
 
 
 

 
 
 
 

 

 

  

 
 

 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

İSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY 

M.Sc. Thesis by 
Özge ÖZDEMİR, B.Sc. 

Department : Materials and Metallurgical 
Engineering 

Programme : Materials Engineering 

 

JUNE 2009 

INVESTIGATION OF STRUCTURAL AND ELECTRICAL PROPERTIES 
OF GAMMA RAYS EXPOSED AL DOPED ZnO FILMS MANUFACTURED                       
                                          VIA SOL-GEL TECHNIQUE 

Supervisor: Prof. Dr. Hüseyin ÇİMENOĞLU 
                            Assoc. Prof. Dr. Nilgün BAYDOĞAN 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 

 
 
 
 
 

 

 
 

 

INVESTIGATION OF STRUCTURAL AND ELECTRICAL PROPERTIES 
OF GAMMA RAYS EXPOSED AL DOPED ZnO FILMS MANUFACTURED                      
                                          VIA SOL-GEL TECHNIQUE 

 

 

 

 

 

 

 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

İSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY 
 

M.Sc. Thesis by 
Özge ÖZDEMİR, B.Sc. 

 (506061430) 

      Date of submission : 4 May 2009  

                                  Date of defence examination : 1 June 2009  

 

Supervisor (Chairman) : Prof. Dr. Hüseyin ÇİMENOĞLU(ITU) 
Assoc. Prof. Dr. Nilgün BAYDOĞAN (ITU) 

Members of the Examining 
Committee : 

Prof. Dr. E. Sabri KAYALI (ITU) 
Prof.Dr.Mehmet KOZ (MU) 

 Prof. Dr. Sakin ZEYTİN (SAU) 

JUNE 2009  
 

 



 



 

HAZİRAN 2009 
 

İSTANBUL TEKNİK ÜNİVERSİTESİ ���� FEN BİLİMLERİ ENSTİTÜSÜ 
 

YÜKSEK LİSANS TEZİ 
Müh. Özge ÖZDEMİR 

(506061430) 

Tezin Enstitüye Verildiği Tarih : 4 Mayıs 2009 

Tezin Savunulduğu Tarih : 1 Haziran 2009 

 

Tez Danışmanı : Prof. Dr. Hüseyin ÇİMENOĞLU (İTÜ) 
Doç. Dr. Nilgün BAYDOĞAN (İTÜ) 

Diğer Jüri Üyeleri : Prof. Dr. E. Sabri KAYALI (İTÜ) 
 Prof.Dr. Mehmet KOZ (MÜ) 

 Prof. Dr. Sakin ZEYTİN (SAÜ) 
  

 

SOL GEL TEKNİĞİYLE ÜRETİLEN GAMA IŞINLARINA MARUZ 
KALMIŞ AL KATKILI ZnO FİLMLERİN YAPISAL VE ELEKTRİK 

ÖZELLİKLERİNİN İNCELENMESİ 



 



 
iii 

FOREWORD 

I wish to thank to my supervisors Prof. Dr. Hüseyin ÇİMENOĞLU and Assoc. Dr. 
Nilgün BAYDOĞAN, whose suggestions, guidance and encouragement helped me 
in the carrying out and writing of this thesis. I would also like to express my deep 
thanks to Cemil IŞIKSAÇAN for his continuous support and invaluable friendship. 
I would also like to thank to Asst. Prof. Dr. Murat BAYDOĞAN for his guidance 
and elaborate critics on my experimental work. I am also indebted to Research Asst. 
Özgür Çelik, Research Asst. Mert GÜNYÜZ, Asst. Onur Meydanoğlu and my 
colleagues; Meliha TEKİN, Hale TUĞRAL and İsa Metin ÖZKARA for their 
supportive attitude and courteous help.  
 
I thank to TUBITAK (The Scientific and Technological Research council of Turkey) 
for the scholarship, with which they supported me financially during my studies.  
And last but not least, thanks to my family, who backed me up under any 
circumstances for all my life. 

 

 

May 2009 
 

Özge ÖZDEMİR 

Materials Engineer 
 

  

 

 



 
iv 



 
v 

TABLE OF CONTENTS 

                                                                                                                                                 Page 

ABBREVIATIONS .............................................................................................. vii 
LIST OF TABLES ................................................................................................ ix 
LIST OF FIGURES .............................................................................................. xi 
SUMMARY......................................................................................................... xiii 
ÖZET ....................................................................................................................xv 
1. INTRODUCTION...............................................................................................1 
2. SOL GEL TECHNIQUE ..................................................................................11 

2.1 Dip Coating Technique..................................................................................14 
  2.1.1 Benefits of Dip Coating ...........................................................................14 

      2.1.2 Limitations…………………………………………………….…………. 15 
      2.1.3 Typical Coatings Used………………………………………………….....16 
      2.1.4 Equipment Requirements………………………………………………….16 
      2.1.5 Maintenance……………………………………………………………….17 
      2.1.6 Dip Coating Theories……………………………………………………...17 
3. ELECTRONIC PROPERTIES IN TRANSPARENT MATERIALS.............23 

3.1 Plasma Frequency in Conductive Structures ..................................................24 
3.2 Electron Concentration ..................................................................................27 

4. OPTICAL PROPERTIES IN AZO FILMS.....................................................35 
5. RADIATION EFFECT.....................................................................................39 

5.1 Types of Radiation and Ionizing Radiation ....................................................41 
5.2 Effects of Radiation on Materials ..................................................................44 

6. EXPERIMENTAL............................................................................................49 
6.1 Substrate Preparation.....................................................................................49 
6.2 Preparation of Precursor Solution ..................................................................51 
6.3 Depositing Thin Films...................................................................................52 
6.4 Irradiation Process.........................................................................................53 
6.5 Characterization Tests ...................................................................................54 

     6.5.1 Elemental Analysis………………………………………………………...54 
     6.5.2 Microscopic Examination…………………………………………...……..55 
     6.5.3 Thickness Measurement……………………………………………………55 
     6.5.4 Optical Properties…………………………………………………………..56 
     6.5.5 Resistivity Properties of Films……………………………………………..57 
7. RESULTS AND DISCUSSION ........................................................................59 

7.1 Elemental Analysis........................................................................................59 
    7.2 Microscopic Analysis........................................................................................59 

7.3 Optical Properties..........................................................................................62 
    7.4 Electrical Properties…………………………………………………………..82 
8. CONCLUSIONS……………………………………………...…………………85 
REFERENCES…………………………………………………...……………….. 87 
CIRRICULUM VITA………………………………………………..…………… 93 
 



 
vi 

 



 
vii 

ABBREVIATIONS 

ZnO : Zinc Oxide 
AZO : Al-doped Zinc Oxide 
ITO : Indium Tin Oxide 
TCO : Transparent Conducting Oxide 
TC : Transparent Conductor 
FET : Field Effect Transistor 
RT : Room Temperature 
SEM : Scanning Electron Microscope 
TEM : Transmission Electron Microscopy 
FPD : Flat Panel Display 
UV : Ultraviolet 
PL : Photoluminescence 
QHE               : Quantum Hall Effect 
RBE               : Relative Biological Effectiveness 
LET               : Linear Energy Transfer 
DEA               : Diethanolamin 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
viii 

 
 
 
 
 
 



 
ix 

LIST OF TABLES 

                                                                                                                                                 Page 

Table 5.1: Properties of Co-60.................................................................................. 43 
Table 6.1: Compounds and their amounts in solution ............................................ 48 
Table 7.1: Transition elements of the examined soda-lime-silicate substrate...........54 
Table 7.2: Resistivity and carrier mobility values of AZO in vacuum ambient........78 
Table 7.3: Resistivity and carrier mobility values of AZO in argon ambient ...........78 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
x 

 
 



 
xi 

LIST OF FIGURES 

                                                                                                                                                 Page 

Figure 1.1 : SEM image of the Al:ZnO thin films, smooth and etched by %0.5 
HCl………………………………………………………………….… 4 

Figure 1.2 : Stick and ball presentation of ZnO crystal structure...............................5 
Figure 1.3 : TEM micrograph of ZnO thin films deposited at room temperature.......6 
Figure 1.4 : Sol-gel technologies and their product...................................................9 
Figure 2.1 : Dip coating principles. ........................................................................13 
Figure 2.2 : An instantaneous view of a dip-coating process ..................................20 
Figure 3.1 : Optical and electrical properties of III group elements.........................22 
Figure 3.2 : Electronic energy levels of imperfections in ZnO................................23 
Figure 3.3 : Resistivity electron concentration relationship in ZnO..........................27 
Figure 3.4 : Classical shape of a sample for measuring specific resistivity..............30 
Figure 3.5 : Bridge shaped sample .........................................................................30 
Figure 3.6 : Schematic diagram of the automated Hall effect setup.........................31 
Figure 5.1 : Three types of ionizing radiation.........................................................38 
Figure 5.2 :. SEM images of AZO films.................................................................42 
Figure 5.3 : Optical absorption spectra of natural quartz ………………………. ..43 
Figure 6.1 : The flow chart showing the procedure for cleaning substrates…….….44 
Figure 6.2 : Ultrasonic Bath Equipment………….………………………………...44 
Figure 6.3 : Dip Coating Equipment……….……………………………………….49 
Figure 6.4 : Schematic diagram of Co 60 radioisotope………...…………………..50 
Figure 6.5 : Schematic diagram of Innov-X XRF Analyzer......................................51 
Figure 6.6 : Schematic diagram of Veeco Dektak 6M Stylus profilometer..............51 
Figure 6.7 : Schematic diagram of Lambda 950 Perkin Elmer.................................52 
Figure 7.1 : SEM image AZO film postheated at 400 °C.........................................55 
Figure 7.2 : SEM image AZO film postheated at 400 °C.........................................55 
Figure 7.3 : SEM image AZO film postheated at 400 °C.........................................56 
Figure 7.4 : Effect of deionized water to transmittance in ZnO Coatings…….…...58 
Figure 7.5 : Effect of dopant concentration over transmittance % values................61 
Figure 7.6 : Effect of dopant concentration over optical densities...........................65 
Figure 7.7 : Allowed direct transition and optical band gap of AZO thin films.......68 
Figure 7.8 : Transmittance of unirradiated and irradiated ZnO films.......................71 
Figure 7.9 : Transmittance of irradiated ZnO films at 0.38 Gy................................72 
Figure 7.10:Optical densities of unirradiated and irradiated ZnO films at 400°C....73 
Figure 7.11: The dopant level effect on optical density at 300°C and 550°C..........74 
Figure 7.12: Allowed direct transition and optical band gap of ZnO film...............75 
Figure 7.13: Optical band gaps of irradiated and unirradiated ZnO........................76 
Figure 7.14:ZnO crystal structures...........................................................................77 
 
 
   
 



 
xii 

 
 
 
 



  
xiii 

INVESTIGATION OF STRUCTURAL AND ELECTRONIC PROPERTIES 
OF GAMMA RAYS EXPOSED AL DOPED ZnO FILMS MANUFACTURED 
VIA SOL-GEL TECHNIQUE 

SUMMARY 

Zinc oxide is extensively used as varistor, UV light filters, gas sensors and as 
conductive electrodes in solar cells. For this purpose, extensive research is being 
carried out to increase the conductivity of zinc oxide with donor doping such as Al+3, 
In+3, Ga+3.  

Therefore, in this study; the effects of Al additions on the electrical and structural 
properties of ZnO films were investigated with undoped zinc oxide film properties. 

Primarily, undoped transparent zinc oxide films were deposited on commercial 
microscope cover glass via sol-gel dip coating methode. Changes in optical 
properties were investigated according to effects of sol concentration and annealing 
temperature difference, by using a spectrophotometer. 

Then, Al was doped into the ZnO emulsion in different weigth percentages. By using 
the same coating technique; new AZO films were applied on Corning 7059 glasses. 
Optical and electrical properties were evaluated, after at least annealing in five 
different temperatures, by using spectrophotometer and four point probe, 
respectively. 

