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ABSTRACT

DATA MINING FOR EMOTION RECOGNITION IN
SPEECH

GAMZE AKKURT
M.S. in Computer Engineering

Graduate School
Supervisor: Assoc. Prof. Devrim ÜNAY Co-Supervisor: Asst. Prof. Umut AVCI

July 2019

The popular features used in speech signal for emotion classification are fundamental
frequency, voice quality, energy, spectral, and MFCC. While most of the work focuses
on these acoustic features in speech emotion recognition, we handle the problem of
emotion recognition using features that are obtained from emotional patterns. In our
approach, we transform the speech signal to discretized signal and extract distinctive
patterns that can distinguish between different emotions. Then, a set of feature vectors
is created using extracted patterns in order to feed a classifier. Experimental results
indicate that the proposed approach learns the emotional state of speech efficiently
from both pattern-based features and acoustic features that are supported by pattern
features. Pattern-based features have resulted in 35 % improvement in accuracy using
two classifiers compared to state of the art acoustic features. Moreover, when all acous-
tic features are combined with pattern-based features, classification accuracy enhances
over 80 % in emotion recognition.

Keywords: Emotion recognition, Speech Processing, Pattern Mining, Feature Extrac-
tion.

iii



ÖZ

SESTE DUYGU TANIMA İÇİN VERİ MADENCİLİĞİ

GAMZE AKKURT
Bilgisayar Mühendisligi, Yüksek Lisans

Lisansüstü Eğitim Enstitüsü
Tez Danışmanı: Doç. Dr. Devrim Ünay İkinci Tez Danışmanı: Dr.Öğr.Üyesi Umut

AVCI
Temmuz 2019

Konuşma sinyalinde duygu sınıflandırması için kullanılan popüler özellikler temel
frekans, ses kalitesi, enerji, spektral ve MFCC’dir. Çalışmaların çoğu konuşmadaki
duyguların tanınmasında bu akustik özelliklere odaklanırken, bu tezde biz; duygusal
kalıplardan elde edilen özellikleri kullanarak duygu tanıma sorunu ele alınmıstır.
Yaklaşımımızda, konuşma sinyalini ayrıklaştırılmış sinyale dönüştürür ve farklı
duygular arasında ayrım yapabilen ayırt edici kalıplar çıkartılmaktadır. Ardından,
sınıflandırıcıyı güçlendirmek için; çıkartılan kalıplarla bir dizi vektör özelliği
oluşturulur. Deneysel sonuçlar, önerilen yaklaşımın, hem desene dayalı özelliklerden
hem de desene ait özelliklerle desteklenen akustik özelliklerden duygusal konuşma
durumunu etkili bir şekilde öğrendiğini göstermektedir. Desen bazlı özellikler, son
teknoloji akustik özelliklere kıyasla iki sınıflandırıcı teknik kullanılarak doğrulukta %
35 ’lik artış ile sonuçlanmaktadır. Ayrca, bütün akustik özellikler, desen bazlı özellikler
ile desteklendiğinde % 80 ’nin üzerinde artış göstermektedir.

Anahtar Kelimeler: Duygu Tanıma, Ses İşleme, Desen Madenciliği, Özellik Çıkarma.
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Chapter 1

Introduction

Speech is one of the most effective and fastest ways to provide communication between
humans. It has inspired researchers to find efficient methods for human-computer inter-
action (HCI). HCI approaches employ speech recognition, gesture recognition, etc. to
understand human intention and recognize speech from a human voice. Despite sub-
stantial improvements in speech recognition research, allowing ’natural interaction’
between user and machine, i.e. recognizing and understanding the emotional state of
the speaker is a crucial but difficult task. Therefore, speech emotion recognition aims
to extract useful information from speech signals and improve emotion recognition
performance [2].

Speech emotion recognition is widely used in several application areas of HCI. In
the automotive industry, it may help to obtain information about the mental state of the
driver to avoid accidents and provide safety for a driver via in-car board systems [3]. In
call center applications, speech emotion recognition may be used to analyze customer
behavior and provide emotional feedback of the customer to the call center operator
to improve the quality of the call center service [4],[5].The medical industry also uses
speech emotion recognition to detect the mental state of patients so that they can use
the data of patients as a diagnostic tool in mental health problems like depression,
suicide cases or lie detection [6]. It may be used in noisy environments to reach better
system performance, particularly in aircraft cockpits, where the speakers are having
a vital role in communication. As the pilots face a high level of emotional stress
while performing hard tasks, speech emotion recognition is trained by the stress in the
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CHAPTER 1. INTRODUCTION 4

speech and improves overall system performance [7]. Also, robots have an important
role and increased popularity in our society. Enhancements in the humanoid robot
technologies make our lives easier than ever. Today, most people use those smart
robots in their daily tasks. Amazon Alexa and Google Home Assistant are examples of
those robots. People often use smart assistant devices to perform tasks such as playing
music, searching for things on the Internet or asking for a question, etc. In order to
use those devices, people use their voices as a command. The robots interpret the
voice command and perform relevant tasks. Apart from that, another application area,
which is speech to speech translation system (S2ST), is used in emotion recognition
applications. S2ST is a process that a spoken speech in a language is used to generate
a spoken output in another language. In this process, both emotion recognition and
synthesis are used. The emotional state of a speaker is recognized by the system, and
that emotion will be converted into another language with the same emotional state.
This is what precisely S2ST process does [8].

In this work, we propose a novel approach to extract a new set of features for emotion
recognition from speech. Our approach consists of two phases. First, we convert a
speech signal to a discretized representation and extract the most related patterns that
define emotion from this representation using a data mining algorithm. Later on, we
generated a feature vector for each pattern of each emotion by counting the frequency
of the pattern that exists on the discretized signal. Secondly, we use existing tech-
niques in the literature to extract acoustic features from the speech signal, such as mel
frequency cepstral coeffiecient (MFCC), voice quality, energy and spectral. Finally, we
combine our proposed pattern features with these acoustic features to improve classi-
fication accuracy. Specifically, in classification, we used two different classification
techniques, namely maximum voting and Directed Acyclic Graph Support Vector Ma-
chines (DAGSVM).

1.1 Related Work

There are many studies for recognizing emotions in the literature. These studies are
divided into two different domains that can include either unimodal (speech-only or
visual-only) or multimodal (audiovisual, i.e., speech +facial and body expressions)
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data. Most of the studies show that speech and facial expressions are related to the
influence of emotions. Facial expression recognition uses video or image sequences
where facial expressions only represent the object without any speech. Facial features
are extracted from the nose, lips, eyebrows, and eyelids. Essa et al. [9] used optical
flow method identifying a computer vision system to observe facial motion. There are
six universal statements (angry, sad, happy, surprise, disgust, fear) in facial expres-
sion that are introduced by Ekman [10]. Most of the studies ([11],[12],[13],[14]) used
these statements in order to classify the emotions. It is difficult to collect information
from authentic facial expression because they are uncommon and filled with subtle
context-based changes, which make it difficult to detect emotions without affecting the
outcomes [15].

Speech emotion recognition belongs to unimodal data. It uses only audio information
to distinguish emotions. Acoustic parameters are used for features, i.e., energy, pitch
duration, and spectral. Yixiong [16] explained the acoustic features in the human emo-
tion by using Berlin database. Several statistical pattern recognition techniques were
noted by Dellaert et al.[17] to classify emotional speech according to emotional con-
tent. Ververidis et al. [18] classified anger, happiness, neutral, sadness, and surprise
emotions in Danish database. The paper proposed using virtual reality to measure the
effect of the emotional content of speech. In order to detect the stress in the speech,
Kwon et al. [19] used acoustic features such as pitch, MFCC log energy formants, and
Mel frequency bands in SUSAS database. Chavhan et al. [20] used spectral features
to recognize seven different emotions in Berlin database.

On the other hand, the modularity of multimodal data is highly correlated with speech
and other expressions such as facial and body expressions. Castellano et al. [21]
used face, body gesture, and speech for eight emotions (anger, despair, interest, plea-
sure, sadness, irritation, joy, and pride) with a Bayesian classifier in order to analyze
three modularities on recognition of emotion. Busso et al. [22] used audio and video
information for recognizing four different emotions. These emotions are sadness, hap-
piness, anger, and neutral. Also, the paper examined the system limitation depending
on facial expression or acoustic information.

Researchers have been using various feature extraction and classification methods to
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identify emotions from speech. Feature extraction is a crucial process in speech emo-
tion recognition as different types of features capture different information present in
speech such as speaker’s emotion and language. The most extracted features in the
literature are those capturing prosodic information from speech such as energy, for-
mat, fundamental frequency, MFCC, speaking rate, and shimmer. Various statistical
measures like mean, median, skewness and kurtosis are then calculated from these ex-
tracted features. In addition, after feature extraction, a wide variety of classification
methods is used to recognize speech emotion. These classification methods include
Hidden Markov Models (HMM), Artificial Neural Network (ANN), SVM, boosting
and ADABOOST learnings. Kopal et al. used prosodic features and functionals that
have mean, median, kurtosis and skewness to identify five emotions namely happiness,
sadness, anger, fear and neutral. They reported classification accuracies as 69.41%
using SVM and 61.97% using random forest [23]. Pan et al. analyzed the discrim-
inative power of energy, pitch, LPCC (linear prediction cepstral coefficient), MFCC
and MEDC (Mel energy spectrum dynamic coefficients) for emotion classification.
They used two different datasets and SVM for classification. The classification accu-
racy for three emotions were reported as 95,1% and 91,3% respectively [16]. Lee et
al. analyzed a database of real world recordings from call center conversations using
fundamental frequency, energy, duration and formants. The results of the research re-
vealed that combining all the information (acoustic, lexical, and discourse) enhanced
emotion classification by 40,7% for males and 36.4% for females. (Linear discrimi-
nant classifier (LDC) is utilized for acoustic features [24]. Nichelson et al.[25] used
phonetic and prosodic features together with neural networks to analyze a database of
radio actors. The accuracy of classification was obtained about 50%.

