure out proteins

that are distinct among two classes or groups of classes.

Block et al. (2018) applied 3LME and used another drug RO4938581 for recovering

protein abnormalities. Feng et al. (2017) applied adaptive boosting (AdaBoost)

for feature selection. Then, they applied random forest, decision tree and SVM

classification techniques for discriminating normal and trisomic mice. Using Tc1

mice model, Ahmed et al. (2015) also analyzed protein profiles across brain regions

and compared protein expression abnormalities of Tc1 and Ts65Dn mice. In addition,

Ahmed et al. (2017) analyzed age process in DS by comparing the protein expression

profiles of old and young mice. The detailed information about these studies can be

found in the subsections below.

2.10.1 3LME Statistical Method

3LME statistical method is a multilevel model in which parameters vary at more

than one level. The units of level 1 are nested within groups of level 2. Then, the

groups are themselves nested within supergroups of level 3.

Ahmed et al. (2015) and Block et al. (2018) applied 3LME statistical methods

in their works. Ahmed et al. (2015) measured levels of 85 protein expression in
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the hippocampus and the cortex of Ts65Dn mice. They observed that more than

40 responses detected in control mice for successful learning was seen in Ts65Dn

for failed learning. In addition, they showed that the cure with memantine did

not normalize the starting protein levels. However, it induced responses in nearly

half of proteins and resulted in normalization of protein endpoint levels. This work

provides an initial insight of the complications related with pharmacological learning

rescue in the Ts65Dn. They assessed more than 80 protein levels in subcellular

fractions from cortex and hippocampus of mice trained in CFC. More than half of

the protein levels adjusted in one or more portions. 37 protein levels altered in

the nuclear fraction of hippocampus alone. Anomalies in thirteen protein levels

were recorded in brains of patients with AD. Furthermore, Ahmed et al. (2014)

investigated the subcellular fraction of hippocampus and cortex protein profiles of

mice treated with memantine. Out of 84 proteins displayed in one or more fractions,

expression levels of 72 and 65 were noticeable in cytosolic and nuclear fractions,

and 28 in membrane fractions. In all three subcellular fractions of hippocampus,

half of the proteins replied to one or more stimuli (successful learning, memantine

treatment, or successful learning with memantine) increased. In hippocampus,

memantine caused many alterations similar to those seen after CFC and the levels

of proteins associated with AD anomalies. In cortex, proteins in the nuclear fraction

were less clear and specific. Cortex also demonstrated a great number of proteins

decreasing, especially in the membrane and nuclear fractions.

In order to explain how the complexities of the detected protein alterations might

be incorporated into a response to L/M, they contemplated functional relationships

between the proteins measured by reverse phase protein arrays (RPPA). They chose

LTP (long term potential) as it is an important cellular mechanism underlie L/M.

The LTP pathway consisted of 70 proteins. It involved signaling through NMDAR to

MAPK (Mitogen Activated Protein Kinase), plus contributions from PKC (Protein

Kinase C), PKA (Protein Kinase A), and calcineurin complexes, and elements of

the mTOR (Mechanistic Target Of Rapamycin Kinase) pathway. Fifteen RPPA

proteins are units of the LTP pathway. They extended the pathway by adding
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the 30 RPPA proteins that instantaneously connected with components of the LTP

pathway. A total of 35 RPPA proteins answered in NL (Non Learning). Memantine

treatment corrected 22 of these responses. Successful learning enhanced modulation

of the LTP pathway while memantine significantly changed these normal responses.

Comparison of these patterns is beneficial in comprehending the vital features of

molecular responses to L/M.

Ahmed et al. (2013) also used Tc1 mice which is functionally trisomic for nearly

120 Hsa21 genes to analyze the expression of 93 protein levels in hippocampus, 88

proteins in cortex and 64 proteins in cerebellum. They showed that 26 proteins

changed in expression levels for at least one brain region. They compared protein

anomalies in Tc1 mice with the expression level of Ts65Dn mice. While there were

similarities, there were anomalies unique to the Tc1 mice. Moreover, Ahmed et al.

(2017) applied 3LME statistical technique to understand age process in DS. They

analyzed protein expression changes in different brain regions based on age. They

showed that the number of protein abnormalities are higher at 12 months than at

6 months. The number of anomalies in cerebellum decreased while the number in

cortex increased significantly with age.

Block et al. (2018) used 3LME statistical technique to observe recovering perfor-

mance of Ts65Dn mice. Numerous drugs and short molecules were observed to

rescue the L/M defaults. Thus, Block et al. (2018) used GABAAa5- selective modu-

lator, RO4938581, for rescuing protein abnormalities of Ts65Dn mice. Oral intake

of RO4938581 to Ts65Dn mice recovered LTP and neurogenesis. It enhanced L/M

without the side effects, such as concern and spasm, observed with nonselective

GABAA receptor modulators (Marti’nez-Cue’ et al., 2013).

RO4938581 connects directly to the a5 subunit of the GABAA receptor. No transcrip-

tion factors and other proteins are known to be markers. Nonetheless, RO4938581

cure may cause differences in protein post-translational or transcription modifica-

tions as RO4938581 connection reduce inhibition. The correlated rise in excitatory
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neurotransmission causes activity dependent plasticity which stimulates many genes

transcription (Flavell and Greenberg, 2008). Furthermore, since GABAA receptors

are centered at dendrites of cells in juxtaposition to NMDA receptors, inhibition

of GABAA receptor activity may provide to activation of NMDA receptors with

responses in signaling pathways.

Block et al. (2018) measured 91 protein levels pertinent to brain tasks by applying

the 3LME. 44 of the 52 abnormalities in trisomic Ts65Dn mice were amended by

RO4938581. They also compared drug memantine and drug RO4938581 responses.

They identified similar and different outcomes of the two drugs.

2.10.2 SOM Method

SOM is an artificial neural network (ANN) that is trained using unsupervised learn-

ing to map high-dimension inputs to a low dimensional discretised representation.

It conserves the underlying structure of its input space. Higuera, Gardiner and Cios

(2015) applied SOM technique to their work.

They stated that the statistical study done by Ahmed et al. (2014, 2015) was not

adequate to pinpoint all variations in protein profiles. They claimed that machine

learning methods realize these demands. They used SOM to group protein profiles

by using 77 protein levels gathered from control mice and Ts65Dn mice both with

and without treatment of the memantine.

The SOM method recognized fewer subgroups of proteins forecasted to make the vital

supports to successful learning, failed learning and rescued learning. They specified a

set of class-specific groups which was created from nearby nodes containing samples

from a single class or a node with at least 80% of its samples gathered from one

mouse. Then, Gardiner and Cios (2015) carried out the Wilcoxon rank-sum method.

They figured out that protein amounts were remarkably distinct between each pair

of groups and defined those proteins as distinct between two classes.
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For the experiments, they evaluated SOMs created only control group mice to

assess molecular processes in successful learning. The classes in control groups

are explained in Table 2.3. In this SOM, c-CS (control - Context Shock) mice were

apparently disconnected from c-SC (control - Shock Context) mice. Also, there were

no nodes consisting both CS and SC evaluations which demonstrate that disparities

in the amounts of these proteins distinguish successful learning from the absence

of stimulation to learn. Next, they contemplated the four comparisons related

to successful learning, c-CS-s/m (control - Context Shock- saline/memantine) vs.

c-SC-s/m (control - Shock Context- saline/memantine). They used the Wilcoxon-

rank sum method to pinpoint the protein sets differentiated markedly in each

of the four comparisons. All comparisons differed in 11 proteins. The chance

that the proteins are vital to successful learning was checked by yielding a SOM

employing only these 11 proteins. The disconnection of CS (Context Shock) from SC

(Shock Context) mice was preserved, i.e., these proteins were enough for discerning

successful learning from lack of stimulation to learn. Furthermore, the quantity of

mixed CS-s (Context Shock-saline) plus CS-m (Context Shock-memantine) nodes

twofolded like the number of mixed SC-s (Shock Context- saline) and SC-m (Shock

Context- memantine) nodes. To sum up, they propose that the 11 proteins are

essential for successful grouping or segregation. Together these results robustly help

the relevant biological significance to learning of the 11 proteins.

Then, Gardiner and Cios (2015) analyzed SOMs with the equivalent groups of tri-

somic mice, to analyse failed learning and its recovery by memantine. A similar

implementation of SOM to the trisomic mice dataset generated very distinct out-

comes. Trisomic t-CS-s (trisomic- Context Shock-saline) mice are unsuccessful to

learn. When the four sets of trisomic mice were grouped, the SOM exhibited a

t-CS-s cluster of nodes directly nearby to t-SC (trisomic- Shock Context) nodes and

nodes that mixed CS and SC calculations. In the trisomic SOM, only 15% of CS

nodes consisted both CS-s and CS-m computations. In control mice, 30% of CS nodes

were mixed c-CS-s (control - Context Shock-saline) and c-CS-m (control - Context

Shock-memantine). These SOM properties pointed out that protein responses when
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trisomic mice were unsuccessful to learn in CFC similar responses in mice that were

not promoted to learn. Five proteins from ten proteins varied in failed learning were

common to the subset of 11 important proteins in successful learning.

In third case, Gardiner and Cios (2015) created SOMs with mix of control and

trisomic sets to analyze dissimilarities in learning. Same set of ten proteins were

differentiating between t-CS-s and both c-CS-s and c-CS-m. They demonstrated the

disparities in the levels of proteins differentiate successful learning from the absence

of stimulation to learn. They stated that protein reactions when trisomic mice are

unsuccessful to learn in CFC look like reactions in mice that not boosted to learn.

The outcomes show that SOM can aid to diagnose protein anomalies in DS mice.

2.10.3 Linear SVM Method

Given labeled training data, SVM algorithm try to find a hyperplane that classifies

the data points. In Linear SVM, the hyperplane divides a plane in two parts where

in each class lay in either side.

Eicher and Sinha (2017) thought that the discrimination of healty and unhealthy

mice based on their protein profiles was naturally related to classification difficulty

instead of clustering dilemma. They stated that the decision of proteins which can

discriminate two classes was needed. Furthermore, they claimed that classification

techniques could give greater accuracy than clustering techniques as relabeling clus-

ters might decrease the accuracy. In addition, accuracy quantified more effectively

by applying quantitative procedures like cross validation, training and testing expec-

tation rather than a visual way. Thus, they applied linear SVM for discriminating

proteins. They analyzed the expression amount of 77 protein responses gathered

from the nuclear cortex of normal and Ts65Dn mice, with and without memantine

therapy and with and without CFC. They selected features to choose proteins that

take a important role in each model. For each classification, feature selection was

carried out in two stages. The result was discriminatory protein subsets for the two
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classes. The first phase of feature selection utilized weight values of hyperplane.

In the second step, the Wilcoxon rank sum test is applied. The efficiency of the

classifiers was higher than classifiers using previous works. Also, the large part

of distinctly identified features was also statistically important according to the

Wilcoxon rank sum test which is a nonparametric statistical test and calculates the

difference between two paired group.

The classification efficiency of the linear SVM algorithm was higher than the tech-

niques applied in previous works. However, for resolving critical proteins for more

than two classes as an input to Higuera et al. (2015), Eicher and Sinha (2017)

combined classes to create new positive and negative classes. The outputs of com-

bined class were not compared with the Higuera et al. (2015) efficiently. In order

linear SVM was not to effective for multi-class of proteins, multiclass classification

techniques were required.

2.10.4 Decision Tree, Random Forest, SVM Methods

Feng et al. (2017) decreased feature subset from 77 to 30 features by using AdaBoost

method. AdaBoost converts a set of weak classifiers into a strong one in order to

increase overall accuracy. In addition, they used Decision Tree, Random Forest and

SVM classification techniques to differentiate normal and trisomic Ts65Dn mice.

Decision Tree is a flowchart-like structure in which leaves represent class labels and

branches show features to those class labels. The paths from root to leaf indicate

classification rules. Random forest contains a large number of individual decision

trees that create an ensemble. Each individual tree in the random forest splits out

a class prediction. The class with the most votes becomes model prediction. SVM

defines decision boundaries and separate different class memberships according to

decision plane.

Feng et al. (2017) observed that the selected protein sets gave better classification

outcomes. They also generated a combined Adaboost and Decision Tree feature
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selection methods to determine the critical proteins . These proteins were relevant

to the DS phenotype and biological pathways that could differentiated classes of

DS mice and non-DS mice successfully. All proteins determined in their study were

linked with known functions in the pathways of DS. Unsupervised PCA (Principal

Component Analysis) analysis and hierarchical or agglomerative clustering anal-

ysis also proved that these proteins were important and associated with several

symptoms of DS.

Nonetheless, they did not take into account control and Ts65Dn mice, with and

without memantine therapy and with and without CFC stimulation subsets. They

could only discriminate the control group from the trisomic group. Therefore, their

work did not describe systematic procedure that was applied with Higuera et al.

(2015) by examining the subgroups. Also, AdaBoost was a very proficient technique

for solution of the two-class classification problem. Nonetheless, in going from two-

class to multiclass classification, naive AdaBoost has restrainted the multiclass

classification problem to multiple two-class problems.

2.11 Proposed Method

In our work, the different preprocessing steps, feature selection and classification

techniques are applied in order to differentiate classes of mice more accurately. The

flowchart of applied steps to protein expression datasets can be seen in Figure 2.11.

The datasets are preprocessed in filling missing values and normalization steps. 15

tissue samples that are three replicates of a five-point dilution series were obtained

per mouse. Compared to previous works, the effect of dilution ratio is considered

in this work and missing values are replaced with the average expression value

of equivalent sample in same class. Rather than min-max normalization, Z score

normalization which preserves range is done to inhibit the huge impact of proteins on

classification. After the preprocessing step, the forward feature selection technique

is applied to determine specific proteins for the DS. The multiclass classification
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Figure 2.11: Flowchart of applied steps to protein expression datasets
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algorithms are required to figure out which proteins are distinct when there are more

than two classes. Thus, naive Bayes learner for multiclass classification is used in

forward feature selection. After selecting features, grid search is done to determine

appropriate parameters for classification techniques, DNN, gradient boosting tree,

random forest and SVM. Thanks to these methods, control and trisomic mice are

differentiated. The accuracy result of this work turned out to be higher than Feng

et al. (2017) for all classification methods. The detailed analysis to determine

critical proteins in successful learning, failed learning and rescued learning is also

performed. DNN, gradient boosting tree, random forest and SVM classification

methods are done after applying forward feature selection. The accuracy results of

this work are higher than Higuera et al. (2015) for all classification methods.
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3. DATASETS AND DATA PREPROCESSING

In this chapter, the datasets used for this thesis are described. In this thesis, five

different datasets are used to differentiate mice based on:

• Learning Outcome (succesful, rescued with drug, failed),

• Drug (memantine, RO4938581),

• Age (young, old),

• Mice type (Ts65Dn, Tc1),

• Fractions of brain region (nuclear, cytosolic)

First dataset is obtained from University of California Irvine Machine Learning

Repository (Dua and Graff, 2017). The other datasets are obtained from Prof.