Finally, samples were subjected to gamma irradiation. Differences in both structural 
and electrical properties were concluded. 
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SOL-GEL TEKNİĞİYLE ÜRETİLEN GAMA IŞINLARINA MARUZ 
KALMIŞ AL KATKILI ZnO FİLMLERİN YAPISAL VE ELEKTRONİK 
ÖZELLİKLERİNİN İNCELENMESİ 

ÖZET 

Çinko oksit yaygın olarak yarı iletken özelliği nedeniyle varistör, UV ışık filtreleri, 
gaz sensörleri, ve güneş pillerinde elektrot olarak kullanılmaktadır. Günümüzde 
çinko oksite Al+3, In+3, Ga+3 gibi donor katkıları ile iletkenliğinin arttırılmasına 
çalışılmaktadır. 

Bu nedenle, bu çalışmada, katkısız çinko oksit film özelliklerinin yanı sıra, Al 
eklemenin çinko oksit filmin elektriksel ve optik özelliklerine etkisi incelenmiştir. 

Öncelikle, katkısız, şeffaf çinko oksit filmler, ticari mikroskop lameli üzerine sol-gel 
daldırma yöntemi ile biriktirilmiştir. Optik özelliklerdeki değişimler, sol 
konsantrasyonu ve farklı tavlama sıcaklıkları göz önüne alınarak, spektrofotometre 
ile ölçülmüştür. 

Daha sonra, ZnO emülsiyonuna farklı ağırlık yüzdelerinde Al eklenmiştir. Aynı 
kaplama tekniği kullanılarak, yeni oluşturulan AZO filmler Corning 7059 camları 
üzerine uygulanmıştır. Her numuneye en az beş farklı tavlama sıcaklığı uygulanmış 
ve nihai ürünün optik ve elektriksel özellikleri sırasıyla spektrofotometre ve dört 
ayaklı prob ile ölçülmüştür. 

Son olarak numuneler gama ışınlarına maruz bırakılmış ve meydana gelen yapısal ve 
elektriksel özellikler gözlenmiştir. 
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1. INTRODUCTION 

We are seeing high energy prices these days, and it is also being said that the days of 

low fuel costs are over. It is quite difficult to sustain the present day civilization 

when the cheap fuel is running out [1].  

The combustion of fossil fuel causes global warming. We are witnessing the melting 

of the polar ice caps at rapid rates. The same is true for many glaciers which feed 

water to rivers. Major population centers of the world are located on the banks of 

these rivers [1]. 

If we continue to burn fossil fuels in the present manner, then it will bring about 

catastrophic events throughout the world [1]. 

Solar energy provides us with an alternative where there is no pollution of the 

environment and its use decreases the rate of depletion of energy reserves [1]. 

One uses the solar energy in converting this energy into (a) heat, and (b) electricity. 

In the first case, it is used for directly heating homes or for water heating where the 

sun’s rays are incident on a panel containing circulating water in tubes. In the second 

case, it is used for generating electricity using photovoltaic panels [1]. 

There have been different approaches to harness solar energy. In one approach 

attempts have been made to enhance the energy conversion at the solar cell level by 

material scientists. The conversion efficiencies range between 12% and 15% of the 

incident energy [1]. 

Zinc oxide has recently gained much interest because of its potential use in many 

applications, ranging from antireflection coatings, transparent electrodes in solar 

cells, thin film gas sensors, varistors, spitronic devices, photodetecters, surface 

acoustic wave devices and light emitting diodes to nanolasers, attributed to its wide 

and direct band gap, excellent chemical and thermal stability, and specific electrical 

and opto-electronic property of being a II-VI semiconductor with a large exciton 

binding energy [2]. 
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Zinc oxide is one of the few metal oxides which can be used as a transparent 

conducting oxide (TCO). It has some advantages over other possible materials such 

as In2O3 or SnO2 due to its unique combination of interesting properties: non-

toxicity, good electrical, optical and piezoelectric behavior, stability in a hydrogen 

plasma atmosphere and its low price. ZnO thin films with high transparency, light 

trapping and low resistivity properties were studied and used in a broad range of 

application such as gas sensors, transparent electrodes in display and in photovoltaic 

devices [3]. 

Park et al. [4] also suggested that ZnO semiconductor nanowires and nanorods are 

attractive components for nanometer scale electronic and photonic device 

applications. Recently, a wide variety of nanodevices including ultraviolet 

photodetectors, Schottky diodes, and light emitting device arrays have been 

fabricated utilizing ZnO nanorods (nanowires). In particular, a field effect transistor 

(FET), one of the most fundamental and important electronic components has been 

fabricating ZnO. 

Özgür et al. [5] indicated that ZnO is not really a new discovered material. Research 

on ZnO has continued for many decades with interest following a roller-coaster 

pattern. Interest in this material at the time of this writing is again at at a high point.  

In terms of its characterization, reports go back to 1935 or even earlier. For example 

lattice parameters of ZnO were investigated for many decades. Similarly optical 

properties and processes in ZnO as well as its refractive index were extensively 

studied many decades ago. Vibrational properties by techniques such as Raman 

scattering were also determined early on. Investigations of ZnO properties presume 

that ZnO samples were available. Growth methods not much different from what is 

employed lately have been explored, among which are chemical-vapor transport, 

vapor-phase growth, hydrothermal growth [5].  

The ZnO bulk crystals have been grown by a number of methods, as has been 

reviewed recently, and large-size ZnO substrates are available. High-quality ZnO 

films can be grown at relatively low temperatures less than 700 ° C . The large 

exciton binding energy of 60 meV paves the way for an intense near-band-edge 

excitonic emissions at room and higher temperatures, because this value is 2.4 times 

that of the room-temperature (RT) thermal energy (kBT=25 meV). There have also 

been a number of reports on laser emission from ZnO-based structures at RT and 
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beyond. 

It should be noted that besides the above-mentioned properties of ZnO, there are 

additional properties which make it preferable over other wide-band-gap materials: its 

high- energy radiation stability and amenability to wet chemical etching [5].  

Several experiments confirmed that ZnO is very resistive to high-energy radiation, 

making it a very suitable candidate for space applications. ZnO is easily etched in all 

acids and alkalis (Figure 1.1), and this provides an opportunity for all acids and 

alkalis, and this provides an opportunity for fabrication of small size devices [5].  
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Figure 1.1: SEM image of the Al:ZnO thin films, smooth and etched by %0.5 HCl, 

(a) without etching, (b) etched for 20 s. and (c) etched for 60 s. [6] 

 

By controlling the doping level electrical properties can be changed from insulator 

through n-type semiconductor to metal while maintaining optical transparency that 

makes it useful for transparent electrodes in  flat panel displays and solar cells. 

However, one important problem should be overcome before ZnO could potentially 

make inroads into the world of optoelectronics devices: the growth of p-type 

conductivity ZnO crystals. Despite all the progress that has been made and the reports 

of p-type conductivity in ZnO films using various growth methods and various group-

V dopant ele ments N, P, As, and Sb , a reliable and reproducible high quality p-type 

conductivity has not yet been achieved for ZnO. Therefore, it remains to be the most 

pivotal topic in ZnO research today, and congruently most of the research efforts are 

directed just to solving this problem. In order to overcome this bottleneck and to 

control the material’s properties, a clear understanding of physical processes in ZnO 

is necessary in addition to obtaining low n-type background. In spite of many decades 

of investigations, some of the basic properties of ZnO still remain unclear. For 

example, the nature of the residual n-type conductivity in undoped ZnO films, 

whether being due to impurities of some native defect or defects, is still under some 

degree of debate. Some authors ascribe the residual background to intrinsic defects 

(oxygen vacancies, V0, and interstitial zinc atoms, Zni), and others to noncontrollable 

hydrogen impurities introduced during growth. The well-known green band in ZnO 

luminescence spectra manifesting itself as a broad peak around 500 – 530 nm , 
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observed nearly in all samples regardless of growth conditions, is related to singly 

ionized oxygen vacancies by some and to residual copper impurities by others [5]. 

 

 
Figure 1.2: Stick and ball presentation of ZnO crystal structures; (a) cubic rocksalt   

(B1), (b) cubic zinc blende (B3), (c) wurtzite (B4). Shaded grey and 
black spheres donate Zn and O atoms, respectively                            [5] 

 
ZnO is a II-VI compound semiconductor whose ionicity resides at the borderline 

between covalent and ionic semiconductor. The crystal structures shared by ZnO are 

wurtzite (B4), zinc blende (B3), and rocksalt (B1) as schematically shown in Figure 

1.2 (a),(b) and (c). At ambient conditions, the thermodynamically stable phase is 

wurtzite. The zinc-blende ZnO structure can be stabilized only by growth on cubic 

substrates, and the rocksalt NaCl structure may be obtained at relatively high 

pressures [5]. 

 
The band structure of a given semiconductor is pivotal in determining its potential 

utility. Consequently, an accurate knowledge of the band structure is critical if the 

semiconductor in question is to be incorporated in the family of materials considered 

for device applications. Several theoretical approaches of varying degrees of 

complexity have been employed to calculate the band structure of ZnO for its wurzite, 

zinc-blende, and rocksalt polytypes. Besides, a number of experimental data have 

been published regarding the band structure of the electronic states of wurtzite ZnO. 

X-ray or UV reflection/absorption or emission techniques have conventionally been 

used to measure the electronic core levels in solids. These methods basically measure 

the energy difference by inducing transitions between electronic levels for example, 

transitions from the upper valence-band states to the upper conduction-band states, 

and from the lower valence-band states or by exciting collective modes for example, 
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the upper core states to the lower edge of the conduction band and to excitations of 

plasmons [5]. 

Using transmission electron microscopy, Tse et al. [7] showed the ZnO structure 

together with silicone substrate (Figure 1.3). A columnar growth structure was found 

in ZnO thin films with an amorphous layer several nanometers thick at the interface 

between the substrate and polycrystalline ZnO films [8, 7]. 

 

Figure 1.3: TEM micrograph of ZnO thin films deposited at room temperature (a)        
                    brigth field image and (b) lattice image at the interface [7]. 
 
ZnO:M (M=Al, Ga, In) thin films with high c-axis orientated crystalline structure 

along (002) plane are extensively studied for practical applications including 

transparent conducting electrode materials for various electronic devices such as 

solar cells, electroluminescence displays, etc. A high degree of crystal orientation 

reduces the electrical resistivity due to an increase in carriers mobility by reducing 

the probability of the scattering of the carriers at the grain boundary [9].  

However, the reasons for these low conductivity values as well as the dependence of 

the electrical properties on the preparation technique have not been elucidated, 

probably because of the complex structure of zinc oxide and the number of 

parameters involved even for a single film processing technique [10]. 
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It is well known that chemical doping greatly influences the electronic and optical 

properties of ZnO. Doped ZnO thin films are of technological importance becouse of 

their great potential for various applications such as transparent conducting 

electrodes (doping with III A elements), insulating or dielectric layers (doping with 

Li), and spintronic devices (doping with Mn) [2].  

Among them, Al-doped ZnO compounds are the most conventional transparent 

conductive oxides (TCOs), which are useful as transparent electrodes (opto-

electronic devices) or as thermal insulator films in smart windows (low emissive 

windows) [11]. 

Despite these advantages, relatively few reports deal with the sol-gel preparation of 

AZO transparent conductors. Most of the work has been done on AZO thin films 

deposited mainly by physical methods. Coatings with satisfactory electrical 

conductivities have been successfully deposited by sputtering. On the other hand, one 

order low values are reported for the sol-gel coated films [10]. 

Al doped ZnO (AZO) films are known as n-type direct band gap semi conductors 

with optical transparency. Recently, a drastic increase has been observed in the 

conductivity of AZO films by irradiation of both low energy and high energy ions, 

and low energy ion irradiation followed by annealing. It has been suggested that the 

conductivity increase originates from enhancement of both the carrier density due to 

replacement of Zn site by Al and mobility by ion irradiation. The modifications of 

the electrical properties are expected to link to those of other prperties such as optical 

and structural properties [12]. 