Also, there are several studies available in the literature that use pattern mining in
feature extraction. However, these studies differ in the domain of application, such as
EEG, face, and music. Cabroda et al. [26] proposed another approach to identify music
features that impress emotion. In that paper, they identified patterns in psychophysi-
ological data utilizing a motif discovery algorithm and assessed the music elements.
Shan et al.[27] introduced LBP for facial expression recognition, and they proposed
that the face images could be thought as a combination of micro-patterns which may
be well described by LBP. Also, Tweri et al.[28] focused on motif face features for



CHAPTER 1. INTRODUCTION 7

EEG data to recognize sleep state and the effect of anesthesia. Zao et al. [29] pre-
sented dynamic or temporal textures that are textures with motion in video sequences.
They modeled textures by using volume local binary patterns. To our knowledge, this
is the first study to suggest using pattern mining for emotion recognition from speech.

The rest of this thesis is organized as follows. In chapter 2, we respectively describe
the database, the methodology, the related details to extract our novel pattern features,
acoustic features, and the classification schemes. In chapter 3, we present the ex-
perimental results and analysis. Finally, the concluding notes and the future work
explained in chapter 4.



Chapter 2

Methodology

Speech is an important form of emotional expression. The voice in speech not only
contains a grammatical message but also information about the speaker’s emotional
status. Neutral, calm, happy, sad, angry, and fearful are those examples of emo-
tions. The fundamental issues which need to be taken into consideration for successful
speech emotion recognition are feature extraction and classification respectively [30].
It is considered that a correct selection of features remarkably affects the classification
performance[2].

Feature extraction is the principal issue in speech emotion recognition. Feature extrac-
tion is a particular form of data-set, and it ends up the extraction of specific features
about the speech. By extracting those features, we obtain the defining characteristic
of speech signals. Those signals may contain information about a speaker, vocabulary,
language, and emotion. These parameters may affect the accuracy in speech emotion
recognition. In the literature, there are many feature extraction algorithms available.
These are MFCC, RASTA filtering, Linear Prediction Cepstral Coefficient (LPCC),
and Linear Prediction Coefficients (LPC), etc. Features can be extracted by using one
of those algorithms. We applied this technique to result in the extraction of specific
acoustic and pattern features that we deal with.

Emotions have an impact on speech’s acoustic characteristics. These characteristics
are detected by prosodic and spectral features using feature extraction technique. It
is possible to find these acoustic features in most of emotion recognition studies. In

8



CHAPTER 2. METHODOLOGY 9

our research, we proposed an approach to identify specific acoustic patterns for dif-
ferent emotions. With this purpose, speech signals were converted into strings by
discretization. Discrete representations of the signal were utilized to extract patterns
of emotion in a discriminative way. Then, recognition of emotion was fulfilled with
comprehensive features from the patterns. Also, these features were combined with
existing prosodic and spectral features in the literature. The approach is outlined in
Figure 2.1. At first, we will describe databases that exist in the literature and we will
give information about our databases. Then, we will explain the approaches in the
following sections in detail.

Figure 2.1 Basic system diagram of speech emotion recognition.

2.1 Database

Databases have a significant role in terms of recognition and appraisal of emotional
speech. The degree of naturalness of the database affects emotion recognition per-
formance. When a database with a low degree of naturalness is utilized, imprecise
results may be constructed [2]. On the other hand, a high degree of naturalness pro-
vides more realistic and reliable results in emotion recognition. For this reason, the
design of the databases is organized for the classification task. In the classification
task, e.g., emotions can be classified by adult-directed or infant-directed. In terms of
infant-directed emotions ([31],[32]), utterances are collected by parents who talk with
their infants. Each utterance is classified as approval, attention bids, or prohibition. In
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adult-directed emotions [33], utterances are recorded from males and females who ex-
press their emotions such as happy, angry, sad, and so on. Except for these emotions,
other databases detect stress in the speech for the classification task [34]. Also, the
number and type of emotions are determined by the classification task according to the
content of the databases. In the literature, there are three types of databases available.
These are actor (simulated) based, elicited, and natural emotional speech databases.

Actor based emotional speech databases are collected from real life situations such as
radio broadcast or theater. Actors express natural sentences with different emotions.
This is the most reliable and commonly used technique to collect data [35]. Also, these
databases are available in a wide variety of languages and include all emotions.

Elicited emotional speech databases are collected from sound laboratories. In these
laboratories, speakers talk about different situations which are created by the presen-
ter. Different emotions are elicited without knowledge of the speakers. One of the
drawbacks of these databases is that the speakers may exaggeratedly express emotions
when they realize being recorded. Therefore, emotions are not the same as real emo-
tions, and they are less realistic than actual emotions [35].

Natural emotional speech databases are collected from real-world conversations. They
are composed from call center conversations, patient and doctor dialogues, cockpit,
and so on. Natural emotions are slightly expressed in real-world conversations. Thus,
it cannot be easy to recognize all emotions in real conversations. Also, there may be
privacy and copyright issues to access them. Therefore, it can be hard to deal with
legal issues to utilize these databases for research purposes [35].

As described before, a wide variety of designed databases including various informa-
tion are avaliable for research purpose. Hence, databases may provide data such as
language, the number of emotions, naturalness, source, actors, linguistic, accessibil-
ity, etc. Table 2.1 shows the most frequently used speech emotion databases and their
characteristics. As shown, most of the databases use adult-directed emotions except
for BabyEars and KISMET, and also they share the same emotions that are joy, anger,
fear, disgust, and sadness. Both professional and non-professional actors perform in
all databases. Furthermore, different languages are available in the table. Moreover,
linguistic column shows the content of the speech as well as the words or sentences to
be pronounced. In Hedrew database, the subjects refer to the speech of an incident that
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was to remember an emotional event in the past, pronouncing as if feeling the same
experience as they felt at the first experiment. However, most of the databases are not
directly accessible for public use due to copyright and privacy issues.

In our research, we used the Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) [36]. It’s publicly available, and it can be used for research pur-
poses. It contains a number of emotions and both female and male actors are available.
There are lots of sample speech data, so this helped us to retrieve and recognize speech
emotions from these samples. These are the main reasons that we used this database
in our research. We will describe the details in the following section.

Table 2.1 Characteristic of emotional speech databases

Corpus Actors Naturalness Language Emotions Linguistic Source Accessible

Berlin [37] 5 males, 5 females
(10 Actors) Simulated German

Neutral, anger,
fear, joy,

sadness, disgust,
freedom

10 sentences Professional
actors Public

Danish [33] 2 males, 2 females
(4 Actors) Actor based Danish

Neutral, surprise
happiness,sadness

anger
9 sentence

2 words
Professional

actors Public

SUSAS [34] 19 males, 13 females
(32 Actors) Natural English Depression, fear

anxiety, anger interview Natural speech Private

BabyEars [32] 6 mothers, 6 fathers Natural English Approval, attention
prohibition

single sentence
or phase Natural speech Private

KISMET [31] 3 females Elicited American
English

Approval, attention
prohibition, soothing

neutral
1002 utterances Nonprofessional

actors Private

INTERFACE [38] 1 male, 1 female
(2 actors) Elicited

English,
Spanish,
French,

Slovenian

Anger,fear,sadness
joy, disgust, surprise

8928 sentence English
6080 sentence Slovenian

5600 sentence French
5520 sentence Spanish

Actors Private

RUSLANA [39] 12 males, 49 females
(61 actors) Elicited Russian

Surprise, happiness
anger, sadness,

fear
3660 utterances Unprofessional

actors Private

Hedrew [40] 19 males, 21 females Elicited Hedrew Anger, fear, joy,
sadness, disgust subject Nonprofessional

actors Private

Yu et al. [41] 4 students Elicited Chinesee Anger, happiness,
neutral, sadness 2000 utterances Nonprofessional

actors Private

Petrushin et al. [4] 30 actors Natural English Happiness, anger,
sadness,fear 700 utterances Professional

actors Private

RAVDESS [36] 12 males, 12 females Elicited English
Happy, anger,neutral

sad,fear,neutral
disgust,surprise

2 sentences Professional
actors Public
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2.1.1 The RAVDESS Dataset

RAVDESS dataset is a multi-modal database which has emotional speech and song
samples. This dataset is utilized by researchers for examining the similarities and dif-
ferences between acoustic and visual signals of emotional speaking and singing. The
visual signals refer to the content of a video which sounds are derived from. RAVDESS
includes audio and video recordings of 24 actors (12 female and 12 male) speaking and
singing. In the recordings, there are two types of sentences which are’ Kids are talking
by the door’ and ’Dogs are sitting by the door’. Each actor expresses these sentences
with different emotions in a North American accent. The speech recordings include
eight different adult-directed emotions. These emotions are neutral, calm, happy, sad,
angry, fearful, disgust, and surprise. Except for disgust and surprise emotions, the song
recordings consist of six emotions. All emotions are performed at normal and strong
intensities, and each emotion with two repetitions. Also, only neutral emotion does
not have strong intensity. In the dataset, each actor performs 60 spoken and 44 sung
specific vocalization. The total number of specific vocalization is 2452 (24 actors *
60 utterances + 23 actors * 44 utterances) available in all three modularities that are
audio, video, and audio-video.

In our research, we only used speech signals with normal intensity from RAVDESS
dataset. The research that we use as a criteria [42] focuses on a domain-independent
recognition of emotions such as song and speech. Only common emotions are paid
attention to both domains. We excluded disgust and surprise emotions from the speech
recording in order to be coordinated with this work.Total number of audio utterances
is 576 in (24 actors * 2 sentences * 2 repetitions * 6 emotions).