Gardiner at Colorado University (Globaldownsyndrome, 2019). The information

on these datasets are explained in the following sections. The datasets are also

presented along with the CD attached to this thesis. Later, the preprocessing steps

for these datasets are explained.

3.1 Datasets

3.1.1 Dataset to Differentiate Mice for Learning Outcome

The data contains the expression profiles of 77 proteins obtained from the nuclear

fraction of cortex. These 77 proteins have functions for brain structure and devel-

opment. In this dataset, there are 38 control mice and 34 trisomic mice which are

shown as c and t, respectively. Control mice are healthy mice and learn successfully.

These mice are divided into groups based on context shock or drug mematine is ap-
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plied or not. CS stands for mice that are exposed to context shock and SC represents

the shock context only. In CS group, mice are exposured to shock and waited some

minutes to learn from this shock. In SC group mice, it is not held so mice do not

context shock to the environment. The letter m stands for drug memantine and s

shows saline. Table 3.1 describes format of the dataset.

Table 3.1: Description of protein expression dataset.

Mice P1 P2 .. .. .. P77 Class
mouse 1 0.504 0.747 1.676 c-CS-m
mouse 2 0.515 0.689 1.744 c-CS-m
mouse 3 0.509 0.730 1.926 c-CS-m

..
mouse 72 0.303 0.461 1.371 t-SC-s

The rows show the individual mice. The columns show the expression amounts of 77

proteins that generated noticeable signals. The last column of each row shows the

class of each mice. The value of protein expression levels in Table 3.1 corresponds

the intensity of antigen-antibody binding in RPPA. It is an arbitrary unit that is a

unit of measurement to show the ratio of substance to a predetermined reference

measurement. High value in protein profiles indicates more protein expression in

inspected tissue.

15 samples are extracted from each mouse, resulting in 1080 samples. Table A.1 in

Appendix A shows the mouse ID and the first eleven protein expression levels and

classes of two mice.

Table 3.2 shows the class of mice, the number of mice in the class and the learning

outcome. As seen in Table 3.2, the dataset is divided into eight classes of mice based

on the profiles of 77 proteins after training in CFC with and without injection of

memantine.
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Table 3.2: Classes, number and learning outcome of mice.

Class Number of Mice Learning Outcome
c−SC−s 9 No Learning
c−SC−m 10 No Learning
c−CS−s 9 Successful Learning
c−CS−m 10 Successful Learning
t−SC−s 9 No Learning
t−SC−m 9 No Learning
t−CS−s 7 Failed Learning
t−CS−m 9 Rescued Learning

3.1.2 Datasets to Differentiate Mice for Drugs

These datasets are based on two different drugs- memantine and RO4938581. The

memantine drug dataset contains measurement from 9 mice (t−CS−m) and 15

measurements are taken from each mouse as explained previous subsection.

The RO4938581 drug dataset shows the normalized data from whole lysate hippocam-

pus of Spanish Ts65Dn ten months old mice. Data treated with drug RO4938581 or

saline as control group. Table 3.3 describes format of the RO4938581 dataset. Each

sample is associated with three replicate spots of a five point dilution series. The

dataset shows 91 protein profiles of 43 mice.

Table 3.3: Description of RO4938581 dataset.

Mice P1 P2 P3 .. .. P91 Class
mouse 1 0.414 - 0.624 0.114 c-8581
mouse 2 0.450 - 0.658 0.116 c-8581
mouse 3 0.452 - 0.649 0.117 c-8581

..
mouse 43 0.967 0.391 0.855 0.862 t-s

Table 3.4 shows the class of mice, the number of mice in the class and the learning

outcome. The dataset is divided into four classes of mice which are control group

and Ts65Dn group mice treated with saline or RO4938581. There are 22 control

mice and 21 trisomic mice shown as c and t, respectively. The 8581 stands for drug

RO4938581 and s shows saline.
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Table 3.4: Classes in RO4938581 dataset.

Class Number of Mice Learning Outcome
c−s 12 Successful Learning

c−8581 10 Successful Learning
t−s 11 No Learning

t−8581 10 Rescued Learning

3.1.3 Datasets to Differentiate Mice for Age

Table 3.5 shows the classes of young mice and old mice datasets, the number of mice

in the corresponding classes.

Table 3.5: Classes in the young mice and old mice datasets.

Class Number of Young Mice Number of Old Mice
c−CB 6 5
c−CR 6 5
c−HP 6 5
t−CB 5 5
t−CR 5 5
t−HP 5 5

The dataset consists of young and old mice protein expression levels generated

from cortex, cerebellum and hippocampus of the mice. The dataset shows protein

expression profiles of control mice and trisomic mice that are shown as c and t,

respectively. There are five trisomic and six control young mice. Old mice consist of

five trisomic and five control mice. The letters CB, CR and HP stand for cerebellum,

cortex and hippocampus, respectively.

The young mice dataset describes the information of 33 samples from five trisomic

and six control mice at three different brain regions of 63 proteins. Table 3.6 describes

format of the young mice dataset.

There are 20 measurements taken from each protein per sample: four replicates of a

five-point dilution series that are stepwise dilution of protein. Therefore, for control

mice, there are 18x20= 360 calculations, and for trisomic mice, there are 15x20 =

300 measurements.
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Table 3.6: Description of young mice dataset.

Mice P1 P2 P3 .. .. P63 Class
mouse 1 0.489 0.208 0.398 0.639 c-HP
mouse 2 0.456 0.197 0.387 0.632 c-HP
mouse 3 0.427 0.185 0.366 0.605 c-HP

..
mouse 33 0.461 0.246 0.448 0.590 t-HP

The old mice dataset contains the information of 89 protein expressions which

are taken from five trisomic and five control mice across three brain regions. 15

measurements are taken from each protein per sample: three replicates of a five-

point dilution series. There are 15x15=225 measurements for control and trisomic

groups. Table 3.7 describes the format of old mice dataset.

Table 3.7: Description of old mice dataset.

Mice P1 P2 P3 .. .. P89 Class
mouse 1 5.821 2.346 5.678 0.384 c-CR
mouse 2 6.011 2.256 5.423 0.437 c-CR
mouse 3 5.876 2.193 5.591 0.412 c-CR

..
mouse 30 - - - 0.443 c-CB

3.1.4 Datasets to Differentiate Mice for Mice Type

These datasets show the protein expression data from cortex, cerebellum and hip-

pocampus. Data were taken from Tc1 mice, Ts65Dn mice and their controls.

Ts65Dn mice dataset that explained as young mice dataset in previous subsection.

It includes the expression levels of 63 proteins obtained from cortex, cerebellum

and hippocampus. There are six control mice and five trisomic Ts65Dn mice. There

are 20 measurements obtained from each protein per sample: four replicates of a

five-point dilution series.

Table 3.8 describes format of the Tc1 mice dataset. The data from Tc1 mice contains

the expression levels of 90 proteins obtained from cortex, cerebellum and hippocam-

pus of 8 moths old mice. In the dataset, there are seven control mice and seven
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trisomic Tc1 mice. 20 samples are extracted from each mouse.

Table 3.8: Description of Tc1 mice dataset.

Mice P1 P2 P3 .. .. P90 Class
mouse 1 0.279 0.477 0.259 - t-CR
mouse 2 0.288 0.490 0.255 - t-CR
mouse 3 0.290 0.472 0.251 - t-CR

..
mouse 42 0.155 0.404 0.476 0.802 t-CB

Table 3.9 shows the classes of mice and the number of mice in the classes. The

datasets are divided into six classes of mice which represent expression data across

brain regions of control and Tc1 group mice.

Table 3.9: Classes in the Tc1 mice dataset.

Class Number of Tc1 Mice
c−CB 7
c−CR 7
c−HP 7
t−CB 7
t−CR 7
t−HP 7

3.1.5 Datasets Used to Differentiate Mice for Fractions of Brain Region

This dataset shows the protein expression data from nuclear and cytosolic fraction

of cortex. This dataset was obtained from Ts65Dn mice and control mice which

were treated with memantine or saline. Table 3.10 describes format of the protein

expression data from nuclear and cytosolic fraction of cortex.

Table 3.10: Description of protein expression dataset from fractions of cortex.

Mice P1 P2 P3 .. .. P79 Class
mouse 1 1.0518 1.405 0.412 2.866 t-cyto-s
mouse 2 0.892 1.205 0.348 2.845 t-cyto-s
mouse 3 0.903 1.197 0.366 2.747 t-cyto-s

..
mouse 72 0.238 0.339 0.332 0.807 c-nuc-m

15 samples are gathered from each mouse. The dataset is partitioned into eight

classes of mice which represent expression data at cytosolic and nuclear fraction
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of cortex. There are control group and Ts65Dn group mice treated with saline or

memantine. The dataset contains the expression levels of 79 proteins obtained from

nuclear and cytosolic fraction of cortex.

Table 3.11 shows the class of mice and the number of mice in the class.

Table 3.11: Classes in the dataset from fractions of cortex.

Class Number of Mice
c−cyto−s 9
c−cyto−m 10
c−nuc−s 9
c−nuc−m 10
t−cyto−s 7
t−cyto−m 10
t−nuc−s 7
t−nuc−m 10

3.2 Data Preprocessing

Data preprocessing is a critical issue for data mining (Alasadi and Bhaya, 2017).

It prepares raw data for further processing and resolves real-world data problems

that include incomplete data. These data likely contain many errors. Data pre-

processing consist of cleaning, feature extraction and selection, instance selection,

normalization, transformation steps. The output is the final training set.

Data processing step is important since there can be unrelated, unnecessary or unre-

liable data. Also, if raw data is used, knowledge exploration will be more challenging

and require reasonable processing time. In this thesis, data preprocessing step

consists of handling missing value, normalization of datasets and feature selection.

3.2.1 Handling Missing Value

For the datasets that are used in this thesis, a number of protein levels have missing

values. Using the data in this from can result to misleading predictions for the

unknowns. The missing points are substituted by the mean expression levels of the
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equivalent sample of mice in the same class. For example, if a mouse is missing

the first sample expression level, the missing value is substituted by the average

expression value of first sample in the same class of mice.

This subsitution method used in this thesis is different from previous studies. In

the previous studies, missing values were substituted with mean value of all protein

expression in the same class of mice. 15 tissue samples that are three replicates of a

five-point dilution series were obtained for each mouse. We considered the effect of

dilution ratio and applied different calculations to handle missing values.

Table 3.12 presents example of the sample data that have missing values. Columns

represent Sample ID, dilution ratio, replicate, nine protein expression levels and

class of mice. The sample data in Table 3.12 belong to the same class; namely c-cs-m.

P1 column shows the protein expression levels of protein one. Three expression

levels in third dilution ratio of Sample 2 are missing.

Table 3.12: Missing value example of sample data.
Sample ID Dilution Replicate P1 P2 P3 P4 P5 P6 P7 P8 P9 Class

2 1 1 0.2929 0.2455 0.7521 0.1686 0.2256 0.4729 0.9345 0.3337 1.7124 c-cs-m
2 1 2 0.2101 0.1824 0.5525 0.1026 0.1113 0.2928 0.5676 0.2621 1.4518 c-cs-m
2 1 3 0.2267 0.1691 0.5689 0.1195 0.1254 0.5367 0.2549 1.4360 c-cs-m
2 2 1 0.2297 0.1805 0.5454 0.1067 0.1180 0.3207 0.5341 0.2513 1.4653 c-cs-m
2 2 2 0.1582 0.1528 0.0920 0.0935 0.3504 0.5577 1.6326 c-cs-m
2 2 3 0.1636 0.1614 0.1027 0.1060 0.3225 0.5713 1.6571 c-cs-m
2 3 1 0.1004 0.1070 0.3852 0.5693 1.7325 c-cs-m
2 3 2 0.1038 0.0965 0.3693 0.6235 1.7903 c-cs-m
2 3 3 0.1016 0.0971 0.3663 0.6491 1.7366 c-cs-m
2 4 1 0.1573 0.1543 0.0966 0.0976 0.3591 0.6540 1.7204 c-cs-m
2 4 2 0.1619 0.1395 0.3882 0.0934 0.0856 0.3413 0.3641 0.1605 1.5170 c-cs-m
2 4 3 0.1812 0.1535 0.4158 0.0941 0.1030 0.3409 0.3980 0.1717 1.6041 c-cs-m
2 5 1 0.5418 0.6688 0.2448 0.3133 0.3048 0.1961 0.6129 1.0875 1.1994 c-cs-m
2 5 2 0.4974 0.6623 0.2244 0.3036 0.3115 0.1937 0.6034 1.1106 1.2441 c-cs-m
2 5 3 0.5797 0.7521 0.2571 0.3233 0.3233 0.2193 0.6616 1.2934 1.4180 c-cs-m
3 1 1 0.7747 0.9413 0.4267 0.2844 0.2640 0.2029 1.0663 1.5607 1.8201 c-cs-m
3 1 2 0.8614 0.9675 0.4441 0.3068 0.2728 0.2269 1.1725 1.6870 2.0388 c-cs-m
3 1 3 0.8646 0.9929 0.4409 0.3292 0.2714 0.2232 1.1505 1.7492 1.9095 c-cs-m
3 2 1 0.7926 0.9193 0.3471 0.2432 0.2030 0.9279 1.5316 1.8244 c-cs-m
3 2 2 0.8313 0.9490 0.3445 0.2528 0.2054 0.9774 1.5965 1.8408 c-cs-m
3 2 3 0.8607 1.0137 0.3715 0.3457 0.2604 0.2111 1.0260 1.8023 1.8809 c-cs-m
3 3 1 0.7191 0.8612 0.2793 0.2899 0.2353 0.1913 0.9034 1.4744 1.7711 c-cs-m
3 3 2 0.7337 0.8381 0.2787 0.2898 0.2303 0.1995 0.9204 1.5225 1.6598 c-cs-m
3 3 3 0.7977 0.9378 0.3147 0.3346 0.2403 0.2096 0.9759 1.6961 1.7955 c-cs-m
3 4 1 0.7014 0.8735 0.2847 0.3040 0.2083 0.1604 0.7043 1.5029 1.7138 c-cs-m
3 4 2 0.7584 0.9005 0.2854 0.3308 0.2190 0.1689 0.7782 1.6034 1.7766 c-cs-m
3 4 3 0.8095 0.9091 0.3037 0.3424 0.2155 0.7424 1.7950 1.7136 c-cs-m
3 5 1 0.7012 0.8056 0.2953 0.3685 0.2395 0.1935 0.8503 1.4730 1.5208 c-cs-m
3 5 2 0.7097 0.2998 0.3808 0.2329 0.2015 0.8930 1.6801 1.5318 c-cs-m
3 5 3 0.7326 0.3089 0.3939 0.2430 0.1934 0.8787 1.7945 1.5427 c-cs-m
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Sample 2, Dilution ratio 3

1. Replicate - missing value

2. Replicate - missing value

3. Replicate - missing value

Sample 3, Dilution ratio 3

1. Replicate - 0.719190141

2. Replicate - 0.733772061

3. Replicate - 0.79775641

When these missing values are handled, the dilution rate is considered. Sample 2

and 3 belong to the same class: c-cs-m. So, the missing values will be the average

of third dilution levels of Sample 2 and 3. Thus, the missing values of sample 2

will be the average of 0.719190141, 0.733772061 and 0.79775641. The value is

0.7502395373.

