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ABSTRACT

RELIABILITY OF WEIGHTED k − out− of − n : G
SYSTEMS WITH m TYPE OF COMPONENTS

Tezel, Seçil

M.S. in Applied Statistics

Advisor: Prof. Dr. G. Yazgı Tütüncü

January, 2020

In this thesis, weighted k − out − of − n : G systems consisting of more than

one type of component are studied. A general formula for computing the system

reliability weighted k − out − of − n : G system which has m types of compo-

nents is proposed. Reliability of different systems has been computed. Optimal

values of the number of components in each group are determined under a mini-

mum required reliability by minimizing the total acquisition cost. Furthermore,

numerical examples are included.

Keywords: Order statistics, reliability analysis, weighted k−out−of−n systems.
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ÖZET

m TİP BİLEŞENE SAHİP AĞIRLIKLI n′den− k′lı
SİSTEMLERİN GÜVENİNİRLİĞİ

Tezel, Seçil

Uygulamalı İstatistik Yüksek Lisans Programı

Tez Danışmanı: Prof. Dr. G. Yazgı Tütüncü

Ocak, 2020

Bu tezde, birden fazla tip bileşenden oluşan ağırlıklı n’den-k’lı sistemler çalışıldı.

m tane tip bileşene sahip ağırlıklı n’den-k’lı sistemlerin güvenirlilik analizi için

genel bir yöntem önerildi. Farklı yapılara sahip sistemler için güvenirlilik

gösterildi. Her gruptaki bileşen sayısının optimum değerleri, toplam edinme

maliyetini en aza indirerek gerekli minimum güvenilirlik altında belirlendi.

Ayrıca, sayısal örnekler de dahil edilmiştir.

Anahtar Kelimeler: Sıra istatistikleri, güvenirlilik analizi, ağırlıklı n′den − k′lı

sistemler.
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CHAPTER 1

INTRODUCTION

Reliability engineering emerged in the late 1940s and early 1950s. It was first

applied to communication and transportation systems. Most of the reliability

studies in the past were limited to the analysis of the performance aspects of the

systems. In the past half century, more studies have been conducted on reliabil-

ity analysis. The main purpose of reliability has been to find the best option to

improve system reliability. The best way to do this is to increase the reliability

of components in the system or to use standby redundancy. There are a num-

ber of measures that investigate the performance of a system, such as reliability,

availability, and system efficiency. In this paper, we will focus on improving sys-

tem reliability to analyze the effects of components which have different weights

on system reliability. Furthermore, we will investigate the optimum value of the

number of components in each type minimizing the total cost which help us to

make the best design of the system.

Reliability is the probability of a system to perform at least for a predefined

time interval when the stated conditions are satisfied. Hence, in describing the

reliability of a given system, it is needed to specify the component’s failure pro-

cess, the system structure which describes how the components are associated,

and the state in which the system is described to be failed.

Order statistics and their properties are presented in Chapter 2. The def-

inition of reliability, the type of systems such as Binary and Multi-State, the

basic definitons about coherent system and standby systems are given in Chapter

3. k − out − of − n systems, their working principle and the reliability of this

system with a cold standby component are pointed out in Chapter 4. Weighted

k − out− of − n systems, their working principle and the reliability of this sys-

tem with two types of components and also adding a cold standby component

into the model are presented in Chapter 5. Finally in Chapter 6, the reliability

1



analysis of weighted k − out− of − n systems with m types of components and

optimal values of the number of components in each type are investigated under

a minimum required reliability of by minimizing the total acquisition cost. Also,

some numerical examples are included.
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CHAPTER 2

ORDER STATISTICS

A function which assigns each outcome in a sample space S with a real value

is called a random variable. X denotes a random variable and x denotes the

specific value that a random variable X may take.

If the random variables X1, . . . , Xn are arranged in order of magnitude and

then written as

X1 ≤ . . . ≤ Xn,

we call Xi the ith order statistic (i = 1, . . . , n). In many paper Xi are assumed

to be statistically independent and identically distributed.

2.1 Distribution of a Single Order Statistic

We suppose that X1, . . . , Xn are n identical and independent variables, each

with cumulative distribution function (c.d.f.) F (x). Let F(r)(x) denote the c.d.f.

of the rth order statistics Xr where i = 1, . . . , n. Then the c.d.f. of the largest

order statistics Xn is given by

F(n)(x) = P{X(n) ≤ x} = P{all Xi ≤ x} = F n(x)

Likewise we have

F(1)(x) = P{X(1) ≤ x} = 1− P{X(1) > x}

= 1− P{all Xi > x} = 1− [1− F (x)]n

3



The distribution function of rth order statistic is

F(r)(x) = P{X(r) ≤ x} = P{at least r of the Xi are less than or equal to x}

=
n∑

i=r

(
n

i

)
F i(x)[1− F (x)]n−i (2.1)

If F is absolutely continuous with probability density function (pdf)

f(x) = F ′(x), then the distribution function of rth order statistic is

F(r)(x) =
1

B(r, n− r + 1)

∫ F (x)

0

tr−1(1− t)n−rdt (2.2)

=
n!

(r − 1)!(n− r)!

∫ F (x)

0

tr−1(1− t)n−rdt

2.2 Joint Distribution of Two or More Order Statistics

The joint density function of X(r) and X(s) (1 ≤ r < s ≤ n) is denoted by

f(r)(s)(x, y). It follows that for x ≤ y

f(r)(s)(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!
F r−1(x)f(x)

× [F (y)− F (x)]s−r−1f(y)[1− F (y)]n−s (2.3)

Generalizations are now clear. Thus the joint pdf of X(n1), . . . , X(nk)

(1 ≤ n1 < . . . < nk ≤ n; 1 ≤ k ≤ n) is for x1 ≤ . . . ≤ xk,

f(n1)...(nk)(x1, . . . , xk) =
n!

(n1 − 1)!(n2 − n1 − 1)! . . . (n− nk)!