In recent years, many researchers have attempted to provide a more accurate 

estimation of the Al3+ solubility limit in ZnO. In literature, this solubility limit has 

been studied on powder as well as on thin films [11].  

Al-doped ZnO compounds are often characterized in their final shape that is TCO 

thin films, elaborated from magnetron sputtering or other physical vapour deposition 

processes or more scarcely by dip/spin coating [11]. 
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Investigation of the composition of these thin films using X-ray diffraction remains 

difficult because of various artefacts, which hinder the observation of possible other 

minor phases: 

• small amount of matter due to film thickness,  

• strong intensity of diffraction peaks caused by epitaxial film growth,  

• presence of the substrate peaks when the latter is a crystallized material, etc. 

[11]. 

Many methods have been employed to prepare ZnO thin films like spray pyrolysis, 

molecular beam epitaxy, chemical vapor deposition, RF magnetron sputtering and 

sol–gel. The latest method has the advantage to give a high surface morphology at 

lower crystallizing temperature [13]. 

Sol-gel processing is a versatile method for depositing oxide based coatings on a 

variety of substrates in an economical manner. Literature reports the use of sol- gel 

coating to give optical properties like antireflecting, non-linear, luminescent or 

thermochromic [14, 15]. 

Another advantage of sol-gel is the possibility small area as well as large area 

coating of films at a low cost for technological applications [16].  

Conventional sol–gel  deposition of AZO  involves two high-temperature steps for 

preheating and annealing, respectively. The two steps are required to heat up the 

sample to 450 °C to 500 °C. The function of preheating is to remove organic 

impurities while annealing is to enhance crystal growth. However, such temperatures 

are unacceptably high for substrates with a low glass transition temperature such as 

plastics. Therefore, the aim of using excimer laser irradiation  instead of 

conventional annealing process is to minimize heating and damage to the substrate 

(limit the heating to precursor AZO  films with minimal heating on the substrates) 

due to selective laser absorption by the overlaying film. Besides, laser irradiation  is 

also expected to have direct photoinduced influence, which leads to rapid 

crystallization of the precursor films and atom dissipation from the film. In 

semiconductor industry, pulsed laser annealing has been applied to improve the 

structural, optical and electrical characteristics of polycrystalline semiconductor 

films [17].  
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The sol-gel method has also been employed to produce ZnO thin films by using 

different zinc sources (e.g., zinc nitrate, zinc acetate, and zinc ethoxides and 

propoxides) and other additives (e.g., different amines as catalysts). Such changes 

have resulted in precursor solutions of different compositions, which in turn lead to 

ZnO films with different characteristics [18]. 

 

Figure 1.4: Solgel technologies and their products [19]. 

The sol–gel process is based on hydrolysis and polycondensation reactions (Figure 

1.4) and has advantages over other processes due to its simplicity and low equipment 

cost. In general, metal alkoxides are used as raw materials, but the preparation of the 

sols can be difficult because of their reactivity. Furthermore, the alkoxides are very 

expensive and are insoluble in most alcohols. For this reason, the interest in 

inorganic sol–gel routes has significantly increased in the last years, since the raw 

materials used have lower cost. However, it is verified that few are the papers 

bringing some information on the initial steps of ZnO or doped ZnO film formation 

via inorganic routes [20]. 
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2.  SOL-GEL TECHNIQUE 

Coatings are widely used in optical, microelectronic, packaging, biomedical and 

decorative applications. The coating is designed to impart favorable mechanical (i.e. 

low friction, abrasion resistance), chemical (i.e. barrier for gasses), optical, magnetic, 

and electrical properties to various substrates [21]. 

In general, the functional behaviour of these coatings depends on the bulk or surface 

properties of the coating material. Evidently, the durability and functionality of 

coatings is critically dependent on the adhesion between the coating and the 

underlying substrate [21]. 

As substrates, transparent conductors (TCs) are usually preferred [22]. 

The TCs used for solar energy and energy efficiency are normally thin films, with 

thicknesses between 10 nm and 1µm, backed by transparent or non-transparent 

substrates [22].  

As Li et al. suggest [23], ZnO is a potential substitute transparent conducting oxide 

and ZnO thin films have been prepared by a variety of thin film deposition 

techniques, such as pulsed laser deposition, RF magnetron sputtering, chemical 

vapour deposition, spray pyrolysis, electrodeposition, sol-gel process, etc [24]. 

The sol-gel method is an alternative means to form coatings and has several 

advantages: changing the chemistry or processing conditions can modify the 

microstructure of coatings. Additionally, sub-micron thin films of uniform thickness 

can be made using sol-gel techniques [25]. 
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The sol–gel synthesis of materials based on the hydrolysis and condensation of 

molecular precursors is used to prepare a wide range of inorganic materials. This 

procedure gives sols, colloidal particles suspended in a liquid that progress through a 

gelation process to finally form two interpenetrating networks—the solid phase and 

the solvent phase. Although the roots of sol–gel chemistry can be traced to the 19th 

century, only during the past 30 years has the field witnessed remarkable growth in 

sophistication and applications. Increased interest in sol–gel materials has paralleled 

the emergence of materials chemistry and the recognition of the vast common ground 

between the chemistry and materials science communities [26]. 

It is tempting to consider the 1970s as the era of the rise of the sol–gel materials 

field, but there were a number of earlier contributions that demonstrated some of the 

types of materials available with this synthesis approach. The sol–gel synthesis of 

colloidal particles and the deposition of thin films date back to the 1950s. Thus, sol–

gel approaches were used to prepare nanodimensional inorganic materials well 

before the terms nanoscience and nanotechnology were popularized. Beginning in 

the late 1970s, researchers active at the interface between chemistry and materials 

science recognized the possibilities provided by sol–gel methods. Much of this 

interest evolved from glass science, since the ability to form inorganic glasses 

without melting, the synthesis of glass compositions that could not be achieved by 

melting, and the ability to exploit the solution nature to form glasses as fibers, films, 

or bulk materials (termed monoliths) represented an extraordinary combination of 

potential opportunities. The renewed interest in sol–gel materials occurred at a time 

when noncrystalline solids were being widely investigated for uses in optical 

communications. Multiple contributions to this special issue show the continuing 

active interest in sol–gel methods for optical applications, but emphasis has evolved 

from the scientific understanding of optical properties to the design of sol–gel 

materials as optical components and devices [26]. 
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This special issue highlights several of the most scientifically and technologically 

active areas in the sol–gel field. The papers are organized roughly into five 

categories: studies of silica-based sol–gel materials, non-silica-based materials, sol–

gel biological materials, porous sol–gel materials, and optical sol–gel materials. One 

of the underlying themes in several papers is the growing sophistication in 

synthesizing materials with designed chemistry and morphology. This is particularly 

evident when authors discuss hybrid materials. These materials are largely based on 

the use of sol–gel approaches to combine organic and inorganic functionalities. The 

versatility demonstrated in these materials is exceptional, as the range of materials 

extends from those with local organic groups attached to an inorganic framework to 

those materials composed of interpenetrating organic and inorganic networks. For a 

number of years, sol–gel methods have been used to synthesize an exciting 

generation of materials at the interface between physical science and biology. The 

contributions to this special issue show the breadth of this active research area and its 

emerging applications [26]. 

Another unique feature of sol–gel materials is control of pore solid architecture. 

There is extraordinary control not only of the size (mesopores of 2–50 nm) but also 

the arrangement of pores within the inorganic (or organic/inorganic) framework. The 

design of materials with specific architectures is enabling researchers to obtain 

unique properties in such diverse areas as drug delivery and electrochemistry [26]. 
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2.1 Dip Coating Technique 

Dip application of a coating involves simply immersing a work piece into a suitable 

tank containing the coating material, allowing the part to drain after withdrawal and 

force drying or baking the wet coating to achieve the finish (Figure 2.1). Dip 

coatings are used in many industries for both primer and one-coat finishes [27]. 

Thorough cleaning of parts is essential prior to dipping [27]. 

         

Figure 2.1: Dip coating principles [28]. 

2.1.1 Benefits of Dip Coating 

Simplicity: Manpower and equipment requirements are minimal. The process is 

easily automated [27]. 

Low Cost: Paint utilization should be relatively high (e.g., greater than 90% transfer 

efficiency) on properly operated systems, since nonused paint (drainage) is mostly 

recovered and returned to the system [27]. 

Ease of Control: Minimally skilled operators can maintain solids, viscosity, and other 

factors for acceptable application properties [27]. 
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Good Coverage: Except for air bubbles or pockets, all contact areas are coated. Close 

racking of parts is possible [27]. 

Consistency: Similar parts receive coatings similar in appearance and film thickness 

(i.e., the process is independent of the operator) [27]. 

2.1.2 Limitations 

Nonuniform Coatings: “Wedges” (thin films on upper surfaces, thicker on lower 

surfaces) tend to form on vertical surfaces. Flow lines around holes or openings can 

also occur. “Beads” on bottom edges are inherent defects, although proper viscosity 

control can minimize this effect [27]. 

Part Design and Hanging: Improperly racked parts can bucket paint, leading to waste 

and potential blistering in the puddled areas. Entrapped air pockets can prevent 

access of paint, with resultant bare areas. It may be necessary to design drain/access 

holes into some work to allow for immersion application. An attempt should be made 

to rack a part so that drainage occurs from a single point. Oscillation during 

immersion can sometimes remove air pockets [27]. 

Solvent Washing: Entrapped solvent during the curing process can resolubilize an 

already dried film, resulting in bare areas [27]. 

Product Change: A change from one formulation to another requires either extensive 

cleaning or recharging of a single tank or the availability of multiple dip tanks. 

Thoroughness of clean-out is especially important when switching incompatible 

materials (e.g., replacing a solvent-borne system with a waterborne system) [27]. 

Flammability: The potantial of fire is always present when solvent-borne dip primers 

are used. With water-borne systems this problem is greatly reduced [27]. 

Foam: Undesirable foam, which usually originates in the paint recirculation 

system,can produce voids or craters in the final finish. This problem is more 

prevalent with waterborne paints [27]. 
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Sticking: Small objects, such as fasteners processed in baskets or trays, can fuse 

together during cure. Processes such as autodeposition or electrodeposition that 

utilize water rinsing following the coating tank generally do not produce this effect 

[27]. 

Viscosity: Control is critical. High viscosity gives thick films and excessive 

consumption. Low viscosity produces films [27]. 

2.1.3 Typical Coatings Used 

Selection of coating system (i.e., resin type, pigment color) is directly related to the 

performance intended for the finished parts. Although any formulation with the 

appropriate viscosity for acceptable transfer efficiency (i.e., greater than) 90% can be 

usedi properties of appearance, quality, cost, and other factors must be taken into 

account [27]. 

There is a trend toward the use of waterborne formulations because these are both 

fire resistant and ecologically desirable. Defoamers are often required to control 

foam in waterborne systems; however, silicone-containing materials must be 

avoided. Waterborne paints are often more aggressive toward equipment than 

solventborne formulations [27]. 

2.1.4 Equipment Requirements 

If high-volume throughputs are desired, a continuous conveyor for work transfer is 

usually employed in contrast to a manual or programmed hoist. Circulating pumps 

are required to maintain uniform viscosity and constant paint composition. The 

“bead” that characteristically forms on the lowermost edge of a draining part is 

sometimes removed by ultrasound, by electrostatic detearing, or by air jets; the latter 

is generally the least expensive technique [27]. 

A controlled withdrawal rate is useful in controlling coating thickness. This is more 

readily varied with a hoist system [27]. 
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2.1.5 Maintenance 

Floating residues must be removed from the paint tank to prevent clinging of the 

material on withdrawn work pieces. This is usually accomplished bu periodic 

skimming [27]. 