The previous works did not consider the dilution ratio and took consideration of

expression levels in the same class. The result is 0.5573819498. There is a big

difference between missing value result of this work and previous works.

Table 3.13 shows the completed representation of Table 3.12. All missing values in

Table 3.12 are replaced by the mean expression levels of equivalent sample in the

same dilution ratio and class of mice.
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Table 3.13: Complete representation of example sample data.
Sample ID Dilution Replicate P1 P2 P3 P4 P5 P6 P7 P8 P9 Class

2 1 1 0.2929 0.2455 0.7521 0.1686 0.2256 0.4729 0.9345 0.3337 1.7124 c-cs-m
2 1 2 0.2101 0.1824 0.5525 0.1026 0.1113 0.2928 0.5676 0.2621 1.4518 c-cs-m
2 1 3 0.2267 0.1691 0.5689 0.1195 0.1254 0.2837 0.5367 0.2549 1.4360 c-cs-m
2 2 1 0.2297 0.1805 0.5454 0.1067 0.1180 0.3207 0.5341 0.2513 1.4653 c-cs-m
2 2 2 0.1582 0.1528 0.0920 0.0935 0.3504 0.5577 1.6326 0.1295 0.1753 c-cs-m
2 2 3 0.1636 0.1614 0.1027 0.1060 0.3225 0.5713 1.6571 0.1295 0.1753 c-cs-m
2 3 1 0.7502 0.8790 0.1004 0.1070 0.3852 0.5693 1.7325 0.1564 0.1742 c-cs-m
2 3 2 0.7502 0.8790 0.1038 0.0965 0.3693 0.6235 1.7903 0.1564 0.1742 c-cs-m
2 3 3 0.7502 0.8790 0.1016 0.0971 0.3663 0.6491 1.7366 0.1564 0.1742 c-cs-m
2 4 1 0.1573 0.1543 0.0966 0.0976 0.3591 0.6540 1.7204 0.1113 0.1665 c-cs-m
2 4 2 0.1619 0.1395 0.3882 0.0934 0.0856 0.3413 0.3641 0.1605 1.5170 c-cs-m
2 4 3 0.1812 0.1535 0.4158 0.0941 0.1030 0.3409 0.3980 0.1717 1.6041 c-cs-m
2 5 1 0.5418 0.6688 0.2448 0.3133 0.3048 0.1961 0.6129 1.0875 1.1994 c-cs-m
2 5 2 0.4974 0.6623 0.2244 0.3036 0.3115 0.1937 0.6034 1.1106 1.2441 c-cs-m
2 5 3 0.5797 0.7521 0.2571 0.3233 0.3233 0.2193 0.6616 1.2934 1.4180 c-cs-m
3 1 1 0.7747 0.9413 0.4267 0.2844 0.2640 0.2029 1.0663 1.5607 1.8201 c-cs-m
3 1 2 0.8614 0.9675 0.4441 0.3068 0.2728 0.2269 1.1725 1.6870 2.0388 c-cs-m
3 1 3 0.8646 0.9929 0.4409 0.3292 0.2714 0.2232 1.1505 1.7492 1.9095 c-cs-m
3 2 1 0.7926 0.9193 0.3471 0.1630 0.2432 0.2030 0.9279 1.5316 1.8244 c-cs-m
3 2 2 0.8313 0.9490 0.3445 0.1630 0.2528 0.2054 0.9774 1.5965 1.8408 c-cs-m
3 2 3 0.8607 1.0137 0.3715 0.3457 0.2604 0.2111 1.0260 1.8023 1.8809 c-cs-m
3 3 1 0.7191 0.8612 0.2793 0.2899 0.2353 0.1913 0.9034 1.4744 1.7711 c-cs-m
3 3 2 0.7337 0.8381 0.2787 0.2898 0.2303 0.1995 0.9204 1.5225 1.6598 c-cs-m
3 3 3 0.7977 0.9378 0.3147 0.3346 0.2403 0.2096 0.9759 1.6961 1.7955 c-cs-m
3 4 1 0.7014 0.8735 0.2847 0.3040 0.2083 0.1604 0.7043 1.5029 1.7138 c-cs-m
3 4 2 0.7584 0.9005 0.2854 0.3308 0.2190 0.1689 0.7782 1.6034 1.7766 c-cs-m
3 4 3 0.8095 0.9091 0.3037 0.3424 0.2155 0.3331 0.7424 1.7950 1.7136 c-cs-m
3 5 1 0.7012 0.8056 0.2953 0.3685 0.2395 0.1935 0.8503 1.4730 1.5208 c-cs-m
3 5 2 0.7097 0.7222 0.2998 0.3808 0.2329 0.2015 0.8930 1.6801 1.5318 c-cs-m
3 5 3 0.7326 0.7222 0.3089 0.3939 0.2430 0.1934 0.8787 1.7945 1.5427 c-cs-m

3.2.2 Normalization

Normalization is the process of discarding methodological biases from the data.

Bias may happen due to many factors, including adjustments in temperature over

the time of experiment, changes in conditions of sample processing, instrument

calibrations.

In this thesis, all evaluations are normalized with Z-score to ward off proteins with

higher amounts affect on the classification outcome incorrectly. Since Z-score nor-

malization protects range (maximum and minimum), Z-score normalization is used

in this thesis rather than min-max normalization which was applied in Higuera et

al. (2015). Min-max normalization transforms linearly x to y= (x−min)/(max−min),

where min and max are the minimum and maximum values in X, where X is the

set of x values that are observed. The minimum value in X is correspond to 0 and

the maximum value in X is correspond to 1. Therefore, the entire range of X values

from min to max are mapped to the range 0 to 1.
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With Z-score normalization as stated in (3.1), mean of the scores is subtracted from

each score and then divided into the standard deviation (Abdi and Lynne, 2010). Z-

score is applied to avoid higher impact of proteins on the classification outcome.

Z= x−µ
σ

, (3.1)

Z-score normalization preserves range (maximum and minimum) and introduces the

dispersion of the series (standard deviation / variance). If data follows a gaussian

distribution, the comparison between series will be easier. Z-scores allow for a very

straight elimination of systematic errors.
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4. FEATURE SELECTION

In this chapter, before developing a classification model, dimensionality reduction

which is an important step for comprehending the knowledge about the class is

applied. Dimensionality reduction decreases the amount of features for diagnosis

of the vital variables. It has the effect of declining the computational cost. For

dimensionality reduction, feature selection and feature extraction methods have

been used. Feature selection chooses a subset of features, while feature extraction

produces a new feature set from original features (Khalid, Khalil and Nasreen, 2014;

Kaushik, 2016).

For feature selection, the forward feature selection method is used in this thesis.

The reason for using feature selection method rather than feature extraction method

is the determination of exact protein subset. In feature extraction method like PCA,

the dataset is compressed onto a lower-dimensional feature subspace in order to

obtain most of the relevant information. By this way, the patterns in data can be

identified based on the correlation between features. However, the determination

of protein subset which differentiates mice more accurately is needed in this work,

thus feature selection is used.

Three classes of feature selection algorithms are filter methods, wrapper methods

and embedded methods. These feature selection methods improve accuracy and

efficiency of classifier methods. Generally, a feature subset selection algorithm

involves a feature evaluation criterion and a search algorithm. The evaluation

criterion determines the feature subset capacity to discriminate one class from

another. The search algorithm explores the potential solution space. With filter

selection method, the feature selection is independent of the classifier. Also, a
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statistical measure is used to assign a score to each feature. The features are ranked

by the score. On the other hand, wrapper method selects features using classifier

and obtains better performances. Thus, one of the wrapper feature selection method,

forward feature selection, is used in this work.

Feature selection is the method of choosing a subset of related features in model

structure (Rawale, 2018). It is one of the main concepts in machine learning. It

greatly affects the performance of model as the features have a great effect on the

function. Having unrelated features diminishes the accuracy of the models and

makes model learn based on unrelated features. Some benefits of applying feature

selection method before modeling data are accuracy improvement, reduction of

overfitting and training time. The accuracy of a model is enhanced if the exact

subset is selected. Less relevant data results in less chance to make decisions.

The forward feature selection is the heuristic procedure. It discovers the ideal feature

subset by repetitively choosing features depending on the classifier efficiency. It

starts with an empty feature subset and appends one feature for each spin. This

one feature is removed from the set of all features which are not in the feature

subset. Then, it is added to the set and set gives highest classifier performance.

This procedure is reiterated until the desired number of features are appended.

Forward feature selection does not inspect all possible subsets and does not ensure

to obtain the optimal subset. However, it decreases the search time when compared

to exhaustive feature selection (ScienceDirect, 2014).

The target of feature selection is to choose a subset of the whole input features set.

The subset can forecast the output Y with accuracy relative to the complete input set

X, and with great decrease in the computational cost. The forward feature selection

method starts by evaluating all feature subsets that contain one input. In another

words, it begins by quantifying the Leave-One-Out Cross Validation (LOOCV) error

of the one element subsets, X1, X2, ..., XM, where M is the input dimensionality; so

that we can obtain the best individual feature, X1. The algorithm of forward feature
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selection is shown in Figure 4.1

Figure 4.1: Forward feature selection algorithm

In our study, the features are proteins and the class is the class of mice such as

c-CS-m, t-SC-s (trisomic- Shock Context- saline).

The forward feature selection is applied using the Knostanz Information Miner

(KNIME) as shown in Figure 4.2 (Berthold et al., 2009). It is the open source software

for developing data science. KNIME Analytics Platform provides to comprehend

data and shape data science workflows.

Inside the search loop, the dataset is partitioned into a learning set (70%) and a

validation set (30%). Learning set is used for the development of the model in the se-

lection of the variables. Validation set measures an error rate approximation. Naive

Bayes learner that is efficient in multi classification problem is used for the learning

process. Bayes theorem as stated in (4.1) offers a solution of measuring the posterior

probability, P(c|x), from P(c), P(x), and P(x|c). Naive Bayes classifier undertakes that

the impact of the predictor (x) value on a given class (c) is independent of the values

of other predictors. This presumption is known as class conditional independence

(Chen et al., 2009).
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P(c | x)= P(x | c)P(c)
P(x)

(4.1)

where P(c|x) is the target class posterior probability, P(c) is the class prior probability,

P(x|c) is the possibility that is the chance of class predictor, P(x) is the predictor prior

probability.

Despite the underlying assumption of conditional independence, naive Bayes exe-

cutes well with more-than-two-classes problem. In previous works, the implemented

algorithms suffered from an effective multiclass classification technique. In this

thesis, this deficiency is eliminated with naive Bayes algorithm in forward feature

selection method.
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Figure 4.2: KNIME forward feature selection workflow (Berthold et al., 2009)
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5. CLASSIFICATION METHODS

In this chapter, classification methods are applied for the division of mice to their

groups, such as c-SC-m, t-CS-s. Four classification methods, DNN, gradient boosted

tree, random forest and SVM are carried out. These classification methods are

implemented by using Python and Scikit Learn package (Hao and Ho, 2019). For

selecting the most suitable parameters for classification methods, grid search method

(Bergstra et al., 2011) is applied.

Grid search is the technique of implementing hyper-parameter tuning for defining

the ideal model. This is vital as the achievement of the whole procedure depends

on the hyper-parameter values. The hyperparameter value has to be determined

before the start of learning process. (For example, the number of hidden layers

in NN, k (number of nearest neighbours) in k -Nearest Neighbors) Grid-search is

used to discover the ideal hyperparameters of a model which produces the most true

predictions. GridSearchCV of the sklearn library is utilized as shown in Figure 5.1.

Figure 5.1: Hyper parameter tuning using GridSearchCV
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First, it is needed to add GridSearchCV from the sklearn library which is a machine

learning library for python. The parameter of GridSearchCV predictor needs the

model for tuning hyper parameter. The rbf kernel of the Support Vector Regression

model (SVR) is used. The param_grid parameter entails the range of parameter

values. The most important parameters needed when operating with SVR model

are c, γ and ε. A list of selected values should be provided to each hyper parameter.

These values can be changed to observe which value gives higher performance. A

cross validation procedure is done in order to identify the hyperparameter value set.

In our works, different classification algorithms are applied for different datasets.

The parameters of these algorithms are selected using grid search method. The

selected parameter range for DNN, gradient boosting, random forest and SVM are

explained below.

The parameters of DNN are activation, hidden_layer_sizes, learning_rate_init and

max_iter.

