
A MESSAGE BROKER BASED PLATFORM AS
A SERVICE INFRASTRUCTURE FOR
CONTEXT-AWARE APPLICATION

DEVELOPMENT

AYKUT GÜNER

JULY 2019

A MESSAGE BROKER BASED PLATFORM AS
A SERVICE INFRASTRUCTURE FOR
CONTEXT-AWARE APPLICATION

DEVELOPMENT

a thesis submitted to

Graduate School

izmir university of economics

by

AYKUT GÜNER

in partial fulfillment of the requirements

for the degree of

master of science

in the Graduate School

JULY 2019

iii

ABSTRACT

A MESSAGE BROKER BASED PLATFORM AS A
SERVICE INFRASTRUCTURE FOR

CONTEXT-AWARE APPLICATION DEVELOPMENT

AYKUT GÜNER
M.S. in Computer Engineering

Graduate School
Supervisor: Asst. Prof. Dr. Kaan Kurtel

Co-Supervisor: Asst. Prof. Dr. Ufuk Çelikkan
July 2019

Context-awareness is a property which enables applications to adapt their op-
erations into their environment without user intervention. Context-aware com-
puting involves complex interactions between data providers and data requestors
making context-aware software application development time consuming, diffi-
cult and costly. To ease context-aware application development, presence of a
platform is very beneficial to handle the vital and mundane tasks that take place
between data providers and data requestors such as storage and formatting of the
context data.

The main contribution of this study is to propose and implement a service
based infrastructure for Context Aware Computing. Our primary motivation
building such a platform is to provide a reference implementation to software
community that eases development of context aware applications. The platform,
called as “A Platform for Context Aware Application Development-PCAD”, is
service based and provides its functionality via a set of services namely, Context
Modeling and Reasoning, Security, Rule, Data Management, Alarm and Notifi-
cation, Transformation and Reporting Service. In the design and implementation
of the platform, Node.js, NoSQL, MQTT, RESTful and several other toolkits are
used. These frameworks and toolkits enable rapid and efficient development.

Keywords: Context Awareness, Context Aware Computing, Middleware, Pub-
lisher Subscriber, NoSQL, MQTT, RESTFul.

iv

ÖZ

YAYINCI/ABONE MESAJLAŞMA TEKNİĞİNE
DAYALI, DURUM FARKINDA UYGULAMALARIN

GELİŞTİRİLMESİNE YÖNELİK SERVİS MİMARİSİNE
SAHİP BİR PLATFORM

AYKUT GÜNER
Bilgisayar Mühendisliği, Yüksek Lisans

Lisansüstü Programlar Enstitüsü
Tez Danışmanı: Dr. Kaan Kurtel

İkinci Tez Danışmanı: Dr. Ufuk Çelikkan
Temmuz 2019

Durum farkındalık, uygulamaların, kullanıcı müdahalesi olmadan işlemlerini
kendi ortamlarına uyarlamasını sağlayan bir niteliktir. Bilgi ve iletişim teknolo-
jisinde son zamanlarda popüler olan durum farkındalık, veri sağlayıcıları ile
veri istemcileri arasında karmaşık bir etkileşim göstermektedir. Bu da, durum
farkında uygulama geliştirmeyi zaman alıcı, zor ve maliyetli hale getirmekte-
dir. Veri sağlayıcıları ile veri istemcileri arasında bir platformun varlığı, taraflar
arasındaki etkileşimin yönetilerek, uygulamalarının geliştirilmesini kolaylaştıra-
cak ve durum verilerinin depolanması ve formatlanması gibi olağan fakat yapıl-
ması elzem görevlerin yerine getirilmesini sağlayacaktır.

Bu çalışmanın temel katkısı, durum farkında uygulamalar için servis tabanlı
“A Platform for Context Aware Application Development-PCAD” olarak ad-
landırılan bir platform önermesi ve yazılım topluluğuna durum farkında uygu-
lama geliştirmesini kolaylaştıran bir örnek sunmaktır. Platformun servisleri;
Durum Modelleme ve Anlamlandırma, Güvenlik, Kural, Veri Yönetimi, Alarm
ve Bildirim, Dönüşüm ve Raporlamadır. Tasarım ve uygulama sürecinde
Node.js, NoSQL, MQTT, RESTful ve çeşitli kütüphaneler kullanılmıştır. Bunlar,
PCAD’in hızlı ve verimli bir şekilde geliştirilmesinde yardımcı olmuştur.

Anahtar Kelimeler: Durum Farkındalık, Durum Farkında Hesaplama, Katmanlı
Mimari, Yayımcı Abone, NoSQL, MQTT, RESTFul.

v

ACKNOWLEDGEMENT

Firstly, I would like to thank to my advisors, Asst. Prof. Dr. Ufuk Çelikkan
and Asst. Prof. Dr. Kaan Kurtel for their patience, excellent guidance and
encouragement.

This work is supported by Scientific and Technological Research Council of
Turkey TÜBİTAK, Grant No: 114E938. Therefore, I would like to thank to
TÜBİTAK.

I am very thankful to my wife Çisel Güner for her patience, my brother Ay-
tuğ Güner for his support and my parents Hediye and Hayati Güner for their
unconditional trust and encouragement all the time.

To my little boyAlaz...

vii

TABLE OF CONTENTS

Front Matter i

Abstract . iii

Öz . iv

Acknowledgement . v

Table of Contents . vii

LIST OF FIGURES x

LIST OF TABLES xii

1 Introduction 1

2 Background and Terminology 3

2.1 Context Modeling and Reasoning 5

2.2 Context and Sensor Data Delivery 7

2.3 Reference Architectures and Frameworks 9

3 The PCAD Platform 14

TABLE OF CONTENTS viii

3.1 General Overview of the Platform 14

3.2 PCAD Services . 16

3.2.1 Context Modeling and Reasoning Service 17

3.2.2 Data Management Service 18

3.2.3 Security and Privacy Service 18

3.2.4 Alarm and Notification Service 21

3.2.5 Rule Service . 23

3.2.6 Transformation Service . 25

3.2.7 Reporting Service . 26

4 Design and Implementation 27

4.1 Data Management Service . 29

4.2 Security And Privacy Service . 33

4.3 Alarm and Notification Service 38

4.4 Rule Service . 47

4.5 Transformation Service . 51

4.6 Reporting Service . 53

4.7 Design and Implementation Outcomes 54

5 Tests 55

6 Conclusion 62

TABLE OF CONTENTS ix

BIBLIOGRAPHY 64

A Java Application Programming Interface 69

B User Interfaces 77

C Installation Guide 85

x

LIST OF FIGURES

Figure 2.1 Overview of SOSA definition and linkage 7

Figure 3.1 Operating System Services 15

Figure 3.2 PCAD Middleware Layers 16

Figure 3.3 Data Management Service 19

Figure 3.4 Data Delivery Mechanisms 21

Figure 3.5 General View of Publisher/Subscriber Mechanism 23

Figure 3.6 Rule BNF Notation . 25

Figure 3.7 Transformation Service Overview 26

Figure 4.1 General view of the platform 28

Figure 4.2 Data Delivery Methods . 38

Figure 4.3 PCAD Requestor Binding Layer 39

Figure 4.4 Delay Sensitive and Delay Tolerant 41

Figure 4.5 PCAD Provider Binding Layer 42

Figure 4.6 Sequence Diagram for IM6 45

LIST OF FIGURES xi

Figure 5.1 Test Case 1 Environment 57

Figure 5.2 Test Case 1 Result: MySQL and MongoDB Insertion Time 58

Figure 5.3 Test Case 2 Environment 59

Figure B.1 Listings Sensor . 77

Figure B.2 Adding Sensor . 78

Figure B.3 Created Sensor Information 78

Figure B.4 Created Sensor . 79

Figure B.5 Listing Sensor Data . 79

Figure B.6 Listings Users as System Admin 80

Figure B.7 Updating Users as System Admin 81

Figure B.8 System Admin lists Roles and adds a new Role 82

Figure B.9 Adding a Role as System Admin 83

Figure B.10 System Admin modifies the new Role 83

Figure B.11 Listing Role and its Grants as System Admin 84

Figure B.12 Listing Role and its Grants as System Admin 84

xii

LIST OF TABLES

Table 2.1 Comparison of platforms 13

Table 3.1 PCAD Services . 17

Table 4.1 Implementation decisions 27

Table 4.2 Database Documents and Descriptions 30

Table 4.3 Database Models and Structures 31

Table 4.4 Database Models and Structures 32

Table 4.5 MQTT Connection Return Messages 34

Table 4.6 Interaction Mechanism Service Usage 44

Table 4.7 RESTful API Endpoints . 46

Table 4.8 Endpoint Payloads . 47

Table 4.9 Supported Operators for Rule and Filter Defining 48

Table 4.10 The Platform Rule Operators 50

Table 5.1 Test Cases . 57

Table 5.2 Test Case 1 Results . 58

LIST OF TABLES xiii

Table 5.3 Test Case 2 and 3 Results 59

Table 5.4 Test Case Attributes . 61

Table 5.5 Sensor Create Test Case . 61

Table A.1 Interaction Mechanism Service Usage 69

1

Chapter 1

Introduction

Context-awareness is a relatively new approach in information and communi-
cations technology (ICT) offering unlimited application options. Basically, the
whole idea that the context-awareness revolves around is that applications need to
conceptually be aware of their presence and status and as well as be respondent
to environmental stimuli. This situation affects business processes and causes
radical changes. Internet of Things (IoT) applications and the technologies based
on the fourth industrial revolution (Industry 4.0) are both at the center of this
change.

The primary motivation of this thesis is to propose a message-broker based
platform that employs a service based architecture to provide an infrastructure
for developing context-aware applications. The platform fulfills the following re-
quirements of the context-aware applications: efficient data exchange, security
and privacy, context and data management, event based notification, real-time
support(soft). The platform is designed to be extensible allowing new require-
ments to be added without making fundamental changes by playing the role of
a middleware between data provider and data consumer actors. The platform
increases data delivery speed and enables sensors to send their data easily and
securely. Driven by these motivations, the platform called PCAD (A Platform
for Context-Aware Application Development) is implemented with a focus on
context-aware computing by using current technologies such as Node.js, NoSQL,

CHAPTER 1. INTRODUCTION 2

MQTT and RESTful (Representational State Transfer) web-services.

The contribution of this thesis is to propose and implement a novel context-
aware application development architecture based on publisher-subscriber pat-
tern employing a service oriented paradigm. In addition, the ideas presented in
this thesis may lead other researchers to develop other context-aware applica-
tion architectures by integrating several state of the art technologies to provide
a complete solution in this domain.

The thesis is organized as follows. Chapter 2 introduces terminology and dis-
cusses background information on context, context-awareness, context modeling,
context delivery concepts, publisher-subscriber pattern and its implementation,
MQTT. A review of similar architectures and frameworks are also given here.
Chapter 3 explains the platform, its design and architectural aspects. Implemen-
tation details of the platform are given in Chapter 4. Implementation of each
service and their interactions are stated in this chapter. Platform tests and their
results are presented in Chapter 5. The thesis ends with the Conclusion Chapter.

3

Chapter 2

Background and Terminology

Plenty of research was conducted on context aware computing. Research show
that the term context is understood tacitly by most of the people, however it is
hard to define its exact meaning. In order to clarify and define the meaning of
context, they mostly use synonyms or examples.

Schilit and Theimer [1] describe the term context as identities of nearby people
and objects, their location and changes to those objects. Similarly, Brown et al.
[2] define context as information, which can be location, the time of day, season
of the year, temperature surrounding the user. Similar to Brown definition, Ryan
et al. [3] define context in terms of the user’s identity, environment, location and
time. Dey [4] considers context as the user’s emotional state, location, focus of
attention, objects, time or date of the day, and people in the user’s environment.
According to Abowd et al. [5], defining context by examples is difficult to apply,
and they want to decide whether a type of information not listed in the definition
is context or not. In these circumstances, Dey defines context as follows: “Context
is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves”
[6].

The term context-aware is appeared in the study by Schilit and Theimer [1]

CHAPTER 2. BACKGROUND AND TERMINOLOGY 4

for the first time. Schilit and Theimer define context awareness as the ability of
a mobile user’s applications to discover and react to changes in the environment
they are situated in. Later, Ryan et al. [3] define it as follows: “context aware-
ness is the ability of the computer to sense and act upon information about its
environment”. Hull et al. [7] had brought a similar definition.

Context aware applications need to adapt their actions to the current context
without requiring user interventions. These applications provide more usable
and effective way to their users by taking context into account. Abowd et al.
[5] stated that “previous definitions of context-aware computing fall into two cat-
egories: using context and adapting to context”. Explaining context awareness
through “context use depends on how information such as location, temperature,
identity etc. is used to provide more usable, effective and intelligent software
or applications to users. Pascoe et al. [8] define context-aware computing as
having the ability of detecting, sensing, interpreting and responding based on
context obtained by sensors or devices. They use context to automate some of
the fieldworker’s activities such as automatically entering the user’s location and
let them to use it on an application. Rekimoto et al. [9] use context information
to create more usable and intelligent augmented reality system. Their wearable
system has a screen that contains context-aware panes and reflects user’s current
physical contexts: location and object. They feed these screen several sensors or
devices like beacons and GPS devices. Salber et al. [10] define context aware-
ness as follows: “Context-aware computing aims to provide maximal flexibility of
a computational service based on real-time sensing of any of these forms of con-
text”. They categorize context to be physical, emotional, intentional or historical
information about users or devices.