2.2 Preprocessing

Before starting our approach, we did some preprocessing to speech signals. These in-
clude silence removal and normalization. First of all, we removed silence parts from
the speech signal. Silence part is unnecessary information for speech processing and
it does not include any information about the speaker and spoken subject. The idea of
the silence removal is that speech signal is divided into frames and then each frame
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value is compared with the specified threshold value that can be defined by the end
user. The threshold is selected value for removing silent parts of sound signals from
samples. If the frame value is lower than the threshold value, this frame will not be
included resulting output speech signal. In this research, we used default threshold
settings to remove silent parts. The default threshold value is equal to 0.03. After this
process, a new speech signal is constructed without silence parts. We focused on only
spoken part of speech in order to decrease the computational time and unnecessary
information. Also, seen in Figure 2.2, while Figure 2.2a represents the original speech
samples, Figure 2.2b represents removed silence part from the speech signal.

(a) Original Speech Signal (b) After Removing Silence Part

Figure 2.2 (a) A speech signal visualization: x-axis coordinate represents speech
samples, and y-axis coordinate represents speech amplitude, (b) Represents speech
signals after removing silent parts

The second preprocessing technique the most frequently used in speech emotion recog-
nition is normalization of the speech signal. The method of z normalization modifies
the volume of the speech to a standard level. Thus, it provides a comparable volume
level to each speech signal. We normalized each speech signal with z-score technique
in order to improve computational efficiency. We applied z-score to each speech sam-
ple so as to be the mean value equals to zero and the variance equals to one. Also,
when you look at the figure, when the z-score is applied, each speech sample shows
a distribution between -1 and 1. Thus, each signal sample has a standard scale. The
figure 2.3 shows normalized speech signal.



CHAPTER 2. METHODOLOGY 14

Figure 2.3 A speech signal is normalized with z-score normalization

2.3 Dimension Reduction

A speech signal of dimension t, D = d1, ...,dt can be reduced the dimension of the
orginal speech signal to t/w into a vector D̄ = d̄1, ..., d̄i. The ith element is calculated
by the below equation:

d̄i =
1
w

w⇥i

Â
j=w⇥(i�1)+1

d j (2.1)

where w represents window size of arbitrary length i = 1,...,t/w. Briefly stated, the
speech signal that has t number of data points is divided into non-overlapping win-
dows (partitions) of equal length, w window size. The average of data falling into wth

window is calculated and each window is represented by the mean of its data points.
Thus, the speech signal reduces to d̄i dimensions. This representation can be demon-
strated as the part of speech with a combination of each window in Figure 2.5a. In our
study, we determined window size w to 8.

2.4 Discretization

In the discretization technique, we transform a vectorD̄ to a string character S̄. The
purpose of this is that we represent each unit of D̄, d̄i with each unit of S̄, s̄i. For
this representation, we will utilize a Gaussian distribution table in order to obtain the
coefficient of each d̄i. Distributions have equal size areas n under the Gaussian curve.



CHAPTER 2. METHODOLOGY 15

These areas are represented by breakpoints B = B1, ...,Bn�1. These breakpoints can be
obtained by table in Figure 2.4. This figure shows the breakpoints for values of a from
3 to 10. For example, when a equals to 3, breakpoints have 2 equal size areas and they

Figure 2.4 Breakpoints of Gaussion Distribution (Source: [1])

are tagged with a character from English alphabet. According to the table, a character
is assigned depending on the breakpoints. If d̄i is less than -0.43, d̄i obtains a character
to convert to s̄i. If d̄i is between -0.43 and 0.43, d̄i obtains b character to convert to s̄i

and if d̄i is greater -0.43, d̄i obtains c character to convert to s̄i. In our research, we
selected a as 5. Figure 2.5b shows an example of discretization. We transform D̄ to
corresponding S̄ as a word representation of characteristic aabcceeecbc.

sequence of speech samples
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(a) Dimension Reduction

sequence of speech samples
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(b) Discretization

Figure 2.5 (a) t number of a speech signal is reduced t/w. In this example, a speech
signal of length 88 is divided by 8 window size and it is reduced to 11 dimensions,
(b) signal is discretized depending on Gaussian distribution table
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2.5 Pattern Mining

Contrast sequential mining is a crucial subarea of data mining. The purpose of the
contrast sequential mining is to discover diverse patterns that have differences in data
sets. The particular type of contrast mining is distinguish sequential pattern mining
(DSP). DSP mining discovers diverse sequential patterns and it extracts these patterns
with the discriminative way from different classes of sequences. Particularly, DSP
mining focuses on extracting patterns which are found frequently in sequences of one
class but not frequently in sequences of another class. In other words, it is possible
to compare sequential patterns which distinguish one sequence from other sequences
with DSP mining.

DSP mining has been used in several application areas such as protein (DNA) [43],
information retrieval [43], analysing purchase behaviors. For example, in biology,
protein sequences may be related to protein family or genes. DSP mining contributes
protein sequences to characterize and distinguish protein family in DNA. Web pages
and books include a set of word sequences and differences can be extracted between
sentence collection to detect distinctive phrases. They may be useful for indexing.
DSP can be used for changes in customer behaviors in online shopping in order to
purchase transaction. It can propose shopping preferences to costumes depending on
the shopping habit [43].

Constraints have an important part in data mining. They provide scalability of en-
tire process and define the quality of the results during pattern extraction. Data min-
ing constraints may be time stamp, removing redundancy, length of pattern and gap
constraints. The specific restriction in DSP mining is gap constraint.’Gap’ constraint
set boundaries between two consecutive values in a sequence. In DSP mining, there
are several algorithms that use gap constraint. These algorithms are GepDSP (Gene
Expression Programming) [44], KDSP-Miner (top-k distinguishing sequential patters
with gap constraint) [45] , ConsgapMiner (Contrast Sequences wit Gap Miner) [46]
and iDSP-Miner (item set DSP) [47]. Except for K-DSP algorithm, minimum support-
ive (minsup) and minimum confidence (mincof) thresholds are predetermined by user.
Minsup is the percentage of transactions in the sequences of one class. Also, mincof
is the conditional probability of these transactions. These two parameters are utilized
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to exclude the rules in the result that have support or confidence less than minimum
support and minimum confidence. The support of sequential patterns with thresholds
never exceeds the support of its subset. When the user does not determine the threshold
correctly, the problem may occur due to missing important contrast patterns.

In our research, we used KDSP-Miner algorithm and extracted top-1000 patterns with
gap constraint using both one-versus-all and one-versus-one strategies. Data is divided
into two classes in this algorithm. These classes are positive and negative respectively.
In one-versus-all strategy, while all discrete representation of an emotion is in a pos-
itive class, all discrete representation of other emotions is in the negative class. The
algorithm extracts m patterns for each emotion. In one-versus-one strategy, while all
discrete representations of one emotion are in the positive class, all discrete representa-
tions of another emotion must be in the negative class. This technique is applied in the
same way for all other emotions respectively. The number of patterns is ( j�1)⇤n for
each emotion where j is the number of emotions and n is the number of patterns that
are obtained from each pair emotion. Gap constraint is set to zero for each emotion. As
each pattern can become visible in both positive and negative classes simultaneously,
the algorithm gives two measurements that a pattern appears in each class as positive
support (PosSup) and negative support (NegSup). When PosSup is divided to NegSup,
a measure is obtained called the C-ratio. We have created set of patterns from each
emotions and these patterns are selected by the highest C-Ratio.

2.6 Pattern Features

Patterns that obtained the highest C-Ratio are used for acoustic descriptors. Assume
that there are i number of pattern in jth emotion. Patterns are described by p j

i where
i=1,. . . ,n and j=1,. . . ,m. The feature vector ft for tth size is n⇥m. When a pattern
specific to emotion p j

i is given to a discretized speech signal, we count the frequency
of patterns that is exactly matched on discretized signal in order to compute the feature
vector ft . While applying exact matching, we don’t permit any gaps between matches
of the pattern. The purpose of this is to preserve the motif that is represented by the
pattern. For example, dcaecbaeddc is a discrete representation of a speech signal.
This representation has 2 different patterns which are dc and aec. Also, patterns are
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detected in two different parts of representation.The first pattern is seen twice in the
discrete speech signal which makes its corresponding in the feature vector 2. However,
the second pattern is matched once exactly and twice with a gap constraint of two. dd
represents gap in the sub string of aeddc. For our approach, we focus on exact match.
Therefore, the value of feature vector is set to 1 for aec pattern.

2.7 Acoustic Features

Speech emotion recognition is essentially conducted without linguistic information via
sound processing. In a sense of acoustics, speech processing techniques propose ex-
tremely important information based generally on prosodic and spectral features [48].
The feature vector of acoustic is calculated for each speech signal. Most of the features
are extracted from speech-based information, i.e. pitch, energy and duration, as well
as spectral parameters such as formants and MFCC. These features are used for recog-
nizing emotions from speech. Depending on the temporal structure, the feature vector
of acoustic is grouped into two categories that are namely short (segmental) and long
(suprasegmental). Firstly, segmental features are computed once for each small time
frame that is the duration of between 25 and 50 milliseconds using window technique
in order to analyze their temporal progression. On the contrary, the suprasegmental
features are computed over the whole duration of the speech. In a linguistic context,
the suprasegmental feature is described as an attribute containing discrete phonetic and
linguistic unit boundaries that can be identified in order to extract the analysis of the
speaker’s behavioral feature [49].