Overhead conveyor systems require lubrication for maximum life. However, any 

lubricants should be pretested as potential contaminants in the paint because some 

materials can cause cratering and other defects in the final product [27]. 

Racks must be periodically stripped of dried paint. Either stripping (molten salt bath 

or high-temperature oven), cryogenic stripping (exposure to liquid nitrogen, followed 

by physical removal of the embrittled paint), or media blasting (sand, steel shot) can 

be used [27]. 

Cleaning of the drain-off area must occur on a regular basis. Care must be taken to 

avoid getting dried paint into the circulation system, with resultanat damage to 

filters, pumps, and nozzles [27].  

2.1.6 Dip Coating Theories 

Numerous experimental and theoretical studies of the dip-coating process are to be 

found in the literature. Meng and coworker used a model to quantitatively describe 

wet membrane formation on a porous substrate by capillary filtration during the dip-

coating process. The model is derived on the basis of the slip-casting process, and the 

effect of the withdrawal speed of the substrate on the thickness of the top layers has 

not been considered. Krozel et al. investigated the fluid mechanical aspects of halted 

substrate motion using gravimetric means, based on the following two basic 

theoretical models: (1) Jeffrey’s solution for transient coating and drainage, where 

capillary forces were considered to be negligible; (2) the Landau–Levich solution for 

steady state coating, which was modified by White and Tallmadge. In the latter 

model the effect of dipping time on the thickness of the top layers was also not 

considered. Other researchers have used these models for ceramic membrane 

formation by the dip-coating processes [29].  
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Dipping Time Theory 
 
Dipping time theory has been recently developed for ceramic membrane formation 

by the dip-coating process. In this model, the growth of film thickness (have) is 

interpreted as a function of substrate permeability (Ks) and of the permeability of the 

film (Km) previously deposited on the substrate (Babaluo, 2004): 

                                                    (2.1) 

where Ɛs is the substrate porosity, t is the dipping time (s), η is the viscosity of 

suspension (N m−2 s), σ is the surface tension of the liquid (solvent) in the pores of 

the support (N m−1), R is the radius of support pores (m), and α is defined as 

(Babaluo, 2004): 

                                                                                                         (2.2) 

where φ0 and φm are the volume fractions of the particles in the suspension and in the 

wet membrane, respectively.  

Usually, the permeability of the substrate (Ks) is much bigger than that of the 

membrane (Km), therefore, Equation (2.1) is simplified as follows: 

                                                                                         (2.3) 
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Considering the membrane shrinkage during the drying and sintering processes, the 

thickness of the sintered membrane (have,s) can be expressed as: 

                                                                (2.4) 

where β is defined as: 

                                                                                                        (2.5) 

Ɛm is the porosity of the sintered membrane.  

The film permeability is determined by the following equation: 

                                                                                (2.6) 

where K0 is a particle shape factor and Kτ accounts for the tortuosity of the porous 

medium. The product of K0 and Kτ was generally put at about 5 for particle packings. 

Sv is the surface area of the particles per unit volume of the solid (m−1) [29]. 
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Withdrawal Speed Theory 

For Newtonian liquids, the principle considered in the prediction of the Landau–

Levich model is the limiting film thickness (h∞): 

                                                                            (2.7) 

where ρ is the density (g m−3), g is the acceleration due to gravity (m s−2) and U is the 

withdrawal speed of the substrate (m s−1). It is customary to introduce a scaled film 

thickness (T) and a capillary number (Nca) as follows: 

                                                                                            (2.8) 

                                                                                                      (2.9) 

So that the Landau–Levich expression may be written as (at h=h∞): 

T∞=0.994Nca
1/6                                                                                                 (2.10) 

This theory is valid for Nca ƐƐ 1. The constant thickness region (II) in Figure 2.2, 

typically constitutes the majority of the film on the substrate, and pertains to 

Landau–Levich theory. White and Tallmodge patched regions (I) and (II) together to 

obtain the average film thickness for constant withdrawal speed: 

                                             (2.11) 
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or 

                              (2.12) 

 

                           

Figure 2.2: An instantaneous view of a dip-coating process. Three major regions are        
                    labelled. The critical plane separates regions (I) and (II) from Babaluo,              
                    2004 [29].                                                                                                   

It is believed that a modified model could be used to induce better quality in 

products, better process control, and consistency [29]. 
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3.  ELECTRICAL PROPERTIES OF TRANSPARENT MATERIALS 

During the last two decades; the size of the electronic devices and systems has been 

decreased continously and recently nanometer scale range was attained. Unusual 

properties and performances have been obtained with nanostructured materials. 

Ultrathin metal films are an important part in electric devices and systems and their 

electrical conductivity has been paid some attention [30]. 

The electrical properties of materials depend significantly on processes that influence 

the conductivity of the sample proper. Such processes, in particular, carrier blocking 

at the electrodes, the formation and relaxation of space charges, and intergranular 

barriers, occur at the electro-sample interface. The contribution of these processes to 

the total conductivity of the sample can be assessed by measuring its impedance in a 

wide frequency range [31]. 

Transparent conductive oxides (TCO) films have been widely used as optoelectronic 

devices such as touch panels, flat panel displays (FPD), and thin film solar cells. For 

display applications with high quality the TCO films should have high optical 

transmittance in the visible region and high electrical conductivity [29]. 

Impurity-doped zinc oxides (ZnOs) are widely accepted as substitudes for TCO 

because of the advantages of low cost, resourse availability (about a factor of 1,000 

more than indium), nontoxicity and high thermal/chemical stability [29].  

Undoped ZnO usually presents a high resistivity due to a lower carrier concentration. 

Enhancement of the elctrical properties of TCOs, specifically conductivity, can be 

achieved by increasing either the carrier concentration or the carrier mobility. 

Aluminium (Al), indium (In) and galium (Ga) had been reported as effective dopants 

for zinc oxide-based TCO films [29]. 
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Since the import of III-group element, the Al doping can dramatically increase the 

free carriers concentration and simultaneously keep the transparency in the visible 

range (Figure 3.1). Both these are necessary for the transparent conduction. Many 

methods have been employed to obtain the AZO thin films and the conduction 

mechanism was extensively discussed based on the energy band structure [32]. 

 

             

Figure 3.1: Optical and electrical properties of III-group elements [33]. 

 

Among the ZnO films doped by these elements Al-doped zinc oxide (AZO) films 

show the lowest electrical resistivity. AZO films are also wide band gap 

semiconductors (Eg = 3.4-3.7 eV), which have high optical transmittance in the 

visible wavelength region. However, a further decrease in the resistivity is required 

for future display technology applications [29].  
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The electronic energy levels of native imperfections in ZnO are illustrated in Figure 

3.2.           

 

Figure 3.2: Electronic energy levels of imperfections in ZnO [33]. 

3.1 Plasma Frequency in Conductive Structures 

The application fields of transparent conductive oxides (TCOs) are vast and 

increasing in the last years. Besides the  flat panel industry, photovoltaics has 

emerged as a major industrial branch in need for high quality transparent conducting 

oxides. The development of large area deposition processes for these layers has 

experienced a boost with industrialization of thin-film concepts, e.g. solar cells based 

on thin-film silicon or compound semiconductors like CuInS and related materials 

[34]. 

A simple requirement posed on the TCO film in this context is a high optical 

transmission for photon energies above the bandgap of the absorber material used. As 

an example the bandgaps of polycrystalline and hydrogenated microcrystalline silicon 

are around 1.1 eV. This means that the spectral range in which the TCO layer should 

exhibit high transmission will reach up to 1100 nm. This requirement is not met by 

many TCO films as, depending on doping level, they can have a considerable 

absorption in this range [34]. 



 
26 

 

The decreased transmission towards higher wavelength s is caused by free carrier 

absorption. This means that the optical behavior of TCO films is strongly linked to the 

electrical transport properties. This is described by the Drude theory [34]. 

The results of the modeling procedure can be used to investigate the link age of 

optical and electrical performance of the films used during experiments. As will be 

seen the effective mass m* of the electrons in the conduction band is a key parameter 

to understand the link of optical and electrical behavior of TCO materials. Only the 

assumption of a non-parabolic conduction band in ZnO leads to an accurate 

determination of carrier concentration from optical spectroscopy [34]. 

Finally, the information gained on the conduction band form is used to also determine 

the carrier mobility from the optical spectra [34]. 

 

Drude Theory and Extentions 

 

The trade off between optical transmission and electrical conductivity of TCO layers 

demands a profound knowledge of the connection of the two material properties. The 

basic theory of the optical behavior of free carriers in solids has been formulated by 

Drude and is described in various textbooks and articles. In his theory the 

susceptibility accounting for the free carriers can be expressed as; 

                                                                                          (3.1) 

Where ωp donates the plasma frequency and ωτ is a damping term. ωp is a function of 

the carrier density Ne, while the damping depends on the mobility µ; 

 

                                                                                             (3.2)        

                                                                                             (3.3) 

In the two expressions  donates the electron effective mass. 
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Due to this effect a TCO film, that is transparent in the visible spectral range, will 

reflect light in the long wavelength region, with the plasma frequency roughly 

defining the border between the two regimes. The damping defines the steepness of 

the transition. As the plasma frequency shifts to higher frequencies with increasing 

carrier concentration, the demand for high transmission at a specific wavelength will 

set an upper limit for the carrier concentration, while optical transmission below the 

plasma frequency and conductivity will both benefit from high mobilities [34]. 

The Drude expression has been used by various authors to derive information on free 

carrier behavior in ZnO thin films by evaluation of reflection data, transmission 

spectra or ellipsometric spectra. However, deviations from the Drude theory can be 

observed if both transmission and reflection data are taken into account. The main 

reason is a frequency dependance of the damping frequency in highly doped TCOs for 

frequencies above the plasma frequency. Generally this is expressed in a frequency-

dependant real part of the dynamic resistivity, ρ. It follows a power law ρ is 

proportional to ωα , in which α indicates the dominant scattering behavior [34]. 

The theory was applied to ITO films by Hamberg et al. and  showed an accurate 

description of the dielectric function. The theory was later also applied to ZnO thin 

films [34]. 

Unfortunately the solution of the underlying equations are challenging in terms of 

computation and hence difficult to implement for fitting of optical spectra. Thus other 

authors implemented analytic functions in order to describe the frequency dependant 

damping [34].  
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In this approach an analytic expression is used to describe the frequency dependance 

of the damping and ωτ (ω) is expressed as; 

                                         (3.4) 

Where; 

                                                                                  (3.5) 

 

In this case the parameter ωτ0, describing the low frequency limit of the damping 

frequency, has to be used for calculation of carrier mobility using (3.3). ıt is 

reasonable to set the exponent α= - 3/2, which is characteristic for ionized impurity 

scattering [34].  

This extended Drude approach has been used to evaluate optical transmission and 

reflection data in the visible and the near-infrared spectral range. The effective mass 

 of the free carriers is derived by correlating values for plasma frequency 

obtained from fitting with carrier concentration determined with Hall measurements 

[34].  

3.2 Electron Concentration 

ZnO is a wide and direct band gap II–VI semiconductor and has potential 

applications. ZnO exhibits good piezoelectric, photoelectric and optical properties, 

and can be suitable for an electroluminescence device [35].  

Fabrication of p-type ZnO or the formation of ZnO p–n junction is very difficult 

because ZnO thin film shows n-type conduction due to many native defects, such as 

oxygen vacancies and zinc interstitials. However, recent successes in producing p-

type ZnO and ZnO p–n junction have opened up the possibility of producing blue and 

ultraviolet (UV) light emitters. Stoichiometric zinc oxide is an insulator that 

crystallizes with the wurtzite structure to form transparent needle-shaped crystals 

[35].  



 
29 

The structure contains large voids which can easily accommodate interstitial atoms. 