×F n1−1(x1)f(x1)[F (x2)− F (x1)]
n2−n1−1f(x2)× . . .× [1− F (xk)]n−nkf(xk)

4



The joint c.d.f. F(r)(s)(x, y) of Xr and Xs may be obtained by integration of

(2.3) as well as by a direct argument valid also in the discrete case. We have for

x < y

F(r)(s)(x, y) = P{at least r Xi ≤ x, at least s Xi ≤ y}

=
n∑

j=s

j∑
i=r

P{exactly i Xi ≤ x, exactly j Xi ≤ y}

=
n∑

j=s

j∑
i=r

n!

i!(j − i)!(n− j)!
F i(x)[F (y)− F (x)]j−i[1− F (y)]n−j

Also for x ≥ y the inequality Xs ≤ y implies Xr ≤ x, so that

F(r)(s)(x, y) = F(s)(y)

Let X1, . . . , Xn1 be random variables with joint cumulative distribution func-

tion (c.d.f.) F (x1, x2, . . . , xn1) univariate marginal c.d.f. F (x) and probability

density function (p.d.f.) f(x) and Y1, . . . , Yn2 be random variables with joint

continuous joint c.d.f. G(y1, y2, . . . , yn2) having univariate marginal G(x) and

probability density function (p.d.f.) g(x). We assume that these two collec-

tions of random variables independently distributed. Denote by {W1, . . . ,Wn}

the n = n1 + n2 random variables combined from n1Xs and n2Y s.

Denote the distribution function of order statistic Wr:n by Hr(w). Then ac-

cording to the theory of order statistics one can write

Hr(w) = P (Wr:n ≤ w) = P (at least r of W1, . . . ,Wn ≤ w)

=
n∑

i=r

P (exactly i of W1, . . . ,Wn ≤ w).

Bairamov and Parsi (2011) derived the distribution of Wr:n as follows

5



H(r)(x) = P (Wr:n ≤ x)

=
n∑

i=r

min(i,n1)∑
j=max(0,n1+i−n)

(
n1

j

)(
n2

i− j

)

×F (x)j(1− F (x))n1−jG(x)i−j(1−G(x))n2−i+j

The p.d.f. of Tr:n is given by

h(r)(x) =

min(r−1,n1−1)∑
i=max(0,n1+r−1−n)

(
n1

1

)(
n1 − 1

i

)(
n2

r − 1− i

)

×F (x)i(1− F (x))n1−1−iG(x)r−1−i(1−G(x))n2−r+i+1f(x)

+

min(r−1,n1)∑
i=max(0,n1+r−n)

(
n2

1

)(
n1

i

)(
n2 − 1

r − 1− i

)

×F (x)i(1− F (x))n1−iG(x)r−1−i(1−G(x))n2−r+ig(x)

Let show it by considering the expected value of the largest order statistic

c.d.f. F (x).

E(X(n)) =

∫ ∞
−∞

nx[F (x)]n−1dF (x)

6



2.3 Residual Lifetimes of Remaining Components from I.I.D. Ran-

dom Variables

The residual lifelengths of the remaining functioning components following

the kth failure in the system is defined by Bairamov and Arnold (2008). Also, they

debate the joint distribution of these exchangeable independence of the residual

lifelengths.

Consider (n − k + 1) − out − of − n system which will function succesfully

until k on the components have failed. Accordingly, if L1, L2, . . . , Ln are denoted

by the lifetimes of the individual components, then the lifetime of the (n − k +

1) − out − of − n system will be represented by kth order statistic Lk:n. After

(n− k + 1)− out− of − n system fails, it is often reasonable to stop the system

and rescue the working components for using them in other systems.

On the other hand, if the system works without a break the common procedure

is to use standby components to prevent the failure of the system. Hence the

system will continue to work with the remaining components together with the

standby components.

In the modeling of failure times for components of the system with indepen-

dent and identically distributed (i.i.d.) components, we assume that the failure

of one component does not affect the working of the remaining ones. The clas-

sical theory of (n − k + 1) − out − of − n systems assumes that the n lifetimes

L1, L2, . . . , Ln of the components of the system are i.i.d. with common abso-

lutely continuous distribution function F and corresponding density f . Hence,

the time of the first failure will be the first order statistic L1:n and the follow-

ing times between failures can be identified with the difference of Li:n − Li−1,n,

i = 2, 3, . . . , n.

Even under the usual assumption that the original lifetimes were independent

and identically distributed, it appears that the residual lifetimes of the working

components will be replaceable, but not independent. They will be conditionally

independent given the time of kth failure, but we are not supposing to know

7



the time when system’s failure, we just know it has stopped working because k

failures have happened. If we put the freed components into a new system, we

will need to consider that the lifetime of the components in this new system are

i.i.d. but this time they are dependent.

For any k ∈ 1, 2, . . . , n we will use the notation L
(k)
1 , L

(k)
2 , . . . , L

(k)
n−k to denote

the residual lifetimes of the n− k components still working at the time of the kth

failure. For each k, we may define

L
(k)
1:n−k = min(L

(k)
1 , L

(k)
2 , . . . , L

(k)
n−k)

Upon reflection, it is evident that these L
(k)
1:n−k’s simply represent an al-

ternative description of the gaps of the order statistics of the original sample

L1, L2, . . . , Ln. Therefore,

Lk+1:n − Lk:n = L
(k)
1:n−k

and

Lk−1:n = L1:n + L
(1)
1:n−1 + L

(2)
1:n−2 + . . .+ L

(k)
1:n−k

If we are given Lk:n = x, then the conditional distribution of the subsequent

order statistics Lk+1:n, . . . , Ln:n is the same as the distribution of order statistics

of a sample of size n− k from the distribution of F truncated below at x. If we

denote by Y
(k)
i , i = 1, 2, . . . , n−k the randomly ordered values of Lk+1:n, . . . , Ln:n,

the given Lk:n = x, these Y
(k)
i ’s will be independent and identically distributed

with common survival function F̄ (x + y)/F̄ (x). The residual lifetimes after k

failures, L
(k)
1 , . . . , L

(k)
n−k, may be represented as

L
(k)
i = Y

(k)
i − Lk:n

8



where i = 1, 2, . . . , n− k.