The term “ adapting to context depends upon changes of a real time appli-
cation or adaptations based on the application and user contexts. Schilit et al.
[11] define context awareness as the application’s or software’s ability to adapt
and react based on user’s context attributes such as location, nearby people, and
accessible devices. Another definition about adapting itself based on context is
stated by Brown et al. [2]. They classify a context aware application as an appli-
cation that changes its behavior according to the user’s context. The application

CHAPTER 2. BACKGROUND AND TERMINOLOGY 5

uses context for presenting more relevant outcome to the user. These definitions
can not cover context awareness with all aspects. Dey et al.[5] state a more com-
prehensive definition as “A system is context-aware if it uses context to provide
relevant information and/or services to the user, where relevancy depends on the
user’s task.”

2.1 Context Modeling and Reasoning

A context model is needed to define and store context data. Strang and Linnhoff-
Popien [12] summarize the context modeling approaches, which are based on the
data structures used for representing and exchanging contextual information in
the respective system. After three years, Bolchini et al. [13] analyze and compare
available context-aware data models.

A context model is needed to transform the existing context data into a form
so it can be machine processable and one can reason about it. At this point, mod-
eling a context provides a uniform representation of contexts to facilitate decision
making, therefore, requests can be handled in a simple, expressive and generic
manner. “Context modeling” enriches information, thereby, it allows development
of quality applications. Baldouf et al. [14] summarize models that can be used
for modeling context in the following:

• Key-Value models. It is the simplest structure for modeling contextual
data. This model is used in various service frameworks in order to describe
the capabilities of a service by using key-value pairs. However key-value
models lack of ability to model sophisticated data according to [12].

• Markup scheme models. Markup schemes consist of hierarchical data struc-
ture. Tags are used to represent attributes and content. User Agent Profile
(UAProf) [15], which is represented with RDF/S is an example of markup
scheme model.

• Graphical models. Another well-known and commonly used model is the

CHAPTER 2. BACKGROUND AND TERMINOLOGY 6

Unified Modeling Language (UML). UML is also suitable for modeling con-
text.

• Object oriented models. In computer science, object-oriented techniques are
used in various fields. Using this technique in context modeling gives the
ability to use power of object orientation (e.g., inheritance, encapsulation).
Baldouf et al. [14] explain such a use case within an example system named
Hydrogen [16] which uses an object-oriented modeling.

• Logic based models. In logic models, defining context model is done by facts,
expressions, and rules. After that a logic based system allows to populate
or update facts. In order to determine new facts based on existing rules in
the systems, the interference technique, which is also called reasoning, can
be used.

• Ontology based models. Concepts and relationships are represented by on-
tologies. Since, ontologies have high and formal expressiveness and oppor-
tunity for implementing ontology reasoning process, they are very promising
instrument for modeling contextual data.

Korpiää et al. [17] express that ontologies are the most suitable models for
fulfilling requirements such as simplicity, flexibility, inference, genericity and effi-
ciency. The conclusion of the evaluation is that ontologies are the most expressive
models with the Resource Description Language (RDF) and the Web Ontology
Language (OWL). However, to develop flexible and useable context ontologies
that cover a wide range of possible contexts is a challenging task

Resource Description Framework (RDF) and ontologies are instruments used
when we want to describe, link and impose a structure on data. Semantic Sensor
Network (SSN) is one such promising ontology. The SSN ontology is devised to
describe sensors, their observations, procedures, feature of interest, the samples,
observed properties and actuators. In the official document of SOSA [18] is
stated that “SSN follows a horizontal and vertical modularization architecture
by including a lightweight but self-contained core ontology called SOSA (Sensor,
Observation, Sample, and Actuator) for its elementary classes and properties”.

CHAPTER 2. BACKGROUND AND TERMINOLOGY 7

SOSA is an expansion of SSN in a way that provides widened infrastructure for
target audience and application areas that can make use ontologies. Figure 2.1
shows how SOSA and SSN define and link entities to each other. Note that in
the figure, there is always a path from one entity to another. So that, structuring
data this way allows to establish a cause-effect relationship among data.

Figure 2.1: Overview of SOSA definition and linkage

2.2 Context and Sensor Data Delivery

Bellavista et al. [19] state that publisher-subscriber based transfer mechanisms
are scalable solutions to distribute huge amounts of context data. Happ et al.
[20] research requirements of IoT platform and they come up with a compari-
son of communication protocols AMQP, MQTT, XMPP and ZeroMQ. All these

CHAPTER 2. BACKGROUND AND TERMINOLOGY 8

protocols are based on publish/subscribe architecture and mainly responsible for
delivering messages or data from publishers to subscribers. They tested perfor-
mance of these protocols based on latency, throughput for different sensor types.
They state that Message Queuing Telemetry Transport (MQTT) is intention-
ally designed to transport sensor-like data and gains reputation as being de-facto
standard in the field. Since MQTT is a pure publish/subscribe protocol, it is
impossible to contact connected clients directly.

Official MQTT specification describes MQTT as follows: “MQTT is a Client
Server publisher-subscriber messaging transport protocol. It is lightweight, open,
simple, and designed so as to be easy to implement. These characteristics make
it ideal for use in many situations, including constrained environments such as
for communication in Machine to Machine (M2M) and Internet of Things (IoT)
contexts where a small code footprint is required and/or network bandwidth is
at a premium” [21]. The protocol runs over TCP/IP and provides one-to-many
message transportation. Delegating context delivery to another party like MQTT,
allows decoupling of context delivery from context acquisition. Due to minimal
packet overhead and easy implementation process for both the client and server
side, MQTT distinguished itself as the right way for transporting data when
compared to HTTP.

The publisher/subscriber pattern is a different way of client-server communi-
cation. In client-server communication, clients connect directly to server, however
in publisher/subscriber pattern, entities do not know each other. Both sides are
named as client but they have different roles. One is subscriber(s) that receives
message and the other is publisher that sends a message. Communication and
transportation of data between them is handled by a broker. Main responsibility
of a broker is filtering messages that come from publisher and distribute them to
subscriber(s) that has interest. Filtering can be done with different ways. How-
ever, in MQTT, the common and default filtering mechanism is topic (subject)
based. In this type, messages that come from publisher are filtered based on a
topic (subject) and delivered to subscriber(s), which has an interest in this topic.
The definition of a topic can be stated as follows: Topic is a string, which is used
by the broker to filter messages for subscribers. Topics consist of one or more

CHAPTER 2. BACKGROUND AND TERMINOLOGY 9

levels. Levels (topics) are case sensitive and separated by a forward slash (/).

In terms of context delivery, it is important to point out that the message
is delivered accurately and completely to both senders and receivers. MQTT
has three different message delivery types that are formally named as Quality of
Service (QoS) in order to handle various situations like the one above. When an
application process depends on a message, and it is not able to handle duplication
of the message, and it wants to ensure that each message delivered to it should be
sent only once, the application must use QoS level 2. QoS 2 is the highest level in
MQTT and guarantees that every message is sent or received exactly once. Thus,
this level is the safest but the slowest one. A more faster one is QoS level 1. QoS
1 also guarantees the message delivery but duplication of message may occur.
The fastest one is QoS level 0. QoS 0 does not guarantee message delivery. In
this level, message is sent and forgotten immediately without any concern about
delivery. Furthermore, QoS levels of sending and receiving messages may be
different and is subject to client. In particular, publisher might decide to send
message with QoS 2 where subscriber might subscribe itself with QoS 0. Then
broker receives message with QoS 2 but sends it to subscriber with QoS 0.

Eventually, MQTT comprises a variety of advantages for context delivery
like decoupling context acquisition and distribution, ensuring message delivery,
filtering, asynchronicity for sending and receiving messages. Usage of MQTT is
discussed in Chapters 3 and 4.

2.3 Reference Architectures and Frameworks

In IoT, there are several architectures, applications and usage areas. The the-
sis mainly focuses on data traffic of IoT and its architecture. Data traffic occurs
when providers and requestors communicate. The flow is generally from providers
to requestors. Most of the time, providers are low hardware capable devices like
sensors. They have limited power to operate for both sending data and sensing

CHAPTER 2. BACKGROUND AND TERMINOLOGY 10

things that are responsible. HTTP is a high level protocol and has bigger foot-
print on the network communication for these type of devices. Luoto and Systä
[22] stated that MQTT is more suitable for IoT devices with limited resources.
Therefore, MQTT is used in practical IoT implementations.

Collina et al. [23] propose Qest that is a broker that consists of REST and
MQTT. Qest exposes an MQTT topic as a REST resource. They expose resources
through REST end points. Topics on MQTT are populated by REST end points.
Collina et al. delineate the process as follows. “Firstly it modifies the broker
semantic to retain and syndicate the last payload seen on a topic, secondly it
exposes that payload as a REST resource”.

Sentilo [24] offers a very similar architecture to solve the high data traffic
problem. It acts like a middleware between applications and providers with vari-
ety of services like alert, security, real-time storage and audit. Applications and
providers communicate through Sentilo without knowing each other.

Gaia [25] is a middleware inspired from operating system design and called
as Gaia Operating System. Gaia works similar to an OS. Gaia OS kernel layer
has five services: Space Repository Service, Event Manager, Context Service,
Presence Service and Context File System. The space repository services provides
information storage and retrieval functionality about entities, which are hardware
and software that are registered to Gaia OS. The event service is responsible
for distributing events between suppliers and consumers. The context service
provides querying and registration functionality to applications so that they gain
ability to adapt themselves to their environment. The presence service detects
presence of entities.

Hydrogen [16] is a three-layered architecture for a context aware mobile appli-
cation development. Its architecture involves three layers: Adapter, Management,
and Application layers. These layers are responsible for separating interaction,
storage and maintenance processes from the applications themselves.

CASS [26] is a middleware platform implemented on the top of SQL database.
CASS implements its functionality by four major components. Sensor Listener

CHAPTER 2. BACKGROUND AND TERMINOLOGY 11

receives data from sources. Context Retriever fetches context data from context
storage. Rule Engine is responsible for managing behaviors based on processed
rules. Interpreter converts data into suitable and usable form, for example con-
verting raw data to Celsius.

Context Aware Broker [27] CoBrA’s architecture includes Semantic Web lan-
guages such as RDF and the Web Ontology Language OWL to define ontologies
of context. CoBrA enforces the privacy policies on its central component broker
agent.

CORTEX [28] is an another architecture based on object oriented design. It is
basically based on Sentient Object Model. A sentient object encapsulates entities
Sensory capture, Context hierarchy and Inference engine.

Context Toolkit framework [29] proposes a widget based approach and de-
fines a widget as a software component that allows applications to access context
information. The framework uses XML schema for context modeling.

Freeband [30] project offers a web-service based approach to facilitate devel-
opment and deployment of mobile context-aware application. It claims that using
web services technologies such as SOAP, WSDL, UDDI, XML eases to develop-
ment of context-aware applications.

Octopus [31] is a middleware to ease the development of context-aware appli-
cations especially for home/office domain. It provides services to developers for
developing sensor or application software where developers have minimal knowl-
edge for sensors.

A Context Gathering Framework (CaSP)[32] is based on a service approach
and has six services for sensing, modeling, association, storage and retrieval.
It uses XML as messaging format. It also provides application programming
libraries (API) to ease development of context-aware applications. This architec-
ture is similar to the one that is proposed and implemented in this thesis.

Our parallel work described in [33], is another implementation based on the
same principles discussed in this thesis. It is also a service based architecture

CHAPTER 2. BACKGROUND AND TERMINOLOGY 12

which uses the Actor model whereas the implementation described here uses
publisher/subscriber model. We shall call the actor based implementation as
PCAD/A and the platform implementation presented in this thesis as PCAD/PS
in order to differentiate these two from each other.

Table 2.1 compares the platforms surveyed in this section based on several
criteria. Since, Qest classifies itself as a context broker, it is excluded from the
table. The three criteria - architecture, data delivery method and context model-
ing - are mainly used to compare other platforms with each other. The remaining
three criteria - security and privacy, event notification and real time support are
included because PCAD/PS has provided these features to fulfill the requirements
of the context-aware applications. The different architecture types used in the
comparison are as follows:

• Component based: Architecture is based on loosely coupled major compo-
nents.

• Distributed: System component can be distributed.

• Service based: Platform functionality is provided by set of services that can
be work together or alone.

• Centralized: Platform provides a middleware to applications to be devel-
oped on top of it.

Data delivery methods are classified as query based and publisher/subscriber
pattern based. The four context modeling techniques used in Table 2.1 are Key-
value, object, ontology, markup and relational modeling techniques. The details
of these techniques are given in Section 2.1, Context Modeling and Reasoning.
For the other criteria, if the tools supports it, a Yes is entered, otherwise a No
indicates an unsupported feature. When a piece of information is not available
for a particular tool/application/framework, a dash (-) is used.

CHAPTER 2. BACKGROUND AND TERMINOLOGY 13

Table 2.1: Comparison of platforms

Platform A
rc
hi
te
ct
ur
e

D
at
a
E
xc
ha

ng
e

M
od

el
in
g

Se
cu
ri
ty

an
d
P
ri
va
cy

E
ve
nt

N
ot
ifi
ca
ti
on

R
ea
lT

im
e
Su

pp
or
t

Context
Toolkit

Component based Query Key-Value - No No

Gaia Service based Query Ontology Yes Yes No
Hydrogen Centralized Query Object - Yes Yes
Sentilo Centralized Query,

Pub/Sub
Key-Value Yes Yes Yes

CASS Centralized Query Relational - Yes Yes
CoBrA Distributed Query Ontology Yes Yes No
CORTEX Centralized Query Object Yes Yes Yes
Freeband Centralized Query Ontology - Yes No
Octopus Distributed Pub/Sub - - Yes Yes
CaSP Service based Query,

Pub/Sub
Markup - Yes Yes

PCAD/A Service based Query Relational Yes Yes Yes
PCAD/PS Service based Query,

Pub/Sub
Relational Yes Yes Yes

14

Chapter 3

The PCAD Platform

The architecture - A Platform for Context-Aware Application Development
(PCAD) proposed in [34] forms the basis of the platform described in this the-
sis. PCAD proposes a “novel software platform based on the notion of context-
awareness which allows rapid and easy development of context aware applica-
tions”.