The feature vector of acoustic is classified into two unique classes. These classes are
Low-Level Descriptors (LLDs) and functionals. The first class is LLDs that consist
of prosodic, spectral and voice quality features. In terms of prosody, most of hu-
man use the prosodic signal to identify their emotions in daily conversation. Prosody
gives information about the person’s speaking. In the literature, prosody is known
as prosodic features ([50],[48]). Prosodic features are the part of speech that goes
outside of phonemes (words, phrase, and sentence) and address sound’s auditory qual-
ities. These features are fundamental frequency (F0) and energy. Prosodic features are
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segmental features and extracted from the time domain. Spectral features are used suc-
cessfully in most of the studies to improve the accuracy of emotion recognition. It is
well known that spectral features are extracted in frequency domain analysis [51]. The
features depend on short time power spectrum. These features can be seen from the
spectrum such as formants, bandwidth, and spectral energy and they also are segmen-
tal features. The most popular spectral features are MFCC, Linear Prediction Cepstral
Coefficient (LPCC) and Log Filter PowerCoefficient (LFPC). Contrary to spectral and
prosodic features, there is no acoustic property in the quality of voice. For this reason,
it is not measured or analyzed from a speech signal. It consists of many parts of speech
processing. Generally, qualitative terms characterize voice quality such as harsh, tense
and breathy. Voice quality is suprasegmental features. The most popular features in
voicing quality are namely jitter, shimmer and Harmonics-to-Noise Ratio [50].

The second class of feature vector is functionals that include statistic features. Statistic
features are obtained from LLDs so functionals are suprasegmental. The statistical
features are such as mean, median, standard deviation, kurtosis, maximum, minimum
and etc.

If we have a look at the description of speech features and temporal structure are:

• MFCC describes major phonetic attributes in speech. It also is strongly related
to the spoken content. The basic idea for extracting MFCC feature is that time
domain speech signal transforms to a frequency domain based on critical bands
using Fourier transform. The critical band is a bandpass filter for center fre-
quency adjustment. The resulting power spectrum is filtered using a filter bank
with critical bands. The filter bank is chosen with a logarithmic mel scale [52].

• The sound of speech begins in chords of voice. The vocal chords vibrate with a
fundamental frequency that is high and low in speech sound. This vibration of
the cords is called fundamental frequency (F0). Fundamental frequency can be
calculated from the speech signal and it gives information about speaker and type
of sound. Every person has a different fundamental frequency. For this reason, it
is a delicate feature in the meaning of listening. In the literature, there are 3 types
of algorithms to extract this feature and detect the emotions. The algorithms are
applied to 3 different domains which are frequency, time and frequency-time
domain [53].
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• Both jitter and shimmer features are a segment of voiced speech. Period-to-
period fluctuations of the fundamental frequency are available in speech. Jitter
is a metric for these fluctuations in fundamental frequency. Shimmer is a metric
of amplitude value for period to period variableness. Most of the studies use
the glottal flow function for extracting both voice quality features. The glottal
flow function can be computed with inverse filtering algorithm. An inverse fil-
tering algorithm predicts the vocal tract filter and performs the inverse of filter
estimation to speech signal to present a glottal flow estimation [54].

• Energy is the most popular feature in speech emotion recognition. It plays an
important role to detect emotion from the speech signal. Energy is a measure of
how much signal occurs at a specific time. The energy of a signal is computed
by shifting short time window technique, squaring the samples and taking this
mean. The usage of square root is called as root-mean-square (RMS). The RMS
is a common approach for estimating signal’s energy [53].

• The spectral centroid is a method of measuring in order to define a spectrum
used in speech processing. It specifies the location of the center of gravity for
spectrum. It represents the brightness and sharpness of a sound [55].

• The energy of speech signal that contains emotion information is observed to
be within a specific range of frequency. Spectral roll-off specifies the content of
frequency below which specific percentage (cutoff) of the total amount of energy
remains. It is possible to use roll-off frequency in order to differentiate between
harmonic and noisy sounds [50].

• The spectral flux refers to the change of an emotional signal in the local spec-
trum. It shows how rapidly the planned signal power spectrum changes within
frames [50].

In our research, we used 65 provided LLDs features. These features are defined in
Interspeech 2013 Computational Paralinguistics Evaluation (ComParE) [56] feature
set. The feature set contains 41 spectral,14 MFCC , 4 energy and voicing related LLDs
features. We used a tool for extracting LLDs features. ComParE feature set includes
6373 statistic features in OpenSMILE [57]. OPENSMILE is feature extraction tool
for audio signals. You can find more information in appendix A.1. We only applied
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12 statistics to speech signals. The statistics are mean, standard deviation, maximum,
minimum, range, interquartile ranges (1-2,2-3,1-3), the position of mean, kurtosis and
skewness. We used both part of LLDs and delta LLDs to acoustic features. The total
number of acoustic feature is 1313 LLDs features that are used in our research.

2.8 Classification Schemas

We used two different algorithms for patterns. In these approaches, the maximum vot-
ing algorithm and classification is performed for features. In this study, the maximum
voting algorithm is presented without learning a task and then DAGSVM (directed
acyclic graph support vector machine) is used for classification. In the next subsec-
tion, we will describe the basic idea of the maximum voting algorithm and we will
explain the operation logic of DAGSVM.

2.8.1 Maximum Voting Algorithm

Before applying a classification technique for patterns, we utilize a simple voting algo-
rithm independent of learning in order to detect the effect of patterns on emotions. First
of all, a speech signal is transformed into the S̄ discretization representation described
in section 2.6. We take the pattern p j

i that belongs to a specific emotion j (p j
i is ith

pattern for jth emotion) and count the frequency of this pattern that is exactly matched
on S̄. (A pattern can be seen more than one on S̄ or not). The matching process is
iterated for each pattern i of an emotion. At the end of the process, the matching fre-
quency of each pattern is summed up in order to obtain the total number of matches for
emotion j. This process is repeated the same for all emotions j. At last, the emotion
that has highest the total result is determined as speech’s emotional label S̄. In this
algorithm, there may be a situation that the total results are the same for a different
emotion. In this situation, we select random the label among conflicting emotions and
then we assign one of the conflicting emotions as the label of the speech.
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2.8.2 SVM

We used SVM (Support Vector Machine) for pattern classification in our research.
SVM is normally designed for binary classification that is introduced by Vapnik [58].
There are two types of classifications that are used in SVM. These are namely single
and multi-class classification. We focused on the multi-class classification of SVM
in order to detect different emotion recognition from speech. In the literature, multi-
class classification is examined in five types of techniques that are one versus one, one
versus all, directed acyclic graph, tree-based and error correcting output codes [59].

In order to compare with the results in [42], we adapted DAG to SVM with multi-class
emotion classification. In the training phase, DAGSVM is similarly associated with
the one-versus-one classification. For this reason, we will introduce the one-versus-
one technique in the next section and then we will explain how DAGSVM works.

2.8.2.1 One-Versus-One

One of the implementation techniques of multi-class classification in SVM is one-
versus one method. This method builds k(k-1)/2 classifiers where k is number of
classes. Each classifier is trained by two classes which exist in data set. The first
class is tagged as positive examples and second class is tagged as negative examples.
In training data for ith and jth classes, [60] solves the classification problem with :

min
w,b,x

1
2
(wi j)T wi j +CÂ

t
xi(wi j)T

s.t. (wi j)T f(xt)+bi j � 1�xi, i f yt = i

(wi j)T f(xt)+bi j �1+xi i f yt = j

x i j
t � 0

(2.2)

When solving this problem, suppose that we have training samples (X1,Y1), . . . , (XN ,YN)
where XN are training samples and YN are class labels. The training samples XN are
mapped by a function F to higher dimensional feature space and C is the training
error parameter to use for providing the balance margin. W is a coefficient vector for
hyperplane in feature space. x represents the number of pattern variables and b is a
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constant variable. The Max Wins algorithm is adapted to associate with classifiers.
The algorithm works with a voting strategy. The voting strategy is that if the decision
boundary indicates the sample of X in ith class, a score of one is added to ith class
otherwise the jth class is enhanced by one.

SVM is a learning algorithm that is based on the kernel function. Kernel function
defines the nonlinearity level for one-versus-one SVM characteristics. The kernel is
used to prevent obvious calculation of interval product in high dimensional space. The
function can be define with K(Xi,Yj) = F(Xi). F(Yj). It is possible to express this
function with the dual form of SVM classification problem which changes the kernel
function with Mercer’s theorem.K(Xi,Yj) is the specific kernel function. There are
four types of kernel function available to use in SVM. These are linear, Gaussian,
polynomial and sigmoid that are discussed in [61]. In our research, we used Gaussian
kernel (radial basis function, RBF) for training a model.