2.4 Residual Lifetimes of Remaining Components from Mixed Ran-

dom Variables

In this section, we show the residual lifetimes of the remaining components

from two differenf independent sets combined together.

Let L
(1)
1 , . . . , L

(1)
n1 be independent and identically distributed random variables

with cumulative distribution function F1(t). Also, let L
(2)
1 , . . . , L

(2)
n2 be indepen-

dent and identicaaly distributed random variables with cumulative distributon

function F2(t). Assume that these two collections of random variables are inde-

pendent of each other and they denote lifetimes of two different types of compo-

nents.

Let us denote by L1, . . . , Ln the n = n1 + n2 lifetimes of components in a

system combined from n1 of L(1)’s and n2 of L(2)’s. The rth order statistics of the

combined sample is denoted by Lr:n, where r = 1, . . . , n.

Let M be a random variable showing the number of failed components of

type 1 at the time of rth failure. If we are given Lr:n = x and M = m, then the

conditional distribution of the subsequent order statistics from the first sample

L
(1)
m+1:n1

, . . . , L
(1)
n1:n1 is the same as the distribution of order statistics of a sample

of size n1 −m from the distribution of F truncated below at x.

Similarly, the conditional distribution of the subsequent order statistics from

the second sample L
(2)
r−m+1:n2

, . . . , L
(2)
n2:n2 is the same as the distribution of order

statistics of a sample of size n2− r+m from the distribution F2 truncated below

at x.

If we denote respectively the remaining lifetimes of the remaining components

from the first sample and second sample as L
(1),r
i , where i = 1, . . . , n1 − m,

and L
(2),r
j , where j = 1, . . . , n2 − r + m and the randomly ordered values as

L
(1)
m+1:n1

, . . . , L
(1)
n1,n1 and L

(2)
r−m+1:n2

, . . . , L
(2)
n2,n2 , then given Lr:n = x and M = m,

9



L
(1),r
i will be i.i.d. with common survival function F̄1(x+ t)/F̄1(x) and L

(2),r
j will

again be independent and identically distributed with common survival function

F̄2(x+ t)/F̄2(x).
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CHAPTER 3

SYSTEM RELIABILITY AND TYPES OF SYSTEMS

In this chapter, we investigate system reliabilities and types of system. Why

do we need Reliability Modeling? Reliability is generally used in many different

fields and in many different disciplines. System reliability analysis is applied for

many purposes. One of these objectives is to identify maintenance times that are

of great importance for the system to function smoothly and in accordance with

its function.

Another objective of the reliability analysis is to analyze the current failure

conditions of production lines or systems and to make changes in line placement

in the light of this analysis.

3.1 System Reliability

Reliability is the possibility of a system to perform at least for a predefined

time interval when the stated conditions are satisfied. As a result, the possibility

that a system will work effectively as desired is called ”system reliability.” The

probability of failure is called unreliability. System reliability is an amount of

how well a system finishes its plan goal. A system is designed to perform one or

more operations.

In order to evaluate the reliability analysis of the system, it is necessary to

determine the following situations.

1. The rules which keep the system functioning

2. The relationship between the system components

11



3.2 The type of systems

In this section, we will investigate the type of systems. Systems are generally

divided into two parts such as Binary and Multi-State systems. Then we give

special cases such as series, parallel and a mix of both and their reliabilities.

Moreover, we define the Coherent Systems and Standby System. In this study,

we do not interest these type of systems so we just give explanations of them and

this paper do not include further information about them.

3.2.1 Binary Systems

When the system and its components have only two states such as working

and failed, then these types of systems are called binary systems. The status of

each component or system is a discrete random variable, as it has two values that

indicate working and failure conditions.

Let a system consists of n components. If xi denotes the state of the ith

component in the system. Then

xi =

 1 if ith component functions

0 if ith component fails

for i = 1, 2, ..., n.

Then, vector x = (x1, x2, . . . , xn) represents the states of all components and

it is called the component state vector.

Let φ denote the state of system, then it can be defined as

φ(x1, x2, ..., xn) =

 1 if system functions

0 if system fails

12



The function φ(~x), which is called the structure function of system, is a func-

tion of states of components.

3.2.1.1 Series Configuration

A series system which has n components is the easiest structures. All n

components must be performing to provide system operation. In other saying,

the system does not work when any one of the n components fails.

Figure 3.1: A series system configuration

Therefore, the reliability of a series system is

R = P (all components operate successfully)

= P (A1 ∩ A2 ∩ . . . ∩ An)

=
n∏

i=1

P (Ai)

where P (Ai), 1 ≤ i ≤ n, denote the probability of event Ai that component

i operates succesfully during the intended periof of time. Then the reliability of

component i is pi = P (Ai).

Since component operate independently, the reliability of a series system can

be written as

R =
n∏

i=1

pi

A series system structure function as follows

13



φ(~x) =
n∏

i=1

xi = min(x1, x2, . . . , xn)

The lifetime of a series system is the minimum of component lifetimes.

3.2.1.2 Parallel Configuration

In a parallel structure consisting of n components, the system is successfull

if any one of the n components is working.

Figure 3.2: A parallel system configuration

Thus, the reliability of a parallel system is

R = P (A1 ∪ A2 ∪ . . . ∪ An)

= 1− P (A1 ∩ A2 ∩ . . . ∩ An)

= 1−
n∏

i=1

P (Ai)

= 1−
n∏

i=1

[1− P (Ai)]

Since component failures are independent, the reliability of a parallel system

can be written as

R = 1−
n∏

i=1

(1− pj)

14



where pi, 1 ≤ i ≤ n, denote the reliability of component xi.