3.1 General Overview of the Platform

The platform is inspired from OS service and layering concept. Silberschatz et
al.[35] identifies a set of operating system services as shown in Section 3.1. Oper-
ating systems provide APIs or libraries to users and programs in order to provide
a way to use services. OS system structure involves two crucial design principles:
layering and modularization. A Layered architecture offers several advantages
such as operation decoupling, simplicity and easy debugging. Since each layer is
decoupled from the one above along an API boundry, when a change occurs in
one layer, does not affect to layers above. Only the n+1st and n-1st layer may
get affected. Modularization enables linking new services to system. A typi-
cal example of modularization is the Pluggable Authentication Modules (PAM)

CHAPTER 3. THE PCAD PLATFORM 15

framework found on UNIX-like operating systems, which allows different authen-
tication modules to be plugged into the framework. PAM-aware applications can
dynamically utilize different authentication mechanisms as long as they use a
standard application programming interface in their interaction with the PAM
framework. PCAD provides a similar method like the PAMmodules in developing
Context-Aware Applications. Applications and sensors can plug themselves into
the platform dynamically using the services of the communication binding layer
in a similar way to the PAM module which can be plugged into the operating
system using the authentication framework.

Figure 3.1: Operating System Services
Source: Taken from Silberschatz, A., et. al. [35]

PCAD emphasizes security and privacy, to be extensible, simple, generic and
service based infrastructure for context-aware application development. The plat-
form fulfills its operations through a service based architecture similar to the OS
services. Figure 3.2 presents the proposed architecture and mapping of the PCAD
layers to OS layers.

PCAD acts as an orchestrator when connecting sensors and application pro-
grams to each other via its services and platform bindings. PCAD services can
either run independently or in combination with other services when fulfilling a

CHAPTER 3. THE PCAD PLATFORM 16

user request. Even if a user does not directly interact with a service itself, the
user uses these services by API calls or libraries. PCAD determines which service
to be used based on user requests.

Figure 3.2: PCAD Middleware Layers
Source: Adapted from Celikkan, U., and Kurtel, K., [34]

3.2 PCAD Services

PCAD has adapted a service based computing model for fulfilling incoming re-
quests. Based on the type of the request, the platform uses one or more services
to fulfill the request. These services are listed in Table 3.1 and their functions
are explained in Sections 3.2.1 through 3.2.7. Implementation and usage of these
services are explained in Chapter 4.

CHAPTER 3. THE PCAD PLATFORM 17

Table 3.1: PCAD Services
Service Responsibility
Data Management Service (DMS) Stores and distributes context data. It

supports various database systems
Security and Privacy Service
(SPS)

Authenticates every request and deter-
mines authorizations based on Role and
Attribute Based Access Control principle

Rule Service (RS) Process and filters context data based on
provided rules

Alarm and Notification Service
(ANS)

Informs requestors when their request is
fulfill

Transformation Service (TS) Validates that the incoming request is well-
formed and if necessary performs conver-
sion between XML and JSON

Reporting Service (RpS) Generates reports based on context data
Context Modeling and Reasoning
Service (CMRS)

Transforms raw data into context data, so
that context reasoning can be performed

3.2.1 Context Modeling and Reasoning Service

A context model addresses classified context data elements (time, location of user,
etc.) in order to meet the requirements of a user. Therefore, context modeling is
an essential part of any context-aware system. Context Modeling and Reasoning
Service of the platform is responsible for transforming raw sensor data to linked
data in RDF format as described in Section Context Modeling and Reasoning.

Several attributes of a sensor including but not limited to location, surround-
ings or time can be part of a context. Some of these attributes are obtained
from sensor’s meta-data and others are actual sensor readings. Creating a con-
text enriches raw data by giving a way of reasoning and meaning to it. Creation,
transformation and linkage of context data is a time consuming process. Rather
than a default conversion of raw data into context data immediately, modeling
of the context starts when it is requested. This means that, data is not stored as
modeled context data in the database by default. This service does not perform
any modeling in this current version of the platform. It is just a pass-through
service, a placeholder for our future release. Data arriving to this service exit the
service unmodified.

CHAPTER 3. THE PCAD PLATFORM 18

3.2.2 Data Management Service

Data Management Service is responsible for the management of the platform data
such as storage and retrieval. Platform stores its data in a database. Although
there are various database management systems to use, this thesis focuses on
Relational Database Management System (RDBMS) and Document Database
Management System (NoSQL). In RDBMS, data is stored in a tabular form of
rows that represent records and columns that represent attributes. Searching,
inserting, updating and deleting records are fulfilled by usingStructured Query
Language (SQL). In the other alternative -i.e NoSQL database- data is stored in
the form of documents. These documents contains key-value pairs. Each doc-
ument represents the data itself, its attributes and relations. This structure of
Document Database gives a flexibility for storing new attributes without the need
to create a new column unlike the way it is done RDBMS. Insertion and retrieval
of data from NoSQL database is faster too and this situation is particularly im-
portant for context-aware applications that use large data. As a result, NoSQL
database is chosen as the database of choice. However, the platform can work
with different RDBMS (i.e. MySQL) and NoSQL (i.e MongoDB) databases by
employing a database adapter. Figure 3.3 represents structure of Data Manage-
ment Service. Usage and implementation details are explained in Section 4.1.

NoSQL performs well and is a fast database. However, some operations may
take time under heavy load. In order to provide a suitable solution to such situ-
ations, the platform incorporates parallelization of data streaming and database
operations. Details of this structure is explained in Section 3.2.4.

3.2.3 Security and Privacy Service

Security and Privacy Service is responsible for protecting the platform resources
and determine which user can perform what operation on data like inserting new
resource, reading or viewing resource attributes. Every user that wants to use the
platform must authenticate. Authentication process verifies a user’s identity using
username/password pair. Following a successful authentication, the platform

CHAPTER 3. THE PCAD PLATFORM 19

Figure 3.3: Data Management Service

generates an access token which is required in every subsequent requests. The
access token becomes user’s identity and is also used when authorizing request of
the user that is sent to the platform.

Platform contains three types of users described as follows:

• System Administrator: any person who manages platform, authorize user’s
access requests,

• Requestor: any person or application that request data from the platform,

• Provider: any physical or virtual sensor or any other platforms or applica-
tions that provide data to the platform.

Users are further assigned roles which determines if an authorization should be
granted or not.

There are various Access Control mechanism implementations, but the com-
mon fundamental intention of all is to control access to resources based on the

CHAPTER 3. THE PCAD PLATFORM 20

role of entities. RBAC functions are adequate for most cases. However, a resource
gets complex because of its attributes. The attributes and environmental condi-
tions are used to define policies on subjects and resources. Therefore, any access
control mechanism should be capable of taking care of these complex resources
as well. For this reason Attribute Based Access Control (ABAC) is proposed in
the literature. Hu et al. [36] defines ABAC as follows: “An access control method
where subject requests to perform operations on objects are granted or denied based
on assigned attributes of the subject, assigned attributes of the object, environment
conditions, and a set of policies that are specified in terms of those attributes and
conditions.” Hence, we designed the platform to use Role and Attribute Based
Access Control mechanisms together.

In order to manage access to complex resources, the platform employs
Attribute and Role Based Access Control together and defines three built-
in roles corresponding to three different kinds of user. These roles are
“System Administrator”, “Data Requestor” and “Data Provider”. These roles
specify operations and access rights on the resources. Each role is made of triplets,
which are called Access Control List Triplets (ACLT) and grants access to the
attributes of a resource. Each ACLT specifies a resource name, resource attribute
and an operation applied to the attribute. Consequently, a user with this role
is granted to perform the specified operations on the resource attributes. The
definition of a Role in terms of its ACLTs is given below:

Role = {(Res,A,C)1, (Res,A,C)2 ... (Res,A,C)n}

where:

Res : Resource Name

A: Resource attribute

C : An operation from (Create, Read, Update, Delete)

Role inheritance in ABAC provides hierarchical and flexible role definition.
This allows the derivation of new access control policies from the existing ones

CHAPTER 3. THE PCAD PLATFORM 21

via inheritance. As mentioned previously, every user is assigned a predefined role
by the system during registration and can be changed dynamically later via user
interface or an API call.

3.2.4 Alarm and Notification Service

Alarm and Notification Service is used for fulfilling a request of the requestor.
When a requestor makes a request to the platform, this request is handled by
the Transformation Service first and the bulk of the work is done by Alarm
and Notification Service thereafter. When ANS takes control, it is responsible
for distributing jobs to other services for fulfilling the request. This service is
also responsible for notifying requestors that have interest about some situations.
Requestor can get data from the platform in two major ways. A requestor can
either make a one time request which is composed of sending request and getting
a response immediately after which the transaction will be over, or requestor can
ask data continuously from the platform. Figure 3.4 shows these delivery methods
of the platform and their data sources used.

Figure 3.4: Data Delivery Mechanisms

CHAPTER 3. THE PCAD PLATFORM 22

When a requestor wants to get continuous data transfer, then requestor should
use the services of MQTT. MQTT is a publisher/subscriber mechanism and is
explained in Section 2.2. In continuous data transfer, the communication chan-
nel between the requestor and the platform is up all the time. The requestor
has two options on how to use this channel. In the first one, requestor can get
data directly from a sensor whenever it is available. In this method, the sensor
software interrupts the platform and pushes data to platform, hence it is called
“push method”. Another name we give to it is “Delay Sensitive Delivery”, be-
cause the data sent by the sensor is delivered to the requestor without any delay.
In the second one, the requestor can get data in fixed periodic intervals from
the database. Hence, the name of the method is proposed as “pull method” or
“Delay Tolerant Delivery”, because the platform periodically polls the database,
pulls the data and sends it to the requestor. In periodic data request method,
requestor will not get any data until the time period expires. In addition to con-
tinuous data delivery, requestors may want to get data only once. If requestor
asks such data from the platform, the data will be retrieved from the database
using a query and send to the requestor. “One time” data request uses REST-
ful services for requesting data and getting response whereas “continuous data”
delivery methods uses MQTT.

When requestor asks data periodically, the requestor can get either new data
or stale data that is received in the previous period. It is up to requestor to
handle stale data.

In Delay Tolerant Delivery, since the data is acquired from the database this
gives the platform a chance to convert raw data into context data. However, the
downside of the Delay Tolerant Delivery method is that, since this process takes
time, the requestor must wait for some period of time. Hence, it is called as Delay
Tolerant Delivery. If the requestor wants something fast or if the application is
sensitive to delays then the requestor asks data directly from sensor and delivered
immediately. In this case the requestor receives only raw data, in the meantime
however, this raw data visits the services of the platform and is converted to
context data and ultimately written to the database.

CHAPTER 3. THE PCAD PLATFORM 23

In Delay Sensitive and Delay Tolerant Delivery methods, requestors connect
to MQTT as a subscriber using the given topic. In the meantime, providers
and the platform are connected to MQTT as publisher. Providers have private
topic for each sensor they have and the topic is only usable between the platform
and sensor itself. The platform creates a new topic for requestors when they
request data from provider directly. Overview of this mechanism is demonstrated
in Figure 3.5.

Figure 3.5: General View of Publisher/Subscriber Mechanism

3.2.5 Rule Service

The Rule Service (RS) is responsible for delivering context data based on con-
ditions. RS performs this task according to the rules specified by the requestor.
Rule Service can process aggregated context data that is obtained from different
data sources. Once requestor requests context data using a rule, Rule Service
registers the rule to the rule engine for the purpose of evaluating the rule against
currently provided context data. When conditions specified in the rule are met,
the platform starts sending data to requestor through the Alarm and Notification
Service.

CHAPTER 3. THE PCAD PLATFORM 24

Following example demonstrates the working principle of RS. Assume that a
requestor wants to perform a task such as turning air conditioner on when cur-
rent room temperature and humidity values are less than 10 and greater than 50
respectively. In order to get notified, the requestor can define a rule with these
constrains: “if temperature < 10 and humidity > 50 then notifyForUndesiredCon-
ditions”. Once both conditions are met, the platform sends a notification that
includes current value of these sensors. This rule contains a conjunct (and). A
rule that is a combination of conjuncts and/or disjuncts is called a compound
rule.

If requestor wants to get sensor data directly from two different sensors using
a rule, there may be an anomaly while getting data. If we refer to the above
example, when temperature sensor provides data but humidity sensor does not,
the rule fails immediately. In order to rectify the situation, the platform incorpo-
rated a timeout value when processing rules. When a sensor that participates in
the rule provides data to the platform, the corresponding rule is fired, meaning
the sub-rule that matches to sensor sending the data is executed immediately.
The result will be either success or failure. However, the other sub-rule goes to
a timeout period because the sensor corresponding to the other sub-rule has not
sent any data. If at the end of the timeout period, the sensor still has not sent
any data, the sub-rule fails. Thus, the overall rule result is evaluated according
to the short circuit evaluation rules. On the other hand, if the rule is tagged with
a database option, then the database will be consulted immediately. Now the
timeout value indicates the time frame that sensor value will be acquired in the
past. BNF notation for the new rule definition is given in Figure 3.6. The above
described anomaly can be avoided by modifying the existing rule according to
the new rule definition:

(Temp [(true, 0)(false, 0)] < 10) & (Hum [(true, 10)(true, 60)] > 50)

CHAPTER 3. THE PCAD PLATFORM 25

〈Rule〉 ::= 〈SubRule〉〈LogicalOperator〉〈SubRule〉

〈SubRule〉 ::= 〈SensorId〉〈RequestDef 〉〈ComparisonOperator〉
〈Threshold〉

〈SensorId〉 ::= number

〈RequestDef 〉 ::= [(〈sensor〉,〈timeout〉), (〈database〉,〈timeout〉)]

〈sensor〉 ::= ‘true’ | ‘false’

〈timeout〉 ::= second

〈database〉 ::= ‘true’ | ‘false’

〈ComparisonOperator〉 ::= ‘>’ | ‘<’ | ‘!=’ | ‘=’ | ‘≤’ | ‘≥’

〈Threshold〉 ::= number

〈LogicalOperator〉 ::= ‘and’ | ‘or’

Figure 3.6: Rule BNF Notation

This rule starts to run when the platforms get temperature data that is less
than 10. Then it waits for 10 seconds for humidity sensor, if humidity data is not
provided in 10 seconds, the data is acquired from the database at most 60 seconds
old. After these, the rule is evaluated according to the short circuit evaluation
rules and then the service returns a response to the requestor if conditions are
met.