Consequently, it is virtually impossible to prepare really pure crystals; also, when 

these crystals are heated, they tend to lose oxygen. For these reasons, ZnO shows n-

type semiconducting properties with many defects, such as the lack of oxygen and the 

excess of zinc. ZnO typically exhibits UV band edge emission and a broad visible 

band emission due to native defects [35]. 

The visible photoluminescence (PL) is most commonly green, though other peaks 

such as, for example, orange and yellow emission have also been reported. 

Stoichiometric ZnO thin films usually show strong UV luminescence. It is known that 

visible luminescence is mainly due to defects which are related to deep level 

emissions, such as zinc interstitials and oxygen vacancies. Recently, it was reported 

that the shallow donors are responsible for the pre dominantly n-type conductivity in 

otherwise undoped materials. However, it is not sufficient to investigate on 

relationship between optical properties and electrical properties [35]. 

Figure 3.3, below, shows the result of electron concentration and resistivity of ZnO 

thin film. 

Results show that control of electron concentration in ZnO thin films is possible 

throughout oxygen partial pressure variation. Resistivity decreased as oxygen partial 

pressure increased [35]. 

 

                   

Figure 3.3: Resistivity electron concentration relationship in ZnO [35]. 
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ZnO has many native defects due to lattice structure that contains large voids which 

can easily accommodate interstitial atoms. These native defects in ZnO contribute the 

increase of n-type carrier concentration. To fabricate the p-type ZnO and other 

electronic devices, it is important to control the number of native defects [35].  

Al3+ solubility limit on thin films is better confirmed, in an indirect way, from 

electrical measurements (film conductivity). It can be reminded that for TCOs, 

conductivity is directly linked to carrier concentration i.e. here, aluminium doping 

rate since a supplementary free electron is created upon the non-aliovalent 

substitution of Al3+ for Zn2+. From conductivity measurements, several reports and 

seem to show that it is possible to dissolve up to 1 mol.% of Al in zinc oxide [11]. 

3.3 Electron Mobility 

Carrier (electron) mobility is an important phenomenological parameter for 

describing the operation of semiconductor devices such as metal-oxide 

semiconductor field effect transistors and solar cells. It is one of the basic input 

parameters for expressing electrical current in devices. In addition the determination 

of doping level in wafers requires a knowledge of carrier mobility. Several 

techniques have been used in determining carrier mobilities in semiconductors. 

However, they all require samples specially prepared or when this is not the case 

thay require electrical contacts in signal acquisition [36].  

When electrons are confined in two-dimentional (2D) materials, quantum 

mechanically enhanced transport phenomena, as exemplified by the quantum Hall 

effects (QHE), can be observed [37]. 

In the investigations of electrical properties of semiconductors it is usual to 

determine the conductivity and Hall coefficient R given by; 

                                                                                            (3.6)           

and   

                                                                                     (3.7) 
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Where n is the number of carriers  per unit volume, c is the velocity of light in 

vacuum, q is the electronic charge, µ is the drift mobility of the carriers and µ’ 

is the Hall mobility of carriers [38]. 

 

From equatins 1 and 2, we obtain; 

                                                                                                   (3.8) 

Thus, it is seen that the Hall mobility, µ’ can be measured without ambiguity. To 

obtain the density of carriers and drift mobility a knowledge of dependence of  

µ’ / µ on impurity content is necessary [38]. 

Hall effect and magnetoresistance are far less informative than they are in crystalline 

materials [39].  

Most III-V compound semiconductors have high electron or hole mobility when the 

impurity or carrier concentration is low, regardless of the doping type. In these 

materials, the mobility decreases gradually when the impurity concentration is above 

1016 cm-3 [40].  

According to Studenikin et al. [41], many papers were mostly concerned with 

preparation of the films and investigation of their structural, optical and electrical 

properties; and scanned attentions was given to the relaxation properties of ZnO 

films, altough some reported slow relaxation processes without presenting a detailed 

study.On the other hand the relaxation proerties of semiconductor films are of 

interest both for a fundemental understanding of transport mechanisms and for 

testing new materials. 

As Studenikin et al.[41], suggested; in many cases the specific resistivity and the 

Hall effect of a conducting material are measured by cutting the sample in the form 

of a a bar. Current contacts A and B and voltage contacts C, D, E and F are attached 

to the bar as shown in Figure 3.4. The specific resistivity is then derived from the 

potential drop between the points C and D or E and F from the dimensions of the 

sample. On the other hand, the Hall voltage can be measured between the points C 
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and E or D and F. the current contacts must be far away from the points C, D, E and 

F in order to ensure that the lines of flow are sufficiently parallel and are not changed 

on application of a magnetic field. 

 

                      

 

Figure 3.4 : The classical shape of a sample for measuring specific resistivity [42] 

 

For the measurement of the specific resistivity and Hall effect of a semiconductors 

are more complicated shape of the sample has often to be used. A well-known 

example is the bridge shaped sample as shown in Figure 3.5.  

 

                                 

 

                                Figure 3.5: The bridge shaped sample [42] 

 

The large areas at the ends have the task to provide low-ohmic contacs. Furthermore, 

when makin these contacts a heat treatment is often necessary which in this case can 

be done without heating that part of the sample which is under measurement [42].  
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It will be shown that the specific resistivity and the Hall effect of a falt sample of 

arbitrary shape can be measured without knowing the current pattern if the following 

conditions are fullfilled; 

• The contacts are at the circumference of the sample 

• The contacts are sufficiently small 

• The sample is homogeneous in thickness 

• The surface of the sample is singly connected, i.e., the sample does not have 

isolated holes [42]. 

 

Unlike traditional methods; Studenikin et al. [41], employed a setup (Figure 3.6) for 

Hall effect measurements in the dark and under illumination, which is designed and 

built at the University of Guelph, and the software allowed fully automated four-

probe resistivity and Hall effect measurements. 
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                    Figure 3.6: Schematic diagram of the automated Hall effect setup [41] 
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4.  OPTICAL PROPERTIES OF AZO FILMS 

Future energy supply and energy security will demand revolutionary advances in 

technology in order to maintain or forward today’s (2007) general standard of living 

and economic prosperity [43]. 

Clearly the TCs can be viewed as ‘‘solar energy materials’’, whose properties have 

been given a bird’s eye perspective in recent articles [22].  

The applications of TCs, hence, can rely on their spectral selectivity. Other possible 

uses emerge from the angular properties of the radiation that surrounds us, 

specifically by the fact that one can take advantage of the Sun’s passage over the vault 

of heaven to have different performances for midday and dawn or dusk. Still other 

applications ensue from the fact that ambient radiation or human needs vary during 

the day and season, so that solar energy and/or visible light ideally should be admitted 

or rejected as a function of time [22]. 

When electromagnetic radiation impinges on a material one fraction can be 

transmitted, a second fraction is reflected, and a third fraction is absorbed. Energy 

conservation yields, at each wavelength, that; 

                                                                                    (4.1) 

where T, R, and A denote transmittance, reflectance, and absorptance, respectively 

[22]. 

Another fundamental relation ship, also ensuing from energy conservation and 

referred to as Kirchhoff’s Law, is; 

                                                                                                     (4.2) 

with E being emittance, i.e., the fraction of the black body radiation that is given off at 

a particular wavelength. Eq. (4.1) is of practical relevance mainly for λƐ3 µm [22]. 
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Recently, number of researchers have focused and paid attentiaon in preparing the 

suitable conditions so as to obtain a good quality of ZnO thin films which affected 

the structural, electrical and optical properties [44].  

Al-doped ZnO compounds are the most conventional transparent conductive oxides 

(TCOs), which are useful as transparent electrodes (opto-electronic devices) or as 

thermal insulator films in smart windows (low emissive windows) [11].  

Substitution of aluminium for zinc remains nevertheless quite difficult because of the 

difference in oxidation state, ionic radius and coordination preference [11].  

AZO films have been prepared by various thin-film deposition techniques, including 

magnetron sputtering , spray pyrolysis, chemical vapor deposition, pulsed laser 

deposition, reactive electron beam evaporation and sol–gel process, etc. Recently, a 

high-quality AZO film prepared by radio-frequency magnetron sputtering has been 

used as an anode. The film exhibited a resistivity of 7.5× 10-4 Ω-cm and an optical 

transmittance over 85% in the visible spectral region. [17]. 

According to S. Fernandez et al. [45], for most applications high transmission in the 

visible range is very important. Due to the fact that many researhes based on results 

from visible range. 

The analysis of optical transmission spectra is one of the most productive tools for 

understanding and developing the band syructure and energy band gap, Eg, of 

crystalline structure [46]. 

The transmittance of the uncoated glass substrate is greater than 93% over the entire 

spectrum region, except for wavelengths below 1000 nm a slight increase of 

transmission of about 95% is observed; in fact, this is due to the light scattering by the 

bubbles (imperfection) inside the substrate [47]. 
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The spectrum can be roughly divided into two regions: 

• A transparent region with the interface pattern   

• A strong absorption range in the UV range. 

In the region of low absorption, the incident light traverses and reflects in the film 

several times and produces the interference fringes [46].  
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5.  RADIATION EFFECT  

Interactions between radiation and material can be grouped into two broad classes: 

1. Those concerning radiochemistry (i.e., ionization and free radical production) 

2. Atomic displacement collisions in ordered solids. 

Theoretical calculations of the magnitudes of these interactions are somewhat 

imperfect; undercertainties arisee from the inability of investigators to determine 

accurately the damage mechanism and the influence of material impurities and 

environmental conditions on the radiation effect [48]. 

Literature on engineering tests of radiation effects on the properties of structural 

materials is extensive, but these tests seldom duplicate the exact materials used in 

spacecraft or the actual conditions of the space environment. In some circumstances, 

these differences can be critical [48]. 

In general, mechanical properties of structural metals or ceramics will not be 

significantly degraded following exposure to fluences of Ɛ1017/cm2 protons (EƐ1 

MeV), Ɛ1017/cm2 neutrons ( E Ɛ 1 keV), or Ɛ1018/cm2 electrons (EƐ1 MeV). It is 

expected, therefore, that space radiation will not constitute a significant hazard 

because such fluences can be accumulated only on extremely long missions 

(hundreds of years) [48]. 

Polymeric substances, however, are considerably more sensitive to radiation and 

significant effects are to be expected. In the case of all three categories of materials 

(metals, ceramics and polymers) nuclear-reactor and radio-isotope power radiations 

are of more immediate concern than space radiation because of the high radiation-

dose rates associated with these internal sources [48]. 
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Solar irradiation is dependent on different causes including astronomical and 

meteorological factors. In practical studies it is not possible to consider all the factors, 

and therefore, so far simple but effective models for its prediction from a few 

numbers of factors are presented. The first of such models takes into consideration 

only the sunshine duration measurements for the solar irradiation estimation, and 

unfortunately, it is still under use without critical assessment of the underlying 

restrictive assumptions and simplifications in model parameter estimation 

methodology [49].   

Energetic particles and photons can interact with solids to produce atomic 

displacements, electronic excitations, or both. Atomic displacements result from the 

elastic scattering of an energetic particle by an atomic nucleus so that the kinetic 

energy transferred to the nucleus in the collision is sufficient to break the chemical 

bond to neighboring atoms. The moving atom may then serve as a projectile to 

produce secondary displacements or, if sufficiently energetic, will ionize or otherwise 

excite other atoms adjescent to its path [48]. 

Electron-induced displacement damage in materials is qualitatively and quantitatively 

unlike that caused by protons or alpha particles, and neutrons produce microscopic 

modifications in the properties of solids that are dissimilar to those caused by the 

other particles. A crucial point in this regard is the effectiveness of thermal annealing 

in restoring the preirradiation mechanical properties of metals. Neutron-irradiated 

metals generally tend to retain some remnants of radiation damage, even after thermal 

treatment at elevated temperatures (875 °K), but electron-induced damage is observed 

to anneal usually below 300 °K [48]. 

Electronic excitation is produced directly by electron, gamma, proton, or ion 

irradiations; however, fast neutron irradiations can also produce electronic excitation. 