A parallel system structure function as follows

φ(~x) = 1−
n∏

i=1

(1− xi) = max(x1, x2, . . . , xn)

The lifetime of a parallel system is the maximum of component lifetimes.

According to Barlow and Proschan, the structure function of a parallel system

can be written as

φ(~x) =
n∐

i=1

xi

3.2.1.3 Series-Parallel Configuration

Believe that a system which consisting of k subsystems related in parallel,

with subsystem i consisting of ni component in series for i = 1, . . . , k. Such a

system is called a series− parallel system.

Figure 3.3: A series-parallel system configuration

Let Ri be the reliability of subsystem i and pij the reliability of component j,

1 ≤ j ≤ ni, in subsystem i. Then

Ri =

ni∏
j=1

pij,
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and the system reliability is

R = 1−
k∏

i=1

(1−Ri).

When we apply two equations together, then

R = 1−
k∏

i=1

(1−
ni∏
j=1

pij).

The system relibility as follows if the components are identical in each pattern

R = 1−
k∏

i=1

(1− pni
i )

where pi is the reliability of each component in the subsystem, i = 1, . . . , k.

3.2.1.4 Parallel-Series Configuration

Suppose a system consisting of k subsystems in series and subsystem i, 1 ≤

i ≤ k, in turn consists of ni components in parallel. Such a system is called a

parallel − series system.

Figure 3.4: A parallel-series system configuration

Let Ri be the reliability of subsystem i and pij the reliability of component j,

1 ≤ j ≤ ni, in subsystem i. Then
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Ri = 1−
ni∏
j=1

(1− pij),

and the system reliability is

R =
k∏

i=1

Ri.

When we apply two equations together, then

R =
k∏

i=1

[1−
ni∏
j=1

(1− pij)].

If all components in subsystem i are identical, then pij is the same for j =

1, . . . , ni. Let pij for i = 1, . . . , k and j = 1, . . . , ni. Then the system reliability is

R =
k∏

i=1

(1− qni
i ),

where qi = 1− pi is the failure probability of a component in subsystem i.

3.2.2 Multi-State Systems

All engineering systems are designed to meet the requirements of a specific

environment. Some of these systems can perform their tasks at various distinct

levels of efficiency, also called performance ratios. Systems with a limited number

of performance ratios are called multi-state systems (MSS). The multi-state sys-

tem consists of elements which may in turn be multi-state. Components are the

smallest structural unit of a system. It cannot be further subdivided. This does

not mean that an item cannot be made of parts. Reliability analysis is considered

an independent unit and means that components are not analyzed for reliability

performances.
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A binary system is the easiest case of an multi-state system having two indi-

vidual states (perfect functioning and complete failure).

There are many distinctive situations in which a system should be measured

to be a multi-state system:

1. Systems consisting of different units that have a cumulative effect on all

system performances should be considered as MSS. The performance ratio

of such a system depends on the availability of the units. Different numbers

of available units can create different levels of task performance.

Examples of this situation are k − out − of − n systems. These systems

consist of n identical binary units. It can have n+1 states depending on the

number of units available. System performance is assumed to be propor-

tional to the number of units available. It is assumed that the performance

ratios corresponding to more than k − 1 units available are acceptable.

When the cumulative system performances of different units are different,

different combinations of existing units can provide different performance

ratios for the entire system. In this case, the number of MSS states increases

significantly.

2. The performance ratio of the components that make up a system may vary

due to different environmental conditions. Decrease in MSS performance

may also be caused by component failures.

The performance ratings of the components can range from perfect function-

ing to complete failure. Malfunctions that cause a decrease in component

performance are called partial failures. After partial failures, components

may not be able to fully perform their tasks.

In this paper, we do not study Multi-State system. So, we do not give any

further information about this system.
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3.2.3 Coherent Systems

Definition. Let a system consist of n components. The component i = 1, 2, . . . , n

is said to be irrelevant if and only if

φ(1i, ~x) = φ(0i, ~x)

for any component state vector ~x.

In other words, a component is irrelevant if the state of the system does not

change by the state of this component. Otherwise, the component is known to

be relevant.

Definition. A system with structure function φ(~x) is coherent if and only if φ(~x)

is nondecreasing in each argument xi for 1 ≤ i ≤ n and every component is

relevant (Kuo and Zuo, 2003).

In other words a system is coherent if the following conditions are satisfied.

1. φ(~0) = 0

All components are failed, then the system is failed.

2. φ(~1) = 1

All components work, then the system works.

3. If x < y, then φ(~x) ≤ φ(~y)

Development of any component does not decrease the productivity of the

system.

4. For every component i, there exists a component state vector such that the

state of component i commands the state of the system.

The reliability of a coherent system consisting of n components can be defined

as the probability that system functions
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R = P (φ(~x) = 1).

Reliability of the ith component of this system is defined as the probability

that ith component functions

P (xi = 1) = pi

for i = 1, 2, ..., n.

3.2.4 Standby Systems

A system which has parallel with n components operates in one of the n

component works. The rest of the components work simultaneously on the sys-

tem. Instead of n−1 redundant components, another redundancy, called standby

redundancy, can be used. They are used to improve the reliability of the system.

In this case, the active components may be replaced or additional components

may be added as replacement components. A detection and switching mecha-

nism is used to control the operation of the active components. When an active

component fails, a backup component is run.

There are different types of standby: cold standby, warm standby and hot

standby.

1. Hot standby components have the same failure rate as the active component.

Thus, they are also called active redundant components.

2. A cold standby component has a zero failure rate. In other words when it

is standby, it does not fail.

3. Warm standby components have a failure rate that is between the failure

rates of a cold standby components and a hot standby components
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When the sensing and switching mechanism is perfect, that is, the standby

component is activated as soon as the active component fails. When the last

component fails in active operation, the system fails.

To understand the concept we assume that a system has two components.

First one is an active component, the other one is a standby component. When

the life of an active component is over, a standby component is switched into

operation. The system’s life is over when the life of a standby component is

failed.