3.2.6 Transformation Service

The platform provides Programming Language Libraries in JAVA and Node.js
as well as two different data format: JSON and XML for users and devices to
interact with the platform as shown in Figure 3.7. Both data formats can be used
in RESTful API invocations. Usage and details of the libraries are explained in
Section 4.5.

Distinction between JSON and XML is made by header parameters. The
platform enforces that any request to the platform must have these header pa-
rameters. A requestor or provider is also able to send data with one format

CHAPTER 3. THE PCAD PLATFORM 26

Figure 3.7: Transformation Service Overview

and get data in another format by setting header parameters appropriately. One
requestor might want to send request payload in JSON format, and wants to re-
ceive response in XML format. To do so, requestor should set related parameters
correctly.

3.2.7 Reporting Service

Reporting service (RpS) is responsible of data visualizing and composed of two
different modules. RpS is available via user interface of the platform and all
authorization applies to logged-in user. The first module of RpS draws charts
using real time data. This means, when new data is created by the platform,
related chart(s) updates itself without user intervention.

Second module shows user filtered results. User can filter any entity related
to resources such as time, location, status. This type of chart does not update
itself and waits for user intervention for getting the last available data.

27

Chapter 4

Design and Implementation

This chapter explains implementation of the platform. Choosing a proper frame-
work, being fault tolerant and meeting performance needs are important crite-
ria considered during implementation. In order to service a large number of
requestors and providers, the platform should be responsive and non-blocking.
These requirements are implicitly satisfied by Node.js features. The platform
should also support different databases. The use of LoopBack framework enables
speedy development. MQTT is used as the data delivery protocol as it is fault-
tolerant. In the implementation of the platform, two external libraries are used.
These are JSON rule engine [37] and, ABAC helper [38]. Table 4.1 shows the
decisions for implementing the platform. In this section, design and implemen-
tation details of the services is explained. The Context Modeling and Reasoning
Service and the proposed solution to the anomaly described in Rule Service will
be implemented in the future version of the platform.

Table 4.1: Implementation decisions
Framework : Node.js, LoopBack
External Libraries : ABAC Helper, JSON Rule Engine
Languages : JavaScript, HTML, Java
Operation System : Linux
Database : MongoDB
Communication Interfaces : RESTful API, MQTT

CHAPTER 4. DESIGN AND IMPLEMENTATION 28

Figure 4.1 provides a general overview of the platform emphasizing the data
flow between the requester and the provider. The platform provides two con-
nection types to the requestors. First one is used for continuous data streaming
between a provider and a requestor using MQTT. This type of connection is rep-
resented using black lines in Figure 4.1. The dashed lines represent “subscriber”
channels and normal lines represent “publisher” channels with broker. The other
connection type is used to request one time data and perform other administra-
tive operations such as new sensor registration, user creation or authentication.
This connection type is represented as gray lines in Figure 4.1. HTTP protocol
and RESTful API is used for this type of communication. The “PCAD Services”
in the Figure are responsible for fulfilling the requests. In the following sections
these services are explained in detail.

Figure 4.1: General view of the platform
Source: Adapted from Guner, A., et. al. [39]

CHAPTER 4. DESIGN AND IMPLEMENTATION 29

4.1 Data Management Service

Data Management Service is responsible for performing database operations on
resources and managing MQTT topics on the broker like creating, closing and
giving access to it. Data Management Service follows the model-view-controller
paradigm. Resources of the platform have corresponding models, which are used
in database operation Create, Read, Update, Delete and abbreviated as CRUD.

In software development, generally speaking a model corresponds to a table
in the database and an attribute corresponds to a column in the same table.
This mechanism is good for defining models easily and retrieving data with its
relations. Even though relational model and structured format are good perspec-
tives, applications that use relational databases need code changes in order to
use, manipulate and represent newly created column (attribute). Some applica-
tions may need attributes that are stored/retrieved dynamically without needing
code changes. Consider the following example: sensor data on the platform have
value and timestamp attributes. After a while, some sensors may gain an ability
to provide location of the data. To store the location attribute in the relational
database (except JSON supported databases), a new column should be added
to the corresponding table and related code changes must be done. However,
non-relational (NoSQL) databases provide such ability dynamically. In NoSQL
databases, in order to add a new attribute to the database, it is enough to place
the new attribute in the to-be-inserted object into the document. Therefore,
NoSQL database is selected as the data source of the platform and MongoDB is
used as an open source NoSQL database.

As stated, models are good for performing database operation at the appli-
cation level. The platform has several models to represent application logic and
CRUD operations. Every model corresponds to a related document (a table in
Relational Databases) in MongoDB. Table 4.2 presents the documents and their
descriptions. Tables 4.3 to 4.4 demonstrate the document structure. There are
also some other built-in models that helps the platform to run. However, they
are omitted.

CHAPTER 4. DESIGN AND IMPLEMENTATION 30

Table 4.2: Database Documents and Descriptions

users Users document contains user related information such
as name, email, role, status. Any data provider is also
stored in this document.

sensors Sensors document stores metadata of any kind of data
provider like physical or virtual ones and sensor belongs
to user in users document.

roles This document stores predefined and newly created
roles. Roles are kept as triple which is explained in Se-
curity and Privacy Service

sensor_data Any data provided by data provider is stored in this
document.

The platform uses juggler [40], an ORM library that provides a set of interfaces
for interacting with databases. Another advantage of using such library is that,
it provides an abstract layer to models in order to use various relational and
non-relational databases without fundamental code change.

CHAPTER 4. DESIGN AND IMPLEMENTATION 31

Table 4.3: Database Models and Structures
Users Roles

"id": {
"type": "number",
"required": true

},
"username": {

"type": "string",
"required": true

},
"password": {

"type": "string",
"required": true

},
"name": {

"type": "string",
"required": true

},
"surname": {

"type": "string",
"required": true

},
"email": {

"type": "string",
"required": true

},
"role_id": {

"type": "number",
"required": true

},
"register_date": {

"type": "DateString",
"required": false

}
"valid": {

"type": "boolean",
"required": true

},

"id": {
"type": "number",
"required": true

},
"role": {

"type": "string",
"required": true

},
"resource": {

"type": "string",
"required": true

},
"action": {

"type": "string",
"required": true

},
"attributes": {

"type": "string",
"required": true

}

CHAPTER 4. DESIGN AND IMPLEMENTATION 32

Table 4.4: Database Models and Structures

Sensors Sensor Data

"id": {
"type": "number",
"required": true

},
"user_id": {

"type": "number",
"required": true

},
"type": {

"type": "string",
"required": true

},
"metric": {

"type": "string",
"required": true

},
"valid": {

"type": "boolean",
"required": true

},
"period": {

"type": "string",
"required": true

},
"register_date": {

"type": "DateString",
"required": false

}

"id": {
"type": "number",
"required": true

},
"sensor_id": {

"type": "number",
"required": true

},
"data": {

"type": "string",
"required": true

},
"timestamp": {

"type": "DateString",
"required": true

}

CHAPTER 4. DESIGN AND IMPLEMENTATION 33

4.2 Security And Privacy Service

Security and Privacy Service is responsible for mainly two tasks: authentication
and authorization to control data access in the platform. To manage security
and privacy, token based authentication and authorization is used. The gen-
eral concept behind the token based authentication is to allow users to use an
“access token” instead of providing their username/password pair for each request.
Username/password pair is provided only when obtaining the initial token. Once
the access token is acquired, each subsequent request except registration, log-
in and log-out, should accompany this token. Access token is supplied to the
platform in two ways. First is to insert the token as a URL parameter named
as “access_token” as shown in Listing 4.1. The second, which is more com-
pact and secure, is to supply the token as a header parameter again named as
“access_token” and shown in Listing 4.2.� �
curl -X GET

--header 'Accept: application/json'

'http://DUMMY_PCAD_URL/api/v1/sensors?access_token=<

OBTAINED_ACCESS_TOKEN>'� �
Listing 4.1: Sending Access Token as URL Parameter� �

curl -X GET

--header 'Accept: application/json'

--header 'access_token: <OBTAINED_ACCESS_TOKEN>'

'http://DUMMY_PCAD_URL/api/v1/sensors'� �
Listing 4.2: Sending Access Token as Header Parameter

After creating an account and gaining ‘Access Token’, this token is used for
authentication. The platform creates an MQTT topic for providers. This topic
is used for receiving data from a provider. Sending data via MQTT also requires
an authentication. When providers initiate connection with the “CONNECT”
message to the broker, they should send their obtained “Access Token” as a
“Client Identifier”. When MQTT broker gets a CONNECT message with the
“clientId” parameter, it authenticates the provider. Opening a connection to

CHAPTER 4. DESIGN AND IMPLEMENTATION 34

MQTT broker with “clientId” parameter is demonstrated in Listing 4.3. If au-
thentication is successful then the broker returns “CONNACK” message with
status code zero. Otherwise, one of the status codes given in Table 4.5 is re-
turned.� �

const options={

clientId:'<OBTAINED_ACCESS_TOKEN>',

...

};

var client = mqtt.connect("mqtt://DUMMY_PCAD_URL",options)� �
Listing 4.3: Sending Access Token as Header Parameter

Table 4.5: MQTT Connection Return Messages

Status Code Status Definition
0 Connection accepted
1 Connection refused, unacceptable protocol
2 Connection refused, identifier rejected
5 Connection refused, not authorized

Requestors use RESTful endpoints via HTTP by providing previously ac-
quired “Access Token”. Requestors use the same procedure specified for providers
when they need to subscribe to MQTT topic. Note that subscribing to an MQTT
topic is needed for continuous data transfer.

Users of the platform must have the right authorizations to access resources.
As described in Section 3.2.3, gaining access to a resource on the platform is
controlled by a combination of Role Based and Attribute Based Access Control
Mechanisms. With this combination, the platform gains flexibility in defining
and managing access policies. Resources of the platform are sensors and their
data. Attribute is a property of the resource and operation is the action that is
taken on that attribute. So that this set becomes a definition of a role on the
platform. A role can inherit from other role(s). Consider the following scenario:
System Administrator wants to create a role that has read access to attributes
A1, A2, and A3 of resource Ω. There are already two existing roles related to

CHAPTER 4. DESIGN AND IMPLEMENTATION 35

resource Ω as defined below:

Role : A = {(Ω, A1, Read), (Ω, A2, Read)}

Role : B = {(Ω, A3, Read)}

Now, the System Administrator can define the desired role either by creating a
new one or extending it from roles A and B. In the first method, the new role
C is created as a stand-alone role by providing a brand new definition which is
given below.

Role : C = {(Ω, A1, Read), (Ω, A2, Read), (Ω, A3, Read)}

The second and more flexible solution is to create the new role C by extending
from role A and B. Then, role C is defined in terms of role A and B and denoted
as;

C = A ∪B

In the second method when a new right is added to either role A or B, C gains
the same right instantly. In the example above, when a requestor with a role A
wants to access to resource Ω, the platform filters result object and send only
values of A1 and A2 attributes, and when a second requestor having role C wants
to access the same resource, platform returns result with value of A1, A2 and A3

attributes of Ω.

With these information, explaining authorization is much simpler. Consider
the same Role A given above and a requestor. When requestor requests access to
Resource Ω, the platform queries the database and gets the access rights of the
requestor. If an ACLT exists corresponding to the desired action and attribute in
the Role Set for the requested resource, the user will be able get response to its
request. Otherwise, the platform will return the response shown in Listing 4.4.
When requestor gets data from MQTT same procedures follow. Before push-
ing data to topic, the platform filters result object according to access rights of
requestor and then pushes the filtered result.

CHAPTER 4. DESIGN AND IMPLEMENTATION 36

� �
"error": {

"statusCode": 401,

"name": "Error",

"message": "Authorization Required",

"code": "AUTHORIZATION_REQUIRED"

}� �
Listing 4.4: Error Message for Unauthorized Access

The platform has built-in role definitions. These are “requestor”, “provider”
and “admin”. “requestor” or “provider” role is assigned to users when (s)he regis-
ters himself/herself to the platform. These roles are stored in “Roles” document
and given in Listing 4.5.

In the role definition given below “role” represents the name of a role (i.e.
provider), “resource” is the model name of the “resource”(i.e. “sensors” or
“sensorData”). The key “action” defines an operation on the “resource”. It consists
of one of the four “CRUD” actions and one of the “own” or “any” keywords which
indicates the possession of the “resource”. Having access right to “attribute” of
the “resource” is defined by “attributes” key. When defining “attributes”, access
right “*” covers all attributes of the “resource”. Exclamation mark “!” defines an
access restriction to the “attribute”. For example� �
{

role: 'provider', resource: 'sensors', action: 'create', ownership: '

own', attributes: '*, !id, !valid, !userId, !registerDate'

}� �
means that, anyone having the role “provider” can create a sensor with its at-
tributes except that “id”, “valid”, “userId”, “registerDate” attributes.