Example of DNN function : MLPClassifier (activation= ’relu’, hidden_layer_sizes=

16, learning_rate_init= 0.01, max_iter= 160)

Grid search selects parameters for DNN. The user gives range of parameters and

algorithm selects parameters that show best fit to function. The parameter range

for DNN is shown below:

tuned_parameters = [’activation’: [’identity’, ’logistic’, ’tanh’, ’relu’], ’max_iter’:

[40,80,120,160,200], ’learning_rate_init’: [0.01,0.05,0.1,0.5], ’hidden_layer_sizes’:

[8,12,16,20] ]

Activation parameter represents activation function for the hidden layer. It can be

identity, logistic, tanh orrelu. Identity is the no operation activation and returns

f(x) = x. Logistic is the logistic sigmoid function and returns f(x) = 1 / (1 + exp(-x)).

Tanh is the hyperbolic tan function and returns f(x) = tanh(x). Relu is the rectified
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linear unit function and returns f(x) = max(0, x). The gradient of the tanh function is

steeper as compared to the logistic sigmoid function. The tanh is preferred over the

sigmoid function. It is zero centered and the gradients are not restricted to move in

a one direction. The advantage of the ReLU function over other activation functions

is that it does not activate all neurons at the same time. Thus, the ReLU function is

more computationally efficient when compared to the sigmoid and tanh function.

Learning rate adjusts weight. Maximum number of iterations shows the number of

iterations.

The parameters of random forest are max_depth, max_features, min_samples_split,

min_samples_leaf, bootstrap, criterion.

Example of random forest function : RandomForestClassifier (n_estimators=100,

criterion = ’gini’, max_depth = None, min_samples_leaf = 1, max_features= 3,

min_samples_split= 2, random_state=42)

The parameter range for random forest algorithm is shown below:

tuned_parameters = "max_depth": [3, None], "max_features": sp_randint(1, 11),

"min_samples_split": sp_randint(2, 11), "min_samples_leaf": sp_randint(1, 11),

"bootstrap": [True, False], "criterion": ["gini", "entropy"]

The parameter of maximum depth is the depth of tree. It controls over-fitting. Higher

depth makes model learn relations very specific. If it is none, the nodes are expanded

until all leaves contain less than min_samples_split samples. The parameter of

min_samples_split shows the minimum number of samples required for splitting.

The parameter of max_features represents the number of features are considered for

the best split. Generally, square root of the total number of features works efficiently.

The parameter of min_samples_leaf is the minimum number of samples required

to be at a leaf node. A split point at any depth will only be considered if it leaves

at least min_samples_leaf training samples in each of left and right branches. The
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parameter of bootstrap shows the bootstrap samples when building trees. If it is

false, the whole dataset is used to build each tree. The parameter of criterion is the

quality measure of a split. Gini and entropy are Gini impurity and information gain,

respectively.

The parameters of random forest are C, kernel and gamma.

Example of SVM function : SVC (C=10, kernel ="rbf", gamma=0.3)

The parameter range for SVM is shown below:

tuned_parameters = [’kernel’: [’rbf’, ’linear’, ’poly’], ’gamma’: [1e-3, 1e-4], ’epsilon’:

[0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.5,1,5,10] ,’C’: [1, 10, 100, 1000]]

The parameter of kernel shows the kernel type used in the algorithm. The gamma

parameter defines kernel trick to handle nonlinear classification. When gamma is

very small, the model is constrained to not capture the shape of the data. A small

gamma causes low bias and high variance. A large gamma causes higher bias and

low variance. The support vectors are the instances across the margin and the

samples being penalized. The value of epsilon defines a margin of tolerance where

no penalty is given to errors. The epsilon value which is larger than the range of

the target causes a bad result. Epsilon must be chosen to reflect the data. It affects

smoothness of the SVM’s response. The C parameter is a trade off between correct

classification of data and maximization of margin. A large C causes low bias and

high variance. A smaller margin is accepted if the decision function is better at

classifying all training points correctly. A small C causes higher bias and lower

variance. It causes larger margin at the cost of training accuracy.

The parameters of gradient boosting classifier are n_estimators, min_samples_split,

random_state, learning_rate.

Example of gradient boosting function : GradientBoostingClassifier (n_estimators=50,
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min_samples_split= 3, random_state=42, learning_rate =0.5)

The parameter range for gradient boosting algorithm is shown below:

tuned_parameters = "n_estimators" : [50,100,200], "min_samples_split" : [2,3,5],

"learning_rate" : [0.05,0.1,0.25,0.5,1.0]

Learning rate controls the magnitude of change in the estimates and determines

the impact of each tree on the final outcome. Lower values make the model robust

to the specific characteristics of tree. With lower values, higher number of trees is

required for all relations and so it causes computationally expensive operation. The

parameter of n_estimators shows the number of sequential trees to be modeled. At

higher number of trees, algorithm is more roboust. However, it can be overfit at

one point. Thus, cross-validation is required. The parameter of min_samples_split

defines the minimum number of samples required in a node to be considered for

splitting.

Also, for developing robust and reliable classification model, 5-fold cross validation is

used. Cross-validation is a statistical process utilized to approximate the proficiency

of machine learning models (Neale, 2019).

In k-fold cross validation (Wong, 2015), the data is splitted into k subsets. Only one

of these subsets is utilized as the test set and the others are used as a training set

at each time. This procedure is reiterated k times. The error approximation is the

mean of all k trials to obtain total performance. This significantly diminishes bias

because of utilizing most of the data for fitting. It also decreases variance as most of

the data is also being utilized in validation set. The general methodology of k− fold

cross validation is given in Figure 5.2.
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Figure 5.2: Methodology of k−fold cross validation

Each observation is nominated to a group individually and remains in that group for

the process time. This indicates that each sample is taken the chance to be utilized

in the hold out set. Also, it is utilized to train the model k−1 times.

In the rest of this chapter, the four types of classification methods that are used in

this thesis are described.

5.1 Deep Neural Network

Neural networks (NN) are developed to identify patterns. NN resemble to human

brain as they gather knowledge through learning. Then, it constitutes artificial

neurons which are equivalent to neurons in a brain. Each connection between

neurons passes a signal to another neuron and can increase or decrease the power

of the signal. As shown in Figure 5.3 (Huang, 2018), NN have three layers-input,

hidden and output. NN analyze sensory data and assist to classify or cluster.

The perceptron performs on the following simple steps:

1. All inputs (x_1,x_2, ...,x_n) are multiplied with their weights (w_1,w_2, ...,w_n)

2. All multiplied values are added and called as weighted sum

3. The weighted sum is applied to the correct activation function
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Weights demonstrate the power of the particular node. The activation functions are

practiced to project the input between the required values like (0, 1) or (-1, 1).

Figure 5.3: Neural network representation (Huang, 2018)

Perceptron is a single layer neural network as shown in Figure 5.4 below. (Rao, AS.;

Avadhani, PS. and Chaudhuri, NB., 2016)

Figure 5.4: Percepton model (Rao, AS., Avadhani, PS. and Chaudhuri, NB., 2016).

DNN is type of a neural network with multiple layers between the input and output

layers (Wang et al., 2017). A representation of a DNN is given in Figure 5.5 below.

In order convert input into output, DNN tries to determine whether the relationship

is linear or not. The network proceeds in the layers computing the probability of

each output (Lecun, Bengio and Hinton, 2015).

A multi-layer perceptron utilized in this work is a subset of DNN (Pereira, 2006). It
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Figure 5.5: Deep neural network representation (Wang et al., 2017)

is the original perceptron model introduced by Rosenblatt (1958). It is also called as

Feed Forward Neural Network (FFNN).

MLP (Multi Layer Perceptron) learning is the procedure to adjust the weights of

connections. It obtains a smallest variation between the desired response and the

network response. The commonly used algorithm is Back- Propagation Algorithm.

The network outputs are measured by the following equations:

yi = f (
n∑

k=1
wn

k,jh
k
n), (5.1)

Y = (y1, ...,yj, ...,yn+1)=F(W,X) (5.2)

where wk,j , is the weight between the neuron k in the hidden layer i and the neuron

j in the hidden layer i, ni is the number of the neurons in the ith hidden layer. hk
n

represents neurons in the hidden layers and the output of h j
i can be computed as

follows:

h j
i = f (

ni−1∑
k=1

wi−1
k, j hk

i−1) i = 2,3..., N and j = 1,2, ....,ni (5.3)

where Y is the output layer vector, F is the transfer function.
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The matrix of weights W is desribed as

W = [W0, ....,W j, ...,Wn] (5.4)

W i = (wi
j,k) (5.5)

where 0<= i <= n,1<= j <= ni+1 and 1<= k <= ni

A multi-layer perceptron is subset of DNN as shown in Figure 5.6.

Figure 5.6: Multi-layer perceptron model (Pereira, 2006)

5.2 Gradient Boosted Tree

The fundamental reasons of variation in actual and predicted values can be noise,

bias and variance. Ensemble assists to diminish these factors except noise since it

is an irreducible error. It assembles predictors which stick together to give a final

prediction.

Boosting is an ensemble method that the predictors are not produced separately, but

successively. It transforms weak learners to a strong learner by boosting mislabeled
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data with higher weight. Therefore, the subsamples of data have an unequal chance

of emerging in subsequent models. The ones with the highest error are seen most

(Shubham, 2018).

The idea on the observation by Leo Breiman is that boosting can be translated as

an optimization algorithm on a proper cost function (Breiman, 1997). Regression

gradient boosting algorithms were consequently built by Jerome H. Friedman (2001,

2002) and Mason et al. (1999). These two papers proposed the concept of boosting

algorithms as repetitive functional gradient descent algorithms. This means that al-

gorithms revise a cost function by repetitively selecting a function (weak hypothesis)

that directs in the negative gradient direction.

Figure 5.7 (Johansson, 1995) shows the loss function minimization in gradient

boosting algorithm when submodels are ensembled gradually. Gradient boosting

adds submodels incrementally to minimize a loss function.

Figure 5.7: Minimization of a loss function in gradient boosting (Johansson, 1995)

Gradient boosting is a methodology of machine learning for classification and regres-

sion problems. It produces a forecast model in the form of a weak prediction models

ensemble, typically decision tree (Natekin and Knoll, 2013). In pseudocode (Hastie

et al., 2009), the method of generic gradient boosting is shown in Figure 5.8.

At each stage, the decision tree hm(x) that is base learner is choosen to minimize a

loss function L given the current model Fm−1(x), where m is the iteration number,
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Figure 5.8: Methodology of gradient boosting algorithm

Fm(x) is the model and γ is the rate of learning.

5.3 Support Vector Machines

SVM is a supervised machine learning classification technique that uses a d-

dimensional Euclidean space data set (Cortes and Vapnik, 1995). The number

of d represents the features quantity in the data set. SVM discovers an optimal

(d−1) dimensional hyperplane to split the data by class. Figure 5.9 demonstrates the

possible hyperplanes. These hyperplanes discriminate classes. The range between

the hyperplane and the nearest data point from each part of the hyperplane is known

as the margin. In order to classify new data accurately, the distance between the

hyperplane and data must be larger.
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Figure 5.9: Possible hyperplanes in SVM (Cortes and Vapnik, 1995)

Figure 5.10 shows the optimal hyperplane in SVM.

Figure 5.10: Optimal hyperplane in SVM.

As seen in Figure 5.10, the H1 and H2 are the two hyperplanes. If we are given a

training dataset of n points of the form (x1,y1),.......,(xn,yn), yi can be either 1 or −1,

each indicating the class to which the point xi belongs.

The two hyperplanes separate these two classes of data and can be described by the

equations:

H1 : w∗ xi +b =+1 (5.6)

H2 : w∗ xi +b = –1 (5.7)

The plane H0 is the median between H1 and H2, where w∗ xi +b = 0 in which b is

bias, w is a weight vector and x is input vector.
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5.4 Random Forest

Random forest is created from many decision trees that are selected from a random

subset of training set. The representation of random forest is shown as Figure 5.11

below (Koehrsen, 2017).

Figure 5.11: Representation of random forest (Koehrsen, 2017)

This method builds random forest by joining a great number of decision trees. The

output is the class that is the classes mode or the individual tree mean prediction

(Breiman, 2001). Random Forest is a strong learner and is built as an ensemble of

decision trees. The decision trees are weak learners to perform different tasks such

as classification and regression. Random Forest pseudocode is given in Figure 5.12.

Figure 5.12: Random forest pseudocode (Koehrsen, 2017)
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Random forest is tuned with ntree and ntry parameters to obtain optimized forest

structure. The parameter ntree indicates how many trees are to be produced to

generate the random forest. The parameter ntry indicates the number of variables

that will be taken into account at any time in deciding how to divide the dataset.

The methodology of random forest classification is described as follows:

1. Select ntree samples from original data

2. For each sample, create an unpruned tree by following modification:

• At each node, randomly sample ntry of the predictors and select the best

split from those variables

3. Predict new data by combining the predictions of the ntree trees
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6. CRITICAL PROTEINS ASSOCIATED WITH DS

In this chapter, the critical protein subsets associated with DS are obtained and

presented. The forward feature selection method is applied to different datasets.

The selected subsets of proteins differentiate healthy and unhealthy mice.

By comparing the classification accuracy, the importance of selected proteins can be

understood. If accuracy result of selected proteins in this thesis is higher than what

is found in previous work, it can be concluded that more critical protein subset is

selected. This subset differentiates healthy and unhealthy mice more accurately.

KNIME tool is used. Naïve Bayes algorithm is applied in forward feature selection

technique. In Naïve Bayes algorithm, Naïve Bayes learner creates a Bayesian model

from the input training data. Naïve Bayes Predictor applies Bayesian modes to the

input data. The scorer component is added at the end of the workflow and measures

classifiers’ performance. In addition, upper and lower number limit of selected

feature, population size and iterations are specified in forward feature selection.

After selecting the subset of features, different classification methods are applied for

differentiating mice. The parameters of classification methods are selected based on

grid search method.