The system’s lifetime is equal to the sum of the lifes of an active component

and a cold standby component.

The lifetime of the system is denoted by L, the lifetime of the active component

is denoted by L1 and the lifetime of the standby component is denoted by L2.

Then,

L = L1 + L2

There are two cases for the system to work until the time t. The first one is,

an active component works until time t. The second one is an active component

fails at time x (0 ≤ x ≤ t) and a cold standby component is put on operation

and works between time x and time t. So, the reliability of the system is

P (L > t) = P (L1 > t) +

∫ t

0

P (L2 > (t− x))f(x)dx

= 1− F (t) +

∫ t

0

(1−G(t− x))f(x)dx

where F (t) denote the failure rate distribution of the active component, also

G(t) denote the failure rate distribution of the standby component. The prob-

ability density function of the active component with lifetime L1 is denoted by

f(t).
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CHAPTER 4

K −OUT −OF −N SYSTEMS

In this chapter, we investigate the reliability of k−out−of−n and consecutive

k−out−of−n systems. There are many studies on the literature about reliability

analysis. Many papers include finding survival function, failure rate function and

mean residual life function. The reliability analysis of k − out− of − n systems

have been discussed in the literature (see, for example, Zhang and Lan (1998),

Cheng and Zhang (2001), Sheu and Chang (2001), Navarro and Hernandez (2008),

Navarro and Rychlik (2010), Zhang and Yang (2010), Raqab and Rychlik (2011),

Eryılmaz (2011)).

Some papers on the reliability analysis of consecutive k−out−of−n systems

are Chiang and Niu (1981), Hwang (1982), Kuo et al. (1994), Chao et al.(1994),

Kuo et al. (1990), Zuo (1993), Zhang and Lan (1998), Cheng and Zhang (2001),

Sheu and Chang (2001).

4.1 k-out-of-n systems

The defitinions of k − out− of − n : G and k − out− of − n : F systems as

follows

Definition. An n component system that works (or is ”good”) if and only if at

least k of the n components work (or are good) is called a k − out− of − n : G

system (Kuo and Zuo, 2003).

Definition. An n component system that fails if and only if at least k of the n

components fail is a called a k − out− of − n : F system (Kuo and Zuo, 2003).

According to these two definitions, a k − out− of − n : G system is equal to

an (n− k + 1)− out− of − n : F system.

Both parallel and series systems are especial cases of the k − out − of − n
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system. A series system is equal to a 1 − out − of − n : F system and to and

n−out−of−n : G system while a parallel system is equal to an n−out−of−n : F

system and to a 1− out− of − n : G system.

The reliability of k − out− of − n : G system as follows

R =
n∑

i=k

(
n

i

)
pi(1− p)n−i

where p denotes the reliability of each component.

When all of the components are independent and identical, the reliability of

a general k − out− of − n system can be written as

R =
n∑

i=k

pi(1− p)n−i

where p is the reliability of the component.

Then, the structure function of k − out− of − n : F system is

φ(~x) =


1

n∑
i=1

xi > n− k

0
n∑

i=1

xi ≤ n− k

4.2 Consecutive k-out-of-n Systems

Definition. Suppose that n components are linearly(circularly) connected if and

only if at least k consecutive components fail. The linear(circular) consecutive

k − out− of − n : F system called this types of structure (Kuo and Zuo, 2003).

Definition. For the system to work if and only if at least k consecutive compo-

nents work, the system structure is called the linear consecutive k−out−of−n : G

system (Kuo and Zuo, 2003).
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Figure 4.1: A linear consecutive 3− out− of −6 : F system (Kuo and Zuo, 2003)

The consecutive k − out − of − n system contain the series and the parallel

system as especial cases. For example, when k = 1, the linear consecutive k −

out− of − n : F system changes to the series system.

When k = n, the linear consecutive k− out− of − n : F system becomes the

parallel system.

Figure 4.2: A circular consecutive 2 − out − of − 8 : F system (Kuo and Zuo,
2003)

The reliability of consecutive k − out − of − n : F system is shown as the

following

R(k, n) =
n∑

j=0

N(j, k, n)pn−j(1− p)j

where N(j, k, n) denotes the number of ways to arrange j failed component

in a line such as no k or more failed components consecutively. Also, p denotes

component reliability in a system with independent and identically distributed

components.

Then, the structure function of consecutive k − out− of − n : F system is
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φ(~x) =
n−k+1∏
i=1

(1−
i+k−1∏
j=1

(1− xj))

4.3 k − out− of − n Systems with a Cold Standby Component

The reliability analysis of systems is associated to the order statistics related

with components’ lifetimes. If X1, . . . , Xn mean the lifetimes of components, then

the lifetime of k− out− of −n : G system without a standby component relating

to the order statistic Xn−k+1:n, the (n − k + 1)th smallest among X1, . . . , Xn.

Therefore, the distribution theory of order statistics has a significant role in the

analysis of the systems.

In a k − out − of − n : G system with a single cold standby component,

when the system fails, that is at the time when the (n− k+ 1)th failure occur, a

standby component with lifetime Lc is put into operation. Then, the lifetime of

k−out−of−n : G system with single cold standby component can be represented

as

L = Xn−k+1:n +min(Xn−k+2:n −Xn−k+1:n, Lc)

for k = 2, . . . , n and L = Xn:n + Lc for k = 1, where X1:n < . . . < Xn:n are

ordered lifetimes of active components.

Standby component is related to the performance of a system when it is

activated. So, the system’s performance is influenced by the performance of the

standby component only after the random time Xn−k+1:n.

First of all, we define the mean residual life function which is following

ϕ1(t) = E(L− t | T > t) (4.1)

ϕ2(t) = E(L− t | Xn−k+1:n > t) (4.2)
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ϕ3(t) = E(L− t | X1:n > t) (4.3)

for t ≥ 0.