CHAPTER 4. DESIGN AND IMPLEMENTATION 37

� �
[

{ role: 'requestor', resource: 'sensorData', action: 'read',

ownership: 'any', attributes: '*, !id' },

{ role: 'requestor', resource: 'sensors', action: 'read',

ownership: 'any', attributes: '*, !valid, !userId, !

registerDate' },

{ role: 'provider', resource: 'sensorData', action: 'read',

ownership: 'own', attributes: '*, !id' },

{ role: 'provider', resource: 'sensorData', action: 'create',

ownership: 'own', attributes: '*, !id, !timestamp' },

{ role: 'provider', resource: 'sensors', action: 'create',

ownership: 'own', attributes: '*, !id, !valid, !userId, !

registerDate' },

{ role: 'provider', resource: 'sensors', action: 'read',

ownership: 'own', attributes: '*, !id, !valid, !userId, !

registerDate' },

{ role: 'provider', resource: 'sensors', action: 'delete',

ownership: 'own', attributes: '*, !id, !valid, !userId, !

registerDate' },

{ role: 'provider', resource: 'sensors', action: 'update',

ownership: 'own', attributes: '*, !id, !valid, !userId, !

registerDate' },

{ role: 'admin', resource: 'sensorData', action: 'read',

ownership: 'any', attributes: '*' }

{ role: 'admin', resource: 'sensors', action: 'read', ownership:

'any', attributes: '*' }

]� �
Listing 4.5: Built-in Role Definitions

CHAPTER 4. DESIGN AND IMPLEMENTATION 38

4.3 Alarm and Notification Service

The behavior described in Alarm and Notification Service of Chapter 3 is cap-
tured in seven interaction mechanisms. These mechanisms are grouped into two
based on their delivery type: Delay Sensitive and Tolerant. First group provides
one time data delivery and the second one provides continuous data delivery. Fig-
ure 4.2 demonstrates the groups and their subgroups with two properties: data
source and rule inclusion. Following section will explain the seven interaction
mechanisms in detail.

Figure 4.2: Data Delivery Methods

Requestor-Platform Interaction Mechanism

Interaction mechanisms between the platform and providers are explained in this
section. These interaction mechanisms demonstrates the Application Binding
layer shown in Figure 4.3. In one time data delivery mechanisms, data request
interface is RESTful web-services. In these interaction methods data sent to
requestor is already processed and stored into database by the platform services.
So, data is retrieved from the database and sent to requestor.

CHAPTER 4. DESIGN AND IMPLEMENTATION 39

Figure 4.3: PCAD Requestor Binding Layer

1. Interaction Mechanism 1 (IM1):
In Interaction Mechanism 1, requestor requests context data without any
filter. Platform queries the database for the requested context data and
send it to requestor as a response.

2. Interaction Mechanism 2 (IM2):
Interaction Mechanism 2 is similar to IM1 except that IM2 includes a filter
as described in Section 3.2.5. This filter is applied to data retrieval step
and the filtered data is sent to the requestor.

3. Interaction Mechanism 3 (IM3):
In this interaction mechanism, requestor receives data in RDF format.

Second group of interaction mechanisms provides continuous data transfer.
In these interaction mechanisms, data request interface is also RESTful web-
services. However, requestor gets data by subscribing to the related MQTT
topic as described in Section 2.2. Some interaction mechanisms send data in raw
format. This means that data is sent as it is collected from sensor without any
extra processing done on it. In the remaining interaction mechanism, data is
processed by the services of the platform to make it more suitable to context
aware computing.

CHAPTER 4. DESIGN AND IMPLEMENTATION 40

4. Interaction Mechanism 4 (IM4):
Requestor requests data to be delivered directly from a sensor without any
rule. When requested sensor data becomes available, the platform pushes
raw data into an MQTT topic so it is transmitted to requestor. In parallel,
the platform processes the raw data and saves it to the database. This
interaction mechanism sends raw data to the requestor.

5. Interaction Mechanism 5 (IM5):
In this interaction mechanism, requestor requests data directly from sensor
by specifying a rule. When rule conditions are met, the platform pushes
requested data into MQTT topic which eventually transmitted to the re-
questor. However, due to lack of available data on the server at the time
of the request, the request may fail and no data is sent. This situation is
explained in detail in Rule Service Section.

6. Interaction Mechanism 6 (IM6):
In this interaction mechanism, requestor wants to get data periodically from
the database. The platform registers the request to Alarm and Notification
Service. Within periodic intervals, the platform pushes data into MQTT
topic, which is consumed by the subscriber (requestors). The requestors
may get stale data if no new data has been written to the database between
two data delivery interval.

7. Interaction Mechanism 7 (IM7):
This interaction mechanism is similar to IM6 except that it uses a rule when
streaming data.

Figure 4.4 shows the data path for the continuous and one time data requests
methods. On the left side, the requestor gets data from the MQTT broker. IM4
to IM7 is placed on the left side. On the right side, the requestor gets data as
response as the result of its request. IM1 to IM3 is placed here.

CHAPTER 4. DESIGN AND IMPLEMENTATION 41

Figure 4.4: Delay Sensitive and Delay Tolerant

Provider-Platform Interaction Mechanism

In addition to application binding layer, the platform has a sensor binding layer
as demonstrated in Figure 4.5. Even though providers are classified as “users” in
the platform, actually they are data creators as having physical or virtual sensors.

First of all, a provider should register to the platform by using either the
graphical user interface or RESTful API. After the registration and approval by
the “System Admin”, provider gets the “Access Token” and acquires the right to
add a new sensor to the platform. If the provider chooses to use RESTful API to
add a new sensor, the provide should add a “Access Token” to the add request.
The provision of the “Access Token” is implicit, if the provider chooses to use
GUI. Regardless of using a GUI or REST, providers obtain the followings:

• A unique sensor ID

• A unique MQTT Topic

CHAPTER 4. DESIGN AND IMPLEMENTATION 42

Figure 4.5: PCAD Provider Binding Layer

Data is provided to the platform either by using RESTful API or MQTT.
Even though the platform does not restrict the use of RESTful API for data
provision, using MQTT protocol is more suitable than using HTTP. When using
RESTful API the provider should use obtained sensor ID and the “Accees Token”
to provide data. Listing 4.6 demonstrates an RESTful API request.� �
curl -X POST

--header 'Content-Type: application/json'

--header 'Accept: application/json'

--header 'access_token:<OBTAINED_ACCESS_TOKEN>'

--data '{

'data': 'string',

'timestamp': 'dateTime'

}'

'http://DUMMY_PCAD_URL/sensors/<OBTAINED_SENSOR_ID>/data'� �
Listing 4.6: Providing Data Using RESTful API

CHAPTER 4. DESIGN AND IMPLEMENTATION 43

When using MQTT, provider should connect to a given MQTT “Topic”.
As stated, MQTT broker also enforces authentication. To get authenticated,
provider should use the obtained “Accees Token” when the provider wants to
connect to the broker. Listing 4.7 demonstrates opening connection to broker
and sending data to the platform in JAVA language.� �

String publisherId = "<OBTAINED_ACCESS_TOKEN>";

String TOPIC = "<OBTAINED_MQTT_TOPIC>";

String DATA = "<SENSOR_DATA>";

IMqttClient publisher = new MqttClient("tcp://DUMMY_PCAD_URL:PORT",

publisherId);

MqttConnectOptions options = new MqttConnectOptions();

options.setCleanSession(true);

publisher.connect(options);

publisher.publish(TOPIC,DATA);� �
Listing 4.7: Providing Data Using MQTT

Interaction Mechanisms Service Bindings

While requestors interact with the platform by using one of the interaction mecha-
nisms, the request is handled by the platform services. The two services, Security
and Alarm and Notification, are used for all requests and by all interaction mech-
anisms. When a request arrives to the platform, first ANS calls Transformation
Service in order to parse the request body and the elements. After that, the
ANS calls the SPS for security check. The SPS checks security and creates an
ACLT object for future use. These operations are common for all interaction
mechanisms.

Interaction Mechanisms 1, 2, and 3 take data directly from the database. So,
these mechanisms use Data Management Service. In addition, IM2 includes rule
object and IM3 returns data in form of RDF. Therefore, IM2, IM3 use Rule
Service and Context Modeling and Reasoning Service respectively. IM4, IM6 and
IM7 are continuous data deliver mechanisms and their source of data is also the
database. So, these interaction mechanisms also use DMS. IM5 uses continuous

CHAPTER 4. DESIGN AND IMPLEMENTATION 44

data delivery mechanism. However, its source of data is sensor. So IM5 is the
only one that does not use DMS. Overall service usage of Interaction Mechanisms
is represented in Table 4.6.

Table 4.6: Interaction Mechanism Service Usage
Interaction
Mechanism

RS DMS ANS CMRS SPS TS

IM1 - X X - X X
IM2 X X X - X X
IM3 - X X X X X
IM4 X X X - X X
IM5 - - X - X X
IM6 - X X - X X
IM7 X X X - X X

Interaction Mechanism 6 demonstrates the operation of second group of the
interaction mechanisms and is given as an example to clarify the sequence of
events that take place. These sequence of events are demonstrated in Figure 4.6.

1. Requestor requests data by using RESTful API.

2. After taking the request, ANS calls Transformation Service for transforming
request body to make it usable by the platform services followed by a call
to the Security and Privacy Service.

3. Security and Privacy Service checks authentication and access rights of
requestor via the supplied “Access Token”. Then, SPS creates an ACLT
for filtering data that will be sent eventually.

4. Since the request is handled using continuous data delivery, the Alarm and
Notification Service calls the Data Management Service to create a topic
on the MQTT broker. After that, DMS registers itself as a publisher for
that topic and call Transformation Service for the purpose of sending the
topic and MQTT URL to the requestor. In the meantime, the Alarm and
Notification Service saves the topic for future use. The DMS remains in
subscriber state all the time for all incoming data from all sensors in order
receive data from them and make them available for the platform.

CHAPTER 4. DESIGN AND IMPLEMENTATION 45

Figure 4.6: Sequence Diagram for IM6

5. When requestor receives the topic and MQTT URL, it connects to MQTT
as a subscriber for that topic and waits for incoming data.

6. When data associated with a topic is received by the platform DMS notifies
the Alarm and Notification Services.

7. DMS filters data attributes based on ACLT, and pushes the data into the
topic. At that time, requested data is published to the requestor. The
requestor can either waits for future incoming data, or close connection
with the broker. At the same time, the data is processed by the platform
services.

CHAPTER 4. DESIGN AND IMPLEMENTATION 46

Endpoints

The complete list of RESTful API endpoints is given in Table 4.7 and their
payloads is represented in Table 4.8.

Table 4.7: RESTful API Endpoints

URL Method Payload Description
/users POST User Creates a new users.
/users/login POST UserCredentials Logs-in Provider, Requestor

and Admin.
/users/logout POST User Creates a new users.

/users GET - Returns users
POST User Creates new user

/users/{id}
GET - Returns sensor
DELETE - Deletes user
PUT User Updates user

/sensors GET - Returns sensors
POST Sensor Creates new sensor

/sensors/{id}
GET - Returns sensor
DELETE - Deletes sensor
PUT Sensor Updates sensor

/sensors/{id}/data GET - Returns sensor data
POST SensorData Creates sensor data

/sensors/{id}/stream GET - Send raw data using MQTT
POST Rule Send data when rule condi-

tions are satisfied

/roles GET - Returns roles
POST Role Creates new role

/roles/{id}
GET - Returns role
DELETE - Deletes role
PUT Role Updates role

/reports/{id} GET - Returns sensor information

CHAPTER 4. DESIGN AND IMPLEMENTATION 47

Table 4.8: Endpoint Payloads

User Sensor

{
"firstname": "string",
"lastname": "string",
"username": "string",
"company": "string",
"email": "string",
"password": "string"

}

{
"type": "string",
"unit": "string",
"latitude": "string",
"longitude": "string"

}

Role SensorData

{
"role": "string",
"resource": "string",
"action": "string",
"attributes": "array"

}

{
"data": "string",
"timestamp": "string"

}

Rule

{
"periodic": "boolean",
"period": "string",
"rule": "object"

}

4.4 Rule Service

Data delivery can be achieved in two ways. First one is the one time data de-
livery (uses filter). In this delivery method, Rule Service acts as data filtering
middleware based on filter object, which can be provided as a request parameter.
This data filtering can be used only with one time data request methods and

CHAPTER 4. DESIGN AND IMPLEMENTATION 48

filter object should be in JSON format and consist of valid operators given in
Table 4.9. When a request is made with the filtering object, the platform queries
the database against the given filter. Collected data is returned to requestor. As-
sume that a requestor wants get data from “Sensor with ID 1” with the following
conditions: “data equals to 15 or 23 and timestamp is greater than 2019-01-20”.
This request is demonstrated in Listing 4.8.

Table 4.9: Supported Operators for Rule and Filter Defining

Operator Description
=, neq Equality, Inequality (!=)
and, or Logical AND operator, Logical OR operator
gt, gte Numerical greater than (>); greater than or equal (≥). Valid only

for numerical and date values
lt, lte Numerical less than (<); less than or equal (≤). Valid only for

numerical and date values
between True if the value is between the two specified values: greater than

or equal to first value and less than or equal to second value

� �
Filtering Object:

{

"where": {

"and": [{

"or": [{

"data": "15"

},

{

"data": "25"

}]

},

{

"timestamp": {

"gt": "2019-01-20"

}

}]

}

}� �

CHAPTER 4. DESIGN AND IMPLEMENTATION 49

� �
Complete Request URL:

http://DUMMY_PCAD_URL/sensors/1/data?filter={"where": {"and":[{"or": [{"

data": "15"},{"data": "23"}]},{"timestamp": {"gte": "2019-01-20"}}]}}� �
Listing 4.8: Example Request with Data Filtering

The second and more complex delivery method is the continuous data deliv-
ery (uses a rule). In this delivery method, requests are made by RESTful API
and data is taken by MQTT protocol. Defining a filter is not possible on the
MQTT broker, this process is taken over by the platform. In order to get fil-
tered continuous data, requestor should provide a rule within the request. When
platform gets a request with rule, ANS calls the Rule Service. The Rule Service
registers the rule to the rule engine [37] on the platform. When any sensor data
is provided to the platform, ANS calls Rule Service for executing rules. If all
conditions are met then RS notifies ANS and ANS calls DMS to transfer data to
requestor by pushing it to MQTT topic. As mentioned in Rule Service there can
be an anomaly when checking rule conditions. Resolution of this anomaly is out
of the current platform implementation and will be implemented in the future
release. So rules can only be executed for only one sensor in the current release.