2.8.2.2 DAGSVM

Directed acyclic graph (DAG) is a graph whose edges are balanced and has no cycles.
DAG includes root and leaf nodes. A root node of DAG is an only unique node which
does not have arcs into it. Also, it has nodes that have separation to either 0 or 2 arcs to
use class of function in the classification task. DAGSVM is associated with one versus
one (1vs1) SVM in the training phase. The 1vs1 method is that it constructs a binary
classifier for only two classes. For multi-class problem, the number of m classes are
trained by m(m�1)

2 classifiers. In the testing phase, the input variable starts from the root
node and moves to left or right node depending on the output classifier. If the classifier
is zero, the node is the left edge or if the classifier is one, the node is right edge. This
process goes on until the leaf node which indicates the decision node of the predicted
class. Also, m-1 decision nodes are trained for m classes. Although DAGSVM has the
same classification performance with SVM, the advantage of DAGSVM is that testing
time is less than 1vs1 SVM [16]. In our research, we used the LibSVM library for the
implementation of DAGSVM. Firstly, we adapted SVM testing implementation with
the DAG approach. LibSVM is a free library for support vector machine. Detailed
information is available in the appendix A.2.
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Results and Analysis

In this section, the results of the proposed method were assessed and compared with
[42] results. We created separate sets with 5,10, 15, 50, 100, 150, 250, 500 and 1000
patterns for each emotion according to the C-ratio criteria in order to analyze the influ-
ence of pattern count on both the classification and maximum voting algorithm. The
size of the feature vector was determined by selecting the pattern count as seen Section
2.6. For example, the feature vector size of 10 patterns for each emotion is 60. Thus, a
feature vector enables a speech signal to be represented as independently of the type of
emotion. In terms of acoustic, we extracted MFCC, voice quality, spectral, energy, and
RASTA features, as described in Section 2.7. The feature vector for acoustic features
was selected 12 different statistics, which were mean, standard deviation, maximum,
minimum, range, inter-quartile ranges (1-2, 1-3, 2-3), skewness, and kurtosis. The size
of the feature vector was different from each other, and the total number of the feature
was 1312 (80 energy, 280 MFCC, 520 RASTA, 300 spectral and 132 voicing quality).
Before using in classification schemes, the feature vectors were normalized by z-score
normalization. In the normalization technique, we applied performer dependent z nor-
malization to features. Each feature of each performer had mean value 0 and standard
deviation 1.

In all experiments that we modeled a classifier, leave-one-performer-and-sentence-out
cross validation technique was used. One sentence from one performer was analyzed in
each round of testing data. The training data was consisting of other performance and
other sentences. Model parameters for optimization were carried out through 5-fold

24
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internal cross-validation on the training data folds, and the parameters were selected
by grid search. The grid search defines the optimal hyper-parameters of SVM such as
C and l where C is misclassification error rate for training and l is kernel function
to check the bandwidth of the radial basis function (RBF). In our experiments, we
used the popular RBF kernel and grid search in order to model the training data.(C =

2�5,2�3, . . . ,2�15 and l = 2�15,2�13, . . . ,23).

In the pattern extraction technique, we applied four different experimental approaches
to our data. A quick reminder; we have two predefined statements which are (S1):
kids are talking by the door, (S2): dogs are sitting by the door. As we described earlier,
we discretized each statement of all emotions, and we converted each speech to the
word representation. Then, we extracted patterns from the discretized speech signals
by using two scenarios. The first scenario is that S1 and S2 are together; the second
scenario is that S1 and S2 are separated. When S1 and S2 are separated, patterns of
each statement represents itself. To say that, S1 patterns represent S1 statement, and
S2 patterns represent S2 statement. For each statement, we extract an equal number of
1000 pattern. When two statements are together, extracted patterns represent the com-
bination of S1 and S2 statements. We extract 1000 pattern for this scenario too. Also,
we have two different strategies in mining patterns; one-versus-one and one-versus-all
described earlier in Section 2.5. Briefly, all experimental results were produced by
these pattern extraction scenarios and strategies.
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Figure 3.1 Maximum voting results
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Figure 3.1 shows voting-based results for extracted patterns as accuracy. From this fig-
ure, we can see that there are four different approaches as we mentioned above. Voting-
based results provide comparable results between pattern approaches. It’s obvious that
accuracies decrease when the number of pattern count increases all approaches. When
we sort patterns according to the C-ratio and choose the pattern set from the list, the
patterns in the top of the list will have larger discriminative influence than next fol-
lowing patterns. When the number of patterns increases, discriminative influence de-
creases. As a result, an increase in patterns will result in a decrease in accuracy. When
statements are separated, the result will be more accurate than two statements together.
For this reason, the patterns are more descriptive characteristics in discretized speech
signals when they are not together. In terms of strategies, the one-versus-one method
gives better results in accuracy, because emotion patterns are discriminated from one
to another easily.
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Figure 3.2 DAGSVM classification results

Figure 3.2 shows DAGSVM classification results for all pattern extraction approaches
as accuracies. In nearly all cases, classification results surpass from the voting based
results. Also, classification results enhance the voting results by up to 34 percent
for larger patterns. When the number of patterns increases, classification results in-
crease, unlike voting based results. The feature vector of each pattern contains more
information than the pattern used, so it affects the rate of classification. To obtain
the classification results, we used single classifier when two statements are together,
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and we used two classifiers when statements are separated. Only in the two classi-
fiers, each statement is classified separately, then the average of classification results
is taken. In Figure 3.2, it is seen that S1 and S2 patterns (apart S1-S2) achieve an in-
crease of 85 percent for recognizing the emotion compared to patterns of all statement
(together S1+S2). As each statement is supported by their patterns, the classification
accuracy increases. That’s why patterns of the statements are declared separately, and
this situation increases the classification accuracy and provides a better perception of
the statement.

Table 3.1 The Computational Duration

DAGSVM
Voting-Based Training Time Test Time

5 Pattern 1.5 min 30 min 12 min
10 Pattern 3 min 46 min 13 min
15 Pattern 4.5 min 53 min 15 min
50 Pattern 14 min 3 hrs 24 min

100 Pattern 30 min 4.30 hrs 40 min
150 Pattern 47 min 6.30 hrs 58 min
250 Pattern 1.30 hrs 11 hrs 1.41 hrs
500 Pattern 3.15 hrs 20 hrs 4 hrs
1000 Pattern 6.30 hrs 32 hrs 7 hrs

The computational duration of each pattern for voting based and DAGSVM classifica-
tion is shown in the Table 3.1. Testing time includes the following steps: preprocessing,
normalization, discretization, feature extraction, cross-validation and testing for clas-
sification. As seen, when the number of patterns increases, training and voting time
increase. In terms of classification, when the number of patterns in the experimental
set increases, the model of training takes too much time. This also affects the duration
of the classification, and the results can be obtained after a long period of time. There-
fore, we selected 100 pattern for classification because we observed that increasing
the number of pattern beyond 100 pattern will not affect the accuracy noticeably. The
computational time is relatively low when 100 pattern used. Therefore, we selected
100 pattern in the rest of the experiments.
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In the following paragraphs, we’ll explain our strategies and experimental results by
use of DAGSVM classification in detail.

Table 3.2 Experimental set 1

One Versus All
S1, S2 Together

100 Pattern 63,89

Table 3.2 shows our first experimental result. This table presents the classification
results of the extracted 100 pattern from S1and S2 statements which are together. We
applied one-versus-all strategy in this experiment and used a single classifier for 100
pattern. The resulting classification accuracy is 63,89.

Table 3.3 Experimental set 2

One Versus One
S1, S2 Together

100 Pattern 70,49

As seen in Table 3.3, we have another experimental set which has the same scenario,
but a different strategy than the previous one. In this experiment, we used one-versus-
one strategy for pattern extraction, and again, we used a single classifier. In this exper-
iment, the classification accuracy is equal to 70,49.

Both in Table 3.2 and 3.3, we see the classification results of different strategies for the
same scenarios. When we compare the results, one-versus-one strategy has a higher
classification accuracy than one-versus-all strategy even if they have the same scenario.
One-versus-one strategy gives better results in accuracy because emotion patterns are
more discriminative from one to another. In one-versus-all strategy, emotion patterns
are less discriminative one to all others. The pattern distribution between all emo-
tions might not be equal, and this may affect the classification. Hence, one-versus-one
provided us better results in classification accuracy.
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Table 3.4 Experimental set 3

One Versus All
S1 S2 Average

100 Pattern 81,60 85,07 83,33

Table 3.4 shows our third experimental set results. In this experiment, we applied one-
versus-all strategy for pattern extraction, and we used two classifiers for each statement
S1 and S2. This is the case when S1 and S2 statements are separate. After that clas-
sification, we calculated the average classification accuracy, and this is also illustrated
in this table. For this experiment, results are 83.68 for S1 statement, 82.64 for S2 and
the average 83.33 respectively.

Table 3.5 Experimental set 4

One Versus One
S1 S2 Average

100 Pattern 83,68 82,64 83,16

Table 3.5 shows another experimental set having the same scenario but distinct strategy
according to Table 3.4. In this experiment, we applied one-versus-one strategy and two
classifiers for S1 and S2. Also, we calculated average classification accuracy for this
scenario too. These are all depicted in this table. Accuracy values are 83.68 for S1,
82.64 for S2 and the average value 83.16 respectively. When we compare Table 3.4
and 3.5, we observe that there is a slight change between those strategies.

In the following part, we’ll explain new experiments which are elaborated according
to the previous ones.

Table 3.6 Experimental set 5

One Versus All
S1, S2 Together (2 classifiers)

S1 S2 Average
100 Pattern 57,29 60,79 59,03
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Table 3.6 shows the classification results of the extracted 100 pattern from S1and S2
statements, which are together. However, S1 and S2 are classified separately in this
experiment. This table is the specialized version of Table 3.2. In Table 3.2, we used
one classifier, but in here we used two classifiers. Aim of this experiment is to observe
the effects of patterns on each statement S1 and S2. As you can see in Table 3.6,
patterns are extracted balanced for each S1 and S2 statements.When we compare Table
3.6 with Table 3.2, we observe that there is a small decrease in accuracy by 5%. The
main reason for the difference is that when classifying each statement (S1, S2)), we
use patterns that are extracted from S1 and S2 together. Hence, supporting patterns for
S1 may decrease the classification accuracy of S2 and vice versa.

Table 3.7 Experimental set 6

One Versus One
S1, S2 Together (2 classifiers)

S1 S2 Average
100 Pattern 62,85 61,81 62,32

Table 3.7 shows a specialized version of the experiment in Table 3.3. They share the
same scenario and strategy, but as we did in the previous experiment, each statement
(S1 and S2) is classified separately. The results of classification are 62,85 for S1,
61,81 for S2 and 62,32 for average respectively. The reason for the result difference
is also familiar with the previous experiment, which is supporting patterns for S1 may
decrease the classification accuracy of S2 and vice versa.