When a neutron-produced displaced atom is accelerated to a speed exceeding that of 

an electron in its outermost shell, the atom will tend to lose electrons and appear as a 

rapidly moving ion. In hydrogeneous substances and other materials having low 

atomic numbers, electronic excitation by neutrons is quite significant [48]. 
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5.1 Types of Radiation and Ionizing Radioation  

Ionizing radiation is energy that is carried by any of several types of particles and 

rays (electromagnetic radiation) given off by radioactive material, X-ray machines, 

and nuclear reactions. This energy can knock electrons out of molecules with which 

they interact and thus, creating ions. Non-ionizing radiation such as that emitted by a 

laser, is different because it does not create ions when it interacts with but dissipates 

energy generally in the form of heat. The three main types of ionizing radiation are 

alpha particles, beta particles and gamma rays [50]. 

An alpha particle consists of two protons and two neutrons and is identical to the 

nucleus of helium atom.because of its relatively large mass and charge, an alpha 

particle produces ions in a very localized area. An alpha particle loses some of its 

energy each time it produces an ion (its positive charge pulls electrons away from 

atoms in its path), finally aquiring two electrons from an atom at the end of its path 

to become a complete helium atom. An alpha particle has a short range (several 

centimeters) in air and it can not penetrate the outer layer of skin [50]. 

Beta particles can be either negative (negatron) or positive (positron). Negatrons are 

identical to electrons and originate in the nucleus of an atom that undergoes 

radioactive decay by changing neutron into a proton. The only difference between a 

negative beta particle and an electron is the ancestry. A beta particle originates in the 

nucleus whereas an electron is external to the nucleus. Unless otherwise specified, 

the term “beta particle” generally refers to a negatron. A positron is emitted from an 

atom that decays by changing a proton into a neutron. Beta particles are smaller and 

more penetrating than alpha particles, but their range in tissue is still quite limited. 

When its energy is spent a negatron attaches itself to an atom and becomes an 

ordinary electron, while a positron collides with an ambient electron and the two 

particles annihilate each other producing two gamma rays. When a negatron passes 

close to the nucleus of an atom, the strong attractive Coulomb force causes the beta 

particle to deviate sharply and lose energy at a rate proportional to the square of the 
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acceleration. This energy manifests itself as photons termed Bremsstrahlung. The 

amount of beta energy converted into photons is proprtional to the enery of the beta 

particle. This effect is only significant for high-energy beta particles generally 

passing through very dense materials such as lead, i.e., those with higher atomic 

numbers and so more photons in the nucleus [50]. 

Gamma rays are electromagnetic radiation given off by an atom as a means of 

releasing excess energy. They are bundles (quanta) of energy that have no charge or 

mass and can travel long distances through air (up to several hundred meters), body 

tissue and other materials. A gamma ray can pass through a body without hitting 

anything, or it may hit an atom and give that atom all or part of its energy. This 

normally knocks an electron out of the atom, ionizing it. This electron then uses the 

energy it receives from the gamma ray to create additional ions by knocking 

electrons out of other atoms. Because a gamma ray is pure energy, it no longer exists 

once it loses all its energy. The capability of a gamma ray to do damage is a function 

of its energy, where the distance between ionizing events is large on the scale of the 

nucleus of a cell [50]. 

Additional forms of ionizing radiation beyond the three types in Figure 5.1 include 

neutrons, protons, neutrinos, muons, pions, heavy charged particles, X-rays and 

others. essentially all radioactive materials at the Hanford Site originated from 

neutron interactions with uranium fuel to produce plutonium. By products of this 

process include fission products (most of which are in the high-level waste currently 

in on site storage), activation products in the containment and reactor coolant 

materials, and various radioactive wastes [50]. 

                                 

   Figure 5.1: Three types of ionizing radiation [50]. 
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Ionization effects can be studied by exposing materials to gamma ray sources            

(cobalt-60 or cesium-137) or by exposure to a charged particle accelerator beam. In 

most of the radioisotope facilities, it is a reasonable simple method to control 

atmosphere, temperature and pressure in the vicinity of specimens. On the other hand 

ingenuity is required to achieve cryogenic temperatures for samples exposed to the 

output of low energy (1 MeV or less) particles accelerators [48]. 

Isotopes are different forms of an element that have the same number of protons in 

the nucleus but a different number of neutrons. There are nine major radioactive 

cobalt isotopes. Of these, only cobalt-57 and cobalt-60 have half lives long enough to 

warrant concern. The half laves of all other isotopes are less than 80 days. Cobalt-57 

decays with a half life of 270 days by electron capture and cobalt-60 decays with a 

half life of 5.3 years byemitting a beta particle with two energetic gama arays; the 

combined energy of these two gamma rays is 2.5 MeV (one has a energy of 1.2 MeV 

and the other has an energy of 1.3 Mev) [50]. 

The properties of cobalt-60 are shown in Table 5.1. 

 

Table 5.1: The properties of cobalt-60 [51]. 
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5.2 Effect of Radiation on Materials 

All organisms are being exposed to ionizing radiation from natural sources all the 

time. Radiation doses are typically given in units of rem or millirem (mrem), which is 

one-thousandth of rem. This unit was developed to allow for the consistent reporting 

of hazards associated with the various types and energies of radiation on the human 

body.  The rem is the product of the absorbed dose in rads (i.e., the amount of energy 

imparted to tissue by the radiation, where 1 rad equals 0.01 joules/kg) and factors for 

the relative biological effectiveness (RBE) of the radiation.  The RBE is directly 

related to the linear energy transfer (LET) or distance over which the radiation energy 

is imparted to the absorbing medium and is accounted for by a quality factor.  For 

example, alpha particles are 20 times more hazardous than beta particles for the same 

energy deposition and hence have a quality factor of 20, whereas the quality factor for 

beta particles is one [50].   

Materials for which the effect of radiation shall be determined shall include, but not 

be limited to all metals, alloys, polymers, ceramics, graphite, glasses and thermal 

control coatings [48].   

Analysis of structural parts shall, as a minimum, account for radiation-induced 

modifications to tensile-yield strength, ultimate tensile strength, shear strengh, 

ductility, ductility-to-brittle transition temperature, fatigue strength, fracture 

toughness, hardness, creep, stress rupture, burst strength, impact resistance and 

compressive strength as applicable. The analysis shall be used on data showing the 

nature and magnitude of modifications to these properties for materials either 

identical or similar to those being analyzed. The radiations and other environmental 

conditions such as temperature and the pressure and composition of ambient gases 

shall be as nearly identical to those expected to be encountered as is practicable [48]. 

Analysis of insulating materials shall as a minimum account for radiation-induced 

modifications to thermal conductivity [48].  
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Analysis of heat shield and ablative materials shall as a minimum account for 

radiation induced modifications to specific heat, thermal conductivity, stored energy, 

heat of fusion, and heat of sublimation [48]. 

Analysis of thermal control surfaces and coatings shall as a minimum account for 

changes in optical absorptance, reflectance and emmittance resulting from exposure to 

radiation. The analysis shall be based on data showing the nature and magnitude of 

modifications to these properties for materials either identical or similar to those being 

analyzed, under radiations as nearly identical to those expected to be encountered as is 

practicable, and either identical or similar environmental conditions such as 

temperature and the pressure and composition of ambient gases [48]. 

Candidate materials for each structural function should be rated for relative radiation 

hardness. The preliminary evaluation should include: 

1. Tabulation of the minimum acceptable engineering properties of interest for 

each part. 

2. Enumeration of the available materials whose initials (i.e., unirradiated) 

properties meet the minimum acceptable engineering requirements for that 

part. 

3. Review of the existing compilations of radiation effects in various materials 

and a determination of the radiation level at which the engineering properties 

fall below minimum acceptable values. 

4. Elimination from consideration those materials for which there is clear 

evidence of failure at the predicted level of exposure [48]. 

If the material does not meet the required radiation hardness level, alternate designs 

should be considered [48]. 

Absorption of neutron and gamma radiation can cause temperature increases in 

syructural members, heating effects should be computed [48]. 

Polymers are the structural materials most seriously affected bu radiation. The role of 

temperature, pressure and composition of the projected environment should be taken 

into account when acceptability of polymers in a radiation environment of more than 

105 rad (material) has been determined by analysis [48].  
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Ceramic properties appreciably affected by neutron irradiation include density, elastic 

modulus, compressive strength, mechanical integrity and thermal conductivity. Fast 

neutron (E Ɛ1keV) effects are significant at levels near 5 x 1018 n/cm2. The effects of 

gamma rays or charged particles should always be taken into consideration when the 

dose exceeds 106 rad (material) [48]. 

The principal structural properties of graphite that may be significantly modified by 

radiation include density, thermal conductivity, and stored energy. Changes in these 

properties should be accounted for when fast-neutron (E Ɛ1keV) fluences are in 

excess of 1019 n/cm2 [48]. 

Structural properties of glass are usually unaffected by fast-neutron (E Ɛ1keV) 

fluencesless than 1019 n/cm2. When the glass is to be used as a viewing port, 

darkening of the glass by ionizing radiation usually limits its usefulness. Under such 

circumtances it is advisible to specify radiation-resistant glass [48]. 

Figure 5.3 shows unirradiated and irradiated AZO samples. 

 

Figure 5.3:SEM images of AZO films a) before and b-d)after irradiation with 1,3 and               
                 5 laser shots with EL:250 mJ, respectively [17].                                           
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Figure 5.4: Optical absorption spectra of natural quartz measured before (1) and after 
g- irradiation (2) [52].                                                                                                          

 

According to Limoeiro et al. [52], recently, in the course of gamma-ray and electron 

beam irradiation to gelatin aqueous solutions, it is observed that the light scattering 

intensity of dilute solutions of the irradiated gelatin was significantly stronger than 

that before the irradiation (Figure 5.4). 
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6.  EXPERIMENTAL 

This study focuses on the optical and electrical properties of Al doped and undoped 

ZnO thin films which are produced by dip coating via sol-gel process. In this respect, 

AZO and ZnO thin films are deposited on  substrates homogeneously and final 

samples are examined under spectrophotometry for optical and four point probe for 

resistivity measurements. 

6.1 Substrate Preparation 

In this study, as the substrate materials, soda-lime silica glass was utilized for 

investigation of optical properties and Corning 7059 glass was used for electrical 

resistivity evaluation. 

It is suitable to include some information on substrate materials for coatings of TCs. 

From the viewpoint of practical use, however, the films should be deposited on an 

amorphous substrate such as glass substrates. It can exhibit a variety of properties 

[22,53].  

Soda-lime silica glasses were cut in dimentions of 25x40 mm. Corning glasses were 

ready to use, which were 25x25 mm in dimensions. 

Both soda-lime silica and  Corning glasses are cleaned in the same procedure, shown 

in Figure 6.1. 
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               Figure 6.1: The flow chart showing the procedure for cleaning substrates 

 

After preparation of glasses; it is carefully taken into account that glasses were 

placed to cleaned boxes if they were not going to be used on that time. 

For ultrasonic cleaning Sonorex Ultrasonic Bath RK-100 H is utilized (Figure 6.2). 

                                          

                        Figure 6.2: Ultrasonic Bath Equipment  [54]. 

 



 
51 

6.2 Preparation of Precursor Solution 

Three sol-gel categories have been used to deposit zinc oxide thin films ; 

i. Processes based on the use of undoped ZnO. 

ii. Processes based on the use of undoped ZnO with addition of distilled water 

into solution of zinc oxide. 

iii. Processes based on the use of doped ZnO and acquiring AZO compound. 

A solution of ZnO precursor was made by dissolving zinc acetate dihydrate 

[Zn(CH3CO2)2.2H2O] in ethanol.  

The stability of the process was set by control of the hydrolysis and condensation 

reactions such that they take place only when the solution dries, solvent is lost or 

temperature is elevated [10].  