Rule conditions consist of “fact”, “operator ” and “value” keywords combined
with “all ” or “any ” option. These options correspond to “and ”, “or ” logical
operators respectively. “fact” represents needed attribute of resource such as
“data” or “timestamp”. Allowed “operator ”s are given in Table 4.10 and “value”
is the desired outcome of the “fact”. Definition of the rule with these keywords
and structure is required by the used Rule Engine. In the future release of the
platform, defining rule and filtering result will have same structure and syntax.

Assume that the requestor wants to get data from sensor 1 if the value is
between 12 and 15 or value is equal to 20 by using Interaction Mechanism 5.
According to these conditions, structure of the rule and the request are demon-
strated in Listing 4.9.

CHAPTER 4. DESIGN AND IMPLEMENTATION 50

Table 4.10: The Platform Rule Operators

Operators Description
String, Numeric and Date Values

equal “Fact” must be equal to the “value”
notEqual “Fact” must not be equal to the “value”

Only Numeric Values
lessThan “Fact” must be less than the “value”
lessThanInclusive “Fact” must be less than or equal to the “value”
greaterThan “Fact” must be greater than the “value”
greaterThanInclusive “Fact” must be greater than or equal to the “value”

� �
curl -X POST 'http://DUMMY_PCAD_URL/sensors/1/data'

--header 'Content-Type:application/json', 'Accept:application/json'

--header 'access_token:<OBTAINED_ACCESS_TOKEN>'

--data '{

"conditions": {

"any": [{

"all": [{

"fact": "data",

"operator": "greaterThan",

"value": 12

},{

"fact": "data",

"operator": "lessThan",

"value": 15

}]

},{

"fact": "data",

"operator": "equal",

"value": 20

}]}

}'� �
Listing 4.9: Example Data Request with Rule

CHAPTER 4. DESIGN AND IMPLEMENTATION 51

4.5 Transformation Service

In order to transfer data between two sides properly, there should be an agree-
ment on the data structure between them. From a RESTful service perspective,
JSON is a popular choice for the data format. JSON is self-describing and easy
to understand and use. Data format consists of name-value pairs and can repre-
sent objects, arrays. On the other hand, XML is used for many years to store,
transport and represent data. Transformation Service is responsible of supporting
these data formats, translating one into other in the requests and responses.

Distinguishing between these formats are made by providing appropriate
header in request. These header parameters are “Content Type” and “Accept”.
When using JSON as a transfer format these parameters should be set to
“application/json”. For XML format “application/xml” value should be used.
Except continuous data transfer by using MQTT, all API request and response
bodies are interchangeable between JSON and XML. Assume that one provider
wants to create a new sensor and send related data in JSON format. However,
providers want to have them returned instance of the sensor to be in XML format.
Listing 4.10 represents the proper header parameter for such request.� �
curl -X POST

--header 'Content-Type: application/json'

--header 'Accept: application/xml'

--data '{

"type": "string",

"metric": "string"

"registerDate": "dateTime"

}'

'http://DUMMY_PCAD_URL/sensors'� �
Listing 4.10: Sending JSON Data Using RESTful service

After receiving this request the platform creates a new sensor metadata in the
database and returns the created record. since doubleQuoteAccept parameter
is set to “application/xml”, response will be in XML format which is given in

CHAPTER 4. DESIGN AND IMPLEMENTATION 52

Listing 4.11.� �
<?xml version="1.0"?>

<sensor>

<id>number</id>

<type>string</type>

<metric>string</metric>

<valid>boolean</valid>

<registerDate>dateTime</registerDate>

</sensor>� �
Listing 4.11: Receiving response in XML Format

Application Programming Libraries (APL)

Some applications may want to use programming library instead of using REST-
ful services directly. To provide support for such applications, the platform offers
Application Programming Libraries (APL) in Java and Node.js. CRUD opera-
tions can be done using these libraries.

Populating (create, update, delete) methods of APL returns the populated
instance where Read method returns either “Object” or “Array of Objects”. Both
APL have same function signature. However, Node.js functions return “promise”.
JavaScript promises are objects that can produce result at unknown time in the
future. State of promises can be either resolved or rejected. Resolved state means
that operation is successful and contain desired outcomes such requested objects,
response of http request. Promises can return rejected state if any error occurs
such as network or database error. Listing 4.12 shows Java (pcad.jar) and Node.js
(npm module: pcad) class constructor and method signatures of the platform
library. Behind scenes, these libraries create a HTTP request to RESTful API.

CHAPTER 4. DESIGN AND IMPLEMENTATION 53

� �
Class Constructor:

PCAD()

Methods:

initPcadInterface(String username, String password, HashMap<String,

String> option)

getPcadResource(String resourceName, HashMap<String,String> options)

getPcadResource(String resourceName, String resourceId, HashMap<String,

String> options)

savePcadResource(String resourceName, Object resource, HashMap<String,

String> options)

updatePcadResource(String resourceName, Object resource, String

resourceId, HashMap<String,String> options)� �
Listing 4.12: PCAD Library Class Constructor and Functions

4.6 Reporting Service

Presentation of detailed data is handled by Reporting Service (RpS). Visualiza-
tion and exposing such information provides a detailed and useful overview of
the platform. In user interfaces, RpS provides filterable data visualization via
graphics. In these screens, user is able to filter dataset of graphs such as filtering
temperature sensors available in the platform. When user is done such filtering,
corresponding graph(s) will use the selected sensor(s) as a source.

Using “/sensors/{id}/stream” with “POST ” method is different than oth-
ers. This endpoint has special payload parameters, which change the operation
mode of the endpoint and is used for continuous data delivery methods. First
parameter is “periodic”. This parameter can be either “true” or “false”. When
it is “true” “period ” parameter should be defined. This endpoint corresponds to
IM7. If “rule” parameter is added too then it corresponds to IM6. If only “rule”
parameter is set then it corresponds to IM4. “GET ” method of the same endpoint
corresponds to IM5.

CHAPTER 4. DESIGN AND IMPLEMENTATION 54

4.7 Design and Implementation Outcomes

An architecture that promotes robustness, extensibility, scalability, adaptability,
and privacy allows the creation of software that is reliable, available and service-
able. We set our architectural goals with these aspects in mind. Even though
Context Modeling and Reasoning Service has not been implemented yet, exten-
sibility attribute of the architecture allows this service to be easily added to the
platform in the future.

Since context data is complex, a flexible access control mechanism is needed.
Role based access control, which is adequate enough for a variety of systems can
not provide enough flexibility for such complexity. This is the primary reason
that the platform uses RBAC and ABAC together.

The platform connects a large number of data providers and data requesters
in different ways such as one to many or many to many. A publisher-subscriber
pattern is very suitable for such relationships. It also serves the purpose of decou-
pling publishers and subscribers by involving a broker in between. The platform
uses an MQTT protocol based broker to delegate the context delivery tasks to
the broker. Use of a broker is especially very beneficial for devices with low hard-
ware capabilities such as controllers housing the sensors. Additionally, Quality
of Service (QoS) feature of MQTT protocol provides different levels of guaran-
teed delivery- an important contributor to the availability aspect of the software.
The use of MQTT based broker has shortened development time, at the same
time provided many of the desired attributes of a good architectural design in the
implementation. The alternative would be to implement everything from scratch.

Using open source libraries in the implementation has speeded up the develop-
ment process. Open source libraries were preferred because it allows the addition
of missing functionality into the library as the source code is available. Moreover,
the continuous support of the community in bug fixings and improvements keeps
the library up-to-date.

55

Chapter 5

Tests

In this thesis, three types of tests are planned that give more verification infor-
mation.

• Database performance test

• Integration test

• GUI test

Performance tests aims to measure performance of the platform. For the In-
tegration Test, Katalon Studio1 is used to automate test execution for every
development cycle. GUI tests are done manually since GUI has few screens.

Database performance test

The database performance test is used to gather information about the potential
performance of the database. In order to achieve these goals, data insertion and
retrieval performance of MySQL and MongoDB are measured. In order to gener-
ate load for the performance test, sensors data are simulated. A Node (sensor.js)

1http://katalon.com

CHAPTER 5. TESTS 56

application is written to generate random data with a given time interval and
send the data to the platform using MQTT. The details of the test environment
is presented below:

• Hardware

– Intel Xeon E3-1220v3 (4 core, 3.1 GHz, 80W), 8GB DDR3 1333 MHz
UDIMM, 2 x 1TB 7.2K rpm SATA / 12TB LFF (4x3TB)

• OS and Software

– Ubuntu KDE 14.04

– Node.js version: 10.15.3

– MySQL version: 5.6.27 Ubuntu Release

– MongoDB version: 4.0.3

To make an informed decision and draw more accurate conclusions about the
performance, 3 test case scenarios are devised as shown in Table 5.1. The aim of
these test scenarios is to measure how responsive the platform is under the load
rather than to compare different databases.

The first test case environment is demonstrated in Figure 5.1. Default config-
uration for MySQL and MongoDB is used for this test. The results exhibit that,
writing sensor data takes 5808 milliseconds on average with MySQL database
under load (6000 requests) where it takes 1.56 milliseconds with MongoDB. The
graph in Figure 5.2 is drawn using MATLAB tool with the data given in Ta-
ble 5.2. In Table 5.2 all values are given in millisecond. In this test, the platform
that using MongoDB performs much better than the case using MySQL, as the
number of data insertion increases. For example, as seen in the Table 5.2, for 1000
records (10 seconds test duration) MySQL needs minimum 42 milliseconds and
84 milliseconds on the average to insert a record where MongoDB does the same
in 1 millisecond and in 1.23 milliseconds on the average. For 6000 records MySQL
needs minimum 41 milliseconds and MongoDB needs minimum 1 millisecond and
1.56 milliseconds on the average.

CHAPTER 5. TESTS 57

Table 5.1: Test Cases

Test case 1

• 1 simulator sensor located on a server sends data every 10ms (100
insert request per second)

• Default MongoDB and MySQL configuration

• Run time 10, 20, 30, 40, 50, 60 seconds

Test case 2

• 4 simulator sensors located on a remote machine send data every
1ms (4000 insert request per second)

• 1 simulator sensor located on a server machine sends data every
10ms (400 insert request per second)

• 1500 users located on remote machine concurrently send data re-
quest for getting last value of temperature sensor

• Default MongoDB and MySQL configuration

• Run time: 5 minutes

Test case 3

• Same load and configuration with Test Case 2

• Users request temperature sensor data with the following condition:
“data is between 20 and 25”

Figure 5.1: Test Case 1 Environment

CHAPTER 5. TESTS 58

Table 5.2: Test Case 1 Results

MongoDB MySQL
of Records Min Max Avg. Min Max Avg.

(ms) (ms) (ms) (ms) (ms) (ms)
1000 1 2 1.23 42 730 84
2000 1 2 1.26 33 3252 112
3000 1 3 1.30 24 7051 153
4000 1 3 1.31 38 8831 3124
5000 1 3 1.31 41 13716 4714
6000 1 3 1.56 41 15610 5808

Figure 5.2: Test Case 1 Result: MySQL and MongoDB Insertion Time

In test case 2, an end-to-end performance test is designed and its environment
is demonstrated in Figure 5.3. In addition to simulating data generation, data
request of the users are simulated too. 4 sensors send data every 1 millisecond and
1 sensor sends data every 10 milliseconds to the platform. During the test, 1500
concurrent users request data from the platform. Response time is calculated as
follows:

Response Time = Time, response is delivered to user - Time, user makes a request

CHAPTER 5. TESTS 59

This calculation is shown as responsetotal = t1 - t0 in Figure 5.3 where t1

denotes the time a response is delivered to user and t0 denotes the time when a
request is made by the user. At the end of the test, the average response time
of the platform is calculated as 630 milliseconds. Data insertion performance of
databases are also investigated and results are stated in Table 5.3. As seen from
the table an increase in the number of sensor data and requestors does not change
the MongoDB performance, thus it does not affect the platform performance.

Figure 5.3: Test Case 2 Environment

Table 5.3: Test Case 2 and 3 Results

Test 2 Test 3
Min Max Avg. Min Max Avg.
(ms) (ms) (ms) (ms) (ms) (ms)

MongoDB 1 3 1.35 1 1197 117
MySQL 32 95813 68216 317 117318 89215

CHAPTER 5. TESTS 60

Test case 3 uses the same environment and load with test case 2 except the fact
that test case 3 uses a condition when requesting data. In test case 3, users send
a query to the platform for temperature sensor data asking for values between
20 and 25. More than 1M records in the database are used in the test. Average
response time of the platform is calculated as 1.10 second. Data insertion results
are also stated in Table 5.3.

Due to query condition in data request, or increasing the sensor simulator
programs increase the insertion times for both databases. The increase is more
drastic for the MongoDB. The average insertion times increases nine fold for
MongoDB but it is less than half for MySQL. However, using MongoDB performs
much better under load for all tests regardless a condition is used or not.