The phyton code for grid search method applied on DNN for obtaining parameters in

successful learning and the result of grid search method are seen in Listing 6.1 and

Listing 6.2. The selected parameters are input to DNN method in Listing 6.3.
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Listing 6.1: Grid search method for selecting parameters of DNN

from __future__ import pr in t_funct ion

from s k l e a r n . neural_network import MLPClass i f i e r

from s k l e a r n . mode l_se lect ion import t r a i n _ t e s t _ s p l i t

from s k l e a r n . mode l_se lect ion import GridSearchCV

import numpy as np

x=np . array ( [ [ ] ] ) #s p e c i f y data

y =[ ] # s p e c i f y l a b e l

X_train , X_test , y_train , y_test = t r a i n _ t e s t _ s p l i t (

x , y , t e s t _ s i z e =0.33 , random_state=0)

# Set the parameters by c ros s - v a l i d a t i o n

tuned_parameters = [ { ’ h idden_layer_s izes ’ : [ 8 , 1 2 , 1 6 , 2 0 ] ,

’ a c t i v a t i o n ’ : [ ’ i d e n t i t y ’ , ’ l o g i s t i c ’ , ’ tanh ’ , ’ r e l u ’ ] ,

’ l e a r n i n g _ r a t e _ i n i t ’ : [ 0 . 0 1 , 0 . 0 5 , 0 . 1 , 0 . 5 ] ,

’ max_iter ’ : [ 40 , 80 , 120 , 160 , 200 ] } ]

c l f = GridSearchCV ( MLPClass i f i e r ( ) , tuned_parameters , cv=5)

c l f . f i t ( X_train , y_train )

p r i n t ( " Best parameters s e t found on development s e t : " )

p r i n t ( c l f . best_params_ )

p r i n t ( " Grid s c o r e s on development s e t : " )

means = c l f . cv_results_ [ ’ mean_test_score ’ ]

s td s = c l f . cv_results_ [ ’ s td_test_score ’ ]

p r i n t ( )

f o r mean , std , params in z ip ( means , stds , c l f . cv_results_ [ ’ params ’

] ) :

p r i n t ( "\%0.3 f (+/ -\%0.03 f ) f o r \%r "

\% (mean , std * 2 , params ) )

p r i n t ( " Deta i l ed c l a s s i f i c a t i o n r epo r t : " )

y_true , y_pred = y_test , c l f . p r e d i c t ( X_test )

p r i n t ( c l a s s i f i c a t i o n _ r e p o r t ( y_true , y_pred ) )

Activation parameter in tuned_parameters shows activation function of a node. It

describes the output of that node. The purpose of an activation function is to add

some kind of non-linear property to the function.
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Listing 6.2: Grid search result of DNN

Best parameters s e t found on development s e t :

{ ’ a c t i v a t i o n ’ : ’ r e l u ’ , ’ h idden_layer_s izes ’ : 16 , ’

l e a r n i n g _ r a t e _ i n i t ’ : 0 . 0 5 , ’ max_iter ’ : 120}

Grid s c o r e s on development s e t :

0 .884 (+/ -0.066) f o r { ’ a c t i v a t i o n ’ : ’ i d e n t i t y ’ , ’ h idden_layer_s izes

’ : 8 , ’ l e a r n i n g _ r a t e _ i n i t ’ : 0 . 0 1 , ’ max_iter ’ : 40}

0 .915 (+/ -0.026) f o r { ’ a c t i v a t i o n ’ : ’ i d e n t i t y ’ , ’ h idden_layer_s izes

’ : 8 , ’ l e a r n i n g _ r a t e _ i n i t ’ : 0 . 0 1 , ’ max_iter ’ : 80}

.

.

0 .961 (+/ -0.062) f o r { ’ a c t i v a t i o n ’ : ’ r e l u ’ , ’ h idden_layer_s izes ’ :

20 , ’ l e a r n i n g _ r a t e _ i n i t ’ : 0 . 5 , ’ max_iter ’ : 200}

Deta i l ed c l a s s i f i c a t i o n r epo r t :

p r e c i s i o n r e c a l l f1 - s c o r e support

0 1 .00 0 .96 0 .98 45

1 0 .96 1 .00 0 .98 44

2 0 .98 0 .98 0 .98 57

3 0 .98 0 .98 0 .98 43

avg / t o t a l 0 .98 0 .98 0 .98 189

Listing 6.3: DNN for successful learning

import numpy as np

from s k l e a r n . neural_network import MLPClass i f i e r

from s k l e a r n . mode l_se lect ion import cross_va l_score

x=np . array ( [ [ ] ] )

y =[ ]

# bu i ld a c l a s s i f i e r

c l f = MLPClass i f i e r ( a c t i v a t i o n= ’ r e l u ’ , h idden_layer_s izes= 16 ,

l e a r n i n g _ r a t e _ i n i t= 0 . 0 5 , max_iter= 120 , random_state=42)

s c o r e s = cross_va l_score ( c l f , x , y , cv=5)

s c o r e s=s c o r e s . mean ( )

p r i n t ( s c o r e s )
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The best parameters (relu activation function, 16 hidden sizes, 0.05 learning rate

and 120 iterations) are selected by grid seach method as stated in Listing 6.1. Listing

6.2 shows grid search result of DNN. The selected parameters are input to DNN

algorithm in Listing 6.3. The accuracy result is calculated based on the selected

parameters. Thus, grid search method for hyperparameter optimization is required

in order to obtain accurate and solid accuracy results.

6.1 Finding Important Proteins in DS

As a first step, important proteins in DS are found by applying the following different

classification methods: NN, Random Forest and SVM. These methods are run for

classifying mice. With grid search method, the parameters are optimized. The

classification results are compared with the results of B.Feng et al. (2017) where

AdaBoost algorithm was used for selecting 30 features. They used NN, SVM and

Random Forest methods for mice classification.

Table 6.1 shows precision and 10-folds cross validation results of classification

techniques. For building solid and stable classification models, a 10-folds cross-

validation for each model ran to produce a systematic assessment. In this work,

Random Forest and SVM generated from the selected proteins achieves higher

accuracy than Feng et al. (2017). DNN gives highest accuracy results. Feng et al.

(2017) did not apply DNN to the selected protein subset.

Table 6.1: Accuracy result comparison of successful learning.

Classifiers Accuracy Result of Accuracy Result of
B.Feng’s Work (Feng, 2017) Our Work

Deep Neural Network - 0.993
Random Forest 0.977 0.991

SVM 0.956 0.986

Also, Furat and Ibrikci (2018) applied Bayesian Network, KNN (K Nearest Neighbor),

Decision Table, Random Forest and SVM classification techniques. Compared to

B.Feng et al. (2017), they did not reduce feature set and took into account all

features. We also applied same classification methods and compare accuracy results
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with Furat and Ibrikci (2018).

Comparison results of classification performance using five different algorithms with

10-fold cross validation and 50–50% train-test data partition can be seen Table 6.2

and Table 6.3, respectively.

Table 6.2: Comparison of accuracy result with 10-fold cross validation.

Classifiers Accuracy Result of Accuracy Result of
Furat and Ibrikci (2018) Our Work

Bayesian Network 0.944 0.950
KNN 0.993 1

Decision Table 0.955 0.966
Random Forest 1 1

SVM 1 1

As can be seen in Table 6.2, the obtained accuracy results in our work are higher

or equal for all classification techniques. The improvement in accuracy results can

be arisen from the selection of appropriate parameters. For example, neighbors

parameter of KNN is selected 3 in our work.

Table 6.3: Comparison of accuracy result with 50–50% train-test data partition.

Classifiers Accuracy Result of Accuracy Result of
Furat and Ibrikci (2018) Our Work

Bayesian Network 0.954 0.931
KNN 0.983 0.982

Decision Table 0.983 0.993
Random Forest 1 1

SVM 1 1

As can be seen in Table 6.2, the obtained accuracy with Bayesian Networks is lower

than Furat and Ibrikci (2018). The difference can be arisen from the train - test

partition. With lower test size partition, the accuracy increases as algorithm can be

learned with higher size train data.
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6.2 Systematic Analysis of Finding Important Proteins in DS

The systematic analysis is done for determining feature subsets for three cases-

succesful learning, rescued learning with drug and failed learning.

These feature subsets are compared with Higuera et al. (2015) where three fea-

ture subsets are highlighted for successful learning, rescued learning and failed

learning. Higuera et al. (2015) evaluated control mice and trisomic mice separately

and together in order to comprehend changes in protein expression. In the first

case, all groups of normal mice were evaluated to understand which changes in

protein expression level are required for successful learning. For determining crit-

ical proteins in rescued learning, trisomic mice exposed to CFC with and without

memantine were inspected as the second case. The third case finds out important

protein abnormalities in failed learning case by comparing normal and trisomic mice

expression levels.

In this thesis, these three feature subsets are also selected to identify critical proteins

in successful learning, in rescued learning and in failed learning cases. The number

of features in subsets are chosen based on the number stated in Higuera et al. (2015).

After resolving the different feature subsets for the three cases, classification is

performed for differentiating classes of mice. DNN, Gradient Boosted Tree, Random

Forest and SVM classification methods are implemented by using Python and Scikit

Learn package (Hao and Ho, 2019).

The parameters of classifiers are resolved based on the hyper-parameter optimization

technique, grid search. (Bergstra et al., 2011). The accuracy results of selected

feature subsets are compared with the Higuera’s accuracy results.

6.2.1 Feature Subset from Control Mice and Classification Result

Table 6.2 describes the selected features and their accuracy with successful learning.

Accuracy is obtained when selected feature is inserted into the subset. In the first
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case, feature subset is selected from control group mice. By comparing control group

mice with and without memantine treatment and CFC stimulation (c-CS-m, c-CS-s,

c-SC-m, c-SC-s), critical proteins in successful learning can be figured out.

Table 6.2 also presents Higuera et al.’s (2015) feature subset. When these two subsets

are compared, there are 4 common proteins out of 11 proteins and they are shown

as bold. Higuera et al. (2015) selected eleven proteins. The selected proteins play

important roles in L/M, immune response, MAPK pathyway, mTOR pathway and

AD. In order to compare this work with Higuera’s work in a quantitative manner,

eleven proteins are selected for successful learning as in Higuera’s work.

Table 6.4: Feature subset of successful learning.

Feature Feature Feature Feature Subset of
No Accuracy Subset Higuera et al. (2015)
1 0.656 SOD1 DYRK1A
2 0.751 Ubiquitin ITSN1
3 0.852 pGSK3B pERK
4 0.873 S6 BRAF
5 0.905 CaNA SOD1
6 0.921 IL1B pNUMB
7 0.937 BAX pGSK3B
8 0.942 pNR2A CDK5
9 0.942 BDNF S6

10 0.942 pJNK GFAP
11 0.942 pCFOS CaNA

SOD1 is located on chromosome 21 and causes immune problems in Amyotrophic lat-

eral sclerosis (ALS) disease (Milani et al., 2011). Ribosomal Protein S6 and pGSK3B

are components of mTOR pathway which play roles in learning (A. McCombe and

D. Henderson, 2011). Also, in the literature it is noted that GSK3 inhibitors pro-

vide to inhibit excessive inflammation and ameliorate the autoimmune disease

(Beurel,Grieco and Jope, 2015). CaNA and IL1B are known to be pathogenesis of AD

(Nicoll et al., 2000; Dinarello, 2011). Also, it is known that IL1B is natural suppres-

sor of innate inflammatory (Reese and Taglialatela,2011). BAX and ubiquitin play

critical roles in apoptosis and immune response (Tano et al.,2011;Sujashvili,2016).

BDNF takes action in L/M (Cunha, Brambilla and Thomas, 2010). Also, BDNF
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bridges neuroplasticity and inflammation (Calabrese et al.,2014;Tu et al.,2016).

pNR2A has well established roles in learning (Li et al., 2007). pJNK, component

of MAPK pathway is associated with L/M (Shen, 2014). pCFOS is an IEG and

significant in long term memory (Kidambi et al.,2010).

In the first case of systematic analysis, protein expression levels of control group

mice are analyzed. It can be deduced that proteins related to the L/M pathway and

the immune responses are critical in successful learning.

Table 6.5 shows the classification accuracies of selected feature subsets for successful

learning in this thesis and Higuera et al. (2015). It can be seen that the feature

subsets in this work give higher accuracy results for all classification techniques.

SVM gives the highest accuracy.

Table 6.5: Accuracy result comparison of successful learning.

Accuracy Result of Higuera et al. (2015)
Our Work Accuracy Result

Deep Neural Network 0.972 0.967
Gradient Boosted Tree 0.935 0.902

Random Forest 0.963 0.902
SVM 0.981 0.961

6.2.2 Feature Subset from Trisomic Mice and Classification Result

To understand the important proteins in rescued learning, features are selected from

data consisting of trisomic mice which are exposed to CFC with and without meman-

tine (t-CS-m, t-CS-s). When exposed to CFC, the trisomic mice are unsuccessful to

learn if they are not injected with the drug memantine. Table 6.6 shows the selected

features and the accuracy results for the rescued learning. There are 2 common

proteins (BRAF, CDK5) with Higuera et al.’s work (2015) shown in bold. Accuracy

of feature shows the accuracy of feature subset when the corresponding feature is

added. 9 proteins are selected in order to compare result with Higuera et al. (2015).

Higuera et al also selected 9 proteins for rescued learning.

70



Table 6.6: Feature subset of rescued learning.

Feature Feature Feature Feature Subset of
No Accuracy Subset Higuera et al. (2015)
1 0.762 BRAF DYRK1A
2 0.838 S6 pERK
3 0.85 CDK5 BRAF
4 0.887 BDNF CDK5
5 0.887 pCREB RRP1
6 0.9 PKCA GFAP
7 0.912 SOD1 GluR3
8 0.925 PSD95 P3525
9 0.925 pNR2A Ubiquitin

BRAF and PKCA are associated with MAPK pathway and effective in learning (Lee

et al., 2014; Zhang et al., 2009). CDK5 is synaptic protein and plays a important

role in long-term memory (Pollonini,2008). Also, it regulates the escape of tumors

from the immune system (Shupp,Casimiro and Pestell, 2017). PSD95 is a neu-

ropathological indicator of AD observed in later stage of DS (Shao,2011). In addition,

PSD95 colocalizes with major histocompatibility complex class I (MHCI) which is

the marker of its expressed proteins. Also, it is significant for the immune system

to differentiate self from nonself (Marin and Kipnis, 2013). CREB adjusts vital cell

stages and participates in neuronal plasticity (Ortega-Martı’nez, 2015). Thus, it can

be concluded that proteins which are important in rescued learning are related to

the L/M and the immune response.

Table 6.7 shows the comparison of rescued learning results. DNN and SVM give

highest accuracy. The accuracy results of the feature subset in this work are higher

than previous work for all classification methods.

Table 6.7: Accuracy result comparison of rescued learning.

Accuracy Result of Higuera et al. (2015)
Our Work Accuracy Result

Deep Neural Network 0.971 0.954
Gradient Boosted Tree 0.933 0.892

Random Forest 0.946 0.883
SVM 0.971 0.921
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6.2.3 Feature Subset from Control and Trisomic Mice and Classification

Result

To determine proteins that are critical in failed learning with trisomic mice, features

are selected from the trisomic mice protein expression exposed to CFC without

memantine (t-CS-s) and the control mice protein expression levels which are exposed

to CFC with and without memantine (c-CS-m, c-CS-s).