Therefore, the diethanolamine (DEA) was added as a chelating ligands to improve 

the precursor solubility. The optimum amount of additive in the system provided a 

homogeneous distribution of the metal ions and prevented their precipitation from 

the solution prior to thermal treatment. The molar ratio of DEA/zinc acetate was 1:1. 

The solution then hydrolized in (ii) and (iii) with 2 mol H2O per mol metal acetate to 

improve the wetness and uniformity of the coating on the substrate [10].  

To obtain aluminum doping, aluminum nitrate nanohydrate [Al(NO3)3.9H2O] was 

added to the solution for process (iii).  

In our experiment, the dopant level, determined by 100 x [Al]/ [Al+Zn], was 3, 5, 7, 

10, 20, 30, 50 mol %. 

The sol was stirred at 480 (1 / min) in magnetic stirrer at 90 °C for an hour. 

Therefore it can be obtained the clear sol. served as the coating solution after cooling 

down to room temperature. The coating was usually made 3 days after the solution 

was prepared. 
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The glasses were coated after preparing the solutions having compounds and 

amounts shown in Table 6.1. 

 
                     Table 6.1: Compounds and their amounts in solution 

Amounts Compounds 

i ii iii 

[Zn(CH3CO2)2.2H2O] 1.5364 g 1.5364 g 1.5364 g 

Ethanol 50 ml 50 ml 50 ml 

Diethanolamine 

(DEA) 

0.669 ml 0.669 ml 0.669 ml 

De-ionized 

Water 

- 3 ml 3 ml 

1-50 % [Al(NO3)3.9H2O] - - 

0.8-1.6 % 

 

6.3 Depositing Thin Films 

AZO thin films were deposited by dip coating the stock solution onto substrates 

(both on thin commercial soda-lime silica glass cover for a microslide and Corning 

7059).  

Cut, prepared and cleaned glass substrates were dip coated under atmospheric 

conditions, at about 22-25°C and 35-40% humidity. 

During this process computer controlled KSVLMX2 Dip Coater equipment was 

utilized (Figure 6.3). Glasses are dipped into the emulsion with a speed of 200 

mm/min and pulled off with a speed of 50 mm/min without holding in the sol. 

After one layer is obtained on the substrate, the films were dried at 100°C, 400°C for 

soda-lime silica and Corning glasses, respectively, in Nabertherm furnace for 10 min. 

Final annealing was conducted in a temperature range of 100 to 500 °C for soda-lime 

silica and 700°C for Corning glasses. 

In order to observe the effects of annealing conditions on resistivity four of eight 

samples,which are coded as I, II, III and IV, are annealed in vacuum and rest of 

them, which are coded as V, VI, VII and VIII, are annealed in argon ambient. 
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                              Figure 6.3: Dip Coating Equipment [55]. 

 

6.4 Irradiation Process 

In order to examine the effect of gamma irradiation, Co-60 radioisotope was utilised. 

Co-60 radioisotope is an appropriate irradiation source for the industrial usage to 

obtain the photons with high energy. 

Co-60 radioisotope as a gamma source emits the photons with two different energies 

(1.17 MeV and 1.33 MeV) and it provides gamma rays of average energy of  

1.25 MeV by assuming a monochromatic 1.25 MeV source. Therefore, Co-60 

radioisotope was used as gamma source to irradiate the ZnO and AZO thin films 

with high energy gamma rays. The activity of Co-60 was 0.018021 Ci. The absorbed 

dose of ZnO and AZO thin films were 0. 38 Gy. 

All irradiation tests are done at room temperature. 

The Co 60 radioisotope which was used during irradiation process and placement of 

samples around the isotope are shown in Figure 6.4. Radioisotope was placed in the 

middle of the circle.  
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(a)                     (b) 

  Figure 6.4: Schematic diagram of (a) Co 60 radioisotope and (b) placement of 

samples [56]. 

6.5 Characterization Tests 

The characterization of the films, acquired on the surfaces of glasses, deposited by 

solgel technique is accomplished by; 

• Transition element examination by XRF, 

• Microscopic examination by SEM, 

• Thickness measurement by profilometer, 

• Optical properties by spectrophotometer, 

• Electrical properties by using four point probe. 

6.5.1 Elemental Analysis 

The transition elements of soda-lime silica glass influences the colour owing to the 

absorption of sunlight at the color centers [57], transition elements of the soda-lime 

silica glass utilised in this study was examined by Innov-X XRF Analyzer, shown in 

Figure 6.5. 
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              Figure 6.5: Schematic diagram of Innov-X XRF Analyzer [58]. 

6.5.2 Microscopic Examination 

The surface morphology of the thin films was observed by using EDX equipped 

JEOL JSM-7000F SEM at magnification of 7500. 

6.5.3 Thickness Measurement 

Thicknesses of thin films are measured by using Veeco Dektak 6M Stylus 

profilometer, shown in Figure 6.6. 

In order to measure the thickness, only half of the glasses were coated in every step. 

Thickness measurement is acquired from the coated to the uncoated part of the glass 

with a measurement interval of 6.5 um and under 8 mg load. 

                         
          Figure 6.6: Schematic diagram of Veeco Dektak 6M Stylus profilometer [59]. 
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6.5.4 Optical Properties 

The optical properties of films were examined with a Lambda 950 Perkin Elmer, 

double beam spectrophotometer in the ultraviolet-visible-near infrared 

(UV/VIS/NIR) regions in the wavelength range of 280-2400 nm. Regions can be 

adjusted as required. (Figure 6.7). 

As S.-Y. Kuo et al. [60] suggested,  high transparency is the most important factor in 

the application of ZnO:Al films to TCOs, the optical transmittance was determined 

within the wavelength from 280-2400 nm. 

Transmittance, reflectance, absorbance and OD (optical density) are evaluated from 

the values obtained from spectrophotometer by using Equation (5.1),  

                             (5.1) 

Where; t is the film thickness; α is the absorbance and ρ is the reflectance.  

Also, optical bend gaps are determined from the graphs. 

                      

                 Figure 6.7: Schematic diagram of Lambda 950 Perkin Elmer [61]. 
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6.3.4 Resistivity Properties of Films 

 
The four point electrical probe is a very versatile device used widely in physics for 

the investigation of electrical phenomena.  

In this study, resistivity of the samples are evaluated by four point probe from three 

or more different points from each samples, then average value for resistivity is 

calculated. 
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7. RESULTS AND DISCUSSIONS 

7.1 Elemental Analysis 

In the present study soda-lime silica glass was utilized as the substrate material. The 

characteristic optical density bands are explained the causes of color due to the 

absorption of sunlight at the color centers of the transition elements in soda-lime 

silica glass such as Fe and Zr at the substrate, after the gamma irradiation transition 

elements of the soda-lime silica glass utilised in this study was examined by Innov-X 

XRF Analyzer. The results of XRF measurements are given in Table 1. 

Table 7.1: Transition elements of the examined soda-lime silicate substrate. 

Elements wt. % 
Fe 0,09+/-0,01 
Zr 0,02+/-0,00 

 

7.2 Microscopic Analysis 

In the scope of the present study; glasses were dip-coated homogeneously with 

different dopant concentrations, and postheated at different temperatures, between 

100°C – 550°C and 400°C - 700°C, for optical and electrical properties, respectively. 

Scanning electron microscopic examinations revealed that, the substrates were 

homogenously covered by Al doped ZnO film after sol-gel process. In Figure 7.1; the 

scanning electron microscopic image of the AZO thin film annealed at 400°C shows 

the homogeneity and accomplished wetting. 
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                        Figure 7.1: SEM image AZO film postheated at 400 °C. 

 

 

                           Figure 7.2: SEM image AZO film postheated at 400 °C 
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It is also seen that with a high dipping rate; bubbles formation occurs and bubbles 

can not be eliminated during postheating. This causes a catastrophic decrease in 

quality of the optical properties. Figure 7.2 shows an SEM image of AZO coated 

surface with the inclusion of bubbles. 

 

It is also observed that if substrate cleaning was unsuccessful before dipcoating; final 

surface qualities are also affected. In Figure 7.3 dirt caused, non uniform, surface is 

detected. 

 

                       Figure 7.3:  SEM image AZO film postheated at 400 °C 
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7.3 Optical Properties 

 

In this study, for optical properties; results of the experiments were evaluated in three 

sections, in order to analyse; 

i. The effect of de-ionized water addition 

ii. The effect of Al concentration present in the ZnO emulsion  

iii. The effect of irradiation exposure on deposited ZnO and AZO thin films. 

 

The Effect of The De-Ionized Water Addition 

 

For the examined undoped and Al-doped zinc oxide based thin films, deposited on 

soda-lime silica glass substrates; it is reported that addition of de-ionized water to 

solutions increases the wetness and uniformity of the coating on the substrate 

according to Radhouane Bel Hadj Tahar [10] . 

Figure 7.4 shows the transmittance change in undoped zinc oxide coatings, with the 

addition of de-ionized water, at two different post heated temperatures. 

         

 

                                               (a) 
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                                                (b) 

 Figure 7.4: Effect of De-Ionized Water To Transmittance In Zinc Oxide Coatings at 

(a) 400°C and (b) 500°C. 

 

The transmittance values are detected by 950 Perkin Elmer, double beam 

spectrophotometer in the ultraviolet-visible-near infrared (UV/VIS/NIR) regions in 

the wavelength range of 280-2400 nm.  

In Figure 7.4; when blue lines, which indicate the coatings with de-ionized water, is 

compared to red lines, which contains no water, it is seen that there is an increament 

in transmittance values which means better uniformity between the substrates and 

coatings at both different post heating temperatures. 
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The Effect of Al Concentration Present In The ZnO Emulsion  

 

This part of the work focused on the optical properties influenced by dopants. The 

influences of dopant concentration on the structural and optical properties were 

investigated. Appropriate amounts of aluminum doping were achieved by adding 

aluminum nitrate to the precursor solution. In this experiment, the dopant level was 

determined by; 

 

100 x (Al) / (Al+Zn)                                                                                              (7.1) 

 

By utilization of Equation 7.1; dopant levels were 1, 3, 5, 7, 10, 20, 30, 50 mol %. 

The effect of dopant concentration on transmittance at 200°C, 300°C, 400°C, 500°C 

and 550°C are shown in Figure 7.5. 

 

 

                                                    (a) 
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                                                       (b) 

 

 

 

                                                        (c) 



 
66 

 

                                                                (d) 

 

                                                   (e) 

Figure 7.5: Effect of dopant concentration over transmittance % values at (a) 200°,             
                   (b) 300°C, (c) 400°C, (d) 500°C and (e) 550°C postheating temperatures 
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It is seen from Figure 7.5 (c) that the required properties can be obtained from 

postheating at 400°C. According to Shinobu Fujihara et al. [62] Generally, the 

thermal decomposition behavior of the precursor gel is complicated especially with 

various kinds of organic molecules contained (7.1). The decomposition involves 

many thermal effects. The gradual weight loss observed at temperatures between 172 

and 445°C with a step at 353°C indicates the continual release of the organic 

molecules. The exotherm beginning at 250°C may be due to the combustion of the 

organic molecules and/or crystallization of ZnO. Due to the fact that almost all 

experiment results are commented on 300°C - 400°C - 500°C and 550°C. 

 

                                 (7.2) 

 

Raghvendra et al. [63] reported that absorption range of ZnO films vary in between 

354 - 384 nm depending on the composition. Absorption of ZnO film at 354 nm 

corresponds to the band gap for 3.5 eV and absorption at 384 nm corresponds to the 

band gap for 3.23. eV. On the other hand, optical density band between ~ 380 and 

460 nm can be  attributed to the presence of ferritic iron (Fe+3) and zirconium in the 

composition of the substrate   (Table 1). Zirconium shows broad absorption feature 

between ~ 230 nm and 400 nm. Fe+2 ions give the absorbption band at approximately 

1000 nm depending on the composition of material. The particular band character of 

Fe2+ in terms of shape, intensity and wavelength position varies with glass 

composition. The wavelength position of Fe2+ changes between 900–1300 nm 

depending on the glass composition [64,65]. Therefore the optical density bands 

determined by Figure 7.6 can be associated with the transition element content of the 

substrate (Table 1). The enhancement of colour by Zn in ZnO film and by Fe and Zr 

in the substrate  can be explained by means of the created colour centres at the 

certain optical density bands.  
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The effect of dopant concentration on optical density at 200°C, 300°C, 400°C, 500°C 

and 550°C are shown in Figure 7.6. 