Table 3.8 Experimental set 7

One Versus All
S1, S2 Together (Single classifier)

100 Pattern 72,05

Another experimental set is depicted in Table 3.8. In this experiment, we applied one-
versus-all strategy for pattern extraction, and we used a single classifier for statements
S1 and S2 together. The classification accuracy is equal to 72,05. This experiment is
a specialized version of Table 3.4. Our aim is to show and evaluate that the patterns,
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which are extracted from each statement (S1, S2), are whether discriminative or not.
When we compare the classification results with Table 3.4, there is a significant reduce
in accuracy by 11%. Patterns are extracted from each statement (S1 and S2). Patterns
of a statement (S1) may intersect with the patterns of another statement (S2). In this
experiment, we combine those patterns and perform the classification task. Therefore,
a combination of these two may lead to a decrease in classification accuracy. This is
the exact reason for the decline in accuracy.

Table 3.9 Experimental set 8

One Versus One
S1, S2 Together (Single Classifier)

100 Pattern 71,7

In Table 3.9, we performed another experimental set which is a specialized version of
Table 3.5. We applied one-versus-one strategy for pattern extraction, and we used a
single classifier when S1 and S2 patterns separate. As we did in the previous experi-
ment, we combined those patterns and performed the classification task. The resulting
value of the classification is 71,7, which is quite less than in Table 3.5. The difference
is about 12%. The reason also is the same as the previous experiment.

After these experiments, we compare the classification results of acoustic and pattern-
based features of our approach in the following paragraphs.

Table 3.10 The classification results of acoustic features

12 Statistics # of Features 12 Statistics All Statistics # of Feature All Statistics
Energy 34,78 [42] 80 74,13 400
Voicing 38,41 [42] 132 55,73 473
MFCC 48,73 [42] 280 68,23 1400

Spectral 48,01 [42] 300 76,39 1500
RASTA 30,43 [42] 520 63,19 2600

Table 3.10 shows the classification results of the reference paper, and each acoustic
feature having all statistics. In this table, the reference paper uses 12 statistics to each
acoustic feature. We described these statistics in section 2.7 before. These statistics are
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mean, max, min, standard deviation, skewness, range, kurtosis, inter-quartile ranges,
mean, and the position of the mean. Also, we applied all statistics to acoustic features
without selecting any special statistics. These statistics also are available in ComParE
feature set [56].

Table 3.11 The classification results of pattern-based features

Classification Accuracy (%) # of Features
1vsAll-100 Pattern (S1,S2 Together)Proposed 63,89 600
1vs1-100 Pattern (S1,S2 Together)Proposed 70,49 600
1vsAll-100 Pattern (S1,S2 Apart)Proposed 83,33 600
1vs1-100 Pattern (S1,S2 Apart) Proposed 83,16 600

Table 3.11 shows the classification results of our pattern-based features. For compari-
son of Table 3.11 and 3.10, we used two proposed pattern-based classification results
of 1vsAll-100 Pattern (S1, S2 Together) and 1vs1-100 Pattern (S1, S2 Together). The
purpose of using only these two proposed results is that the two statements (S1 and S2)
are classified together in acoustic features. We do not compare the results of 1vsAll-
100 Pattern (S1, S2 Apart) and 1vs1-100 Pattern (S1, S2 Apart), because they are
classified separately and comparing them is not a fair approach. Therefore, we only
used 1vsAll-100 Pattern (S1, S2 Together) and 1vs1-100 Pattern (S1, S2 Together)
classification results for comparing the two tables. When we compare our proposed
approaches with reference paper results in Table 3.10, we can say that our approaches
produced the best results in all acoustic features. The size of the feature vector in
the pattern-based approach is a little more than the number of RASTA features. Our
approaches give better results even in the worst strategy 1vsAll-100 Pattern (S1, S2
Together) as compared to the case of using RASTA features. When we compare our
proposed approaches with acoustic features having all statistics, we can say that al-
though the number of the feature of pattern-based approaches is less than the number
of the feature of MFCC and RASTA, our approaches give better results in both strate-
gies. However, our pattern-based approaches have low accuracy outcomes according
to energy and spectral features.

Table 3.12, and Table 3.13 show the classification results of combining acoustic and
our pattern-based features. In Table 3.12, we applied 12 statistics to acoustic features.
In Table 3.13, we applied all statistics to acoustic features in ComPaRe feature set. In



CHAPTER 3. RESULTS AND ANALYSIS 33

each table, when pattern-based features are combined with acoustics, they contributed
to increase the classification accuracy. The classification accuracies of pattern-based
features for one-versus-all and one-versus-one strategies when S1-S2 apart are 83.33
and 83.16 respectively. When RASTA and MFCC features are combined with the
pattern-based features, the classification accuracy decreases. This is the negative ef-
fect of RASTA and MFCC on pattern-based features. Each statement is not accurately
predicted by RASTA and MFCC. When RASTA and MFCC features are combined
with the pattern-based features, they generate redundant information for the machine
and this makes training difficult. For this reason, there is a reduction in the classifica-
tion accuracy caused by two features. However, better results are still obtained than the
existing techniques. In both tables, when pattern-based features are combined with all
acoustic features, the classification accuracy is over eighty percent. Also, the accuracy
result of each strategy is close to one another.

Table 3.12 The classification results of combining acoustic and pattern based features
(12 statistics were applied to acoustic features)

One Versus All One Versus One One Versus All One Versus One
S1,S2 Together S1,S2 Together S1,S2 Apart S1-S2 Apart

Energy +100 Pattern 80,73 82,12 92,53 89,76

Voicing +100 Pattern 73,61 75,52 85,94 83,51

MFCC+ 100 Pattern 70,83 76,22 82,29 82,99

Spectral +100 Pattern 80,90 84,38 91,15 88,89

RASTA+100 Pattern 67,88 73,78 82,64 77,43

AllAcoustic+100 Pattern 87,85 89,23 90,10 88,89

Table 3.13 The classification results of combining acoustic and pattern based features
(All statistics were applied to acoustic features)

One Versus All One Versus One One Versus All One Versus One
S1,S2 Together S1,S2 Together S1,S2 Apart S1-S2 Apart

Energy +100 Pattern 85,42 86,11 92,19 90,97

Voicing +100 Pattern 73,78 76,73 82,12 83,33

MFCC+ 100 Pattern 75 78,81 79,86 77,95

Spectral +100 Pattern 84,55 85,76 86,98 85,24

RASTA+100 Pattern 74,83 75,69 75,70 74,31

AllAcoustic+100 Pattern 90,27 89,06 87,15 86,45
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In the following paragraphs, we’ll explain experimental results with different frame
and alphabet size using our best-proposed approach.

Table 3.14 Classification accuracy for different alphabet size (%)

One Versus All (100 Pattern)
S1 S2 Average

8 Frame-3Alphabet 76,04 74,65 75,35

8 Frame-4Alphabet 78,82 75,35 77,08

8 Frame-5Alphabet 81,6 85,07 83,33

8 Frame-6Alphabet 75 81,25 78,13

8 Frame-7Alphabet 74,99 80,21 77,6

Table 3.14 shows classification accuracy for different alphabet size when the frame
size is the same. In this table, we applied one-versus-all strategy for pattern extraction
and we used two classifiers for each statement S1 and S2. After the classification,
we calculated the average classification accuracy. When the different alphabet size
is applied, classification accuracies are close to each other. Also, we can say that 5
alphabet has more optimal results compared to other alphabet sizes.

Table 3.15 Classification accuracy for different frame size (%)

One Versus All (100 Pattern)
S1 S2 Average

6 Frame-5Alphabet 69,09 74,65 71,87

8 Frame-5Alphabet 81,6 85,07 83,33

16 Frame-5Alphabet 60,07 57,29 58,68

32 Frame-5Alphabet 55,9 54,51 55,21

64 Frame-5Alphabet 48,96 47,22 48,09

Table 3.15 shows classification accuracy for different frame size when the alphabet size
is the same. This table presents the classification results of the extracted 100 pattern
from S1and S2 statements which are apart from each other. Each statement is classified
separately and the average classification accuracy is calculated. In this table, when the
frame size increases, classification accuracies decrease except 6 frames. 6 frames is an
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exceptional case for this situation. For this reason, we examined the 6 frames for the
different pattern set in Table 3.16. This table indicates that when the pattern number
increases, classification accuracies are not over eighty percent. Generally, we can say
that in table 3.15, 8 frame size is more optimal compared to other frames.

Table 3.16 Classication accuracy for 6 Frame-5 Alphabet (%)

One Versus All
S1 S2 Average

5 Pattern 44,44 51,04 47,74

10 Pattern 52,43 51,73 52,08

15 Pattern 55,21 52,77 53,99

50 Pattern 66,66 69,79 68,23

100 Pattern 68,50 74,29 71,40

150 Pattern 74,30 77,43 75,86

250 Pattern 75,35 78,47 76,91

500 Pattern 74,65 75 74,83

1000 Pattern 74,99 74,65 74,83

In the following paragraphs, statistical analysis for pattern-based and acoustic features
will be explained.