The usual mean residual life function is defined as equation 4.1 and it gives

no information if the standby component is in operation at time t. Because if

{L > t}, then we either have {Xn−k+1:n > t} or {Xn−k+1:n ≤ t, Xn−k+1:n +

min(Xn−k+2:n − Xn−k+1:n, Lc) > t} which implies that at time t the standby

component may be or may not be active.

Oppositely, in the function defined by equation 4.2, it is known that the system

functions with active components at time t and standby component is invest in

operation after time t.

The function defined by equation 4.3 represents the mean residual life function

under the condition that all components work at time t.

Let X1, . . . , Xn be independent and identically distributed with common con-

tinuous c.d.f. F . For an independent standby component with c.d.f. G(x) =

P{Lc ≤ x}.

Then, the reliability of the system is given

R = E(L− t | X1:n > t) =
n−k∑
m=0

m∑
j=0

(
n

m

)(
m

j

)
(−1)jMn−m+j(t)

+
1

B(n− k + 1, k)

1

F̄ n(t)

∫ ∞
0

∫ ∞
t

F̄ k−1(s+ x)

×(F (x)− F (t))n−kḠ(s)dF (x)ds

where B(a, b) denotes the Beta function defined by B(a, b) = r(a)r(b)
r(a+b)

for a, b >

0, M is a random variable showing the number of failed components at the time

of rth failure.

26



CHAPTER 5

WEIGHTED K −OUT −OF −N SYSTEMS

5.1 Notations

We will use the following notations throughout this chapter:

Let Xi means the state of the ith component, where Xi = 1 if the component

functions, and Xi = 0 if the component fails.

n : the number of the components in the system

C = 1, 2, ..., n : the index set of all components

C1 :the set of components with weight w1

C2 :the set of components with weight w2

n1 :the number of components in C1

n2 :the number of components in C2

wc :the weight of the cold standby component

k : minimum required weight/capacity for the functioning of the system

F1 :the common lifetime distribution of the components in C1

F 1 :survival function of the components in C1

F2 :the common lifetime distribution of the components in C2

F 2 :survival function of the components in C2

Lr:n :rth order statistics r ∈ C
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M :random variable showing the number of failed components from C1 at the

time of rth failure

Ln1,n2

k | Lr:n,M :remaining lifetime of the system given Lr:n and M

R: the reliability of the system at time t

In reliability problems, generally all components of the system are built to

have equal weight in terms of their contribution to system performance. In real

life engineering systems, the contribution of the components of the system to the

performance of the system may be different. In many real-life problems, each

of the components that make up a system makes different contributions to the

system. Therefore, the operation of such a system will depend on the contribution

of each individual component to the operation of the system, rather than just

the components that make up the system. This contribution / performance /

benefit and so on. values will be called as weight in the study. It is clear that

the component that contributes more to system performance will have a greater

weight.

In this chapter, we studied general weighted k − out − of − n systems and

their reliabilities. Also, we investigated another studies about of that systems

consist of different types of components.

In order to investigate such cases Wu and Chen (1994) studied a more general

model than k−out−of−n : G system and called it weighted k−out−of−n : G

system. In this system, the components may have different integer weights and the

system functions if the total weight of functioning components is at least threshold

k. The reliability of weighted k − out− of − n : G systems can be computed by

using recursive formula Chen and Yang (2005), Eryılmaz and Tütüncü (2009),

Higashiyama (2001). There are many studies that have been proposed about the

dynamic analysis of weighted k − out − of − n : G systems such as Eryılmaz

(2011), Samaniego and Shaked (2007). Because of the structure of weighted

k − out − of − n : G systems, the components have different reliability which

makes computation more harder. Other studies that have been done in this

area are Cui and Xie (2005), Eryilmaz (2012), Kochar and Xu (2010), Navarro,
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Samaniego and Balakrishnan (2011). Eryılmaz and Sarıkaya (2014) studied a

special type of weighted k− out− of −n : G system which has only two types of

components having different weights and reliabilities.

5.2 Weighted k − out− of − n Systems

Definition. A weighted k-out-of-n:G system, which has n components, each with

its own positive integer weight, works if the total weight of working components

is at least k.

Definition. A weighted k-out-of-n:F system, which has n components, each with

its own positive integer weight, fails if the total weight of working components is

less than k.

The reliability of a weighted k − out− of − n : G system as follows

R(t) = P

(
n∑

i=1

wiXi(t) ≥ k

)

where i = 1, 2, ..., n.

5.3 Weighted k − out − of − n : G Systems with Two Types of Com-

ponents

First of all, we show that the assumptions for the system under study.

The model statements are enumerated below:

1. The system consisting of n independent binary components.

2. The components of the system are categorized into two groups regarding to

their weight/capacity.

3. The system is assumed to work if the total weight of all functioning com-

ponents exceed a prespecified threshold.
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Eryılmaz and Sarıkaya (2014) derived the following equation. Then, the reli-

ability of weighted k − out − of − n : G systems with two types of components

can be denoted by the probability as follows

R = P (Ln1,n2

k > t) =
∑

w1i+w2j≥k
0≤i≤n1,0≤j≤n2

(
n1

i

)
F 1(t)

iF1(t)
n1−i

(
n2

j

)
F 2(t)

jF2(t)
n2−j

(5.1)

5.4 Weighted k − out − of − n : G Systems with Two Types of Com-

ponents and a Cold Standby Component

We first give the main statements for the system over study.

The model statements are enumerated below:

1. The system consisting of n independent binary state components and an

independent binary state cold standby component.

2. The components are categorized into two groups regarding to their

weight/capacity. In addition, there exists a single cold standby component

with distinct capacity/weight and reliability.

3. The system works if the total weight of the operating components exceeds

a prespecified threshold.