API and Integration Tests

The aim of the API tests is to ensure that each implemented feature does not
break the platform’s functionality. Since platform provides its functionality via its
RESTful web-services, total of 76 API tests are deployed for each endpoint given
in Table 4.7. In order to automate these test, Katalon Studio was used. Katalon
makes it easy to run all tests automatically after each deployment and provides
a record and run functionality. Test cases were prepared based on endpoint
calls. Each test have 8 attributes described in Table 5.4. An example of the
“sensor create” endpoint test is given in Table 5.5. All the 76 test cases were ran
every time when a new feature was developed. Additionally, these tests cover
aspects of integration test. As a result, all the test cases are successful.

GUI Tests

The aim of the GUI test is to ensure that the user interface provides the necessary
GUI elements to interface with the platform. Each screen shown in Appendix B
is tested manually on the Chrome Browser. All screen tests have passed.

CHAPTER 5. TESTS 61

Table 5.4: Test Case Attributes

ID Indicates ID of the test
Aim Indicates the aim of the test
Method Indicates the used method in the test and can be a one

of the “POST”, “GET”, “PUT”, “DELETE”
URL Indicates the URL of the endpoint
Input:Query Indicates the given URL parameter(s)
Input:Header Indicates the header parameter(s)
Input:Payload Indicates the given payload data at “POST” or “PUT”

request
Response Code Indicates the returned HTTP code which can be 200,

401, 500 XXXXX
Output Indicates the returned data from the platform

Table 5.5: Sensor Create Test Case

ID Test 10
Aim Creating a new sensor on the platform
Method POST
URL http://DUMMY_PCAD_URL/sensors
Input:Query -
Input:Header access_token=VALID_ACCESS_TOKEN
Input:Payload

{
"type": "<RANDOM_TYPE>",
"metric": "<RANDOM_METRIC>"
}

Response Code 200
Output

{
"id": "<GENERATED_ID>",
"type": "<GIVEN_TYPE>",
"metric": "<GIVEN_METRIC>",
"registerDate": "<DATE_TIME>"
}

http://DUMMY_PCAD_URL/sensors

62

Chapter 6

Conclusion

This thesis offers a context-aware service infrastructure, and its implementation
details for context-aware application development platform.

The main contribution of this study is to propose an infrastructure for Con-
text Aware Computing. Also, the study includes implementation of the proposed
infrastructure. The motivation behind developing such a platform is to provide
a message broker based service infrastructure that is extensible, fast and easy to
use. The platform is extensible because it is a service based and has ability to
apply new requirements without making fundamental changes. It is fast because
it uses MQTT as data delivery method and includes parallelism between data
delivery and data process. MQTT provides better performance, low latency and
overhead when compared to other communication protocols. Thus, the platform
called A Platform for Context Aware Application Development-PCAD tries to
ease development of context aware applications with its services. PCAD has in-
spired by operating system design. In this regard, PCAD offers its functionality
via its services. The platform plays a middleware role between data providers and
requestors. Middleware approach provides a platform to the providers that they
can store their data. The platform also relieves requestors in a way that they
obtain context data without concerning about context acquisition and storage.
PCAD also enforces authorization and authentication in the aims of protecting re-
sources against unauthorized access. The platform has multiple context services,

CHAPTER 6. CONCLUSION 63

communications and event handlers with the shared use of sensors and application
programs in a wide range of disparate applications. Therefore, we expect that
this thesis enhances our experience and contributes to the context-aware comput-
ing community and may help developers in building complex software platform
developments.

Future Works

The platform can be improved further as listed below:

1. Rule Service will be simplified by giving only one set of syntax including
the additions to solve the anomaly stated in Section 3.2.5.

2. Context Modeling Service will be implemented in order to make plain sensor
data more suitable for context processing. This service will also include
context reasoning functionality.

3. In the concept of scalability and distributed computing, the system is
planned to fulfill those needs. The current system design allows the platform
to work on a single machine.

4. Rule Service will be more efficient by checking only related rules rather than
checking each rule for each provided data.

5. Reporting Service will be enriched via PCAD Query Language (PQL). PQL
will provide a mechanism similar to SQL. In PQL, users will be able de-
fine filter in terms of logical operator(s), resource attribute(s) and desired
value(s).

6. More unit, GUI and integration tests will be implemented.

64

BIBLIOGRAPHY

[1] Schilit, B. N., and M. M. Theimer, 1994. Disseminating active map infor-
mation to mobile hosts. IEEE Network, vol. 8(5):22–32. ISSN 0890-8044.
doi:10.1109/65.313011.

[2] Brown, P. J., J. D. Bovey, and Xian Chen, 1997. Context-aware applications:
from the laboratory to the marketplace. IEEE Personal Communications,
vol. 4(5):58–64. ISSN 1070-9916. doi:10.1109/98.626984.

[3] Ryan, N. S., J. Pascoe, and D. R. Morse, 1998. Enhanced Reality Fieldwork:
the Context-aware Archaeological Assistant. Gaffney, V., M. van Leusen,
and S. Exxon, editors, Computer Applications in Archaeology 1997, British
Archaeological Reports. Oxford: Tempus Reparatum, 182–196.
URL http://www.cs.kent.ac.uk/pubs/1998/616

[4] Dey, A. K., 1998. Context-Aware Computing: The CyberDesk Project. AAAI
1998.

[5] Abowd, G. D., A. K. Dey, P. J. Brown, et al., 1999. Towards a Better
Understanding of Context and Context-Awareness. Gellersen, H.-W., editor,
Handheld and Ubiquitous Computing. Berlin, Heidelberg: Springer Berlin
Heidelberg. ISBN 978-3-540-48157-7, 304–307.

[6] Dey, A., 2001. Understanding and Using Context. Personal and Ubiquitous
Computing, vol. 5:4–7. doi:10.1007/s007790170019.

[7] Hull, R., P. Neaves, and J. Bedford-Roberts, 1997. Towards situated com-
puting. Digest of Papers. First International Symposium on Wearable Com-
puters. 146–153. doi:10.1109/ISWC.1997.629931.

http://www.cs.kent.ac.uk/pubs/1998/616

BIBLIOGRAPHY 65

[8] Pascoe, J., N. S. Ryan, and D. R. Morse, 1998. Human Computer Giraffe
Interaction: HCI in the Field. Johnson, C., editor, Workshop on Human
Computer Interaction with Mobile Devices, GIST Technical Report G98-1.
University of Glasgow, 182–196.
URL http://www.cs.kent.ac.uk/pubs/1998/617

[9] Rekimoto, J., Y. Ayatsuka, and K. Hayashi, 1998. Augment-able real-
ity: situated communication through physical and digital spaces. Digest
of Papers. Second International Symposium on Wearable Computers (Cat.
No.98EX215). 68–75. doi:10.1109/ISWC.1998.729531.

[10] Salber, D., A. Dey, and G. Abowd, 1998. Ubiquitous Computing: Defining
an HCI Research Agenda for an Emerging Interaction Paradigm.

[11] Schilit, B., N. Adams, and R. Want, 1994. Context-Aware Computing Ap-
plications. 1994 First Workshop on Mobile Computing Systems and Appli-
cations. 85–90. doi:10.1109/WMCSA.1994.16.

[12] Strang, T., and C. Linnhoff-Popien, 2004. A Context Modeling Survey. 34–
41.

[13] Bolchini, C., C. Curino, E. Quintarelli, et al., 2007. A data-oriented survey of
context models. ACM SIGMOD Record, vol. 36:19–26. doi:10.1145/1361348.
1361353.

[14] Baldauf, M., S. Dustdar, and F. Rosenberg, 2007. A Survey on context-aware
systems. Information Systems, vol. 2. doi:10.1504/IJAHUC.2007.014070.

[15] Wapforum. Available from: <http://www.wapforum.org>. [May 28, 2019].

[16] Hofer, T., W. Schwinger, M. Pichler, et al., 2003. Context-awareness on
mobile devices - the hydrogen approach. 36th Annual Hawaii International
Conference on System Sciences, 2003. Proceedings of the. 10 pp.–. doi:
10.1109/HICSS.2003.1174831.

[17] Korpipää, P., and J. Mäntyjärvi, 2003. An Ontology for Mobile Device
Sensor-Based Context Awareness. Lecture Notes in Artificial Intelligence

http://www.cs.kent.ac.uk/pubs/1998/617
http://www.wapforum.org

BIBLIOGRAPHY 66

(Subseries of Lecture Notes in Computer Science), vol. 2680. 451–458. doi:
10.1007/3-540-44958-2_37.

[18] Atkinson, R., R. Garcia-Castro, J. Lieberman, et al. Semantic Sensor Net-
work Ontology. Available from: <https://www.w3.org/TR/vocab-ssn/>.
[May 28, 2019].

[19] Bellavista, P., A. Corradi, M. Fanelli, et al., 2013. A Survey of Context
Data Distribution for Mobile Ubiquitous Systems. ACM Computing Surveys,
vol. 45. doi:10.1145/2333112.2333119.

[20] Happ, D., N. Karowski, T. Menzel, et al., 2017. Meeting IoT platform re-
quirements with open pub/sub solutions. Annales des Télécommunications,
vol. 72:41–52.

[21] Banks, A., and R. Gupta. MQTT Version 3.1.1 Plus Errata 01. Available
from: <http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.
html>. [May 28, 2019].

[22] Luoto, A., and K. Systä, 2018. Fighting network restrictions of request-
response pattern with MQTT. IET Software, vol. 12(5):410–417. ISSN 1751-
8806. doi:10.1049/iet-sen.2017.0251.

[23] Collina, M., G. E. Corazza, and A. Vanelli-Coralli, 2012. Introducing the
QEST broker: Scaling the IoT by bridging MQTT and REST. 2012 IEEE
23rd International Symposium on Personal, Indoor and Mobile Radio Com-
munications - (PIMRC). ISSN 2166-9589, 36–41. doi:10.1109/PIMRC.2012.
6362813.

[24] Sentilo. Available from: <http://www.sentilo.io/wordpress/>. [May
28, 2019].

[25] Román, M., C. K. Hess, R. Cerqueira, et al., 2002. Gaia: A middleware
platform for active spaces. Mobile Computing and Communications Review,
vol. 6:65–67.

[26] Fahy, P., and S. Clarke, 2004. CASS-Middleware for Mobile Context-Aware
Applications. MobiSys.

https://www.w3.org/TR/vocab-ssn/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://www.sentilo.io/wordpress/

BIBLIOGRAPHY 67

[27] Chen, H., T. Finin, and A. Joshi, 2003. An Intelligent Broker for Context-
Aware Systems. Adjunct Proceedings of UbiComp.

[28] Biegel, G., and V. Cahill, 2004. A framework for developing mobile,
context-aware applications. Second IEEE Annual Conference on Pervasive
Computing and Communications, 2004. Proceedings of the. 361–365. doi:
10.1109/PERCOM.2004.1276875.

[29] Dey, A., and G. Abowd, 2000. The Context Toolkit: Aiding the Development
of Context-Aware Applications.

[30] Pokraev, S., J. Koolwaaij, M. van Setten, et al., 2005. Service platform
for rapid development and deployment of context-aware, mobile applications.
ISBN 0-7695-2409-5, 646. doi:10.1109/ICWS.2005.106.

[31] Firner, B., R. S. Moore, R. Howard, et al., 2011. Poster: Smart Buildings,
Sensor Networks, and the Internet of Things. Proceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’11. New York,
NY, USA: ACM. ISBN 978-1-4503-0718-5, 337–338. doi:10.1145/2070942.
2070978.
URL http://doi.acm.org/10.1145/2070942.2070978

[32] Devaraju, A., S. Hoh, and M. Hartley, 2007. A Context Gathering Framework
for Context-aware Mobile Solutions. Proceedings of the 4th International
Conference on Mobile Technology, Applications, and Systems and the 1st
International Symposium on Computer Human Interaction in Mobile Tech-
nology, Mobility ’07. New York, NY, USA: ACM. ISBN 978-1-59593-819-0,
39–46. doi:10.1145/1378063.1378070.
URL http://doi.acm.org/10.1145/1378063.1378070

[33] Karaçalık, O., 2018. An Actor Model Based Platform for Developing Context-
aware Applications. Turkey: CoHE THESIS CENTER.

[34] Celikkan, U., and K. Kurtel, 2015. A Platform for Context-Aware Applica-
tion Development: PCAD. 1481–1488. doi:10.15439/2015F49.

[35] Silberschatz, A., P. B. Galvin, and G. Gagne, 2012. Operating System Con-
cepts. Wiley Publishing, 9th edn. ISBN 1118063333, 9781118063330.

http://doi.acm.org/10.1145/2070942.2070978
http://doi.acm.org/10.1145/1378063.1378070

BIBLIOGRAPHY 68

[36] C. Hu, V., D. Ferraiolo, R. Kuhn, et al. Guide to Attribute
Based Access Control (ABAC) Definition and Considerations. Available
from: <https://nvlpubs.nist.gov/nistpubs/specialpublications/
NIST.sp.800-162.pdf>. [May 28, 2019].

[37] CacheControl. Json Rule Engine. Available from: <https://github.com/
CacheControl/json-rules-engine>. [May 28, 2019].

[38] Yıldırım, O. Role and Attribute based Access Control for Node.js. Available
from: <https://github.com/onury/accesscontrol>. [May 28, 2019].

[39] Guner, A., K. Kurtel, and U. Celikkan, 2017. A message broker based archi-
tecture for context aware IoT application development. 2017 International
Conference on Computer Science and Engineering (UBMK). 233–238. doi:
10.1109/UBMK.2017.8093381.

[40] McKinney, R. LoopBack Juggler. Available from: <https://loopback.io/
doc/en/lb3/Advanced-topics-data-sources.html>. [May 28, 2019].

https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
https://github.com/CacheControl/json-rules-engine
https://github.com/CacheControl/json-rules-engine
https://github.com/onury/accesscontrol
https://loopback.io/doc/en/lb3/Advanced-topics-data-sources.html
https://loopback.io/doc/en/lb3/Advanced-topics-data-sources.html

69

Appendix A

Java Application Programming

Interface

An application developer who would like to use Java API can download .jar file
from github. After adding this library to project, methods described in Table A.1
are available to use.