The McNemar is a statistical test that is used for testing paired nominal data. This test
uses non-parametric variables for performing the task. In the McNemar test, we sup-
pose that there are two systems available on the same data. For example, two systems
are A and B. These systems are trained and estimated on the corresponding test set.
Null hypothesis indicates that A and B systems include the same error rate, Alternative
hypothesis indicates that these systems have a different error rate. McNemar statistical
significance score can be calculated by the following equation:

McNemarValue =
(|n01 �n10|�1)2

n01 +n10
(3.1)

In this equation, n01 represents to the number of examples misclassified by system
A but not system B, and n10 represents to the number of examples misclassified by
system B but not system A. We have the critical value in this test that represents the
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significance level. The critical value is 3.8415 for 5% significance level. If the value is
larger than the critical value, the null hypothesis is rejected and the alternative hypoth-
esis is accepted. In our project, system A refers to the one-versus-all strategy in pattern
extraction and system B refers to the one-versus-one strategy in pattern extraction. Our
purpose is to examine whether the predicted values after the classification are different
in two strategies or not. In our project, we used this test for pattern-based and acoustic
features to analyze the one-versus-all and one-versus-one strategies. Table 3.17, Table
3.18 and Table 3.19 show our McNemar test results. These tables show the results of
classification accuracy for two different strategies and different scenarios. The strate-
gies are one-versus-one (1vs1) and one-versus-all (1vsAll). The scenarios are S1, S2
together and S1, S2 Apart respectively. We applied the McNemar test for the same pat-
tern number using different pattern extraction strategies such as 1vs1 and 1vsAll. We
used the equation 3.1 to apply classification results, and we obtained McNemar value
from each pair of two strategies. You may see star signs(*) in the following tables
(Table 3.17, Table 3.18, Table 3.19). This star sign refers to the situation when there
is a difference of more than 5% between test results. This means that one-versus-one
and one-versus-all strategies have a different error rate.

Table 3.17 McNemar Test Results One Versus All & One Versus One Pattern-Pased
Features

S1,S2 Apart
S1, S2 Together S1 S2
1vsAll 1vs1 1vsAll 1vs1 1vsAll 1vsOne

5 Pattern 50* 42,53 55,90* 52,08 47,57 53,13
10 Pattern 54,16 52,60 62,85 59,03 52,78 55,90
15 Pattern 56,77 54,34 69,44 59,38 55,21 57,64
50 Pattern 60,76 65,10 78,82 75,69 76,04 75,35

100 Pattern 63,85 70,48* 81,60 83,68 85,07 82,64
150 Pattern 65,28 72,39* 82,64 85,42 84,38 83,33
250 Pattern 67,71 73,78* 82,99 84,03 88,8* 79,86
500 Pattern 73,44 75 85,76 85,42 85,42 85,07

1000 Pattern 72,40 74,83 81,60 82,64 82,64 84,72
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In Table 3.17, Table 3.18, Table 3.19, we applied McNemar test with the same state-
ments for two strategies (one versus one and one versus all) when S1 and S2 are apart.

Table 3.18 McNemar Test Results One Versus All & One Versus One Pattern-Pased
and Acoustic Features (12 Statistics)

S1,S2 Apart
S1,S2 Together S1 S2
1vsAll 1vs1 1vsAll 1vs1 1vsAll 1vs1

Energy+100 Pattern 80,73 82,12 93,05 90,97 92,01 88,54
Voicing+100 Pattern 73,61 75,52 86,81 83,68 85,06 83,33
MFCC +100 Pattern 70,83 76,21* 77,78 82,64 86,80* 83,33
Spectral+100 Pattern 80,90 84,37* 89,93 91,32 92,33* 86,45
RASTA+100 Pattern 67,88 73,88* 84,03 80,90 81,25* 73,95

Table 3.19 McNemar Test Results One Versus All & One Versus One Pattern-Pased
and Acoustic Features (All Statistics)

S1,S2 Apart
S1,S2 Together S1 S2
1vsAll 1vs1 1vsAll 1vs1 1vsAll 1vs1

Energy+100 Pattern 85.42 86.11 90.97 90.97 93.40 90.97
Voicing+100 Pattern 73.78 76.73 83.68 85.06 80.55 81.59
MFCC +100 Pattern 75 78.81 76.73 77.77 82.98* 78.12
Spectral+100 Pattern 84.55 85.76 85.06 84.38 88.88 86.11
RASTA+100 Pattern 74.83 75.69 77.08 75.69 74.31 72.91

Amongst all experimental sets, we selected two experimental sets resulting in higher
classification accuracies. One of them has the highest accuracy in the pattern-based
approach and the second one achieves the highest accuracy in combining acoustic and
pattern-based features. We calculated the performance metric for each set. Table 3.20
shows the confusion matrix of experimental set 3 in Table 3.4. As described earlier,
we have six different emotions (angry, calm, fearful, happy, neutral, and sad).
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Table 3.20 Confusion matrix of experimental set 3

Predicted Labels
A

ct
ua

lL
ab

el
s

Angry Calm Fearful Happy Neutral Sad Precision
87 1 1 4 1 2 90.63
0 74 2 1 6 13 76.29
1 6 85 3 0 1 84.16
4 1 4 81 2 4 88.04
2 6 3 2 79 4 85.87
2 9 6 1 4 74 75.51

Recall 90.63 77.08 88.54 84.38 82.29 77.08
F1 Score 90.63 77.08 86.29 86.17 84.04 76.28

As seen, we have 90.63 precision for angry, 76.29 precision for calm, 84.16 precision
for fearful, 88.04 precision for happy, 85.87 precision for neutral and 75.51 precision
for sad emotions correspondingly. Results show that we have good precision values on
emotions. It can be seen that angry, fearful, and happy emotions have higher classifi-
cation accuracies than calm, sad and neutral emotions.

F1 Score refers to the measure of tests accuracy. In Table 3.20, we have a good result
in an angry emotion.

Table 3.21 Confusion matrix of Energy+100 Pattern One versus All (S1, S2 separate)

Predicted Labels

A
ct

ua
lL

ab
el

s

Angry Calm Fearful Happy Neutral Sad Precision
88 3 1 4 0 0 93.62
1 91 1 0 3 0 95.79
3 5 85 2 0 1 88.54
2 0 4 85 5 0 91.40
0 4 2 2 88 0 91.67
0 0 0 0 0 96 98.97

Recall 91.66 94.79 88.54 88.54 91.66 1
F1 Score 92.63 92.85 89.94 89.94 91.67 99.48
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On the other hand, Table 3.21 shows another confusion matrix of combined acoustic
and pattern based feature set in Table 3.12. We have pretty good results in precisions.
The values are 93.62 for angry, 95.76 for calm, 88.54 for fearful, 91.40 happy, 91.67
neutral, and 98.97 for sad precision values accordingly. This shows that we have about
90 percent precision in this feature set. It can be seen that sad and calm emotions have
remarkable classification results than other emotions. In Table 3.21, you can see that
we have almost perfect F1 score for sad emotion with 99.48 value.



Chapter 4

Conclusion

In this research, we proposed a novel method for feature extraction in the recognition of
emotion from speech. Before applying our approach, we applied some preprocessing
technique to speech signals such as normalization and silence removal. We converted
speech signals to discretized representations. Also, we extracted pattern features us-
ing top-k contrast mining technique from discretized speech signal representations.
Extracted patterns are selected according to the highest C-Ratio. Moreover, we ex-
tracted acoustic features that are commonly used in literature, i.e. MFCC, RASTA,
voice quality, energy and spectral. We analyzed classification performance with both
pattern-based and acoustic features. In order to evaluate the performance, we used two
different classification approaches i.e voting-based and DAGSVM. Voting results in-
dicate that patterns alone are fairly good predictors of emotion. Experimental results
show that a set of pattern features having different strategies outperformed all features
in literature used. When the number of pattern feature set is increased, the classification
enhances in term of accuracy.Despite the increase in complexity by the reason of the
number of patterns and training, improvement of accuracy achieved up to 35 percent
compared to state of art features i.e MFCC. When all acoustic features are supported
by pattern-based features, emotion is predicted more accurately in classification. It
gives results over 80 percent in different scenarios and techniques. In addition to this,
we applied our approach in different frame sizes and alphabets to test and compare our
accuracy results. Results show that 8 frame and 5 alphabet has the optimal results when

40
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processing speech signals. We applied 100 pattern however there may be different re-
sults in accuracy when different pattern size is used. We applied McNemar statistical
tests for examining the results of significant difference of two separated strategies. The
results of McNemar tests show that both strategies one-versus-one and one-versus-all
have quite similar error rates.

4.1 Future Work

There are lots of supportive and descriptive ideas that we can advance this research.
First of all, our pattern-based approach can be applied to any data which are similar to
the speech signal such as time-series, economy, EEG, EKG, music, and so on. In the
field of medicine, the pattern-based approach can be used to detect a different emotion
such as anxiety, depression, autism, and stress. The pattern-based approach may be
combined with other information sources such as linguistic or video to improve the
recognition performance. Common dimensionality reduction techniques e.g principal
component analysis, information gain can be applied to our project to improve the
classification accuracy. By changing the data set, emotions can be detected in differ-
ent languages. Particularly, pattern extraction process takes too much time when the
number of alphabet increases and frame size decreases. For this reason, this process
requires both computational resources and time. Also, there are a certain number of
implementations available online that have ’max-gap’ parameter in contrast mining.
As the algorithms using ’max-gap’ parameter varies, we will be able to use differ-
ent contrast mining implementations and benchmark the processing times against our
current algorithm. In addition, HMMs and GMMs are very popular classification tech-
nique to recognize emotion in speech. We will be able to classify our presented method
with these classification techniques in order to get a comparative result for improving
accuracy. Therefore, we will have a chance to develop our methodology. Lastly, we
are planning to add both disgust and surprise emotions to our approach so that we can
detect more emotions in the speech.
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[23] B. Dropuljić, S. Skansi, and R. Kopal, “Analyzing affective states using acous-
tic and linguistic features,” in Central European Conference on Information and

Intelligent Systems (CECIIS), 2016.

[24] C. M. Lee and S. S. Narayanan, “Toward detecting emotions in spoken dialogs,”
IEEE transactions on speech and audio processing, vol. 13, no. 2, pp. 293–303,
2005.