Table 6.8 shows the selected features and accuracy results of feature subset in failed

learning. There are 2 common proteins (P38, GluR3) out of 10 proteins with Higuera

et al.’s work (2015) .

Table 6.8: Feature subset of failed learning.

Feature Feature Feature Feature Subset of
No Accuracy Subset Higuera et al. (2015)
1 0.636 P38 pNR1
2 0.713 pPKCAB APP
3 0.775 CAMKII mTOR
4 0.814 pCAMKII P38
5 0.868 GluR3 NR2B
6 0.891 DSCR1 RAPTOR
7 0.907 nNOS S6
8 0.915 BAX Tau
9 0.93 pCFOS GluR3

10 0.93 ERK EGR1

Two of these proteins (BAX and pCFOS) were also highlighted in successful learning

and described above. The remaining selected proteins are largely connected to

MAPK signaling pathway, such as P38, pPKCAB, CAMKII, pCAMKII and ERK.

GluR3 is related to glutamate receptors which cause memory deficit if excess amount

of glutamate binds to receptor (Ahmed et al., 2009). DSCR1 is known to be over

expressed in DS. It also affects signaling pathway (Lee et al., 2009). Failed learning

case also shows us the importance of signaling pathway in the learning process.

Table 6.9 shows the comparison of classifications for failed learning. DNN and SVM
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give highest accuracy results. The classification results of our feature subsets are

higher than Higuera et al.’s work (2015) for all classification methods.

Table 6.9: Accuracy result comparison of failed learning.

Accuracy Result of Higuera et al. (2015)
Our Work Accuracy Result

Deep Neural Network 0.926 0.921
Gradient Boosted Tree 0.879 0.844

Random Forest 0.892 0.859
SVM 0.926 0.910

6.3 Response Similarity of Different Drugs Treating Ts65Dn Mice

To understand whether different drugs-treated Ts65Dn mice exhibit similar response

or not, the critical proteins expressed in response to memantine and RO4938581 are

selected. By this way, the molecular pathway of rescued performance in DS can be

understood and effective drugs can be developed.

Table 6. 10 shows the expressed proteins when mice are injected with memantine and

RO4938581 drugs. 4 gene products shown as bold are in common with RO4938581

and memantine. In order to compare the results of two drugs, the same number of

proteins are selected from the protein expression datasets of two drugs. The selected

proteins have important roles in learning pathway and neural growth.

Table 6.10: Feature subsets of RO4938581 and memantine.

Feature Subset Feature Subset
with RO4938581 with memantine

BRAF BRAF
S6 S6

MEK CDK5
ADARB1 BDNF
pBRAF pCREB
PKCA PKCA
NR1 SOD1
SHH PSD95

BDNF pNR2A
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BRAF, PKCA and MEK (Mitogen Activated Protein (MAP) Kinase) are associated

with MAPK pathway and important in learning (Gardiner, 2004). Ribosomal Protein

S6 is component of mTOR pathway which takes action in learning (A. McCombe

and D. Henderson, 2011). NR1 (N-Methyl-D-Aspartate Receptor Subunit) is the

component of NMDAR receptor and plays an essential role in excitatory transmission

and L/M process (Zorumski and Izumi, 2012). BDNF gene encodes a unit of the

nerve growth factor family of proteins. The SHH (Sonic Hedgehog) gene produces

instructions for generating a protein which is required for the progress of forebrain.

This signaling protein helps to create the line that divides the right and left sides of

the forebrain.

6.4 Protein Subsets which Display the Regional Fluctuation with Aging

The critical protein subsets which display regional fluctuation with aging are deter-

mined in this section. These subsets are obtained from two datasets which show the

expression profiles of young and old mice at three different brain regions (CB, CR,

HP). Using the selected subsets, the process of DS can be analyzed by inspecting

molecular pathways where the selected proteins take rolez. Also, by looking into the

selected feature subsets from old mice and young mice datasets, the aging process in

DS can be understood.

Figure 6.1 shows accuracy dispersion of old mice protein expression. Max accuracy

is obtained with 10 proteins. Thus, 10 proteins are selected from old mice protein

dataset.

The most critical proteins in old mice dataset can be observed in Table 6.11 below.

The first selected protein is RCAN1 (Regulator of Calcineurin 1) and also called as

Down Syndrome Critical Region 1 (DSCR1). It regulates calcineurin (CN) signaling

in the brain (Lee et al., 2009). Errors in CN function were also associated with AD.

Ubiquitin plays critical roles in apoptosis (Chen and Qiu, 2013). APP is AD related

protein (Long et al., 2018). TH participates in the conversion of tyrosine to dopamine
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Figure 6.1: Accuracy result of old mice protein set across brain regions

Table 6.11: Feature subset from old mice dataset across brain regions

Accuracy of Subset Selected Feature
0.67114094 RCAN1r

0.926174497 Ubiquitin
0.959731544 APP
0.946308725 TH
0.973154362 ARC
0.973154362 ERK
0.993288591 mTOR
0.993288591 ERBB4
0.993288591 H3MeK4

1 pNR2A

and has a key role in the physiology of adrenergic neurons (Nagatsu and Nagatsu,

2016).

ARC (Activity Regulated Cytoskeleton) is a unit of the immediate-early gene (IEG)

family and a marker for plastic changes in the brain (Gallo et al., 2018). ERKs are

protein kinase intracellular signaling molecules. Disruption of the ERK pathway

causes cancer. mTOR is a component of mTOR pathway. Knockout of ERBB4

functions in synaptic plasticity. Also, ERBB4 affect the dendritic spine development

(Cooper and Koleske, 2014). H3meK4 (Methylated Lysine 4 on Histone H3) is histone

protein and has a role in memory formation (Peixoto and Abel, 2012). pNR2A which

is the subunit of NMDAR has well established roles in learning (Li et al., 2007) .

Figure 6.2 shows accuracy dispersion of young mice protein dataset. Max accuracy
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is obtained with fourteen proteins. Thus, fourteen proteins are selected from young

mice protein dataset.

Figure 6.2: Accuracy result of young mice protein set across brain regions

Table 6.12 shows the accuracy of feature subset and the selected proteins across

brain regions in young mice.

Table 6.12: Feature subset from young mice dataset across brain regions

Accuracy of Subset Selected Feature
0.605504587 MEK
0.825688073 APP
0.894495413 ITSN1
0.935779817 GluR3
0.958715596 pGJA1
0.972477064 P3525
0.972477064 DYRKA1
0.986238532 AKT
0.981651376 pPKCG
0.986238532 CTTNB1
0.990825688 NUMB
0.990825688 PRMT2
0.97706422 BDNF

0.995412844 BCL2

MEK and pPKCG (Phospho Protein Kinase C Gamma) are components of MAPK

pathway. APP and P3525 are AD related proteins which observed in later stage of

DS. ITSN1 (Intersectin 1) and DYRKA1 (Dual Specificity Tyrosine Phosphorylation-

Regulated Kinase 1A) are Hsa21 proteins. Their perturbations in pathways cause

76



L/M deficits. GluR3 and NUMB are the component of NMDAR receptor which

plays an essential role in excitatory transmission and L/M process (Moore and

Baleja, 2012). pGJA1 (Phospho Gap Junction Alpha-1 Protein) provides cell-to-cell

communication by forming channels between cells. Also, it is involved in placenta

development (Dbouk et al., 2009). AKT plays role in mTOR pathway. CTTNB1

(Catenin Beta-1) plays an essential role in neuro-development (Dong et al., 2016).

BDNF encodes a member of the nerve growth factor family of proteins. BCL2 is

playing critical roles in apoptosis (Adams and Cory, 2007).

When the selected proteins for old and young mice datasets are evaluated, it is

seen that they play important roles in the processes like, MAPK signaling pathway,

mTOR signaling pathway cell-to cell communication, apoptosis process, AD pathway.

However, one-to-one comparison between two subsets can not be done as the proteins

in young and old mice datasets are different. Young mice dataset contains only 3

proteins from 10 proteins in subset of old mice and only APP protein is common

between two protein subsets.

In the literature, the datasets were examined with statistical techniques and results

showed only the increase or decrease of protein expression in different parts of

brains. Also, the protein fluctuations of old and young mice were compared. The

general sketch of the protein expression profiles throughout the aging was obtained.

Rather than the general picture, in this thesis, the protein subsets which are critical

regionally are determined for old and young mice. By giving efforts to these subsets,

the age related change in the mechanism of molecular pathways can be understood

for age related drug treatment in DS.

6.5 Protein Subsets which Highlight the Importance of Mice Type (TS65Dn

- Tc1)

Using Tc1 mice and littermate controls, Ahmed et al. (2014) measured 64 protein

levels in cerebellum, 90 protein levels in hippocampus and cortex in order to identify
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the molecular cause for the phenotypic features. It is stated that there are abnormal

protein levels involved in immediate early gene (IEG), MAP kinase pathway, mTOR

pathway, neuregulin signaling, and receptor proteins by comparing range of protein

expression in three different brain regions, hippocampus, cortex and cerebellum.

However, expression levels of proteins in one or two regions were not determined

and proteins which differentiate brain regions were not identified.

In this thesis, critical proteins differentiate in three brain regions are selected by

applying forward feature selection method. Figure 6.3 shows accuracy dispersion of

Tc1 mice protein dataset. Max accuracy is obtained with seventeen proteins. Thus,

seventeen proteins are selected.

Figure 6.3: Accuracy result of Tc1 mice protein set across brain regions

Table 6.13 shows the selected proteins with Tc1 mice. 17 features are selected as

maximum accuracy is obtained with 17 features.

Most of the selected proteins are same as in Ahmed et al. (2014). The selected four

proteins (nNOS, DYRK1A, SOD1 and APP) change significantly in one or more brain

regions. After literature review, it can be deduced that selected proteins are relevant

to the L/M pathway.

nNOS participates in neurotransmission (Esplugues, 2002). DYRKA1 is H21 proteins

and their perturbations in pathways cause L/M deficits. SOD1 found on chromosome
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Table 6.13: Feature subset of Tc1 mice across brain regions

Accuracy of Subset Selected Feature
0.6654676258992805 nNOS
0.8848920863309353 DYRK1A
0.9100719424460432 SOD1
0.9172661870503597 CHAF1B
0.9172661870503597 AKT
0.9244604316546763 BAX
0.935251798561151 SYP

0.9244604316546763 NR2A
0.9244604316546763 CTTNB1
0.9388489208633094 PRMT2
0.9388489208633094 NR1
0.9532374100719424 ADARB1
0.9424460431654677 APP
0.9424460431654677 GluR3
0.9532374100719424 Ubiquitin
0.9496402877697842 TRKA
0.960431654676259 NR2B

21 causes immune abnormalities in ALS (Milani et al., 2011). Also, it increases

reactive oxygen in DS. CHAF1B (Chromatin Assembly Factor 1 Subunit B ) takes

action in chromatin assembly after replication (Duan et al., 2019). AKT plays

role in mTOR pathway. BAX and ubiquitin play critical roles in apoptosis and

immune response. SYP (Synaptophysin) encodes an integral membrane protein of

tiny synaptic vesicles in brain (Leube, Wiedenmann and Franke, 1989). NR2A, NR1

and NR2B (N-Methyl D-Aspartate Receptor Subtype 2B) have well established roles

in learning. CTTNB1 plays an essential role in neurodevelopment (Dong et al., 2016).

PRMT2 (Protein Arginine N-Methyltransferase 2) has protein homodimerization

activity and transcription coactivator activity. APP is AD related proteins observed

in later stage of DS (Long et al., 2018). GluR3 is the component of NMDAR receptor

which plays an essential role in excitatory transmission and L/M process (Moore and

Baleja, 2012). TRKA (Tropomyosin Receptor Kinase A) plays a role in specifying

sensory neuron subtypes (Lechner et al., 2009).

Figure 6.4 shows accuracy dispersion of Ts65Dn mice protein dataset. Max accuracy

is obtained with fourteen proteins. Thus, fourteen proteins are selected.
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Figure 6.4: Accuracy result of Ts65Dn mice protein set across brain regions

Table 6.14 shows the selected fourteen proteins with Ts65Dn mouse model. The max

accuracy is obtained with fourteen proteins. Therefore first fourteen proteins are

considered for Ts65Dn mice when analyzing the protein fluctuation across different

brain regions. When selected proteins from Tc1 mice are compared with selected

proteins from Ts65Dn mice, it can be seen that there are 6 common proteins (APP,

GluR3, DYRKA1, AKT, CTTNB1 and PRMT2) out of 14 proteins which are shown in

bold.

Table 6.14: Feature subset of Ts65Dn mice across brain regions

Accuracy of Subset Selected Feature
0.605504587 MEK
0.825688073 APP
0.894495413 ITSN1
0.935779817 GluR3
0.958715596 pGJA1
0.972477064 P3525
0.972477064 DYRKA1
0.986238532 AKT
0.981651376 pPKCG
0.986238532 CTTNB1
0.990825688 NUMB
0.990825688 PRMT2
0.97706422 BDNF

0.995412844 BCL2

In the literature, we can observe that selected proteins are related to important
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processes. MEK and pPKCG are components of MAPK pathway. APP and P3525

are AD related proteins which observed in later stage of DS. ITSN1 and DYRKA1

are Hsa21 proteins and their perturbations in pathways cause L/M deficits. GluR3

and NUMB are the component of NMDAR receptor which plays an essential role in

excitatory transmission and L/M process. pGJA1 provides cell-to-cell communication

by forming channels between cells. Also, it is involved in placenta development. AKT

(Protein kinase B) plays role in mTOR pathway. CTTNB1 plays an essential role in

neurodevelopment. PRMT2 has protein homodimerization activity and transcription

coactivator activity. BDNF encodes the nerve growth factor family of proteins. BCL2

(B-Cell Lymphoma 2) plays critical roles in apoptosis.

Expression levels of some proteins were not determined before. We believe that

proteins selected in this thesis can be utilized to understand the process of DS as

they potentially contribute to phenotypic features and influence drug responses.

6.6 Determine the Protein Subsets which Show Importance of Brain Re-

gion Fractions

Max accuracy are obtained with thirteen and twenty-six proteins for cytosolic and

nuclear fractions. They are shown in Figure 6.5 and 6.6, respectively.