 

 

                                                           (a) 

 

                                                          (b) 
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                                                        (c) 

 

                                                     (d) 
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                                                               (e) 

Figure 7.6: Effect of dopant concentration over optical densities at (a) 200°, (b)  
                   300°C, (c) 400°C, (d) 500°C and (e) 550°C postheating temperatures 
 

 

The optical band gaps of the Al doped ZnO films postheated at different 

temperaures, are presented in Figure 7. There are two types of optical transitions that 

can occur at the fundamental edge: direct and indirect. Both involve the interaction 

of an electromagnetic wave with an electron in the valance band, which is raised 

across the fundamental gap to the conduction band. However, indirect transitions 

also involve simultaneous interaction with lattice vibrations. Thus, the wave vector 

of the electron can change in the optical transition, the momentum change being 

taken or provided by phonons.  

Transitions involving no phonons are called direct transitions and those involving 

phonons indirect transitions. For direct transitions n = 1/2 or 3/2 depending on 

whether the transition is allowed or forbidden in the quantum-mechanical sense. E0 is 

the optical gap and n0 refractive index in Equation 7.2 [10-26]; 

                                                                         (7.3) 
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In an allowed direct transition, α is given in Equation 7.3. Where A is a constant; 

                                                                                            (7.4) 

Plots of (αhν)2 versus hν and (αhν)1/2 versus hν were analysed and better linearity 

was observed for the optical band gap as shown in Figure 7.7 . For this study, n value 

is determined as 1/2 for (αhν)1/n. From the plot, the band gap energy was determined 

by extrapolating the linear portion of the graph to hν = 0. It is determined that there is 

an allowed direct transition as (αhν)2 for ZnO film. 

The effect of dopant concentration on allowed direct transition and optical band gap 

of at 200°C, 300°C, 400°C, 500°C and 550°C are shown in Figure 7.7 . 

 

 

                                                    (a) 
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                                                               (b) 

 

                                                             (c) 
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                                                              (d) 

 

                                                              (e) 

 

Figure 7.7: Allowed direct transition and optical band gap of AZO thin films 
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Transmittance (T, %) of unirradiated and irradiated ZnO films postheated at five 

different temperatures (in between 100°C and 500°C). The difference between the 

transmittance of unirradiated and irradiated ZnO films became apparent after the 

postheating temperature of 300 °C, which was reported as the crystalization starting 

temperature for ZnO films [66]. The transmittance of the irradiated ZnO film 

decreased in UV range with increasing the postheating temperatures to 400°C and 

500°C (Figure 7.8 (d) and (e)). Thus, the transmitance of the ZnO films postheating 

at 400°C and 500°C shifted to visible range of electromagnetic spectrum, after 

irradiation.   
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Figure 7.8: Transmittance of unirradiated and irradiated ZnO films postheated at (a)                  
                    100°C, (b) 200°C, (c) 300°C, (d) 400°C and (e)500°C 
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The effect of irradiation on ZnO films was investigated at five different postheating 

temperatures such as 100, 200, 300, 400, 500 °C in Figure 7.9. The transmittance of 

the irradiated ZnO film at 0.38 Gy changed at the visible range of the 

electromagnetic spectrum in Figure 7.9. When the postheated temperature of the thin 

film increased the transmittance of the induced ZnO film decreased. There is not any 

difference between the transmittance of unirradiated and irradiated ZnO films at the 

annealed temperature of 100 °C. However transmittance of the irradiated films that is 

annealed at 200 °C started to distinguish from unirradiated one. The transmittance of 

the induced film by gamma radiation is affected at the annealed temperature of     

300°C in Figure 7.9 (a). When the annealing temperature of the irradiated ZnO film 

reached to 300°C the transmittance of irradiated film started to decrease according to 

the transmittance of unirradiated one. There is an interesting change at the 

transmittance of irradiated ZnO films that is annealed 400 °C in Figure 7.9 (b). The 

absorbed dose of ZnO film has reduced to the transmittance of the irradiated film at 

the annealed temperature of 400 °C. Besides transmittance of this film is the similar 

with the film at 500 °C postheating temperature. 

 

                     Figure 7.9: Transmittance of irradiated ZnO films at 0.38 Gy 
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The changes of optical density bands due to absorbed dose explain the absorption of 

sunlight by colour centres due to elements in the material. Optical density is 

evaluated depending on the wavelength is depicted in Figure 7.10. As the difference 

of transmittance of unirradiated and irradiated ZnO films was evident at 400 °C the 

optical densities of unirradiated and irradiated ZnO films were investigated at this 

postheating temperature. Unirradiated and irradiated ZnO films give the 

characteristic optical density bands at ~ 365 and ~ 370 nm respectively in Figure 

7.10 below. The optical density of irradiated ZnO film has increased due to the 

absorbed dose of the film. Besides, the absorption band of irradiated ZnO film at 

0.38 Gy shift to the visible range of electromagnetic spectrum.  

 

        Figure 7.10: Optical densities of unirradiated and irradiated ZnO films at 400°C 

 

When results are compared according to dopant levels it is seen that; if the dopant 

level of Al increased optical density increased. The dopant level of Al at 5 and 50 % 

mol is investigated in Figure 7.11 . Besides when the annealed temperature increased 

from 300 °C to 550 °C optical density of the film changed. 
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Figure 7.11 : The dopant level effect on optical density at 300°C and 550°C 

The optical band gap of ZnO film that is annealed at 300 C was determined as 3.50 

eV. However the optical band gap of ZnO film that is annealed at 500 °C is 3.42 eV 

in Figure 7.12. The decrease of the optical band gap depends on the increase of the 

postheating temperature of ZnO film. The changes of the postheating temperature are 

very important for the optical band gap. It can be thought that the decrease of optical 

band gap is related to the colour centres at the film. 
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           Figure 7.12: Allowed direct transition and optical band gap of ZnO film 

The optical band gap of uniradiated ZnO film annealed at 500°C was determined as 

3.31 eV, while it decreased to 3.11 eV upon irradiation (Figure 7.13). The decrease 

of optical band gap can be explained by pass of an electron in the valance band to the 

conduction band with a lower energy after collision of photon. 
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            Figure 7.13: Optical band gaps of irradiated and unirradiated ZnO 
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7.4 Electrical Properties 

The electrical properties of oxides depend critically upon the oxidation state of the 

metal component (stoichiometry of the oxide) and on the nature and quantity of 

impurities incorporated in the films, either intentiallyor inadvertently [10].  

The electrical conductivity in AZO films is essentially due to the contribution from 

Al3+ ions on substitutional sites of Zn2+ ions and Al interstitial atoms as well as from 

oxygen vacancies and Zn interstitials atoms [10]. Figure 7. Shows the oxygen 

vacancies in ZnO structure. 

               

             (a)                                                              (b) 

Figure 7.14: (a) Deformed coordination tetrahedron and (b) ZnO structure (black          
                      circles: zinc; grey circles: oxygen) [67]. 
 
The carrier concentration (n) is derived from the relation (7.5); 

n = 1/e · RH                                                                                                            (7.5)  

where RH is the Hall coefficient and e is the absolute value of the electron charge. 

The carrier mobility (µ) is determined using the relation  

µ=1/neρ                                                                                                                 (7.6) 

where ρ is resistivity [68]. 

By using Equation (7.5); carrier concentration is calculated as 6.616 x 10-26 m-3 

(6.616 x 1020 cm-3), which is constant for all samples. 
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Resistivity and carrier mobility values of samples are shown in Table 7.2 and Table 

7.3, which belong to samples annealed in vacuum and in argon ambient, respectively. 

    Table 7.2:Resistivity and carrier mobility values of AZO films in vacuum ambient 

Vacuum 

Ambient 

Al Concentration 

(%) 

ρ (Ω.cm) 

x10-3 

µ 

(cm2/Vs) 

RH                           

x 10-3 

I 0.8 1.52 0.621 -9.44 

II 1.0 1.12 0.84 -9.44 

III 1.2 1.05 0.898 -9.44 

IV 1.6 1.00 0.94 -9.44 

 

   Table 7.3: Resistivity and carrier mobility values of AZO films in argon ambient 

Argon 

Ambient 

Al Concentration 

(%) 

ρ 

(Ω.cm) 

µ (cm2/Vs)     x 

10-2 

RH                

x 10-3 

V 0.8 0.147 6.43 -9.44 

VI 1.0 0.139 6.78 -9.44 

VII 1.2 0.181 5.21 -9.44 

VIII 1.6 0.155 6.07 -9.44 

 

It is known that sintering and cooling conditions have great influences on the 

electrical conductivity of ZnO. The AZO film resistivity  is found to decrease 

initially with increasing annealing temperature up to 650 °C because the grain 

boundaries and the crystal lattice deficiencies of the film  are reduced with 

increasing annealing temperature, resulting in an increase of the mobility of the 

carriers [69,16].  
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Due to the fact that, after observing results of 500°C and 600°C, 700°C was decided 

to be the final annealing temperature. 

It is seen from the Table 7.2 that; resistivity values obtained from argon ambient is 

much more higher than those from vacuum ambient. 

The increase in resistivity is believed to be due to better film crystallinity and surface 

morphology, which increases with an increase in substrate temperature. The decrease 

in values may be caused by the annealing out of point defects and interstitial 

impurities. 

The most important parameters required for the application of ZnO:Al film as a 

transparent conductor are its low electrical resistivity and high optical transmittance 

[6]. So; due to the experiment results it can be said that Al concentration %1.2 shows 

the best results in argon ambient annealing. 
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8. CONCLUSIONS 

 

Following conclusions can be drawn according to the results of this study: 

1. Homogenous ZnO and Al doped ZnO films can be formed on a soda lime 

silicate and Corning 7059 glass by sol-gel process. 

2. For the undoped ZnO films annealed at 400°C and 500°C irradition by a 

Co60 isotope  results in a considerable decrease of transmittance at UV range 

at 0,38 Gy.  

3. Unirradiated and irradiated undoped ZnO films annealed at 500°C give the 

characteristic optical density bands at  365 - 370 nm and aproximately at 900 

nm.  

4. The optical band gap of the  undoped ZnO film annealed at 500°C decreased 

from 3.31 eV to 3.11 eV upon irradiation. 

5. The dopant level of Al at 5 and 50 % mol was also investigated in the present 

study. When the dopant level of Al increased optical density increased. 

Besides, when the annealed temperature increased from 300 °C to 550 °C 

optical density of the film changed. 

6. Transparent and high conductive Al-doped ZnO thin films are on Corning 

7059 glass were prepared by sol-gel method using dip coating technique for 

film deposition. The resistivity of the films ranges between 1.00 x 10-3 and 

0.181 Ω cm and a very good transmittance (80-90 %) within the visible 

wavelength region was achieved. 
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7. The increase of Al content from 0.8 – 1.6 % seems to improve the electrical 

conductivity, but the results are not very conclusive. The atmosphere during 

heat treatment significantly affects the conductivity of the films. The 

conductivity increases by heat treating in vacuum, comparing with the results 

obtained by heat treating in argon ambient. 

8. The lowest resistivity was obtained as 1.00 x 10-3 Ω cm, which was achieved 

from in the film that contained 1.6 wt.% of aluminum, prepared with a 

withdrawal speed of 200 mm/min, preheated at 400 °C, final annealed at 

700°C in vacuum condition. 
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