[25] A. Nogueiras, A. Moreno, A. Bonafonte, and J. B. Mariño, “Speech emotion
recognition using hidden markov models,” in Seventh European Conference on

Speech Communication and Technology, 2001.



BIBLIOGRAPHY 45

[26] R. Cabredo, R. S. Legaspi, and M. Numao, “Identifying emotion segments in
music by discovering motifs in physiological data.” in ISMIR, 2011, pp. 753–
758.

[27] C. Shan, S. Gong, and P. W. McOwan, “Robust facial expression recognition us-
ing local binary patterns,” in IEEE International Conference on Image Processing

2005, vol. 2. IEEE, 2005, pp. II–370.

[28] A. Tiwari and T. H. Falk, “Fusion of motif-and spectrum-related features for
improved eeg-based emotion recognition,” Computational intelligence and neu-

roscience, vol. 2019, 2019.

[29] G. Zhao and M. Pietikainen, “Dynamic texture recognition using local binary
patterns with an application to facial expressions,” IEEE Transactions on Pattern

Analysis & Machine Intelligence, no. 6, pp. 915–928, 2007.

[30] L. Kerkeni, Y. Serrestou, M. Mbarki, K. Raoof, M. A. Mahjoub, and C. Cleder,
“Automatic speech emotion recognition using machine learning,” in Social Media

and Machine Learning. IntechOpen, 2019.

[31] C. Breazeal and L. Aryananda, “Recognition of affective communicative intent
in robot-directed speech,” Autonomous robots, vol. 12, no. 1, pp. 83–104, 2002.

[32] M. Slaney and G. McRoberts, “Baby ears: a recognition system for affective
vocalizations,” in Proceedings of the 1998 IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181),
vol. 2. IEEE, 1998, pp. 985–988.

[33] I. S. Engberg and A. V. Hansen, “Documentation of the danish emotional speech
database des,” Internal AAU report, Center for Person Kommunikation, Denmark,
p. 22, 1996.

[34] J. H. Hansen and S. E. Bou-Ghazale, “Getting started with susas: A speech under
simulated and actual stress database,” in Fifth European Conference on Speech

Communication and Technology, 1997.

[35] S. G. Koolagudi and K. S. Rao, “Emotion recognition from speech: a review,”
International journal of speech technology, vol. 15, no. 2, pp. 99–117, 2012.



BIBLIOGRAPHY 46

[36] S. R. Livingstone and F. A. Russo, “The ryerson audio-visual database of emo-
tional speech and song (ravdess): A dynamic, multimodal set of facial and vocal
expressions in north american english,” PloS one, vol. 13, no. 5, p. e0196391,
2018.

[37] F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss, “A
database of german emotional speech,” in Ninth European Conference on Speech

Communication and Technology, 2005.

[38] V. Hozjan, Z. Kacic, A. Moreno, A. Bonafonte, and A. Nogueiras, “Interface
databases: Design and collection of a multilingual emotional speech database.”
in LREC, 2002.

[39] V. Makarova and V. A. Petrushin, “Ruslana: A database of russian emotional
utterances,” in Seventh international conference on spoken language processing,
2002.

[40] N. Amir, S. Ron, and N. Laor, “Analysis of an emotional speech corpus in hebrew
based on objective criteria,” in ISCA Tutorial and Research Workshop (ITRW) on

Speech and Emotion, 2000.

[41] F. Yu, E. Chang, Y.-Q. Xu, and H.-Y. Shum, “Emotion detection from speech to
enrich multimedia content,” in Pacific-Rim Conference on Multimedia. Springer,
2001, pp. 550–557.

[42] B. Zhang, G. Essl, and E. M. Provost, “Recognizing emotion from singing and
speaking using shared models,” in Affective Computing and Intelligent Interac-

tion (ACII), 2015 International Conference on. IEEE, 2015, pp. 139–145.

[43] G. Dong and J. Bailey, Contrast data mining: concepts, algorithms, and applica-

tions. CRC Press, 2012.

[44] C. Gao, L. Duan, G. Dong, H. Zhang, H. Yang, and C. Tang, “Mining top-k
distinguishing sequential patterns with flexible gap constraints,” in International

Conference on Web-Age Information Management. Springer, 2016, pp. 82–94.

[45] H. Yang, L. Duan, B. Hu, S. Deng, W. Wang, and Qin, “Mining top-k distin-
guishing sequential patterns with gap constraint,” vol. 26, no. 11, pp. 2994–3009,
2015.



BIBLIOGRAPHY 47

[46] X. Ji, J. Bailey, and G. Dong, “Mining minimal distinguishing subsequence pat-
terns with gap constraints,” Knowledge and Information Systems, vol. 11, no. 3,
pp. 259–286, 2007.

[47] H. Yang, L. Duan, G. Dong, J. Nummenmaa, C. Tang, and X. Li, “Mining
itemset-based distinguishing sequential patterns with gap constraint,” in Interna-

tional Conference on Database Systems for Advanced Applications. Springer,
2015, pp. 39–54.
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Appendix A

Tools

In our research, we took advantage of some special toolkits and software to perform the
research’s implementation. In this chapter, we’ll explain those toolkits and software in
detail.

A.1 OpenSMILE

The Munich open-Source Media Interpretation by Large feature-space Extraction
(openSMILE) [57] is a toolkit for signal processing and machine learning application.
It is a modular and easy to use feature extractor tool. The design of openSMILE has a
cross-platform environment for running all operating systems, e.g., Windows, Linux,
and MacOS. Researchers who deal with the field of speech recognition, music infor-
mation retrieval, and affective computing can use OpenSmile. The main aim of the
toolkit is to focus on audio signal features. Alternatively, it may be utilized to examine
other modularities, such as physiological and visual signals.

There are a couple of categories presented in OpenSMILE toolkit for end-users. These
are signal processing, general data processing, low-level audio features, and other ca-
pabilities such as data input, functionals, classifiers and data output. Also, many func-
tionalities are presented for signal processing or pre-processing to feature extraction,
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e.g., windowing functions, Re-sampling, FFT, scaling spectral axis, and so on. OpenS-
MILE carries out a variety of operations for feature normalization, modification, dif-
ferentiation such as mean-variance normalization, range normalization, etc. Low-level
descriptors are related to audio signals. Both low-level descriptors and video features
can be computed by openSMILE. Low-level descriptors include frame energy/ inten-
sity/loudness, voice quality, critical harmonic ratios. Video features consist of LBP
histogram or optical flow. Also, many statistical functionalities can be applied to these
features. These statistics are the mean, regression, centroid segments, peaks, zero-
crossings, etc.

OpenSMILE provides some default feature sets which are common in speech process-
ing fields. These are standard feature sets :

• The INTERSPEECH 2009 Emotion Challenge feature set [74]

• The INTERSPEECH 2010 Paralinguistic Challenge feature set [75]

• The INTERSPEECH 2011 Speaker State Challenge feature set [76]

• The INTERSPEECH 2012 Speaker Trait Challenge feature set [77]

• The INTERSPEECH 2013 ComParE feature set [56]

• The MediaEval 2012 TUM feature set for violent scenes detection. [78]

Default feature sets are based on most comprehensive conference papers from spoken
language processing. The papers are related to speech communication and science and
support speech applications. Also, default feature sets are organized in accordance
with the contents of the papers, such as the number of LLDs and applied statistics.

In our research, we used the default feature set of the Interspeech 2013 Computational
Paralinguistics Evaluation (ComParE) [56] and extracted LLDs features. The feature
set comprises of 4 energy, 41 spectral, 14 cepstral (MFCC), 6 voicing-related LLDs.
The total number of features is 6373. (400 energy, 4100 spectral, 1400 MFCC, 473
voicing-related).
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A.2 LibSVM

LibSVM [79] is a free library for support vector machines(SVM). It is developed by
National Taiwan University. The aim of this library is to provide a convenient way
for users to apply SVM to their applications. There is a built-in implementation of
SVM for classification, regression, and distribution estimation. LibSVM also supports
learning tasks. These tasks are support vector classification (SVC for multi-class and
two-class), support vector regression (SVR) and one-class SVM. The usage of Lib-
SVM includes two phases: first, a set of data is trained to obtain a model, and then this
model is used for predicting information by processing a set of testing data.

Furthermore, LibSVM has a friendly user interface and principal features including
efficient multi-class classification, probability estimates, cross-validation for model
selection. This library also has many options for selecting desired parameters such
as kernel type (linear, radial, polynomial), type of SVM (one versus one or one versus
all methods), gamma and cost. When users need to determine some parameters to
train SVM problems, LibSVM analyzes grid parameters. For each parameter, libSVM
gets cross-validation (CV) accuracy. It returns the parameters with the highest CV
accuracy.

In our research, we used SVC for multi-class with grid search method.

A.3 Matlab

Matlab is a computing platform which is designed for programming, is best suitable for
analyzing data and designing computational algorithms. It is designed and developed
by Mathworks. It is commonly used by researchers, scientists in multiple areas such as
computation, visualization, data modeling and analysis and so on. It provides a user-
friendly interface to perform tasks. It is highly effective when it comes to large data
and tasks. It also comes with built-in libraries for visualizing the data on graphs. There
are some additional benefits of Matlab: [80]

• External toolboxes are available in Matlab. These toolboxes can be used for
signal processing, neural networks, simulation, etc.
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• You can interact with programs that are written other programming languages
like C or Fortran.

• A built-in mathematical function library is initially available and there is a vast
collection of computational functions like sum, sine, cosine and some complex
matrix operations functions.

In our research, we took advantage of Matlab and we performed the following tasks:

• Dimension reduction

• Discretization

• Create classes for positive and negative emotions

• Signal representation and plotting

• Cross-validation

We used the version of MATLAB 2017a to design and implement our researching
algorithms.
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