Figure 6.5: Protein subset accuracy of cytosolic fraction from Ts65Dn mice cortex
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Figure 6.6: Protein subset accuracy of nuclear fraction from Ts65Dn mice cortex

Table 6.15 shows the critical proteins expressed in cytosolic and nuclear fractions of

cortex.

The critical proteins are related to different pathways and processes, such as MAPK

and MTOR signaling pathways, AD, neurotrophin signaling pathway and apoptosis.

Four gene products (DSCR1, P3525, H3AcK18, GSK3B) are common to both cytosolic

and nuclear fractions of cortex.

Cortex is the most developed region of brain. It takes roles in thinking, perceiv-

ing and understanding language. Human brain development is marked by gene

expression across the lifespan. One factor governing the changes in development

is the compartmentalization of the transcriptome by the nuclear membrane into

nuclear and cytoplasmic fractions. pre-mRNA and longer genes take more time to be

transcribed. Thus, genes are often overrepresented in the nucleus compared to cyto-

plasm. Also, nuclear membrane filter bursts of gene expression from the cytoplasm.

Thus, analyzing the compositional differences can be helpful for understanding DS.
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Table 6.15: Accuracy and feature subset of cytosolic and nuclear fractions from cortex

Accuracy Cytosolic Fraction Nuclear Fraction Accuracy
0.48603352 DSCR1 P38 0.458100559

0.597765363 P3525 pGSK3B 0.569832402
0.681564246 P70S6 Ubiquitin 0.581005587
0.731843575 pNR1 pPKCAB 0.642458101
0.737430168 PKCA NR2A 0.675977654
0.798882682 GFAP Tau 0.698324022
0.770949721 MEK BCL2 0.726256983
0.793296089 ARC APP 0.759776536
0.793296089 H3AcK18 H3DMe4 0.804469274
0.815642458 SOD1 EGR1 0.804469274
0.826815642 GSK3B pNR2B 0.776536313
0.865921788 pPKCG pCAMKII 0.804469274
0.87150838 pERK pRSK 0.787709497

ERBB4 0.782122905
SHH 0.793296089
ELK 0.787709497

pAKT 0.810055866
MTOR 0.787709497
P3525 0.793296089

CAMKII 0.810055866
AcetylH3K9 0.798882682

nNOS 0.832402235
DSCR1 0.815642458

H3AcK18 0.832402235
GSK3B 0.810055866

BAX 0.854748603
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7. PATHWAY ANALYSIS OF SELECTED PROTEIN

SUBSETS

In this chapter, pathway analysis is performed to determine relevant proteins within

a pathway or constructing pathway de novo from the interested proteins. In this

thesis, for understanding the effects of the selected proteins in DS, the pathway anal-

yses are done using reactome Pathway Browser. Pathway Browser is bioinformatics

tool for analysis, interpretation and visualization of pathway knowledge (Fabregat

et al., 2016).

Reactome is a database of pathways and reactions in human biology. Reactions

can be thought as pathway stages. Reactome explains a reaction as any event in

biology that alters the state of biological molecule. The Pathway Browser is the

tool of interacting and viewing pathways in Reactome. It evaluates datasets and

examines pathways. This tool provides numerous types of analysis such as:

• Comparison of a pathway with corresponding pathway in another species

• Over-representation pathway

• The protein-protein or protein-compound interaction data from external databases

or user data onto a pathway

• The expression of user data onto a pathway

7.1 Pathway Analysis of Successful Learning

For successful learning case, eleven proteins (SOD1 (Superoxide Dismutase 1), Ubiq-

uitin, pGSK3B (Phospho Glycogen Synthase Kinase 3 Beta) , S6, CaNA (Carbonic

Anhydrase), IL1B (Interleukin 1 Beta), BAX (BCL2 Associated X), pNR2A (Phos-
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pho N-Methyl D-Aspartate 2A), BDNF (Brain Derived Neurotrophic Factor), pJNK

(Phospho c-Jun N-Terminal Kinases), pCFOS (Phospho FBJ Murine Osteosarcoma

Viral Oncogene Homolog)) are selected. Figure 7.1 shows pathway visualization of

the selected genes.

Figure 7.1: Pathway visualization of selected genes for successful learning.
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Table 7.1: Specific pathways of selected genes for successful learning.

Pathway Name
Entities Reactions

found ratio p-value FDR found
Cellular responses 11/690 0.048 4.16e-09 1.67e-06 41/227
to stress
Cellular responses 11/708 0.049 5.44e-09 1.67e-06 41/258
to external stimuli
CLEC7A/Inflammasome 3/8 5.54e-04 3.42e-07 7.00e-05 2/4
pathway
Signaling by interleukins 9/639 0.044 4.65e-07 7.12e-05 36/490
Transcription regulation 5/147 0.01 3.96e-06 4.87e-04 16/84
by RUNX
Cytokine signaling 10/1261 0.087 1.61e-05 0.002 45/699
in immune system

As can be seen in Figure 7.1, the selected genes of successful learning case take part

in immune system, signal transduction and gene expression pathways extensively.

Also, these genes play roles in programmed cell death, cellular responses to external

stimuli, disease and DNA repair mechanisms.

Table 7.1 shows the specific pathways where the selected genes in succesful learning

take actions. When Table 7.1 is inspected, it is seen that selected proteins play

roles in cellular responses to stress and external stimuli. Also, signaling of CLEC7A

(C-Type Lectin Domain Family 7 Member A) (Sun and Zhao, 2007), Interleukin-1 and

cytokines (Zídek, Anzenbacher and Kmoníčková, 2009) are important in successful

learning. CLEC7A is a pattern-recognition receptor and triggers direct innate

immune responses. Interleukin-1 plays a crucial role in many auto inflammatory

diseases (Nicoll et al., 2000; Dinarello, 2011). Cytokines are small-scale proteins

that adjust and mediate immunity and inflammation. They are secreted in response

to immune stimuli. As seen in Table 7.1, selected proteins in successful learning

trigger immune system, imflammatory response extensively.

Selected pathways are ranked by the p-value calculated from over-representation

analysis. p-value is the probability that would be greater than or equal to the

actual observed results when the null hypothesis is true. Found entities shows the

number of genes in gene list that take action in specified pathway. Entities ratio
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Table 7.2: Specific pathways of selected genes for rescued learning with memantine.

Pathway Name
Entities Reactions

found ratio p-value FDR found
Transcriptional regulation 5/100 0.007 4.53e-08 1.31e-05 12/77
by MECP2
MECP2 regulates neuronal 3/13 9.0e-04 3.30e-07 4.78e-05 4/8
ligands transcription
Signaling by NTRKs 4/118 0.008 5.67e-06 5.45e-04 43/127
Signaling by Receptor 6/554 0.038 1.19e-05 8.54e-04 53/657
Tyrosine Kinases
Activated NTRK2 signals 2/10 6.9e-04 5.01e-05 0.002 6/6
through CDK5
MECP2 regulates 2/10 6.9e-04 5.01e-05 0.002 2/8
transcription factors

is the proportion of Reactome pathway molecules. Over-representation analysis

determines whether certain Reactome pathways are over-represented. It calculates

a probability score that is corrected for false discovery rate (FDR). Entities FDR

shows corrected over-representation probability. Reactions found is the number of

reactions in the pathway that are represented by at least one molecule.

7.2 Pathway Analysis of Rescued Learning with Memantine

The trisomic mice fail to learn if not they are injected with the drug memantine

that recovers the skill of learning. Table 7.2 shows the specific pathways where

the selected genes in rescued learning with memantine take actions. Table 7.2

shows the specific pathways where the selected genes in rescued learning with

memantine take actions. Methyl-CpG-binding protein 2 (MeCP2) regulation and

NTRK2 (Neurotrophic Receptor Tyrosine Kinase 2) signaling play important roles

in pathway of rescued learning. MeCP2 is a methylated-DNA-binding protein and

errors lead to autism spectrum disorder (Nagarajan et al., 2006). CDK5 binds to

BDNF-activated NTRK2 (TRKB). Signaling by TRKB and CDK5 plays a role in

inflammation (Kumar Pareek, 2012). In addition, NTRK2 plays a vital role in LTP

and learning (Minichiello, 2009). As seen in Table 7.2, signal transduction, neural

system and disease pathways are crucial in rescued learning with memantine.
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Figure 7.2: Pathway visualization of selected genes for rescued learning.

Figure 7.2 shows the pathways where selected genes in rescued learning with drug

memantine take roles. The selected genes with drug memantine play roles in

immune system, signal transduction, neural system, gene expression and disease

pathways.
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Table 7.3: Specific pathways of selected genes for rescued learning with RO4938581

Pathway Name
Entities Reactions

found ratio p-value FDR found
Negative feedback regulation 2/8 5.54e-04 2.78e-05 0.004 2/3
of MAPK pathway
MECP2 regulates neural 2/13 9.01e-04 7.33e-05 0.006 2/8
ligands transcription
Frs2-mediated activation 2/17 0.001 1.25e-04 0.008 6/13
Prolonged ERK 2/20 0.001 1.73e-04 0.008 8/19
activation events
Signalling by NTRKs 3/118 0.008 1.86e-04 0.008 40/127
RAF activation 2/37 0.003 5.86e-04 0.019 6/10
Signaling to ERKs 2/42 0.003 7.53e-04 0.021 9/32
Negative regulation 2/46 0.003 9.61e-04 0.021 6/12
of MAPK pathway
Signaling by high-kinase 2/52 0.004 0.001 0.021 6/6
activity BRAF mutants
Signaling by moderate kinase 2/54 0.004 0.001 0.021 7/7
activity BRAF mutants

7.3 Pathway Analysis of Rescued Learning with RO4938581

Like memantine, another drug- RO4938581 that is GABAA receptor negative al-

losteric modulator (NAM) is used for rescuing protein anomalies. Table 7.3 shows the

pathway response of drug- RO4938581. Like pathway response of drug memantine,

the selected proteins with drug- RO4938581 play roles in signal transduction exten-

sively. Table 7.3 shows selected pathways of drug- RO4938581. Regulation by MeCP2

and NTRK2 signaling are common in pathways of memantine and RO4938581.

7.4 Pathway Analysis of Failed Learning

Failed learning differentiates successful learning from the absence of impulse to

learn. Table 7.4 shows the specific pathways where the selected genes (P38, pPKCAB

(Phospho Protein Kinase C Alpha/Beta), CAMKII (Ca 2+ /Calmodulin-Dependent

Protein Kinase II), pCAMKII, GluR3 (Glutamate Receptor 3), DSCR1 (Down Syn-

drome Critical Region 1), nNOS (Neuronal Nitric Oxide Synthase), BAX, pCFOS,

ERK (Extracellular Signal-Regulated Kinase) in failed learning play roles.
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Table 7.4: Specific pathways of selected genes for failed learning.

Pathway Name
Entities Reactions

found ratio p-value FDR found
Trafficking of AMPA 3/37 0.003 9.20e-06 0.001 4/4
receptors
Glutamate binding 3/39 0.003 1.08e-05 0.001 9/9
and synaptic plasticity
Inhibition of nitric oxide 2/5 3.46e-04 1.44e-05 0.001 2/5
production
Signaling by interleukins 6/639 0.044 4.10e-05 0.002 10/490
Interleukin-4 and 4/211 0.015 7.22e-05 0.002 2/46
interleukin-13 signaling
Activation of the AP-1 family 2/12 8.31e-04 8.23e-05 0.002 3/5
of transcription factors
Cytokine signaling 7/1261 0.087 2.18e-04 0.004 13/699
in immune system
GluR2-containing AMPA 2/23 0.002 3.00e-04 0.005 3/3
receptors Trafficking
NMDA receptors unblocking 2/28 0.002 4.44e-04 0.006 5/5
and glutamate binding
Formation of the 3/138 0.01 4.46e-04 0.006 9/27
cornified envelope

AMPA receptors, interleukin signaling are important factors in failed learning.

AMPA receptors (AMPARs) moderate the vast of fast excitatory synaptic communi-

cation in the brain (Wang, Gilbert and Man, 2012). Interleukin plays a crucial role

in many auto inflammatory diseases (Dinarello, 2011).

As can be seen in Figure 7.3, the selected genes of failed learning take part in

immune system, signal transduction, neural system and gene expression broadly.

Also, they take actions in programmed cell death and cellular response to external

stimuli. It can be seen that like rescued learning, failed learning does not play role

in DNA repair pathway.
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Figure 7.3: Pathway visualization of selected genes for failed learning.

7.5 Pathway Analysis of Young Mice

By looking into the two different feature subsets obtained from old mice and young

mice, the aging process in DS can be understood. These subsets are obtained from

two datasets which show the expression profiles of young mice and old mice at three

different brain regions.
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Table 7.5: Specific pathways of selected genes from young mice.

Pathway Name
Entities Reactions

found ratio p-value FDR found
BH3-only proteins 2/11 7.6e-04 1.21e-04 0.024 3/4
associate and inactivate
anti-apoptotic BCL-2
MECP2 regulates transcription 2/13 9.1e-04 1.68e-04 0.024 2/8
of neuronal ligands
Trafficking of GluR2-containing 2/23 0.002 5.23e-04 0.042 3/3
AMPA receptors
Estrogen-dependent nuclear 2/29 0.002 8.27e-04 0.042 1/12
events downstream of ESR
membrane signaling
Neurodegenerative diseases 2/30 0.002 8.84e-04 0.042 2/22
Deregulated CDK5 triggers 2/30 0.002 8.84e-04 0.042 2/22
neurodegenerative pathways
in AD
Inflammasomes 2/33 0.002 0.001 0.044 5/28
Trafficking of AMPA receptors 2/37 0.003 0.001 0.046 4/4
Glutamate binding, activation of 2/39 0.003 0.001 0.046 9/9
AMPA receptors
Beta catenin independent 3/166 0.012 0.002 0.046 6/51
WNT signaling

Table 7.5 shows the specific pathways which the selected genes obtained from young

mice take roles.

BH3-only proteins (BCL-2 homology domain 3) of the BCL-2 family are the orches-

trating cell death, surveillants of cellular stress by means of apoptosis in neurons

(Saleem et al., 2018). MeCP2 is a methylated-DNA-binding protein and errors cause

autism spectrum disorder (Cheng and Qiu, 2014). AMPA receptors (AMPARs) in-

terfered the numerous of fast excitatory synaptic transmission in the brain (Wang,

Gilbert and Man, 2012).