Table A.1: Interaction Mechanism Service Usage
Name Description

initPcadInterface It accepts credential of a user with options array which
consist of header parameters. This method initializes
PCAD interface.

getPcadResource This method gets data from PCAD for the given re-
source name.

getPcadResource This method gets data from PCAD for the given re-
source name and resource ID.

savePcadResource This method creates new resource data for the given
resource name.

savePcadResource This method updates existing resource data for the given
resource name and resource ID.

APPENDIX A. JAVA APPLICATION PROGRAMMING INTERFACE 70

PCAD Initializer� �
Signature:

Object initPcadInterface(String username, String password, HashMap<

String,String> options)

Description:

It accepts credential of a user with options array. These options

consist of header parameters.

Parameters:

username: Selected username or e-mail of a user in registration process

password: Selected password of a user.

Option Values:

'Accept': Defines desired data format in response of API calls

'Content Type': Defines sending data format in request

Return Value:

It returns an object including id, ttl.

id : access_token that should be used in subsequent API calls.

ttl: valid time value of given access_token in seconds.

Example Usage:

HashMap<String, String> options = new HashMap<>();

options.put("Accept", "application/json");

options.put("Content Type", "application/json");

PCAD pcad = new PCAD("<USERNAME>", "<PASSWORD>", options);

Object pcadObject = pcad.initPcadInterface();� �
Listing A.1: PCAD Initialization

APPENDIX A. JAVA APPLICATION PROGRAMMING INTERFACE 71

Data Retrieval Function� �
Signature:

JSONArray getPcadResource(String resourceName, HashMap<String,String>

options)

Description:

getPcadResource is used for data retrieval.

Parameters:

resourceName: Defines the desired resource name such as sensorData.

options:

'Accept': Defines desired data format in response of API calls.

'Content Type': Defines sending data format in request.

'access_token': Obtained access token in PCAD initialization.

'filter': JSON filter object

Return Value:

Returns a JSON array of desired resource objects

Example Usage:

HashMap<String, String> options = new HashMap<>();

options.put("Accept", "application/json");

options.put("Content Type", "application/json");

options.put("access_token", "<ACCESS_TOKEN>");

JSONArray pcadObject = pcad.getPcadResource("<RESOURCE_NAME>",

options);� �
Listing A.2: Data Retrieval from PCAD

APPENDIX A. JAVA APPLICATION PROGRAMMING INTERFACE 72

Data Retrieval Function with Resource ID� �
Signature:

JSONObject getPcadResource(String resourceName, String resourceId,

HashMap<String,String> options)

Description:

It used for data retrieval with ID of resource.

Parameters:

resourceName: Defines the desired resource name such as sensorData.

resourceName: Defines ID desired resource.

options:

'Accept': Defines desired data format in response of API calls.

'Content Type': Defines sending data format in request.

'access_token': Obtained access token in PCAD initialization.

'filter': JSON filter object

Return Value:

Returns a JSON object of desired resource.

Example Usage:

HashMap<String, String> options = new HashMap<>();

options.put("Accept", "application/json");

options.put("Content Type", "application/json");

options.put("access_token", "<ACCESS_TOKEN>");

JSONObject pcadObject = pcad.getPcadResource("<RESOURCE_NAME>",

"<RESOURCE_ID>", options);� �
Listing A.3: Data Retrieval from PCAD with Resource ID

APPENDIX A. JAVA APPLICATION PROGRAMMING INTERFACE 73

Data Save Function� �
Signature:

JSONObject savePcadResource(String resourceName, Object resource,

HashMap<String,String> options)

Description:

It is used for saving a resource to the PCAD.

Parameters:

resourceName: Defines name of the resource that want to create in

PCAD.

resource: Contains resource attributes

options:

'Accept': Defines desired data format in response of API calls.

'Content Type': Defines sending data format in request.

'access_token': Obtained access token in PCAD initialization.

Return Value:

Returns a created instance of the resource as JSONObject.

Example Usage:

HashMap<String, String> options = new HashMap<>();

HashMap<String, String> resource = new HashMap<>();

options.put("Accept", "application/json");

options.put("Content Type", "application/json");

options.put("access_token", "<ACCESS_TOKEN>");

resource.put("<ATTRIBUTE>", "<VALUE>");

resource.put("<ATTRIBUTE>", "<VALUE>");

JSONObject pcadObject = pcad.savePcadResource("<RESOURCE_NAME>",

resource, options);� �
Listing A.4: Save data to PCAD

APPENDIX A. JAVA APPLICATION PROGRAMMING INTERFACE 74

Data Update Function� �
Signature:

JSONObject savePcadResource(String resourceName, Object resource,

String resourceId, HashMap<String,String> options)

Description:

It is used for updating a resource to the PCAD.

Parameters:

resourceName: Defines name of the resource that want to update.

resource: Contains desired attributes that will be updated.

options:

'Accept': Defines desired data format in response of API calls.

'Content Type': Defines sending data format in request.

'access_token': Obtained access token in PCAD initialization.

Return Value:

Returns a update instance of the resource as JSONObject.

Example Usage:

HashMap<String, String> options = new HashMap<>();

HashMap<String, String> resource = new HashMap<>();

options.put("Accept", "application/json");

options.put("Content Type", "application/json");

options.put("access_token", "<ACCESS_TOKEN>");

resource.put("<ATTRIBUTE>", "<VALUE>");

resource.put("<ATTRIBUTE>", "<VALUE>");

JSONObject pcadObject = pcad.updatePcadResource("<RESOURCE_NAME>",

resource, <RESOURCE_ID>, options);� �
Listing A.5: Update data in PCAD

APPENDIX A. JAVA APPLICATION PROGRAMMING INTERFACE 75

JAVA Example for connection to MQTT

Example of connecting to MQTT using JAVA listed in Listing A.6. In this
example, value of variable “topic” is the unique topic for the requestor described
in the demonstration of Interaction Mechanism 6 in Section 4.3. This example
requires “Eclipse Paho” MQTT library. In this example, when a new data arrives
from MQTT, messageArrived method is called implicitly as callback method.

APPENDIX A. JAVA APPLICATION PROGRAMMING INTERFACE 76

� �
public class pcadClient implements MqttCallback {

private String topic = "mytopic";

private String broker = "tcp://localhost:1883";

private String clientId = "JavaSample";

private MemoryPersistence persistence = new MemoryPersistence();

public static void main(String[] args) {

pcadClient pClient = new pcadClient();

pClient.subscribe(pClient.topic);

}

private void subscribe(String topic){

MqttClient sampleClient = null;

MqttConnectOptions connOpts = new MqttConnectOptions();

connOpts.setCleanSession(true);

try {

sampleClient = new MqttClient(broker, clientId, persistence);

sampleClient.connect(connOpts);

sampleClient.subscribe(topic);

} catch (MqttException e) {

e.printStackTrace();

}

sampleClient.setCallback(this);

}

@Override

public void messageArrived(String topic, MqttMessage message) {

System.out.println(message);

}

@Override

public void connectionLost(Throwable cause) {}

@Override

public void deliveryComplete(IMqttDeliveryToken token) {}

}� �
Listing A.6: Connecting as subscriber to MQTT

77

Appendix B

User Interfaces

Sensor Operations

Figure B.1: Listings Sensor

APPENDIX B. USER INTERFACES 78

Figure B.2: Adding Sensor

Figure B.3: Created Sensor Information

APPENDIX B. USER INTERFACES 79

Figure B.4: Created Sensor

Figure B.5: Listing Sensor Data

APPENDIX B. USER INTERFACES 80

User, Role and Authorization Operations

User Listing and Editing

Figure B.6: Listings Users as System Admin

APPENDIX B. USER INTERFACES 81

Figure B.7: Updating Users as System Admin

APPENDIX B. USER INTERFACES 82

Role Listing and Creation

Figure B.8: System Admin lists Roles and adds a new Role

APPENDIX B. USER INTERFACES 83

Figure B.9: Adding a Role as System Admin

Figure B.10: System Admin modifies the new Role

APPENDIX B. USER INTERFACES 84

Figure B.11: Listing Role and its Grants as System Admin

Figure B.12: Listing Role and its Grants as System Admin

85

Appendix C

Installation Guide

PCAD and its toolkits are configured and bundled to run as a Docker Container1.
This facilitates installation and distribution of PCAD. In order to run PCAD,
first Docker2, Docker Compose3 and Git4 should be installed. Afterwards, just
few commands are enough to install and use PCAD explained in Appendix C
Standalone PCAD Installation.

Installations

This guide gives instructions for Docker, Docker Compose, Git and standalone
PCAD installations on macOS Mojave with version 10.14.5, Ubuntu with version
18.04.2 LTS, CentOS with version 7.6.1810 and Windows with version Windows
10 Pro N build (17763.557).

1https://www.docker.com/resources/what-container
2https://www.docker.com/
3https://docs.docker.com/compose/overview/
4https://git-scm.com/

APPENDIX C. INSTALLATION GUIDE 86

macOS Installation

• Go to the link5 download Docker and follow the instructions on the setup
screen

• Go to the link6 download Git and follow the instructions on the setup screen

• Once both installations are completed, proceed to the Appendix C Stan-
dalone PCAD Installation

Ubuntu Installation

• Open a terminal window

• Navigate to desired installation location

• Write the following command� �
1 sudo apt-get install -y apt-transport-https ca-certificates git

curl gnupg-agent software-properties-common \

2 && curl -fsSL https://download.docker.com/linux/ubuntu/gpg

| sudo apt-key add - \

3 && sudo apt-key fingerprint 0EBFCD88 \

4 && sudo add-apt-repository "deb [arch=amd64] https://

download.docker.com/linux/ubuntu $(lsb_release -cs)

stable" \

5 && sudo apt-get update && sudo apt-get install -y docker-

ce docker-ce-cli containerd.io && sudo apt install -y

docker-compose \

6 && git clone https://github.com/guneraykut/pcad-docker.git

\

7 && cd pcad-docker \

8 && sudo docker-compose up -d� �
Listing C.1: Docker, Git and PCAD Installation Commands for Ubuntu

5https://hub.docker.com/editions/community/docker-ce-desktop-mac
6https://git-scm.com/download/mac

APPENDIX C. INSTALLATION GUIDE 87

CentOS Installation

• Open a terminal window

• Navigate to desired installation location

• Write the following command� �
1 yum install -y yum-utils device-mapper-persistent-data lvm2 \

2 && yum-config-manager --add-repo https://download.docker.com/

linux/centos/docker-ce.repo \

3 && yum install -y git docker-ce docker-ce-cli containerd.io \

4 && sudo curl -L "https://github.com/docker/compose/releases/

download/1.24.0/docker-compose-$(uname -s)-$(uname -m)" -o

/usr/local/bin/docker-compose \

5 && sudo chmod +x /usr/local/bin/docker-compose \

6 && sudo ln -s /usr/local/bin/docker-compose /usr/bin/docker-

compose \

7 && systemctl start docker \

8 && git clone https://github.com/guneraykut/pcad-docker.git \

9 && cd pcad-docker \

10 && docker-compose up -d� �
Listing C.2: Docker, Git and PCAD Installation Commands for CentOS

Windows Installation

• Go to the link7 download Docker and follow the instructions on the setup
screen and do not choose “use windows containers” option

• If Hyper-V was not enabled, setup will give a warning after installation.
Follow the instructions on the screen to enable Hyper-V

• Go to the link8 download Git and follow the instructions on the setup screen
7https://hub.docker.com/editions/community/docker-ce-desktop-windows
8https://git-scm.com/download/windows

APPENDIX C. INSTALLATION GUIDE 88

• Once both installations are completed, proceed to the Appendix C Stan-
dalone PCAD Installation

Standalone PCAD Installation

This section describes PCAD installation provided that Docker, Docker Compose
and Git have already been installed. The steps are listed in Listing C.3.

• Open a terminal window (or PowerShell on Windows)

• Navigate to desired installation location

• Write the following command� �
1 git clone https://github.com/guneraykut/pcad-docker.git \

2 && cd pcad-docker \

3 && docker-compose up -d� �
Listing C.3: Standalone PCAD Installation Commands

After the installation, PCAD API’s explorer is available at http://

localhost:3000/explorer. Default installation uses port number 3000 on the
host machine. In the case that this port is used by another application, the
port must be changed in the “docker-composer.yml” file that is downloaded in
the directory “pcad-docker” during the installation. Find the line “3000:3000”
and change the port number 3000 on the left side of “:” sign to the new
value. Then, the user can connect to PCAD through that port as follows:
http://localhost:<NEW_PORT_NUMBER>/explorer. This change must be done
before “docker-compose up -d” command is executed.

http://localhost:3000/explorer
http://localhost:3000/explorer
http://localhost:<NEW_PORT_NUMBER>/explorer

	Front Matter
	Abstract
	Öz
	Acknowledgement
	Table of Contents

	List of Figures
	List of Tables
	Introduction
	Background and Terminology
	Context Modeling and Reasoning
	Context and Sensor Data Delivery
	Reference Architectures and Frameworks

	The PCAD Platform
	General Overview of the Platform
	PCAD Services
	Context Modeling and Reasoning Service
	Data Management Service
	Security and Privacy Service
	Alarm and Notification Service
	Rule Service
	Transformation Service
	Reporting Service

	Design and Implementation
	Data Management Service
	Security And Privacy Service
	Alarm and Notification Service
	Rule Service
	Transformation Service
	Reporting Service
	Design and Implementation Outcomes

	Tests
	Conclusion
	Bibliography
	Java Application Programming Interface
	User Interfaces
	Installation Guide