Franko, Tütüncü and Eryılmaz (2017) derived the following equation. Then,

the reliability of the system can be denoted by the probability as follows
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R = P (Ln1−m,n2−r+m
k−wc

> t− x | Lr:n = x,M = m)

=
∑

w1i+w2j≥k
0≤i≤n1−m,0≤j≤n2−r+m

(
n1 −m

i

)(
F 1(t)

F 1(x)

)i(
1− F 1(t)

F 1(x)

)n1−m−i

×
(
n2 − r +m

j

)(
F 2(t)

F 2(x)

)j (
1− F 2(t)

F 2(x)

)n2−r+m−j
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CHAPTER 6

WEIGHTED K − OUT − OF −N : G SYSTEMS WITH M

TYPES OF COMPONENTS

In this chapter, weighted k− out− of −n : G systems consisting of m type of

components have been considered. We first give our assumptions and notations

to create the reliability model. Then we propose a new model for reliability of

these systems. Furthermore, we investigate the optimal value of the number of

components. Finally, we give numerical examples to understand this new model.

6.1 Assumptions

Main assumptions which are used for modeling a weighted k−out−of−n : G

system consisting of m types of components are given. The model statements are

listed below:

1. The system consisting of n independent binary components.

2. The components of the system are categorized into m groups regarding to

their weight/capacity.

3. The system is assumed to work if the total weight of all functioning com-

ponents exceeds a prespecified threshold.

6.2 Notations

We will use the following notations:

n : the number of the components in the system

C = 1, 2, ..., n : the index set of all components
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Cj :the set of components with weight wj, j = 1, 2, ...,m

nj :the number of components in Cj, j = 1, 2, ...,m

k : minimum required weight/capacity for the functioning of the system

pj :the reliability of the components in Cj, j = 1, 2, ...,m

pj :the unreliability of the components in Cj, j = 1, 2, ...,m

6.3 Reliability of Weighted k− out− of −n : G Systems with m Types

of Components

Eryılmaz and Sarıkaya (2014) derived the reliability of weighted k − out −

of − n : G system with two types of components. We generalize this equation

5.1, then we propose the following theorem.

Theorem 6.1 Let weighted k − out − of − n systems consisting of m types of

components. Then the reliability of this types of systems is given following

R = P (Ln1,n2,...,nm

k > t) =
∑

w1i1+w2i2+...+wmim≥k
0≤i1≤n1,0≤i2≤n2,...,0≤im≤nm

(
n1

i1

)
p1(t)

i1p1(t)
n1−i1

× . . .×
(
nm

im

)
pm(t)impm(t)nm−im

Many real engineering systems have different types of components. So, this

theorem is more important to apply on real engineering problems.
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Proof.

| C1 |= n1, | C2 |= n2, . . . , | Cm |= nm

C = C1 ∪ C2 ∪ . . . ∪ Cm

C1 ∩ C2 ∩ . . . ∩ Cm = ∅

Let Xi means the state of ith component, where Xi = 1 if the component functions

and Xi = 0 if the component fails. Then, the reliability of the system can be

shown as by the probability

R = P (w1Y1 + w2Y2 + . . .+ wmYm ≥ k)

where Yj =
∑
i∈Cj

Xi, j = 1, 2, . . . ,m and i = 1, 2, . . . , n.

By reason of the components are independent and reliability of the compo-

nents is pj, j = 1, 2, . . . ,m.

P (Xi = 1) = pj, i ∈ Cj

The random variables Y1, Y2, . . . , Ym follow multinomial distributions with

parameters (n1, p1), . . . , (nm, pm).

R = P (w1

∑
i∈C1

Xi + w2

∑
i∈C2

Xi + . . .+ wm

∑
i∈Cm

Xi ≥ k)

R =
∑

w1i1+...+wmim≥k
0≤i1≤n1,...,0≤im≤nm

P (Y1 = i1)P (Y2 = i2) . . . P (Ym = im)

=
∑

w1i1+...+wmim≥k
0≤i1≤n1,...,0≤im≤nm

(
n1

i1

)
p1(t)

i1p1(t)
n1−i1 × . . .×

(
nm

im

)
pm(t)impm(t)nm−im
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Example 6.1. In the following table, we compute the reliability of the weighted-

k-out-of-n:G system when m = 2.

Table 6.1: Reliability of weighted k − out− of − n : G system where m = 2.

n1 n2 w1 w2 p1 p2 k R
3 7 1 2 0.95 0.97 10 0.9999
5 5 1 2 0.95 0.97 10 0.9995
3 7 1 2 0.95 0.97 15 0.9578
5 5 1 2 0.95 0.97 15 0.6644
8 7 1 2 0.95 0.97 15 0.9999
10 5 1 2 0.95 0.97 15 0.9989
8 7 1 2 0.95 0.97 20 0.9193
10 5 1 2 0.95 0.97 20 0.5141

Example 6.2. In the following table, we compute the reliability of the weighted-

k-out-of-n:G system when m = 3.

Table 6.2: Reliability of weighted k − out− of − n : G system where m = 3.

n1 n2 n3 w1 w2 w3 p1 p2 p3 k R
3 2 5 1 2 3 0.95 0.97 0.93 15 0.9942
2 5 3 1 2 3 0.95 0.97 0.93 15 0.9949
3 2 5 1 2 3 0.95 0.97 0.93 20 0.6892
2 5 3 1 2 3 0.95 0.97 0.93 20 0.6890
5 7 3 1 2 3 0.95 0.97 0.93 20 0.9986
6 5 4 1 2 3 0.95 0.97 0.93 20 0.9974
5 7 3 1 2 3 0.95 0.97 0.93 25 0.9009
6 5 4 1 2 3 0.95 0.97 0.93 25 0.8805

6.4 Optimal Value of The Number of Components in Each Type

In this section, we investigate the optimal value of the number of components

in each type minimizing the total cost of the system subject to a minimum system

reliability requirement.

Let ci denote the acquisition cost of one element in the ith group. If r0 is the

minimum required reliability for the system, then the problem can be formulated

as
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Minimize : n1c1 + n2c2 + . . .+ nmcm

Subject to : R(n1, n2, . . . , nm) ≥ r0

n1 + n2 + . . .+ nm = n

ni ≥ 0, i = 1, 2, . . . ,m

Example 6.3. In the following table, we compute the reliability of the weighted-

k-out-of-n:G system when m = 2 and we show the total costs of each component.