As can be seen in Figure 7.4, the selected genes from young mice play roles in signal

transduction, immune system extensively.
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Figure 7.4: Pathway visualization of selected genes from young mice.

7.6 Pathway Analysis of Old Mice

Table 7.6 shows the specific pathways where the selected genes obtained from old

mice play roles. ERBB4 (v-erb-a Erithroblastic Leukemia Viral Oncogene Homology

4), ERBB2 (v-erb-b2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2),

PTK6 (Protein Tyrosine Kinase 6) receptors play roles in pathways of genes selected
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Table 7.6: Specific pathways of selected genes from old mice.

Pathway Name
Entities Reactions

found ratio p-value FDR found
Downregulation of 4/11 7.6e-04 2.00e-09 1.04e-06 5/5
ERBB4 signaling
Signaling by ERBB4 5/82 0.006 1.12e-07 2.15e-05 52/52
Long-term potentiation 4/31 0.002 1.24e-07 2.15e-05 1/7
Downregulation of 4/36 0.002 2.24e-07 2.91e-05 9/14
ERBB2 signaling
Nuclear signaling by ERBB4 4/47 0.003 6.44e-07 6.70e-05 34/34
ERBB2 activates PTK6 3/18 0.001 2.54e-06 1.70e-04 2/2
ERBB2 modulates 3/19 0.001 2.98e-06 1.70e-04 2/2
cell motility
Signaling by non-receptor 4/71 0.005 3.28e-06 1.70e-04 3/53
tyrosine kinases
Signaling by PTK6 4/71 0.005 3.28e-06 1.70e-04 3/53
SHC1 events in ERBB4 3/21 0.001 4.02e-06 1.73e-04 4/4

from old mice. Changes in the ErbB4 signaling pathway lead to a variety of neurode-

velopmental deficiencies including deficiencies in synaptic plasticity and neuronal

migration (Perez-Garcia, 2015). Protein tyrosine kinase 6 (PTK6), also called as

breast tumor kinase BRK (Breast Tumor Kinase), is a member of a specific family

of kinases that is relevant to the SRC (Sarcoma) family of tyrosine kinases (Brauer

and Tyner, 2010). PTK6 enhances growth factor signaling (Brauer and Tyner, 2010).

As seen as Figure 7.5, genes selected from old mice play roles in signal transduction.

As can be seen in Figure 7.5, the selected genes from old mice play roles in dis-

ease, immune system, signal transduction, DNA repair, disease pathway, cellular

responses to external stimuli and programmed cell death. Compared to selected

genes from young mice, genes selected from old mice participate DNA repair and

cellular responses to external stimuli pathways.
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Figure 7.5: Pathway visualization of selected genes from old mice.
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8. CONCLUSIONS

In this thesis, critical proteins in DS are determined using machine learning algo-

rithms. The protein profiles of different datasets are analyzed by applying biochemi-

cal techniques in laboratory. However, the list of analyzed proteins is long and not

all proteins in list are not related to DS. Thus, it is required to decrease the long

list in a meaningful and important list. In order to obtain subset of critical proteins

and differentiate healthy and unhealthy mice based on the selected subset, machine

learning algorithms are applied in this thesis. In previous works, changes in protein

expression are determined. In this thesis, the protein subsets which discriminate

classes of mice more accurately are found for treatment of DS. These proteins are

very important in order to understand causes and cure of DS. The biological pro-

cesses can be understood by analyzing the pathways on which the selected proteins

affect one by one or aggregately. The selected proteins can be effective in specific

DS aspects such as ID and affects motor, cognitive, linguistic, personal or social

skills. Thus, evaluation of proteins is important in order to understand the causes of

different DS aspects. After understanding the cause of the DS, the treatments can

be possible by developing the effective drugs.

In this thesis, different machine learning algorithms are applied to different datasets.

These datasets contain protein expression profiles of mice that are trained in CFC

with and without injection of memantine. In CFC experiment, CS mice have learning

capacity and SC mice have not learning capacity. Protein responses after CFC have

been reported. The trisomic (such as Ts6Dn, Tc1) CS group of mice cannot to learn.

However, if the trisomic CS group of mice is injected with drug, learning can be

rescued.
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Different machine learning algorithms are used in steps of feature selection and

classification of mice. In feature selection step, the critical protein subsets are

selected using forward feature selection technique. In classification step, healthy

and unhealty mice are differentiated based on selected protein subsets. Before

applying different machine learning algorithms, preprocessing step that consists

of handling missing values in datasets and normalization of dataset is carried out.

The replacement method used in handling missing value is different from previous

studies. In the previous studies, missing values were replaced with the average

value of all protein expression levels in same class of mice and effect of dilution

ratio did not consider. 15 tissue samples that are three replicates of a five-point

dilution series were obtained per mouse. The effect of dilution ratio is considered

in this work and missing values are replaced with the average expression value

of equivalent sample in same class mice. In addition to replacing missing parts,

all measurements are normalized with Z-score normalization. It prevents proteins

with higher amounts influence on the classification result erroneously. Since Z-score

normalization preserves range (maximum and minimum), Z-score normalization is

applied rather than max-min normalization that is used in other works.

The feature selection method, named as forward feature selection, is applied using

KNIME tool. It is the heuristic method which tries to detect the ideal feature subset

by iteratively choosing features based on the classifier achievement. The method

begins with empty feature subset and adds one feature at a time for each round.

This one feature is taken from the all features pool that are not in the feature subset.

When it is added into feature subset, best classifier result is obtained. The process is

reiterated until the desired number of features are added. Forward feature selection

is applied. For the learning process in KNIME, naive Bayes learner which is efficient

for multi classification problem is used. In spite of the underlying assumption of

conditional independence, naive Bayes performs well with more than two classes

problem. In previous studies, the applied algorithms suffered from an efficient

multiclass classification technique. In this thesis, this deficiency is eliminated with

naive Bayes algorithm in forward feature selection.
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After selecting features, classification methods are applied for differentiating mice

in different subgroups. We carried out four classification methods: DNN, gradient

boosted tree, random forest and SVM. These classification methods are implemented

by using Python and Scikit Learn package. In order to select the most appropriate

parameters of classification methods, grid search method is applied. For building

robust and reliable classification model, 5− fold cross validation is applied. In

K − fold cross validation, the data is splitted into k subsets. Only one of these

subsets is utilized as the test set and the others are constituted to a training set at

each time. This procedure is repeated k times. The failure estimation is averaged

over all k trials to obtain whole efficiency. This way greatly decreases bias since most

of the data are utilized for fitting. It also greatly diminishes discrepancy as most of

the data is also being utilized in validation set.

By applying feature selection method, the protein subset is determined. Based

on critical proteins in selected protein subset, the healthy and unhealthy mice are

separated by applying different classification methods. Compared to previous studies,

the selected feature subsets in our works provide more accurate class separation

of mice. This substantiates importance of the selected feature subsets in different

cases. Also, some proteins selected in this thesis were not determined before. After

selecting protein subsets, the pathway analyses are done using reactome Pathway

Browser and importance and visualization of selected proteins within a pathway are

observed.

In the classification step, firstly, important proteins in DS are found by applying

different classification methods: NN, Random Forest and SVM. The classification re-

sults are compared with the results of B.Feng et al. work where AdaBoost algorithm

was used for selecting 30 features and NN, SVM and Random Forest methods were

used for mice classification. Random Forest and SVM classification models applied

in our work achieved higher accuracy when compared to B.Feng’s work. DNN gave

the highest accuracy result. Results of DNN are not compared as B.Feng et al. did

not apply DNN.
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Also, the systematic analysis is done for determining feature subsets for three cases:

succesful learning, rescued learning with drug, failed learning. DNN, Gradient

Boosted Tree, Random Forest and SVM classification methods are implemented. To

understand which changes in protein expression levels are required for successful

learning, all groups of normal mice are inspected in the first case. For determining

important proteins in rescued learning, trisomic mice exposed to CFC with and with-

out memantine are analyzed in the second case. The third case finds out important

protein abnormalities in failed learning case by comparing expression levels of nor-

mal and trisomic mice. In the first case, feature subset (SOD1, Ubiquitin, pGSK3B,

S6, CaNA, IL1B, BAX, pNR2A, BDNF, pJNK, pCFOS) is selected from control group

mice. Control group mice with and without memantine treatment and with and

without CFC stimulation are analyzed. When compared with Higuera’s work, there

are 4 common proteins out of selected 11 proteins. The selected feature subset gives

higher accuracy results for all classification techniques and SVM gives the highest

accuracy. When the selected proteins are evaluated in pathway analysis, it is shown

that they have important roles in immune system, signal transduction and gene

expression extensively. Also, these gene products play roles in programmed cell

death, cellular responses to external stimuli, disease and DNA repair mechanisms.

In the second case, for understanding the important proteins in rescued learning,

features are selected from data consisting of trisomic mice which are exposed to

CFC with and without memantine. The selected proteins are BRAF, S6, CDK5,

BDNF, pCREB, PKCA, SOD1, PSD95, pNR2A. There are 2 common proteins with

previous work. The selected proteins play roles in immune system, signal trans-

duction, neural system, gene expression and disease pathways. PSD95 is a scaffold

protein and a regulator of synaptic strenght. Thus, it is inferred that drug can be

effective for stabilizing synapse structure. DNN and SVM give highest accuracy. The

accuracy results of the selected feature subset are higher than previous work for

all classification methods. In the third case, to pinpoint proteins that are critical

in unsuccessful learning, features are selected from protein expression levels of

trisomic and control mice. Selected proteins are P38, pPKCAB, CAMKII, pCAMKII,

GluR3, DSCR1, nNOS, BAX,pCFOS, ERK. Selected proteins take part in immune
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system, signal transduction, neural system and gene expression broadly. Also, they

take actions in programmed cell death and cellular response to external stimuli.

DNN and SVM give highest accuracy results and classification results of the selected

feature subsets are higher than previous work for all classification methods.

Later, in order to understand whether different drugs-treated Ts65Dn mice exhibit

similar response or not, expression profiles of two drugs (RO4938581 and memantine)

are analyzed. 4 gene products are expressed in common with RO4938581 and

memantine. The selected first two proteins (BRAF and S6) are common with two

drugs. When designing drugs for treatment of DS, special attention to these two

genes must be considered. Also, MEK and SHH are selected from RO4938581

dataset. MEK is important in cell cycle and division. Neural cells can not divided.

Thus, it is speculated that glial cells may be effective and increase of glial cells

highlights the importance of MEK. Also, SHH can provide the settlement of glial

cells.

After the analysis of different drug responses, the critical protein subsets which

display the regional fluctuation with aging are determined. These subsets are

obtained from two datasets which show the expression profiles of young and old

mice at three different brain regions. The selected proteins from old mice dataset

are RCAN1r, Ubiquitin, APP, TH, ARC, ERK, mTOR, ERBB4, H3MeK4, pNR2A.

Ubiquitin is a turnover protein and a good indicator in aging process. Also, DS

increases the risk of AD at later stage of life. Approximately all adults with DS

display the neuropathological modifications of AD by the age of 40 years. Thus,

APP builds up in the brain through the lifetime of people with DS and contributes

a special change to grasp the temporal advancement of AD. The selected proteins

from young mice dataset are MEK, APP, ITSN1, GluR3, pGJA1, P3525, DYRKA1,

AKT, pPKCG, CTTNB1, NUMB, PRMT2, BDNF, BCL2. By looking into the two

different subsets for old mice and young mice, the aging process of people with

DS can be understood. The selected genes from young mice play roles in signal

transduction, immune system extensively. The selected genes from old mice play
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roles in disease, immune system, signal transduction, DNA repair, disease pathway,

cellular responses to external stimuli and programmed cell death. Compared to

selected genes from young mice, genes selected from old mice participate DNA repair

and cellular responses to external stimuli pathways.

In addition to the importance of drug treatment and age, the protein expression

profiles on different parts of brain are also crucial for mechanism of DS. All cells

do not synthesize proteins even though all are brain cells. When some parts of

brain in healthy mice synthesize specific protein, the other parts of unhealthy mice

can synthesize this protein. Proteins cannot be effective in wrong place and cause

problems. Thus, analysis of the protein expression profile on different parts of

brain can be crucial. Cortex is the most extremely matured unit of the human

brain and chargeable for understanding language, thinking and perceiving. The

expression levels of proteins which change critically in subcellular fractions of cortex

are determined as genes are differentially expressed in cytosolic and nuclear fractions

of cortex. Thus, the compositional differences can be crucial for analyzing DS. The

selected critical proteins are related to different pathways and processes, such as

MAPK and MTOR signaling pathways, AD, neurotrophin signaling pathway.

Thanks to the different type of mice, expression profiles of different proteins can

be analyzed. The different type of mice maps the different parts of chromosome

21. Thus, it is very important to inspect more than one mouse in order to analyze

expressed genes in DS. In this thesis, expression profiles of Ts65Dn and Tc1 mice

are inspected. Most of the selected proteins obtained from Tc1 mice do not change

when compared to Ahmed et al.’s work (2013). The selected four proteins (nNOS,

DYRK1A, SOD1 and APP) change significantly in one or more brain regions.

When the selected protein subsets are analyzed in pathway analyses, it is monitored

that selected proteins have vital roles in the processes, such as apoptosis, learning

and memory, signaling pathways, disease pathways, immune system and AD.
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In conclusion, this thesis identifies the critical protein subsets that seperate healthy

and unhealty mice more accurately. The contribution of this work is the application

of different steps to protein expression datasets. The preprocessing steps, feature

selection and classification techniques are applied in a different way. This differ-

ence provides to differentiate healthy and unhealthy mice more accurately. The

obtained higher classification accuracies for all classification methods substantiate

the efficieny of different processing steps. When the pathway analyses for selected

protein subsets are done, it is realized that selected proteins have important roles

in biological processes. Also, these protein subsets can be critical in specific DS

aspects such as ID and affects motor, immunity, cognitive, linguistic, personal or

social skills. Thus, the evaluation of proteins can be important to understand the

causes of different aspects for DS. After understanding the causes, the treatments

can be possible by developing the effective drugs. Recently, analyses of non-coding

RNAs are important in theraphy of diseases. Thus, in the future, non-coding RNAs

of selected proteins can be evaluated in order to understand the causes of DS.
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