Let n = 6, c1 = 2, c2 = 3 and the minimum required reliability is r0 = 0.95.

Table 6.3: The total cost of each component where m = 2

n1 n2 w1 w2 p1 p2 k R Total Cost
0 6 1 2 0.95 0.97 6 0.9999 18
1 5 1 2 0.95 0.97 6 0.9997 17
2 4 1 2 0.95 0.97 6 0.9993 16
3 3 1 2 0.95 0.97 6 0.9967 15
4 2 1 2 0.95 0.97 6 0.9878 14
5 1 1 2 0.95 0.97 6 0.9480 13
6 0 1 2 0.95 0.97 6 0.7350 12

Thus, the minumum reliability is given belongs to n1 = 4 and n2 = 2. Then,

the optimal value of the system is found to be n1 = 4 and n2 = 2 and the total

cost is 14.

Example 6.4. In the following table, we compute the reliability of the weighted-

k-out-of-n:G system when m = 3 and we show the total costs of each component.

Let n = 4, c1 = 3, c2 = 2, c3 = 1 and the minimum required reliability is

r0 = 0.98.
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Table 6.4: The total cost of each component where m = 3

n1 n2 n3 w1 w2 w3 p1 p2 p3 k R Total Cost
0 0 4 1 2 3 0.95 0.97 0.93 5 0.9987 4
0 1 3 1 2 3 0.95 0.97 0.93 5 0.9859 5
0 2 2 1 2 3 0.95 0.97 0.93 5 0.9874 6
0 3 1 1 2 3 0.95 0.97 0.93 5 0.9914 7
0 4 0 1 2 3 0.95 0.97 0.93 5 0.9948 8
1 0 3 1 2 3 0.95 0.97 0.93 5 0.9859 6
1 1 2 1 2 3 0.95 0.97 0.93 5 0.9848 7
1 2 1 1 2 3 0.95 0.97 0.93 5 0.9264 8
1 3 0 1 2 3 0.95 0.97 0.93 5 0.9126 9
2 0 2 1 2 3 0.95 0.97 0.93 5 0.8649 8
2 1 1 1 2 3 0.95 0.97 0.93 5 0.8998 9
2 2 0 1 2 3 0.95 0.97 0.93 5 0.8491 10
3 0 1 1 2 3 0.95 0.97 0.93 5 0.7973 10
3 1 0 1 2 3 0.95 0.97 0.93 5 - 11
4 0 0 1 2 3 0.95 0.97 0.93 5 - 12

Thus, the minumum reliability is given belongs to n1 = 1, n2 = 1, n3 = 2.

Then, the optimal value of the system is found to be n1 = 1, n2 = 1, n3 = 2 and

the total cost is 7.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, a method for computing the system reliability of weighted

k − out − of − n : G systems consisting of m type of components is presented.

Generally in reliability problems, all components of a system are supposed to have

equivalent weights. But in most of real life engineering systems, the impact made

by the component to the performing of the whole system might be different. To

increase the reliability of the system may be an important engineering problem.

The main application of our study that theorem we proposed is to make a good

design of the system. Therefore, we investigate the optimum value of the number

of components in each type minimizing the total cost which help us to make the

best design of the system. So this study is more useful to investigate the real

life systems. As a future work, these findings can be used on the data set from

getting the real life such as wing turbine applications and a standby component

can be added into the model.
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Appendix 1

Codes of Mathematica when m = 2

p1 = 0.95;

p2 = 0.97;

w1 = 1;

w2 = 2;

k = 6;

r0 = 0.98;

list = Reap[Do[If [w1 ∗ i1 + w2 ∗ i2 ≥ k,

Sow[{i1, i2}]], {i1, 0, n1}, {i2, 0, n2}]][[2, 1]];

For[a = 1; top = 0, a ≤ Length[list], a+ +, i1 = list[[a, 1]]; i2 = list[[a, 2]];

P [n1 , n2 ] =

Binomial[n1, i1]∗(p1)i1∗(1−p1)(n1−i1)∗Binomial[n2, i2]∗(p2)n2∗(1−p2)(n2−i2);

top = top+ P [n1, n2]];

n1 = 4;

n2 = 2;

c1 = 2;

c2 = 3;

If [top ≥ r0, cost = n1 ∗ c1 + n2 ∗ c2, cost = 0];

Print[”reliability = ”, top, ””, ”totalcost = ”, cost]
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Appendix 2

Codes of Mathematica when m = 3

p1 = 0.95;

p2 = 0.97;

p3 = 0.93;

w1 = 1;

w2 = 2;

w3 = 3;

k = 5;

r0 = 0.98;

list = Reap[Do[If [w1 ∗ i1 + w2 ∗ i2 + w3 ∗ i3 ≥ k, Sow[{i1, i2, i3}]],

{i1, 0, n1}, {i2, 0, n2}, {i3, 0, n3}]][[2, 1]];

For[a = 1; top = 0, a ≤ Length[list], a+ +, i1 = list[[a, 1]]; i2 = list[[a, 2]];

i3 = list[[a, 3]];P [n1 , n2 , n3 ] = Binomial[n1, i1] ∗ (p1)i1 ∗ (1− p1)(n1−i1)

Binomial[n2, i2]∗ (p2)i2 ∗ (1−p2)(n2−i2) ∗Binomial[n3, i3]∗ (p3)i3 ∗ (1−p3)(n3−i3);

top = top+ P [n1, n2, n3]];

n1 = 1;

n2 = 0;

n3 = 3;

c1 = 3;

c2 = 2;

c3 = 1;

If [top ≥ r0, cost = n1 ∗ c1 + n2 ∗ c2 + n3 ∗ c3, cost = 0];

Print[”reliability = ”, top, ””, ”totalcost = ”, cost]
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